

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/yii2/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/yii2/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

索引

Yii Documentation Style Guide

Guidelines to go by when writing or editing any Yii documentation.

This needs to be expanded.

General Style

	Try to use an active voice.

	Use short, declarative sentences.

	Demonstrate ideas using code as much as possible.

	Never use “we”. It’s the Yii development team or the Yii core team. Better yet to put things in terms of the framework or the guide.

	Use the Oxford comma (e.g., “this, that, and the other” not “this, that and the other”).

Formatting

	Use italics for emphasis, never capitalization, bold, or underlines.

Lists

	Numeric lists should be complete sentences that end with periods.

	Bullet lists should be fragments that end with semicolon except the last item, which should end with a period.

Blocks

Blocks use the Markdown > Type:. There are four block types:

	Warning, for bad security things and other problems

	Note, to emphasize key concepts, things to avoid

	Info, general information (an aside); not as strong as a “Note”

	Tip, pro tips, extras, can be useful but may not be needed by everyone all the time

The sentence after the colon should begin with a capital letter.

When translating documentation, these Block indicators should not be translated.
Keeps them intact as they are and only translate the block content.
For translating the Type word, each guide translation should have a blocktypes.json file
containing the translations. The following shows an example for German:

{
 "Warning:": "Achtung:",
 "Note:": "Hinweis:",
 "Info:": "Info:",
 "Tip:": "Tipp:"
}

References

	Yii 2.0 or Yii 2 (not Yii2 or Yii2.0)

	Each “page” of the guide is referred to as a “section”.

	References to Code objects:
	Refer to classes using the full namespace: yii\base\Model

	Refer to class properties using the static syntax even if they are not static: yii\base\Model::$validators

	Refer to class methods using the static syntax even if they are not static and include parenthesis to make it clear, that it is a method: yii\base\Model::validate()

	references to code objects should be writting in [[]] to generate links to the API documentation. E.g. [[yii\base\Model]], [[yii\base\Model::$validators]], or [[yii\base\Model::validate()]].

Capitalizations

	Web, not web

	the guide or this guide, not the Guide

Validating the docs

The following are some scripts that help find broken links and other issues in the guide:

Find broken links (some false-positives may occur):

grep -rniP "\[\[[^\],']+?\][^\]]" docs/guide*
grep -rniP "[^\[]\[[^\]\[,']+?\]\]" docs/guide*

Attribution of Translators

The names of the translators will be listed among the guide authors in the
rendered versions of the guide.
Therefor in each guide directory for a different language than english a translators.json file
should be created that contains an array of names of the people who have participated in the translation.

[
 "Jane Doe",
 "John Doe"
]

If you have contributed a significant part to the translation, feel free to send a pull request adding your name.

Class Autoloading

Yii relies on the class autoloading mechanism [http://www.php.net/manual/en/language.oop5.autoload.php]
to locate and include all required class files. It provides a high-performance class autoloader that is compliant with the
PSR-4 standard [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md].
The autoloader is installed when you include the Yii.php file.

Note: For simplicity of description, in this section we will only talk about autoloading of classes. However, keep in
mind that the content we are describing here applies to autoloading of interfaces and traits as well.

Using the Yii Autoloader

To make use of the Yii class autoloader, you should follow two simple rules when creating and naming your classes:

	Each class must be under a namespace [http://php.net/manual/en/language.namespaces.php] (e.g. foo\bar\MyClass)

	Each class must be saved in an individual file whose path is determined by the following algorithm:

// $className is a fully qualified class name without the leading backslash
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');

For example, if a class name and namespace is foo\bar\MyClass, the alias for the corresponding class file path
would be @foo/bar/MyClass.php. In order for this alias to be resolvable into a file path,
either @foo or @foo/bar must be a root alias.

When using the Basic Project Template, you may put your classes under the top-level
namespace app so that they can be autoloaded by Yii without the need of defining a new alias. This is because
@app is a predefined alias, and a class name like app\components\MyClass
can be resolved into the class file AppBasePath/components/MyClass.php, according to the algorithm just described.

In the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], each tier has its own root alias. For example,
the front-end tier has a root alias @frontend, while the back-end tier root alias is @backend. As a result,
you may put the front-end classes under the namespace frontend while the back-end classes are under backend. This will
allow these classes to be autoloaded by the Yii autoloader.

Class Map

The Yii class autoloader supports the class map feature, which maps class names to the corresponding class file paths.
When the autoloader is loading a class, it will first check if the class is found in the map. If so, the corresponding
file path will be included directly without further checks. This makes class autoloading super fast. In fact,
all core Yii classes are autoloaded this way.

You may add a class to the class map, stored in Yii::$classMap, using:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

Aliases can be used to specify class file paths. You should set the class map in the
bootstrapping process so that the map is ready before your classes are used.

Using Other Autoloaders

Because Yii embraces Composer as a package dependency manager, it is recommended that you also install
the Composer autoloader. If you are using 3rd-party libraries that have their own autoloaders, you should
also install those.

When using the Yii autoloader together with other autoloaders, you should include the Yii.php file
after all other autoloaders are installed. This will make the Yii autoloader the first one responding to
any class autoloading request. For example, the following code is extracted from
the entry script of the Basic Project Template. The first
line installs the Composer autoloader, while the second line installs the Yii autoloader:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

You may use the Composer autoloader alone without the Yii autoloader. However, by doing so, the performance
of your class autoloading may be degraded, and you must follow the rules set by Composer in order for your classes
to be autoloadable.

Info: If you do not want to use the Yii autoloader, you must create your own version of the Yii.php file
and include it in your entry script.

Autoloading Extension Classes

The Yii autoloader is capable of autoloading extension classes. The sole requirement
is that an extension specifies the autoload section correctly in its composer.json file. Please refer to the
Composer documentation [https://getcomposer.org/doc/04-schema.md#autoload] for more details about specifying autoload.

In case you do not use the Yii autoloader, the Composer autoloader can still autoload extension classes for you.

Service Locator

A service locator is an object that knows how to provide all sorts of services (or components) that an application
might need. Within a service locator, each component exists as only a single instance, uniquely identified by an ID.
You use the ID to retrieve a component from the service locator.

In Yii, a service locator is simply an instance of [[yii\di\ServiceLocator]] or a child class.

The most commonly used service locator in Yii is the application object, which can be accessed through
\Yii::$app. The services it provides are called application components, such as the request, response, and
urlManager components. You may configure these components, or even replace them with your own implementations, easily
through functionality provided by the service locator.

Besides the application object, each module object is also a service locator.

To use a service locator, the first step is to register components with it. A component can be registered
via [[yii\di\ServiceLocator::set()]]. The following code shows different ways of registering components:

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// register "cache" using a class name that can be used to create a component
$locator->set('cache', 'yii\caching\ApcCache');

// register "db" using a configuration array that can be used to create a component
$locator->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
]);

// register "search" using an anonymous function that builds a component
$locator->set('search', function () {
 return new app\components\SolrService;
});

// register "pageCache" using a component
$locator->set('pageCache', new FileCache);

Once a component has been registered, you can access it using its ID, in one of the two following ways:

$cache = $locator->get('cache');
// or alternatively
$cache = $locator->cache;

As shown above, [[yii\di\ServiceLocator]] allows you to access a component like a property using the component ID.
When you access a component for the first time, [[yii\di\ServiceLocator]] will use the component registration
information to create a new instance of the component and return it. Later, if the component is accessed again,
the service locator will return the same instance.

You may use [[yii\di\ServiceLocator::has()]] to check if a component ID has already been registered.
If you call [[yii\di\ServiceLocator::get()]] with an invalid ID, an exception will be thrown.

Because service locators are often being created with configurations,
a writable property named [[yii\di\ServiceLocator::setComponents()|components]] is provided. This allows you
to configure and register multiple components at once. The following code shows a configuration array
that can be used to configure a service locator (e.g. an application) with
the db, cache and search components:

return [
 // ...
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],
 'cache' => 'yii\caching\ApcCache',
 'search' => function () {
 $solr = new app\components\SolrService('127.0.0.1');
 // ... other initializations ...
 return $solr;
 },
],
];

In the above, there is an alternative way to configure the search component. Instead of directly writing a PHP
callback which builds a SolrService instance, you can use a static class method to return such a callback, like
shown as below:

class SolrServiceBuilder
{
 public static function build($ip)
 {
 return function () use ($ip) {
 $solr = new app\components\SolrService($ip);
 // ... other initializations ...
 return $solr;
 };
 }
}

return [
 // ...
 'components' => [
 // ...
 'search' => SolrServiceBuilder::build('127.0.0.1'),
],
];

This alternative approach is most preferable when you are releasing a Yii component which encapsulates some non-Yii
3rd-party library. You use the static method like shown above to represent the complex logic of building the
3rd-party object, and the user of your component only needs to call the static method to configure the component.

Using template engines

By default, Yii uses PHP as its template language, but you can configure Yii to support other rendering engines, such as
Twig [http://twig.sensiolabs.org/] or Smarty [http://www.smarty.net/] available as extensions.

The view component is responsible for rendering views. You can add a custom template engine by reconfiguring this
component’s behavior:

[
 'components' => [
 'view' => [
 'class' => 'yii\web\View',
 'renderers' => [
 'tpl' => [
 'class' => 'yii\smarty\ViewRenderer',
 //'cachePath' => '@runtime/Smarty/cache',
],
 'twig' => [
 'class' => 'yii\twig\ViewRenderer',
 'cachePath' => '@runtime/Twig/cache',
 // Array of twig options:
 'options' => [
 'auto_reload' => true,
],
 'globals' => ['html' => '\yii\helpers\Html'],
 'uses' => ['yii\bootstrap'],
],
 // ...
],
],
],
]

In the code above, both Smarty and Twig are configured to be useable by the view files. But in order to get these extensions into your project, you need to also modify
your composer.json file to include them, too:

"yiisoft/yii2-smarty": "~2.0.0",
"yiisoft/yii2-twig": "~2.0.0",

That code would be added to the require section of composer.json. After making that change and saving the file, you can install the extensions by running composer update --prefer-dist in the command-line.

For details about using concrete template engine please refer to its documentation:

	Twig guide [https://github.com/yiisoft/yii2-twig/tree/master/docs/guide]

	Smarty guide [https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide]

Data Providers

In the Pagination and Sorting sections, we have described how to
allow end users to choose a particular page of data to display and sort them by some columns. Because the task
of paginating and sorting data is very common, Yii provides a set of data provider classes to encapsulate it.

A data provider is a class implementing [[yii\data\DataProviderInterface]]. It mainly supports retrieving paginated
and sorted data. It is usually used to work with data widgets so that end users can
interactively paginate and sort data.

The following data provider classes are included in the Yii releases:

	[[yii\data\ActiveDataProvider]]: uses [[yii\db\Query]] or [[yii\db\ActiveQuery]] to query data from databases
and return them in terms of arrays or Active Record instances.

	[[yii\data\SqlDataProvider]]: executes a SQL statement and returns database data as arrays.

	[[yii\data\ArrayDataProvider]]: takes a big array and returns a slice of it based on the paginating and sorting
specifications.

The usage of all these data providers share the following common pattern:

// create the data provider by configuring its pagination and sort properties
$provider = new XyzDataProvider([
 'pagination' => [...],
 'sort' => [...],
]);

// retrieves paginated and sorted data
$models = $provider->getModels();

// get the number of data items in the current page
$count = $provider->getCount();

// get the total number of data items across all pages
$totalCount = $provider->getTotalCount();

You specify the pagination and sorting behaviors of a data provider by configuring its
[[yii\data\BaseDataProvider::pagination|pagination]] and [[yii\data\BaseDataProvider::sort|sort]] properties
which correspond to the configurations for [[yii\data\Pagination]] and [[yii\data\Sort]], respectively.
You may also configure them to be false to disable pagination and/or sorting features.

Data widgets, such as [[yii\grid\GridView]], have a property named dataProvider which
can take a data provider instance and display the data it provides. For example,

echo yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
]);

These data providers mainly vary in the way how the data source is specified. In the following subsections,
we will explain the detailed usage of each of these data providers.

Active Data Provider

To use [[yii\data\ActiveDataProvider]], you should configure its [[yii\data\ActiveDataProvider::query|query]] property.
It can take either a [[yii\db\Query]] or [[yii\db\ActiveQuery]] object. If the former, the data returned will be arrays;
if the latter, the data returned can be either arrays or Active Record instances.
For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'defaultOrder' => [
 'created_at' => SORT_DESC,
 'title' => SORT_ASC,
]
],
]);

// returns an array of Post objects
$posts = $provider->getModels();

If $query in the above example is created using the following code, then the data provider will return raw arrays.

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]);

Note: If a query already specifies the orderBy clause, the new ordering instructions given by end users
(through the sort configuration) will be appended to the existing orderBy clause. Any existing limit
and offset clauses will be overwritten by the pagination request from end users (through the pagination configuration).

By default, [[yii\data\ActiveDataProvider]] uses the db application component as the database connection. You may
use a different database connection by configuring the [[yii\data\ActiveDataProvider::db]] property.

SQL Data Provider

[[yii\data\SqlDataProvider]] works with a raw SQL statement which is used to fetch the needed
data. Based on the specifications of [[yii\data\SqlDataProvider::sort|sort]] and
[[yii\data\SqlDataProvider::pagination|pagination]], the provider will adjust the ORDER BY and LIMIT
clauses of the SQL statement accordingly to fetch only the requested page of data in the desired order.

To use [[yii\data\SqlDataProvider]], you should specify the [[yii\data\SqlDataProvider::sql|sql]] property as well
as the [[yii\data\SqlDataProvider::totalCount|totalCount]] property. For example,

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
 SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
 'sql' => 'SELECT * FROM post WHERE status=:status',
 'params' => [':status' => 1],
 'totalCount' => $count,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => [
 'title',
 'view_count',
 'created_at',
],
],
]);

// returns an array of data rows
$models = $provider->getModels();

Info: The [[yii\data\SqlDataProvider::totalCount|totalCount]] property is required only if you need to
paginate the data. This is because the SQL statement specified via [[yii\data\SqlDataProvider::sql|sql]]
will be modified by the provider to return only the currently requested page of data. The provider still
needs to know the total number of data items in order to correctly calculate the number of pages available.

Array Data Provider

[[yii\data\ArrayDataProvider]] is best used when working with a big array. The provider allows you to return
a page of the array data sorted by one or multiple columns. To use [[yii\data\ArrayDataProvider]], you should
specify the [[yii\data\ArrayDataProvider::allModels|allModels]] property as the big array.
Elements in the big array can be either associative arrays
(e.g. query results of DAO) or objects (e.g. Active Record instances).
For example,

use yii\data\ArrayDataProvider;

$data = [
 ['id' => 1, 'name' => 'name 1', ...],
 ['id' => 2, 'name' => 'name 2', ...],
 ...
 ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
 'allModels' => $data,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => ['id', 'name'],
],
]);

// get the rows in the currently requested page
$rows = $provider->getModels();

Note: Compared to Active Data Provider and SQL Data Provider,
array data provider is less efficient because it requires loading all data into the memory.

Working with Data Keys

When using the data items returned by a data provider, you often need to identify each data item with a unique key.
For example, if the data items represent customer information, you may want to use the customer ID as the key
for each customer data. Data providers can return a list of such keys corresponding with the data items returned
by [[yii\data\DataProviderInterface::getModels()]]. For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
]);

// returns an array of Post objects
$posts = $provider->getModels();

// returns the primary key values corresponding to $posts
$ids = $provider->getKeys();

In the above example, because you provide to [[yii\data\ActiveDataProvider]] an [[yii\db\ActiveQuery]] object,
it is intelligent enough to return primary key values as the keys. You may also explicitly specify how the key
values should be calculated by configuring [[yii\data\ActiveDataProvider::key]] with a column name or
a callable calculating key values. For example,

// use "slug" column as key values
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => 'slug',
]);

// use the result of md5(id) as key values
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => function ($model) {
 return md5($model->id);
 }
]);

Creating Custom Data Provider

To create your own custom data provider classes, you should implement [[yii\data\DataProviderInterface]].
An easier way is to extend from [[yii\data\BaseDataProvider]] which allows you to focus on the core data provider
logic. In particular, you mainly need to implement the following methods:

	[[yii\data\BaseDataProvider::prepareModels()|prepareModels()]]: prepares the data models that will be made
available in the current page and returns them as an array.

	[[yii\data\BaseDataProvider::prepareKeys()|prepareKeys()]]: accepts an array of currently available data models
and returns keys associated with them.

	[[yii\data\BaseDataProvider::prepareTotalCount()|prepareTotalCount]]: returns a value indicating the total number
of data models in the data provider.

Below is an example of a data provider that reads CSV data efficiently:

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
 /**
 * @var string name of the CSV file to read
 */
 public $filename;

 /**
 * @var string|callable name of the key column or a callable returning it
 */
 public $key;

 /**
 * @var SplFileObject
 */
 protected $fileObject; // SplFileObject is very convenient for seeking to particular line in a file

 /**
 * @inheritdoc
 */
 public function init()
 {
 parent::init();

 // open file
 $this->fileObject = new SplFileObject($this->filename);
 }

 /**
 * @inheritdoc
 */
 protected function prepareModels()
 {
 $models = [];
 $pagination = $this->getPagination();

 if ($pagination === false) {
 // in case there's no pagination, read all lines
 while (!$this->fileObject->eof()) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 } else {
 // in case there's pagination, read only a single page
 $pagination->totalCount = $this->getTotalCount();
 $this->fileObject->seek($pagination->getOffset());
 $limit = $pagination->getLimit();

 for ($count = 0; $count < $limit; ++$count) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 }

 return $models;
 }

 /**
 * @inheritdoc
 */
 protected function prepareKeys($models)
 {
 if ($this->key !== null) {
 $keys = [];

 foreach ($models as $model) {
 if (is_string($this->key)) {
 $keys[] = $model[$this->key];
 } else {
 $keys[] = call_user_func($this->key, $model);
 }
 }

 return $keys;
 } else {
 return array_keys($models);
 }
 }

 /**
 * @inheritdoc
 */
 protected function prepareTotalCount()
 {
 $count = 0;

 while (!$this->fileObject->eof()) {
 $this->fileObject->next();
 ++$count;
 }

 return $count;
 }
}

Security

Good security is vital to the health and success of any application. Unfortunately, many developers cut corners when it
comes to security, either due to a lack of understanding or because implementation is too much of a hurdle. To make your
Yii powered application as secure as possible, Yii has included several excellent and easy to use security features.

	Authentication

	Authorization

	Working with Passwords

	Cryptography

	Views security

	Auth Clients [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md]

	Best Practices

Mailing

Note: This section is under development.

Yii supports composition and sending of the email messages. However, the framework core provides
only the content composition functionality and basic interface. Actual mail sending mechanism should
be provided by the extension, because different projects may require its different implementation and
it usually depends on the external services and libraries.

For the most common cases you can use yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer] official extension.

Configuration

Mail component configuration depends on the extension you have chosen.
In general your application configuration should look like:

return [
 //....
 'components' => [
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
],
];

Basic usage

Once the mailer component is configured, you can use the following code to send an email message:

Yii::$app->mailer->compose()
 ->setFrom('from@domain.com')
 ->setTo('to@domain.com')
 ->setSubject('Message subject')
 ->setTextBody('Plain text content')
 ->setHtmlBody('HTML content')
 ->send();

In the above example the method compose() creates an instance of the mail message, which then is populated and sent.
You may put more complex logic in this process if needed:

$message = Yii::$app->mailer->compose();
if (Yii::$app->user->isGuest) {
 $message->setFrom('from@domain.com');
} else {
 $message->setFrom(Yii::$app->user->identity->email);
}
$message->setTo(Yii::$app->params['adminEmail'])
 ->setSubject('Message subject')
 ->setTextBody('Plain text content')
 ->send();

Note: each mailer extension comes in 2 major classes: Mailer and Message. Mailer always knows
the class name and specific of the Message. Do not attempt to instantiate Message object directly —
always use compose() method for it.

You may also send several messages at once:

$messages = [];
foreach ($users as $user) {
 $messages[] = Yii::$app->mailer->compose()
 // ...
 ->setTo($user->email);
}
Yii::$app->mailer->sendMultiple($messages);

Some particular mail extensions may benefit from this approach, using single network message etc.

Composing mail content

Yii allows composition of the actual mail messages content via special view files.
By default these files should be located at @app/mail path.

Example mail view file content:

<?php
use yii\helpers\Html;
use yii\helpers\Url;

/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\BaseMessage instance of newly created mail message */

?>
<h2>This message allows you to visit our site home page by one click</h2>
<?= Html::a('Go to home page', Url::home('http')) ?>

In order to compose message content via view file simply pass view name to the compose() method:

Yii::$app->mailer->compose('home-link') // a view rendering result becomes the message body here
 ->setFrom('from@domain.com')
 ->setTo('to@domain.com')
 ->setSubject('Message subject')
 ->send();

You may pass additional view parameters to compose() method, which will be available inside the view files:

Yii::$app->mailer->compose('greetings', [
 'user' => Yii::$app->user->identity,
 'advertisement' => $adContent,
]);

You can specify different view files for HTML and plain text message contents:

Yii::$app->mailer->compose([
 'html' => 'contact-html',
 'text' => 'contact-text',
]);

If you specify view name as a scalar string, its rendering result will be used as HTML body, while
plain text body will be composed by removing all HTML entities from HTML one.

View rendering result can be wrapped into the layout, which can be setup using [[yii\mail\BaseMailer::htmlLayout]]
and [[yii\mail\BaseMailer::textLayout]]. It will work the same way like layouts in regular web application.
Layout can be used to setup mail CSS styles or other shared content:

<?php
use yii\helpers\Html;

/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\MessageInterface the message being composed */
/* @var $content string main view render result */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::$app->charset ?>" />
 <style type="text/css">
 .heading {...}
 .list {...}
 .footer {...}
 </style>
 <?php $this->head() ?>
</head>
<body>
 <?php $this->beginBody() ?>
 <?= $content ?>
 <div class="footer">With kind regards, <?= Yii::$app->name ?> team</div>
 <?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

File attachment

You can add attachments to message using methods attach() and attachContent():

$message = Yii::$app->mailer->compose();

// attach file from local file system
$message->attach('/path/to/source/file.pdf');

// create attachment on-the-fly
$message->attachContent('Attachment content', ['fileName' => 'attach.txt', 'contentType' => 'text/plain']);

Embedding images

You can embed images into the message content using embed() method. This method returns the attachment id,
which should be then used at img tag.
This method is easy to use when composing message content via view file:

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/image.jpg'])
 // ...
 ->send();

Then inside the view file you can use the following code:

<img src="<?= $message->embed($imageFileName); ?>">

Testing and debugging

A developer often has to check, what actual emails are sent by the application, what was their content and so on.
Such ability is granted by Yii via yii\mail\BaseMailer::useFileTransport. If enabled, this option enforces
saving mail message data into the local files instead of regular sending. These files will be saved under
yii\mail\BaseMailer::fileTransportPath, which is @runtime/mail by default.

Note: you can either save the messages to the files or send them to the actual recipients, but can not do both simultaneously.

A mail message file can be opened by a regular text file editor, so you can browse the actual message headers, content and so on.
This mechanism may prove itself, while debugging application or running unit test.

Note: the mail message file content is composed via \yii\mail\MessageInterface::toString(), so it depends on the actual
mail extension you are using in your application.

Creating your own mail solution

In order to create your own custom mail solution, you need to create 2 classes: one for the Mailer and
another one for the Message.
You can use yii\mail\BaseMailer and yii\mail\BaseMessage as the base classes for your solution. These classes
already contain the basic logic, which is described in this guide. However, their usage is not mandatory, it is enough
to implement yii\mail\MailerInterface and yii\mail\MessageInterface interfaces.
Then you need to implement all the abstract methods to build your solution.

Performance Tuning

There are many factors affecting the performance of your Web application. Some are environmental, some are related
with your code, while some others are related with Yii itself. In this section, we will enumerate most of these
factors and explain how you can improve your application performance by adjusting these factors.

Optimizing your PHP Environment

A well configured PHP environment is very important. In order to get maximum performance,

	Use the latest stable PHP version. Major releases of PHP may bring significant performance improvements.

	Enable bytecode caching with Opcache [http://php.net/opcache] (PHP 5.5 or later) or APC [http://php.net/apc]
(PHP 5.4). Bytecode caching avoids the time spent in parsing and including PHP scripts for every
incoming request.

	Tune realpath() cache [https://github.com/samdark/realpath_cache_tuner].

Disabling Debug Mode

When running an application in production, you should disable debug mode. Yii uses the value of a constant
named YII_DEBUG to indicate whether debug mode should be enabled. When debug mode is enabled, Yii
will take extra time to generate and record debugging information.

You may place the following line of code at the beginning of the entry script to
disable debug mode:

defined('YII_DEBUG') or define('YII_DEBUG', false);

Info: The default value of YII_DEBUG is false. So if you are certain that you do not change its default
value somewhere else in your application code, you may simply remove the above line to disable debug mode.

Using Caching Techniques

You can use various caching techniques to significantly improve the performance of your application. For example,
if your application allows users to enter text in Markdown format, you may consider caching the parsed Markdown
content to avoid parsing the same Markdown text repeatedly in every request. Please refer to
the Caching section to learn about the caching support provided by Yii.

Enabling Schema Caching

Schema caching is a special caching feature that should be enabled whenever you are using Active Record.
As you know, Active Record is intelligent enough to detect schema information (e.g. column names, column types, constraints)
about a DB table without requiring you to manually describe them. Active Record obtains this information by executing
extra SQL queries. By enabling schema caching, the retrieved schema information will be saved in the cache and reused
in future requests.

To enable schema caching, configure a cache application component to store
the schema information and set [[yii\db\Connection::enableSchemaCache]] to be true in the application configuration:

return [
 // ...
 'components' => [
 // ...
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=mydatabase',
 'username' => 'root',
 'password' => '',
 'enableSchemaCache' => true,

 // Duration of schema cache.
 'schemaCacheDuration' => 3600,

 // Name of the cache component used to store schema information
 'schemaCache' => 'cache',
],
],
];

Combining and Minimizing Assets

A complex Web page often includes many CSS and/or JavaScript asset files. To reduce the number of HTTP requests
and the overall download size of these assets, you should consider combining them into one single file and
compressing it. This may greatly improve the page loading time and reduce the server load. For more details,
please refer to the Assets section.

Optimizing Session Storage

By default session data are stored in files. The implementation is locking a file from opening a session to the point it’s
closed either by session_write_close() (in Yii it could be done as Yii::$app->session->close()) or at the end of request.
While session file is locked all other requests which are trying to use the same session are blocked i.e. waiting for the
initial request to release session file. This is fine for development and probably small projects. But when it comes
to handling massive concurrent requests, it is better to use more sophisticated storage, such as database. Yii supports
a variety of session storage out of box. You can use these storage by configuring the session component in the
application configuration like the following,

return [
 // ...
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',

 // Set the following if you want to use DB component other than
 // default 'db'.
 // 'db' => 'mydb',

 // To override default session table, set the following
 // 'sessionTable' => 'my_session',
],
],
];

The above configuration uses a database table to store session data. By default, it will use the db application
component as the database connection and store the session data in the session table. You do have to create the
session table as follows in advance, though,

CREATE TABLE session (
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

You may also store session data in a cache by using [[yii\web\CacheSession]]. In theory, you can use any supported
cache storage. Note, however, that some cache storage may flush cached data
when the storage limit is reached. For this reason, you should mainly use those cache storage that do not enforce
storage limit.

If you have Redis [http://redis.io/] on your server, it is highly recommended you use it as session storage by using
[[yii\redis\Session]].

Optimizing Databases

Executing DB queries and fetching data from databases are often the main performance bottleneck in
a Web application. Although using data caching techniques may alleviate the performance hit,
it does not fully solve the problem. When the database contains enormous amounts of data and the cached data is invalid,
fetching the latest data could be prohibitively expensive without proper database and query design.

A general technique to improve the performance of DB queries is to create indices for table columns that
need to be filtered by. For example, if you need to look for a user record by username, you should create an index
on username. Note that while indexing can make SELECT queries much faster, it will slow down INSERT, UPDATE and DELETE queries.

For complex DB queries, it is recommended that you create database views to save the query parsing and preparation time.

Last but not least, use LIMIT in your SELECT queries. This avoids fetching an overwhelming amount of data from the database
and exhausting the memory allocated to PHP.

Using Plain Arrays

Although Active Record is very convenient to use, it is not as efficient as using plain arrays
when you need to retrieve a large amount of data from database. In this case, you may consider calling asArray()
while using Active Record to query data so that the retrieved data is represented as arrays instead of bulky Active
Record objects. For example,

class PostController extends Controller
{
 public function actionIndex()
 {
 $posts = Post::find()->limit(100)->asArray()->all();

 return $this->render('index', ['posts' => $posts]);
 }
}

In the above code, $posts will be populated as an array of table rows. Each row is a plain array. To access
the title column of the i-th row, you may use the expression $posts[$i]['title'].

You may also use DAO to build queries and retrieve data in plain arrays.

Optimizing Composer Autoloader

Because Composer autoloader is used to include most third-party class files, you should consider optimizing it
by executing the following command:

composer dumpautoload -o

Additionally you may consider using
authoritative class maps [https://getcomposer.org/doc/articles/autoloader-optimization.md#optimization-level-2-a-authoritative-class-maps]
and APCu cache [https://getcomposer.org/doc/articles/autoloader-optimization.md#optimization-level-2-b-apcu-cache].
Note that both opmizations may or may not be suitable for your particular case.

Processing Data Offline

When a request involves some resource intensive operations, you should think of ways to perform those operations
in offline mode without having users wait for them to finish.

There are two methods to process data offline: pull and push.

In the pull method, whenever a request involves some complex operation, you create a task and save it in a persistent
storage, such as database. You then use a separate process (such as a cron job) to pull the tasks and process them.
This method is easy to implement, but it has some drawbacks. For example, the task process needs to periodically pull
from the task storage. If the pull frequency is too low, the tasks may be processed with great delay, but if the frequency
is too high, it will introduce high overhead.

In the push method, you would use a message queue (e.g. RabbitMQ, ActiveMQ, Amazon SQS, etc.) to manage the tasks.
Whenever a new task is put on the queue, it will initiate or notify the task handling process to trigger the task processing.

Performance Profiling

You should profile your code to find out the performance bottlenecks and take appropriate measures accordingly.
The following profiling tools may be useful:

	Yii debug toolbar and debugger [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Blackfire [https://blackfire.io/]

	XHProf [http://www.php.net/manual/en/book.xhprof.php]

	XDebug profiler [http://xdebug.org/docs/profiler]

Prepare application for scaling

When nothing helps you may try making your application scalabe. A good introduction is provided in Configuring a Yii 2 Application for an Autoscaling Stack [https://github.com/samdark/yii2-cookbook/blob/master/book/scaling.md]. For further reading you may refer to Web apps performance and scaling [http://thehighload.com/].

Validating Input

As a rule of thumb, you should never trust the data received from end users and should always validate it
before putting it to good use.

Given a model populated with user inputs, you can validate the inputs by calling the
[[yii\base\Model::validate()]] method. The method will return a boolean value indicating whether the validation
succeeded or not. If not, you may get the error messages from the [[yii\base\Model::errors]] property. For example,

$model = new \app\models\ContactForm();

// populate model attributes with user inputs
$model->load(\Yii::$app->request->post());
// which is equivalent to the following:
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // all inputs are valid
} else {
 // validation failed: $errors is an array containing error messages
 $errors = $model->errors;
}

Declaring Rules

To make validate() really work, you should declare validation rules for the attributes you plan to validate.
This should be done by overriding the [[yii\base\Model::rules()]] method. The following example shows how
the validation rules for the ContactForm model are declared:

public function rules()
{
 return [
 // the name, email, subject and body attributes are required
 [['name', 'email', 'subject', 'body'], 'required'],

 // the email attribute should be a valid email address
 ['email', 'email'],
];
}

The [[yii\base\Model::rules()|rules()]] method should return an array of rules, each of which is an array
of the following format:

[
 // required, specifies which attributes should be validated by this rule.
 // For a single attribute, you can use the attribute name directly
 // without having it in an array
 ['attribute1', 'attribute2', ...],

 // required, specifies the type of this rule.
 // It can be a class name, validator alias, or a validation method name
 'validator',

 // optional, specifies in which scenario(s) this rule should be applied
 // if not given, it means the rule applies to all scenarios
 // You may also configure the "except" option if you want to apply the rule
 // to all scenarios except the listed ones
 'on' => ['scenario1', 'scenario2', ...],

 // optional, specifies additional configurations for the validator object
 'property1' => 'value1', 'property2' => 'value2', ...
]

For each rule you must specify at least which attributes the rule applies to and what is the type of the rule.
You can specify the rule type in one of the following forms:

	the alias of a core validator, such as required, in, date, etc. Please refer to
the Core Validators for the complete list of core validators.

	the name of a validation method in the model class, or an anonymous function. Please refer to the
Inline Validators subsection for more details.

	a fully qualified validator class name. Please refer to the Standalone Validators
subsection for more details.

A rule can be used to validate one or multiple attributes, and an attribute may be validated by one or multiple rules.
A rule may be applied in certain scenarios only by specifying the on option.
If you do not specify an on option, it means the rule will be applied to all scenarios.

When the validate() method is called, it does the following steps to perform validation:

	Determine which attributes should be validated by getting the attribute list from [[yii\base\Model::scenarios()]]
using the current [[yii\base\Model::scenario|scenario]]. These attributes are called active attributes.

	Determine which validation rules should be used by getting the rule list from [[yii\base\Model::rules()]]
using the current [[yii\base\Model::scenario|scenario]]. These rules are called active rules.

	Use each active rule to validate each active attribute which is associated with the rule.
The validation rules are evaluated in the order they are listed.

According to the above validation steps, an attribute will be validated if and only if it is
an active attribute declared in scenarios() and is associated with one or multiple active rules
declared in rules().

Note: It is handy to give names to rules i.e.

public function rules()
{
 return [
 // ...
 'password' => [['password'], 'string', 'max' => 60],
];
}

You can use it in a child model:

public function rules()
{
 $rules = parent::rules();
 unset($rules['password']);
 return $rules;
}

Customizing Error Messages

Most validators have default error messages that will be added to the model being validated when its attributes
fail the validation. For example, the [[yii\validators\RequiredValidator|required]] validator will add
a message “Username cannot be blank.” to a model when the username attribute fails the rule using this validator.

You can customize the error message of a rule by specifying the message property when declaring the rule,
like the following,

public function rules()
{
 return [
 ['username', 'required', 'message' => 'Please choose a username.'],
];
}

Some validators may support additional error messages to more precisely describe different causes of
validation failures. For example, the [[yii\validators\NumberValidator|number]] validator supports
[[yii\validators\NumberValidator::tooBig|tooBig]] and [[yii\validators\NumberValidator::tooSmall|tooSmall]]
to describe the validation failure when the value being validated is too big and too small, respectively.
You may configure these error messages like configuring other properties of validators in a validation rule.

Validation Events

When [[yii\base\Model::validate()]] is called, it will call two methods that you may override to customize
the validation process:

	[[yii\base\Model::beforeValidate()]]: the default implementation will trigger a [[yii\base\Model::EVENT_BEFORE_VALIDATE]]
event. You may either override this method or respond to this event to do some preprocessing work
(e.g. normalizing data inputs) before the validation occurs. The method should return a boolean value indicating
whether the validation should proceed or not.

	[[yii\base\Model::afterValidate()]]: the default implementation will trigger a [[yii\base\Model::EVENT_AFTER_VALIDATE]]
event. You may either override this method or respond to this event to do some postprocessing work after
the validation is completed.

Conditional Validation

To validate attributes only when certain conditions apply, e.g. the validation of one attribute depends
on the value of another attribute you can use the [[yii\validators\Validator::when|when]] property
to define such conditions. For example,

 ['state', 'required', 'when' => function($model) {
 return $model->country == 'USA';
 }]

The [[yii\validators\Validator::when|when]] property takes a PHP callable with the following signature:

/**
 * @param Model $model the model being validated
 * @param string $attribute the attribute being validated
 * @return bool whether the rule should be applied
 */
function ($model, $attribute)

If you also need to support client-side conditional validation, you should configure
the [[yii\validators\Validator::whenClient|whenClient]] property which takes a string representing a JavaScript
function whose return value determines whether to apply the rule or not. For example,

 ['state', 'required', 'when' => function ($model) {
 return $model->country == 'USA';
 }, 'whenClient' => "function (attribute, value) {
 return $('#country').val() == 'USA';
 }"]

Data Filtering

User inputs often need to be filtered or preprocessed. For example, you may want to trim the spaces around the
username input. You may use validation rules to achieve this goal.

The following examples shows how to trim the spaces in the inputs and turn empty inputs into nulls by using
the trim and default core validators:

return [
 [['username', 'email'], 'trim'],
 [['username', 'email'], 'default'],
];

You may also use the more general filter validator to perform more complex
data filtering.

As you can see, these validation rules do not really validate the inputs. Instead, they will process the values
and save them back to the attributes being validated.

Handling Empty Inputs

When input data are submitted from HTML forms, you often need to assign some default values to the inputs
if they are empty. You can do so by using the default validator. For example,

return [
 // set "username" and "email" as null if they are empty
 [['username', 'email'], 'default'],

 // set "level" to be 1 if it is empty
 ['level', 'default', 'value' => 1],
];

By default, an input is considered empty if its value is an empty string, an empty array or a null.
You may customize the default empty detection logic by configuring the [[yii\validators\Validator::isEmpty]] property
with a PHP callable. For example,

 ['agree', 'required', 'isEmpty' => function ($value) {
 return empty($value);
 }]

Note: Most validators do not handle empty inputs if their [[yii\validators\Validator::skipOnEmpty]] property takes
the default value true. They will simply be skipped during validation if their associated attributes receive empty
inputs. Among the core validators, only the captcha, default, filter,
required, and trim validators will handle empty inputs.

Ad Hoc Validation

Sometimes you need to do ad hoc validation for values that are not bound to any model.

If you only need to perform one type of validation (e.g. validating email addresses), you may call
the [[yii\validators\Validator::validate()|validate()]] method of the desired validator, like the following:

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
 echo 'Email is valid.';
} else {
 echo $error;
}

Note: Not all validators support this type of validation. An example is the unique
core validator which is designed to work with a model only.

If you need to perform multiple validations against several values, you can use [[yii\base\DynamicModel]]
which supports declaring both attributes and rules on the fly. Its usage is like the following:

public function actionSearch($name, $email)
{
 $model = DynamicModel::validateData(compact('name', 'email'), [
 [['name', 'email'], 'string', 'max' => 128],
 ['email', 'email'],
]);

 if ($model->hasErrors()) {
 // validation fails
 } else {
 // validation succeeds
 }
}

The [[yii\base\DynamicModel::validateData()]] method creates an instance of DynamicModel, defines the attributes
using the given data (name and email in this example), and then calls [[yii\base\Model::validate()]]
with the given rules.

Alternatively, you may use the following more “classic” syntax to perform ad hoc data validation:

public function actionSearch($name, $email)
{
 $model = new DynamicModel(compact('name', 'email'));
 $model->addRule(['name', 'email'], 'string', ['max' => 128])
 ->addRule('email', 'email')
 ->validate();

 if ($model->hasErrors()) {
 // validation fails
 } else {
 // validation succeeds
 }
}

After validation, you can check if the validation succeeded or not by calling the
[[yii\base\DynamicModel::hasErrors()|hasErrors()]] method, and then get the validation errors from the
[[yii\base\DynamicModel::errors|errors]] property, like you do with a normal model.
You may also access the dynamic attributes defined through the model instance, e.g.,
$model->name and $model->email.

Creating Validators

Besides using the core validators included in the Yii releases, you may also
create your own validators. You may create inline validators or standalone validators.

Inline Validators

An inline validator is one defined in terms of a model method or an anonymous function. The signature of
the method/function is:

/**
 * @param string $attribute the attribute currently being validated
 * @param mixed $params the value of the "params" given in the rule
 * @param \yii\validators\InlineValidator related InlineValidator instance.
 * This parameter is available since version 2.0.11.
 */
function ($attribute, $params, $validator)

If an attribute fails the validation, the method/function should call [[yii\base\Model::addError()]] to save
the error message in the model so that it can be retrieved back later to present to end users.

Below are some examples:

use yii\base\Model;

class MyForm extends Model
{
 public $country;
 public $token;

 public function rules()
 {
 return [
 // an inline validator defined as the model method validateCountry()
 ['country', 'validateCountry'],

 // an inline validator defined as an anonymous function
 ['token', function ($attribute, $params, $validator) {
 if (!ctype_alnum($this->$attribute)) {
 $this->addError($attribute, 'The token must contain letters or digits.');
 }
 }],
];
 }

 public function validateCountry($attribute, $params, $validator)
 {
 if (!in_array($this->$attribute, ['USA', 'Web'])) {
 $this->addError($attribute, 'The country must be either "USA" or "Web".');
 }
 }
}

Note: Since version 2.0.11 you can use [[yii\validators\InlineValidator::addError()]] for adding errors instead. That way the error
message can be formatted using [[yii\i18n\I18N::format()]] right away. Use {attribute} and {value} in the error
message to refer to an attribute label (no need to get it manually) and attribute value accordingly:

$validator->addError($this, $attribute, 'The value "{value}" is not acceptable for {attribute}.');

Note: By default, inline validators will not be applied if their associated attributes receive empty inputs
or if they have already failed some validation rules. If you want to make sure a rule is always applied,
you may configure the [[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] and/or [[yii\validators\Validator::skipOnError|skipOnError]]
properties to be false in the rule declarations. For example:

[
 ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]

Standalone Validators

A standalone validator is a class extending [[yii\validators\Validator]] or its child class. You may implement
its validation logic by overriding the [[yii\validators\Validator::validateAttribute()]] method. If an attribute
fails the validation, call [[yii\base\Model::addError()]] to save the error message in the model, like you do
with inline validators.

For example the inline validator above could be moved into new [[components/validators/CountryValidator]] class.

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
 public function validateAttribute($model, $attribute)
 {
 if (!in_array($model->$attribute, ['USA', 'Web'])) {
 $this->addError($model, $attribute, 'The country must be either "USA" or "Web".');
 }
 }
}

If you want your validator to support validating a value without a model, you should also override
[[yii\validators\Validator::validate()]]. You may also override [[yii\validators\Validator::validateValue()]]
instead of validateAttribute() and validate() because by default the latter two methods are implemented
by calling validateValue().

Below is an example of how you could use the above validator class within your model.

namespace app\models;

use Yii;
use yii\base\Model;
use app\components\validators\CountryValidator;

class EntryForm extends Model
{
 public $name;
 public $email;
 public $country;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['country', CountryValidator::className()],
 ['email', 'email'],
];
 }
}

Multiple Attributes Validation

Sometimes validators involve multiple attributes. Consider the following form:

class MigrationForm extends \yii\base\Model
{
 /**
 * Minimal funds amount for one adult person
 */
 const MIN_ADULT_FUNDS = 3000;
 /**
 * Minimal funds amount for one child
 */
 const MIN_CHILD_FUNDS = 1500;

 public $personalSalary;
 public $spouseSalary;
 public $childrenCount;
 public $description;

 public function rules()
 {
 return [
 [['personalSalary', 'description'], 'required'],
 [['personalSalary', 'spouseSalary'], 'integer', 'min' => self::MIN_ADULT_FUNDS],
 ['childrenCount', 'integer', 'min' => 0, 'max' => 5],
 [['spouseSalary', 'childrenCount'], 'default', 'value' => 0],
 ['description', 'string'],
];
 }
}

Creating validator

Let’s say we need to check if the family income is enough for children. We can create inline validator
validateChildrenFunds for that which will run only when childrenCount is more than 0.

Note that we can’t use all validated attributes (['personalSalary', 'spouseSalary', 'childrenCount']) when attaching
validator. This is because the same validator will run for each attribute (3 times in total) and we only need to run it
once for the whole attribute set.

You can use any of these attributes instead (or use what you think is the most relevant):

['childrenCount', 'validateChildrenFunds', 'when' => function ($model) {
 return $model->childrenCount > 0;
}],

Implementation of validateChildrenFunds can be like this:

public function validateChildrenFunds($attribute, $params)
{
 $totalSalary = $this->personalSalary + $this->spouseSalary;
 // Double the minimal adult funds if spouse salary is specified
 $minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 : self::MIN_ADULT_FUNDS;
 $childFunds = $totalSalary - $minAdultFunds;
 if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {
 $this->addError('childrenCount', 'Your salary is not enough for children.');
 }
}

You can ignore $attribute parameter because validation is not related to just one attribute.

Adding errors

Adding error in case of multiple attributes can vary depending on desired form design:

	Select the most relevant field in your opinion and add error to it’s attribute:

$this->addError('childrenCount', 'Your salary is not enough for children.');

	Select multiple important relevant attributes or all attributes and add the same error message to them. We can store
message in separate variable before passing it to addError to keep code DRY.

$message = 'Your salary is not enough for children.';
$this->addError('personalSalary', $message);
$this->addError('wifeSalary', $message);
$this->addError('childrenCount', $message);

Or use a loop:

$attributes = ['personalSalary, 'wifeSalary', 'childrenCount'];
foreach ($attributes as $attribute) {
 $this->addError($attribute, 'Your salary is not enough for children.');
}

	Add a common error (not related to particular attribute). We can use the not existing attribute name for adding
error, for example *, because attribute existence is not checked at that point.

$this->addError('*', 'Your salary is not enough for children.');

As a result, we will not see error message near form fields. To display it, we can include the error summary in view:

<?= $form->errorSummary($model) ?>

Note: Creating validator which validates multiple attributes at once is well described in the community cookbook [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-validator-multiple-attributes.md].

Client-Side Validation

Client-side validation based on JavaScript is desirable when end users provide inputs via HTML forms, because
it allows users to find out input errors faster and thus provides a better user experience. You may use or implement
a validator that supports client-side validation in addition to server-side validation.

Info: While client-side validation is desirable, it is not a must. Its main purpose is to provide users with a better
experience. Similar to input data coming from end users, you should never trust client-side validation. For this reason,
you should always perform server-side validation by calling [[yii\base\Model::validate()]], as
described in the previous subsections.

Using Client-Side Validation

Many core validators support client-side validation out-of-the-box. All you need to do
is just use [[yii\widgets\ActiveForm]] to build your HTML forms. For example, LoginForm below declares two
rules: one uses the required core validator which is supported on both
client and server-sides; the other uses the validatePassword inline validator which is only supported on the server
side.

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // username and password are both required
 [['username', 'password'], 'required'],

 // password is validated by validatePassword()
 ['password', 'validatePassword'],
];
 }

 public function validatePassword()
 {
 $user = User::findByUsername($this->username);

 if (!$user || !$user->validatePassword($this->password)) {
 $this->addError('password', 'Incorrect username or password.');
 }
 }
}

The HTML form built by the following code contains two input fields username and password.
If you submit the form without entering anything, you will find the error messages requiring you
to enter something appear right away without any communication with the server.

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php yii\widgets\ActiveForm::end(); ?>

Behind the scene, [[yii\widgets\ActiveForm]] will read the validation rules declared in the model
and generate appropriate JavaScript code for validators that support client-side validation. When a user
changes the value of an input field or submit the form, the client-side validation JavaScript will be triggered.

If you want to turn off client-side validation completely, you may configure the
[[yii\widgets\ActiveForm::enableClientValidation]] property to be false. You may also turn off client-side
validation of individual input fields by configuring their [[yii\widgets\ActiveField::enableClientValidation]]
property to be false. When enableClientValidation is configured at both the input field level and the form level,
the former will take precedence.

Info: Since version 2.0.11 all validators extending from [[yii\validators\Validator]] receive client-side options
from separate method - [[yii\validators\Validator::getClientOptions()]]. You can use it:

	if you want to implement your own custom client-side validation but leave the synchronization with server-side
validator options;

	to extend or customize to fit your specific needs:

public function getClientOptions($model, $attribute)
{
 $options = parent::getClientOptions($model, $attribute);
 // Modify $options here

 return $options;
}

Implementing Client-Side Validation

To create a validator that supports client-side validation, you should implement the
[[yii\validators\Validator::clientValidateAttribute()]] method which returns a piece of JavaScript code
that performs the validation on the client-side. Within the JavaScript code, you may use the following
predefined variables:

	attribute: the name of the attribute being validated.

	value: the value being validated.

	messages: an array used to hold the validation error messages for the attribute.

	deferred: an array which deferred objects can be pushed into (explained in the next subsection).

In the following example, we create a StatusValidator which validates if an input is a valid status input
against the existing status data. The validator supports both server-side and client-side validation.

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
 public function init()
 {
 parent::init();
 $this->message = 'Invalid status input.';
 }

 public function validateAttribute($model, $attribute)
 {
 $value = $model->$attribute;
 if (!Status::find()->where(['id' => $value])->exists()) {
 $model->addError($attribute, $this->message);
 }
 }

 public function clientValidateAttribute($model, $attribute, $view)
 {
 $statuses = json_encode(Status::find()->select('id')->asArray()->column());
 $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
 return <<<JS
if ($.inArray(value, $statuses) === -1) {
 messages.push($message);
}
JS;
 }
}

Tip: The above code is given mainly to demonstrate how to support client-side validation. In practice,
you may use the in core validator to achieve the same goal. You may
write the validation rule like the following:

[
 ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]

Tip: If you need to work with client validation manually i.e. dynamically add fields or do some custom UI logic, refer
to Working with ActiveForm via JavaScript [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md]
in Yii 2.0 Cookbook.

Deferred Validation

If you need to perform asynchronous client-side validation, you can create Deferred objects [http://api.jquery.com/category/deferred-object/].
For example, to perform a custom AJAX validation, you can use the following code:

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.push($.get("/check", {value: value}).done(function(data) {
 if ('' !== data) {
 messages.push(data);
 }
 }));
JS;
}

In the above, the deferred variable is provided by Yii, which is an array of Deferred objects. The $.get()
jQuery method creates a Deferred object which is pushed to the deferred array.

You can also explicitly create a Deferred object and call its resolve() method when the asynchronous callback
is hit. The following example shows how to validate the dimensions of an uploaded image file on the client-side.

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 var def = $.Deferred();
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Image too wide!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);

 deferred.push(def);
JS;
}

Note: The resolve() method must be called after the attribute has been validated. Otherwise the main form
validation will not complete.

For simplicity, the deferred array is equipped with a shortcut method add() which automatically creates a Deferred
object and adds it to the deferred array. Using this method, you can simplify the above example as follows,

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.add(function(def) {
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Image too wide!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);
 });
JS;
}

AJAX Validation

Some validations can only be done on the server-side, because only the server has the necessary information.
For example, to validate if a username is unique or not, it is necessary to check the user table on the server-side.
You can use AJAX-based validation in this case. It will trigger an AJAX request in the background to validate the
input while keeping the same user experience as the regular client-side validation.

To enable AJAX validation for a single input field, configure the [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]]
property of that field to be true and specify a unique form id:

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();

To enable AJAX validation for the whole form, configure [[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]]
to be true at the form level:

$form = ActiveForm::begin([
 'id' => 'contact-form',
 'enableAjaxValidation' => true,
]);

Note: When the enableAjaxValidation property is configured at both the input field level and the form level,
the former will take precedence.

You also need to prepare the server so that it can handle the AJAX validation requests.
This can be achieved by a code snippet like the following in the controller actions:

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
 Yii::$app->response->format = Response::FORMAT_JSON;
 return ActiveForm::validate($model);
}

The above code will check whether the current request is an AJAX. If yes, it will respond to
this request by running the validation and returning the errors in JSON format.

Info: You can also use Deferred Validation to perform AJAX validation.
However, the AJAX validation feature described here is more systematic and requires less coding effort.

When both enableClientValidation and enableAjaxValidation are set to true, AJAX validation request will be triggered
only after the successful client validation.

Data Formatting

To display data in a more readable format for users, you may format them using the formatter application component.
By default the formatter is implemented by [[yii\i18n\Formatter]] which provides a set of methods to format data as
date/time, numbers, currencies, and other commonly used formats. You can use the formatter like the following,

$formatter = \Yii::$app->formatter;

// output: January 1, 2014
echo $formatter->asDate('2014-01-01', 'long');

// output: 12.50%
echo $formatter->asPercent(0.125, 2);

// output: cebe@example.com
echo $formatter->asEmail('cebe@example.com');

// output: Yes
echo $formatter->asBoolean(true);
// it also handles display of null values:

// output: (not set)
echo $formatter->asDate(null);

As you can see, all these methods are named as asXyz(), where Xyz stands for a supported format. Alternatively,
you may format data using the generic method [[yii\i18n\Formatter::format()|format()]], which allows you to control
the desired format programmatically and is commonly used by widgets like [[yii\grid\GridView]] and [[yii\widgets\DetailView]].
For example,

// output: January 1, 2014
echo Yii::$app->formatter->format('2014-01-01', 'date');

// you can also use an array to specify parameters for the format method:
// `2` is the value for the $decimals parameter of the asPercent()-method.
// output: 12.50%
echo Yii::$app->formatter->format(0.125, ['percent', 2]);

Note: The formatter component is designed to format values to be displayed for the end user. If you want
to convert user input into machine readable format, or just format a date in a machine readable format,
the formatter is not the right tool for that.
To convert user input for date and number values you may use [[yii\validators\DateValidator]] and [[yii\validators\NumberValidator]]
respectively. For simple conversion between machine readable date and time formats,
the PHP date() [http://php.net/manual/en/function.date.php]-function is enough.

Configuring Formatter

You may customize the formatting rules by configuring the formatter component in the application configuration.
For example,

return [
 'components' => [
 'formatter' => [
 'dateFormat' => 'dd.MM.yyyy',
 'decimalSeparator' => ',',
 'thousandSeparator' => ' ',
 'currencyCode' => 'EUR',
],
],
];

Please refer to [[yii\i18n\Formatter]] for the properties that may be configured.

Formatting Date and Time Values

The formatter supports the following output formats that are related with date and time:

	[[yii\i18n\Formatter::asDate()|date]]: the value is formatted as a date, e.g. January 01, 2014.

	[[yii\i18n\Formatter::asTime()|time]]: the value is formatted as a time, e.g. 14:23.

	[[yii\i18n\Formatter::asDatetime()|datetime]]: the value is formatted as date and time, e.g. January 01, 2014 14:23.

	[[yii\i18n\Formatter::asTimestamp()|timestamp]]: the value is formatted as a unix timestamp [http://en.wikipedia.org/wiki/Unix_time], e.g. 1412609982.

	[[yii\i18n\Formatter::asRelativeTime()|relativeTime]]: the value is formatted as the time interval between a date
and now in human readable form e.g. 1 hour ago.

	[[yii\i18n\Formatter::asDuration()|duration]]: the value is formatted as a duration in human readable format. e.g. 1 day, 2 minutes.

The default date and time formats used for the [[yii\i18n\Formatter::asDate()|date]], [[yii\i18n\Formatter::asTime()|time]],
and [[yii\i18n\Formatter::asDatetime()|datetime]] methods can be customized globally by configuring[[yii\i18n\Formatter::dateFormat|dateFormat]], [[yii\i18n\Formatter::timeFormat|timeFormat]], and
[[yii\i18n\Formatter::datetimeFormat|datetimeFormat]].

You can specify date and time formats using the ICU syntax [http://userguide.icu-project.org/formatparse/datetime].
You can also use the PHP date() syntax [http://php.net/manual/en/function.date.php] with a prefix php: to differentiate
it from ICU syntax. For example,

// ICU format
echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06

// PHP date()-format
echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06

When working with applications that need to support multiple languages, you often need to specify different date
and time formats for different locales. To simplify this task, you may use format shortcuts (e.g. long, short), instead.
The formatter will turn a format shortcut into an appropriate format according to the currently active [[yii\i18n\Formatter::locale|locale]].
The following format shortcuts are supported (the examples assume en_GB is the active locale):

	short: will output 06/10/2014 for date and 15:58 for time;

	medium: will output 6 Oct 2014 and 15:58:42;

	long: will output 6 October 2014 and 15:58:42 GMT;

	full: will output Monday, 6 October 2014 and 15:58:42 GMT.

Since version 2.0.7 it is also possible to format dates in different calendar systems.
Please refer to the API documentation of the formatters [[yii\i18n\Formatter::$calendar|$calendar]]-property on how to set a different calendar.

Time Zones

When formatting date and time values, Yii will convert them to the target [[yii\i18n\Formatter::timeZone|time zone]].
The value being formatted is assumed to be in UTC, unless a time zone is explicitly given or you have configured
[[yii\i18n\Formatter::defaultTimeZone]].

In the following examples, we assume the target [[yii\i18n\Formatter::timeZone|time zone]] is set as Europe/Berlin.

// formatting a UNIX timestamp as a time
echo Yii::$app->formatter->asTime(1412599260); // 14:41:00

// formatting a datetime string (in UTC) as a time
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00

// formatting a datetime string (in CEST) as a time
echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00

Note: As time zones are subject to rules made by the governments around the world and may change frequently, it is
likely that you do not have the latest information in the time zone database installed on your system.
You may refer to the ICU manual [http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data]
for details on updating the time zone database. Please also read
Setting up your PHP environment for internationalization.

Formatting Numbers

The formatter supports the following output formats that are related with numbers:

	[[yii\i18n\Formatter::asInteger()|integer]]: the value is formatted as an integer e.g. 42.

	[[yii\i18n\Formatter::asDecimal()|decimal]]: the value is formatted as a decimal number considering decimal and thousand
separators e.g. 2,542.123 or 2.542,123.

	[[yii\i18n\Formatter::asPercent()|percent]]: the value is formatted as a percent number e.g. 42%.

	[[yii\i18n\Formatter::asScientific()|scientific]]: the value is formatted as a number in scientific format e.g. 4.2E4.

	[[yii\i18n\Formatter::asCurrency()|currency]]: the value is formatted as a currency value e.g. £420.00.
Note that for this function to work properly, the locale needs to include a country part e.g. en_GB or en_US because language only
would be ambiguous in this case.

	[[yii\i18n\Formatter::asSize()|size]]: the value that is a number of bytes is formatted as a human readable size e.g. 410 kibibytes.

	[[yii\i18n\Formatter::asShortSize()|shortSize]]: is the short version of [[yii\i18n\Formatter::asSize()|size]], e.g. 410 KiB.

The format for number formatting can be adjusted using the [[yii\i18n\Formatter::decimalSeparator|decimalSeparator]] and
[[yii\i18n\Formatter::thousandSeparator|thousandSeparator]], both of which take default values according to the
active [[yii\i18n\Formatter::locale|locale]].

For more advanced configuration, [[yii\i18n\Formatter::numberFormatterOptions]] and [[yii\i18n\Formatter::numberFormatterTextOptions]]
can be used to configure the NumberFormatter class [http://php.net/manual/en/class.numberformatter.php] used internally
to implement the formatter. For example, to adjust the maximum and minimum value of fraction digits, you can configure
the [[yii\i18n\Formatter::numberFormatterOptions]] property like the following:

'numberFormatterOptions' => [
 NumberFormatter::MIN_FRACTION_DIGITS => 0,
 NumberFormatter::MAX_FRACTION_DIGITS => 2,
]

Other Formats

Besides date/time and number formats, Yii also supports other commonly used formats, including

	[[yii\i18n\Formatter::asRaw()|raw]]: the value is outputted as is, this is a pseudo-formatter that has no effect except that
null values will be formatted using [[nullDisplay]].

	[[yii\i18n\Formatter::asText()|text]]: the value is HTML-encoded.
This is the default format used by the GridView DataColumn.

	[[yii\i18n\Formatter::asNtext()|ntext]]: the value is formatted as an HTML-encoded plain text with newlines converted
into line breaks.

	[[yii\i18n\Formatter::asParagraphs()|paragraphs]]: the value is formatted as HTML-encoded text paragraphs wrapped
into <p> tags.

	[[yii\i18n\Formatter::asHtml()|html]]: the value is purified using [[HtmlPurifier]] to avoid XSS attacks. You can
pass additional options such as ['html', ['Attr.AllowedFrameTargets' => ['_blank']]].

	[[yii\i18n\Formatter::asEmail()|email]]: the value is formatted as a mailto-link.

	[[yii\i18n\Formatter::asImage()|image]]: the value is formatted as an image tag.

	[[yii\i18n\Formatter::asUrl()|url]]: the value is formatted as a hyperlink.

	[[yii\i18n\Formatter::asBoolean()|boolean]]: the value is formatted as a boolean. By default true is rendered
as Yes and false as No, translated to the current application language. You can adjust this by configuring
the [[yii\i18n\Formatter::booleanFormat]] property.

Null Values

Null values are specially formatted. Instead of displaying an empty string, the formatter will convert it into a
preset string which defaults to (not set) translated into the current application language. You can configure the
[[yii\i18n\Formatter::nullDisplay|nullDisplay]] property to customize this string.

Localizing Data Format

As aforementioned, the formatter may use the currently active [[yii\i18n\Formatter::locale|locale]] to determine how
to format a value that is suitable in the target country/region. For example, the same date value may be formatted
differently for different locales:

Yii::$app->formatter->locale = 'en-US';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: January 1, 2014

Yii::$app->formatter->locale = 'de-DE';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1. Januar 2014

Yii::$app->formatter->locale = 'ru-RU';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1 января 2014 г.

By default, the currently active [[yii\i18n\Formatter::locale|locale]] is determined by the value of
[[yii\base\Application::language]]. You may override it by setting the [[yii\i18n\Formatter::locale]] property explicitly.

Note: The Yii formatter relies on the PHP intl extension [http://php.net/manual/en/book.intl.php] to support
localized data formatting. Because different versions of the ICU library compiled with PHP may cause different
formatting results, it is recommended that you use the same ICU version for all your environments. For more details,
please refer to Setting up your PHP environment for internationalization.

If the intl extension is not installed, the data will not be localized.

Note that for date values that are before year 1901 or after 2038, they will not be localized on 32-bit systems, even
if the intl extension is installed. This is because in this case ICU is using 32-bit UNIX timestamps to date values.

Upgrading from Version 1.1

There are many differences between versions 1.1 and 2.0 of Yii as the framework was completely rewritten for 2.0.
As a result, upgrading from version 1.1 is not as trivial as upgrading between minor versions. In this guide you’ll
find the major differences between the two versions.

If you have not used Yii 1.1 before, you can safely skip this section and turn directly to “Getting started”.

Please note that Yii 2.0 introduces more new features than are covered in this summary. It is highly recommended
that you read through the whole definitive guide to learn about them all. Chances are that
some features you previously had to develop for yourself are now part of the core code.

Installation

Yii 2.0 fully embraces Composer [https://getcomposer.org/], the de facto PHP package manager. Installation
of the core framework, as well as extensions, are handled through Composer. Please refer to
the Installing Yii section to learn how to install Yii 2.0. If you want to
create new extensions, or turn your existing 1.1 extensions into 2.0-compatible extensions, please refer to
the Creating Extensions section of the guide.

PHP Requirements

Yii 2.0 requires PHP 5.4 or above, which is a huge improvement over PHP version 5.2 that is required by Yii 1.1.
As a result, there are many differences on the language level that you should pay attention to.
Below is a summary of the major changes regarding PHP:

	Namespaces [http://php.net/manual/en/language.namespaces.php].

	Anonymous functions [http://php.net/manual/en/functions.anonymous.php].

	Short array syntax [...elements...] is used instead of array(...elements...).

	Short echo tags <?= are used in view files. This is safe to use starting from PHP 5.4.

	SPL classes and interfaces [http://php.net/manual/en/book.spl.php].

	Late Static Bindings [http://php.net/manual/en/language.oop5.late-static-bindings.php].

	Date and Time [http://php.net/manual/en/book.datetime.php].

	Traits [http://php.net/manual/en/language.oop5.traits.php].

	intl [http://php.net/manual/en/book.intl.php]. Yii 2.0 makes use of the intl PHP extension
to support internationalization features.

Namespace

The most obvious change in Yii 2.0 is the use of namespaces. Almost every core class
is namespaced, e.g., yii\web\Request. The “C” prefix is no longer used in class names.
The naming scheme now follows the directory structure. For example, yii\web\Request
indicates that the corresponding class file is web/Request.php under the Yii framework folder.

(You can use any core class without explicitly including that class file, thanks to the Yii
class loader.)

Component and Object

Yii 2.0 breaks the CComponent class in 1.1 into two classes: [[yii\base\Object]] and [[yii\base\Component]].
The [[yii\base\Object|Object]] class is a lightweight base class that allows defining object properties
via getters and setters. The [[yii\base\Component|Component]] class extends from [[yii\base\Object|Object]] and supports
events and behaviors.

If your class does not need the event or behavior feature, you should consider using
[[yii\base\Object|Object]] as the base class. This is usually the case for classes that represent basic
data structures.

Object Configuration

The [[yii\base\Object|Object]] class introduces a uniform way of configuring objects. Any descendant class
of [[yii\base\Object|Object]] should declare its constructor (if needed) in the following way so that
it can be properly configured:

class MyClass extends \yii\base\Object
{
 public function __construct($param1, $param2, $config = [])
 {
 // ... initialization before configuration is applied

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... initialization after configuration is applied
 }
}

In the above, the last parameter of the constructor must take a configuration array
that contains name-value pairs for initializing the properties at the end of the constructor.
You can override the [[yii\base\Object::init()|init()]] method to do initialization work that should be done after
the configuration has been applied.

By following this convention, you will be able to create and configure new objects
using a configuration array:

$object = Yii::createObject([
 'class' => 'MyClass',
 'property1' => 'abc',
 'property2' => 'cde',
], [$param1, $param2]);

More details about configurations can be found in the Configurations section.

Events

In Yii 1, events were created by defining an on-method (e.g., onBeforeSave). In Yii 2, you can now use any event name. You trigger an event by calling
the [[yii\base\Component::trigger()|trigger()]] method:

$event = new \yii\base\Event;
$component->trigger($eventName, $event);

To attach a handler to an event, use the [[yii\base\Component::on()|on()]] method:

$component->on($eventName, $handler);
// To detach the handler, use:
// $component->off($eventName, $handler);

There are many enhancements to the event features. For more details, please refer to the Events section.

Path Aliases

Yii 2.0 expands the usage of path aliases to both file/directory paths and URLs. Yii 2.0 also now requires
an alias name to start with the @ character, to differentiate aliases from normal file/directory paths or URLs.
For example, the alias @yii refers to the Yii installation directory. Path aliases are
supported in most places in the Yii core code. For example, [[yii\caching\FileCache::cachePath]] can take
both a path alias and a normal directory path.

A path alias is also closely related to a class namespace. It is recommended that a path
alias be defined for each root namespace, thereby allowing you to use Yii class autoloader without
any further configuration. For example, because @yii refers to the Yii installation directory,
a class like yii\web\Request can be autoloaded. If you use a third party library,
such as the Zend Framework, you may define a path alias @Zend that refers to that framework’s installation
directory. Once you’ve done that, Yii will be able to autoload any class in that Zend Framework library, too.

More on path aliases can be found in the Aliases section.

Views

The most significant change about views in Yii 2 is that the special variable $this in a view no longer refers to
the current controller or widget. Instead, $this now refers to a view object, a new concept
introduced in 2.0. The view object is of type [[yii\web\View]], which represents the view part
of the MVC pattern. If you want to access the controller or widget in a view, you can use $this->context.

To render a partial view within another view, you use $this->render(), not $this->renderPartial(). The call to render also now has to be explicitly echoed, as the render() method returns the rendering
result, rather than directly displaying it. For example:

echo $this->render('_item', ['item' => $item]);

Besides using PHP as the primary template language, Yii 2.0 is also equipped with official
support for two popular template engines: Smarty and Twig. The Prado template engine is no longer supported.
To use these template engines, you need to configure the view application component by setting the
[[yii\base\View::$renderers|View::$renderers]] property. Please refer to the Template Engines
section for more details.

Models

Yii 2.0 uses [[yii\base\Model]] as the base model, similar to CModel in 1.1.
The class CFormModel has been dropped entirely. Instead, in Yii 2 you should extend [[yii\base\Model]] to create a form model class.

Yii 2.0 introduces a new method called [[yii\base\Model::scenarios()|scenarios()]] to declare
supported scenarios, and to indicate under which scenario an attribute needs to be validated, can be considered as safe or not, etc. For example:

public function scenarios()
{
 return [
 'backend' => ['email', 'role'],
 'frontend' => ['email', '!role'],
];
}

In the above, two scenarios are declared: backend and frontend. For the backend scenario, both the
email and role attributes are safe, and can be massively assigned. For the frontend scenario,
email can be massively assigned while role cannot. Both email and role should be validated using rules.

The [[yii\base\Model::rules()|rules()]] method is still used to declare the validation rules. Note that due to the introduction of [[yii\base\Model::scenarios()|scenarios()]], there is no longer an unsafe validator.

In most cases, you do not need to override [[yii\base\Model::scenarios()|scenarios()]]
if the [[yii\base\Model::rules()|rules()]] method fully specifies the scenarios that will exist, and if there is no need to declare
unsafe attributes.

To learn more details about models, please refer to the Models section.

Controllers

Yii 2.0 uses [[yii\web\Controller]] as the base controller class, which is similar to CController in Yii 1.1.
[[yii\base\Action]] is the base class for action classes.

The most obvious impact of these changes on your code is that a controller action should return the content
that you want to render instead of echoing it:

public function actionView($id)
{
 $model = \app\models\Post::findOne($id);
 if ($model) {
 return $this->render('view', ['model' => $model]);
 } else {
 throw new \yii\web\NotFoundHttpException;
 }
}

Please refer to the Controllers section for more details about controllers.

Widgets

Yii 2.0 uses [[yii\base\Widget]] as the base widget class, similar to CWidget in Yii 1.1.

To get better support for the framework in IDEs, Yii 2.0 introduces a new syntax for using widgets. The static methods
[[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], and [[yii\base\Widget::widget()|widget()]]
have been introduced, to be used like so:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Note that you have to "echo" the result to display it
echo Menu::widget(['items' => $items]);

// Passing an array to initialize the object properties
$form = ActiveForm::begin([
 'options' => ['class' => 'form-horizontal'],
 'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... form input fields here ...
ActiveForm::end();

Please refer to the Widgets section for more details.

Themes

Themes work completely differently in 2.0. They are now based on a path mapping mechanism that maps a source
view file path to a themed view file path. For example, if the path map for a theme is
['/web/views' => '/web/themes/basic'], then the themed version for the view file
/web/views/site/index.php will be /web/themes/basic/site/index.php. For this reason, themes can now
be applied to any view file, even a view rendered outside of the context of a controller or a widget.

Also, there is no more CThemeManager component. Instead, theme is a configurable property of the view
application component.

Please refer to the Theming section for more details.

Console Applications

Console applications are now organized as controllers, like Web applications. Console controllers
should extend from [[yii\console\Controller]], similar to CConsoleCommand in 1.1.

To run a console command, use yii <route>, where <route> stands for a controller route
(e.g. sitemap/index). Additional anonymous arguments are passed as the parameters to the
corresponding controller action method, while named arguments are parsed according to
the declarations in [[yii\console\Controller::options()]].

Yii 2.0 supports automatic generation of command help information from comment blocks.

Please refer to the Console Commands section for more details.

I18N

Yii 2.0 removes the built-in date formatter and number formatter pieces in favor of the PECL intl PHP module [http://pecl.php.net/package/intl].

Message translation is now performed via the i18n application component.
This component manages a set of message sources, which allows you to use different message
sources based on message categories.

Please refer to the Internationalization section for more details.

Action Filters

Action filters are implemented via behaviors now. To define a new, custom filter, extend from [[yii\base\ActionFilter]]. To use a filter, attach the filter class to the controller
as a behavior. For example, to use the [[yii\filters\AccessControl]] filter, you would have the following
code in a controller:

public function behaviors()
{
 return [
 'access' => [
 'class' => 'yii\filters\AccessControl',
 'rules' => [
 ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
],
],
];
}

Please refer to the Filtering section for more details.

Assets

Yii 2.0 introduces a new concept called asset bundle that replaces the script package concept found in Yii 1.1.

An asset bundle is a collection of asset files (e.g. JavaScript files, CSS files, image files, etc.)
within a directory. Each asset bundle is represented as a class extending [[yii\web\AssetBundle]].
By registering an asset bundle via [[yii\web\AssetBundle::register()]], you make
the assets in that bundle accessible via the Web. Unlike in Yii 1, the page registering the bundle will automatically
contain the references to the JavaScript and CSS files specified in that bundle.

Please refer to the Managing Assets section for more details.

Helpers

Yii 2.0 introduces many commonly used static helper classes, including.

	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]

Please refer to the Helper Overview section for more details.

Forms

Yii 2.0 introduces the field concept for building a form using [[yii\widgets\ActiveForm]]. A field
is a container consisting of a label, an input, an error message, and/or a hint text.
A field is represented as an [[yii\widgets\ActiveField|ActiveField]] object.
Using fields, you can build a form more cleanly than before:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>
<?php yii\widgets\ActiveForm::end(); ?>

Please refer to the Creating Forms section for more details.

Query Builder

In 1.1, query building was scattered among several classes, including CDbCommand,
CDbCriteria, and CDbCommandBuilder. Yii 2.0 represents a DB query in terms of a [[yii\db\Query|Query]] object
that can be turned into a SQL statement with the help of [[yii\db\QueryBuilder|QueryBuilder]] behind the scene.
For example:

$query = new \yii\db\Query();
$query->select('id, name')
 ->from('user')
 ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();

Best of all, such query building methods can also be used when working with Active Record.

Please refer to the Query Builder section for more details.

Active Record

Yii 2.0 introduces a lot of changes to Active Record. The two most obvious ones involve
query building and relational query handling.

The CDbCriteria class in 1.1 is replaced by [[yii\db\ActiveQuery]] in Yii 2. That class extends from [[yii\db\Query]], and thus
inherits all query building methods. You call [[yii\db\ActiveRecord::find()]] to start building a query:

// To retrieve all *active* customers and order them by their ID:
$customers = Customer::find()
 ->where(['status' => $active])
 ->orderBy('id')
 ->all();

To declare a relation, simply define a getter method that returns an [[yii\db\ActiveQuery|ActiveQuery]] object.
The property name defined by the getter represents the relation name. For example, the following code declares
an orders relation (in 1.1, you would have to declare relations in a central place relations()):

class Customer extends \yii\db\ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany('Order', ['customer_id' => 'id']);
 }
}

Now you can use $customer->orders to access a customer’s orders from the related table. You can also use the following code
to perform an on-the-fly relational query with a customized query condition:

$orders = $customer->getOrders()->andWhere('status=1')->all();

When eager loading a relation, Yii 2.0 does it differently from 1.1. In particular, in 1.1 a JOIN query
would be created to select both the primary and the relational records. In Yii 2.0, two SQL statements are executed
without using JOIN: the first statement brings back the primary records and the second brings back the relational
records by filtering with the primary keys of the primary records.

Instead of returning [[yii\db\ActiveRecord|ActiveRecord]] objects, you may chain the [[yii\db\ActiveQuery::asArray()|asArray()]]
method when building a query to return a large number of records. This will cause the query result to be returned
as arrays, which can significantly reduce the needed CPU time and memory if large number of records . For example:

$customers = Customer::find()->asArray()->all();

Another change is that you can’t define attribute default values through public properties anymore.
If you need those, you should set them in the init method of your record class.

public function init()
{
 parent::init();
 $this->status = self::STATUS_NEW;
}

There were some problems with overriding the constructor of an ActiveRecord class in 1.1. These are not present in
version 2.0 anymore. Note that when adding parameters to the constructor you might have to override [[yii\db\ActiveRecord::instantiate()]].

There are many other changes and enhancements to Active Record. Please refer to
the Active Record section for more details.

Active Record Behaviors

In 2.0, we have dropped the base behavior class CActiveRecordBehavior. If you want to create an Active Record Behavior,
you will have to extend directly from yii\base\Behavior. If the behavior class needs to respond to some events
of the owner, you have to override the events() method like the following:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

User and IdentityInterface

The CWebUser class in 1.1 is now replaced by [[yii\web\User]], and there is no more
CUserIdentity class. Instead, you should implement the [[yii\web\IdentityInterface]] which
is much more straightforward to use. The advanced project template provides such an example.

Please refer to the Authentication, Authorization, and Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md] sections for more details.

URL Management

URL management in Yii 2 is similar to that in 1.1. A major enhancement is that URL management now supports optional
parameters. For example, if you have a rule declared as follows, then it will match
both post/popular and post/1/popular. In 1.1, you would have had to use two rules to achieve
the same goal.

[
 'pattern' => 'post/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1],
]

Please refer to the Url manager docs section for more details.

An important change in the naming convention for routes is that camel case names of controllers
and actions are now converted to lower case where each word is separated by a hypen, e.g. the controller
id for the CamelCaseController will be camel-case.
See the section about controller IDs and action IDs for more details.

Using Yii 1.1 and 2.x together

If you have legacy Yii 1.1 code that you want to use together with Yii 2.0, please refer to
the Using Yii 1.1 and 2.0 Together section.

Active Record

Active Record [http://en.wikipedia.org/wiki/Active_record_pattern] provides an object-oriented interface
for accessing and manipulating data stored in databases. An Active Record class is associated with a database table,
an Active Record instance corresponds to a row of that table, and an attribute of an Active Record
instance represents the value of a particular column in that row. Instead of writing raw SQL statements,
you would access Active Record attributes and call Active Record methods to access and manipulate the data stored
in database tables.

For example, assume Customer is an Active Record class which is associated with the customer table
and name is a column of the customer table. You can write the following code to insert a new
row into the customer table:

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();

The above code is equivalent to using the following raw SQL statement for MySQL, which is less
intuitive, more error prone, and may even have compatibility problems if you are using a different kind of database:

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
 ':name' => 'Qiang',
])->execute();

Yii provides the Active Record support for the following relational databases:

	MySQL 4.1 or later: via [[yii\db\ActiveRecord]]

	PostgreSQL 7.3 or later: via [[yii\db\ActiveRecord]]

	SQLite 2 and 3: via [[yii\db\ActiveRecord]]

	Microsoft SQL Server 2008 or later: via [[yii\db\ActiveRecord]]

	Oracle: via [[yii\db\ActiveRecord]]

	CUBRID 9.3 or later: via [[yii\db\ActiveRecord]] (Note that due to a bug [http://jira.cubrid.org/browse/APIS-658] in
the cubrid PDO extension, quoting of values will not work, so you need CUBRID 9.3 as the client as well as the server)

	Sphinx: via [[yii\sphinx\ActiveRecord]], requires the yii2-sphinx extension

	ElasticSearch: via [[yii\elasticsearch\ActiveRecord]], requires the yii2-elasticsearch extension

Additionally, Yii also supports using Active Record with the following NoSQL databases:

	Redis 2.6.12 or later: via [[yii\redis\ActiveRecord]], requires the yii2-redis extension

	MongoDB 1.3.0 or later: via [[yii\mongodb\ActiveRecord]], requires the yii2-mongodb extension

In this tutorial, we will mainly describe the usage of Active Record for relational databases.
However, most content described here are also applicable to Active Record for NoSQL databases.

Declaring Active Record Classes

To get started, declare an Active Record class by extending [[yii\db\ActiveRecord]].

Setting a table name

By default each Active Record class is associated with its database table.
The [[yii\db\ActiveRecord::tableName()|tableName()]] method returns the table name by converting the class name via [[yii\helpers\Inflector::camel2id()]].
You may override this method if the table is not named after this convention.

Also a default [[yii\db\Connection::$tablePrefix|tablePrefix]] can be applied. For example if
[[yii\db\Connection::$tablePrefix|tablePrefix]] is tbl_, Customer becomes tbl_customer and OrderItem becomes tbl_order_item.

If a table name is given as {{%TableName}}, then the percentage character % will be replaced with the table prefix.
For example, {{%post}} becomes {{tbl_post}}. The brackets around the table name are used for
quoting in an SQL query.

In the following example, we declare an Active Record class named Customer for the customer database table.

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
 const STATUS_INACTIVE = 0;
 const STATUS_ACTIVE = 1;

 /**
 * @return string the name of the table associated with this ActiveRecord class.
 */
 public static function tableName()
 {
 return '{{customer}}';
 }
}

Active records are called “models”

Active Record instances are considered as models. For this reason, we usually put Active Record
classes under the app\models namespace (or other namespaces for keeping model classes).

Because [[yii\db\ActiveRecord]] extends from [[yii\base\Model]], it inherits all model features,
such as attributes, validation rules, data serialization, etc.

Connecting to Databases

By default, Active Record uses the db application component
as the [[yii\db\Connection|DB connection]] to access and manipulate the database data. As explained in
Database Access Objects, you can configure the db component in the application configuration like shown
below,

return [
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=testdb',
 'username' => 'demo',
 'password' => 'demo',
],
],
];

If you want to use a different database connection other than the db component, you should override
the [[yii\db\ActiveRecord::getDb()|getDb()]] method:

class Customer extends ActiveRecord
{
 // ...

 public static function getDb()
 {
 // use the "db2" application component
 return \Yii::$app->db2;
 }
}

Querying Data

After declaring an Active Record class, you can use it to query data from the corresponding database table.
The process usually takes the following three steps:

	Create a new query object by calling the [[yii\db\ActiveRecord::find()]] method;

	Build the query object by calling query building methods;

	Call a query method to retrieve data in terms of Active Record instances.

As you can see, this is very similar to the procedure with query builder. The only difference
is that instead of using the new operator to create a query object, you call [[yii\db\ActiveRecord::find()]]
to return a new query object which is of class [[yii\db\ActiveQuery]].

Below are some examples showing how to use Active Query to query data:

// return a single customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
 ->where(['id' => 123])
 ->one();

// return all active customers and order them by their IDs
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->orderBy('id')
 ->all();

// return the number of active customers
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->count();

// return all customers in an array indexed by customer IDs
// SELECT * FROM `customer`
$customers = Customer::find()
 ->indexBy('id')
 ->all();

In the above, $customer is a Customer object while $customers is an array of Customer objects. They are
all populated with the data retrieved from the customer table.

Info: Because [[yii\db\ActiveQuery]] extends from [[yii\db\Query]], you can use all query building methods and
query methods as described in the Section Query Builder.

Because it is a common task to query by primary key values or a set of column values, Yii provides two shortcut
methods for this purpose:

	[[yii\db\ActiveRecord::findOne()]]: returns a single Active Record instance populated with the first row of the query result.

	[[yii\db\ActiveRecord::findAll()]]: returns an array of Active Record instances populated with all query result.

Both methods can take one of the following parameter formats:

	a scalar value: the value is treated as the desired primary key value to be looked for. Yii will determine
automatically which column is the primary key column by reading database schema information.

	an array of scalar values: the array is treated as the desired primary key values to be looked for.

	an associative array: the keys are column names and the values are the corresponding desired column values to
be looked for. Please refer to Hash Format for more details.

The following code shows how these methods can be used:

// returns a single customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// returns customers whose ID is 100, 101, 123 or 124
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// returns an active customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
 'id' => 123,
 'status' => Customer::STATUS_ACTIVE,
]);

// returns all inactive customers
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
 'status' => Customer::STATUS_INACTIVE,
]);

Note: Neither [[yii\db\ActiveRecord::findOne()]] nor [[yii\db\ActiveQuery::one()]] will add LIMIT 1 to
the generated SQL statement. If your query may return many rows of data, you should call limit(1) explicitly
to improve the performance, e.g., Customer::find()->limit(1)->one().

Besides using query building methods, you can also write raw SQLs to query data and populate the results into
Active Record objects. You can do so by calling the [[yii\db\ActiveRecord::findBySql()]] method:

// returns all inactive customers
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();

Do not call extra query building methods after calling [[yii\db\ActiveRecord::findBySql()|findBySql()]] as they
will be ignored.

Accessing Data

As aforementioned, the data brought back from the database are populated into Active Record instances, and
each row of the query result corresponds to a single Active Record instance. You can access the column values
by accessing the attributes of the Active Record instances, for example,

// "id" and "email" are the names of columns in the "customer" table
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;

Note: The Active Record attributes are named after the associated table columns in a case-sensitive manner.
Yii automatically defines an attribute in Active Record for every column of the associated table.
You should NOT redeclare any of the attributes.

Because Active Record attributes are named after table columns, you may find you are writing PHP code like
$customer->first_name, which uses underscores to separate words in attribute names if your table columns are
named in this way. If you are concerned about code style consistency, you should rename your table columns accordingly
(to use camelCase, for example).

Data Transformation

It often happens that the data being entered and/or displayed are in a format which is different from the one used in
storing the data in a database. For example, in the database you are storing customers’ birthdays as UNIX timestamps
(which is not a good design, though), while in most cases you would like to manipulate birthdays as strings in
the format of 'YYYY/MM/DD'. To achieve this goal, you can define data transformation methods in the Customer
Active Record class like the following:

class Customer extends ActiveRecord
{
 // ...

 public function getBirthdayText()
 {
 return date('Y/m/d', $this->birthday);
 }

 public function setBirthdayText($value)
 {
 $this->birthday = strtotime($value);
 }
}

Now in your PHP code, instead of accessing $customer->birthday, you would access $customer->birthdayText, which
will allow you to input and display customer birthdays in the format of 'YYYY/MM/DD'.

Tip: The above example shows a generic way of transforming data in different formats. If you are working with
date values, you may use DateValidator and [[yii\jui\DatePicker|DatePicker]],
which is easier to use and more powerful.

Retrieving Data in Arrays

While retrieving data in terms of Active Record objects is convenient and flexible, it is not always desirable
when you have to bring back a large amount of data due to the big memory footprint. In this case, you can retrieve
data using PHP arrays by calling [[yii\db\ActiveQuery::asArray()|asArray()]] before executing a query method:

// return all customers
// each customer is returned as an associative array
$customers = Customer::find()
 ->asArray()
 ->all();

Note: While this method saves memory and improves performance, it is closer to the lower DB abstraction layer
and you will lose most of the Active Record features. A very important distinction lies in the data type of
the column values. When you return data in Active Record instances, column values will be automatically typecast
according to the actual column types; on the other hand when you return data in arrays, column values will be
strings (since they are the result of PDO without any processing), regardless their actual column types.

Retrieving Data in Batches

In Query Builder, we have explained that you may use batch query to minimize your memory
usage when querying a large amount of data from the database. You may use the same technique in Active Record. For example,

// fetch 10 customers at a time
foreach (Customer::find()->batch(10) as $customers) {
 // $customers is an array of 10 or fewer Customer objects
}

// fetch 10 customers at a time and iterate them one by one
foreach (Customer::find()->each(10) as $customer) {
 // $customer is a Customer object
}

// batch query with eager loading
foreach (Customer::find()->with('orders')->each() as $customer) {
 // $customer is a Customer object with the 'orders' relation populated
}

Saving Data

Using Active Record, you can easily save data to the database by taking the following steps:

	Prepare an Active Record instance

	Assign new values to Active Record attributes

	Call [[yii\db\ActiveRecord::save()]] to save the data into database.

For example,

// insert a new row of data
$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// update an existing row of data
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();

The [[yii\db\ActiveRecord::save()|save()]] method can either insert or update a row of data, depending on the state
of the Active Record instance. If the instance is newly created via the new operator, calling
[[yii\db\ActiveRecord::save()|save()]] will cause insertion of a new row; If the instance is the result of a query method,
calling [[yii\db\ActiveRecord::save()|save()]] will update the row associated with the instance.

You can differentiate the two states of an Active Record instance by checking its
[[yii\db\ActiveRecord::isNewRecord|isNewRecord]] property value. This property is also used by
[[yii\db\ActiveRecord::save()|save()]] internally as follows:

public function save($runValidation = true, $attributeNames = null)
{
 if ($this->getIsNewRecord()) {
 return $this->insert($runValidation, $attributeNames);
 } else {
 return $this->update($runValidation, $attributeNames) !== false;
 }
}

Tip: You can call [[yii\db\ActiveRecord::insert()|insert()]] or [[yii\db\ActiveRecord::update()|update()]]
directly to insert or update a row.

Data Validation

Because [[yii\db\ActiveRecord]] extends from [[yii\base\Model]], it shares the same data validation feature.
You can declare validation rules by overriding the [[yii\db\ActiveRecord::rules()|rules()]] method and perform
data validation by calling the [[yii\db\ActiveRecord::validate()|validate()]] method.

When you call [[yii\db\ActiveRecord::save()|save()]], by default it will call [[yii\db\ActiveRecord::validate()|validate()]]
automatically. Only when the validation passes, will it actually save the data; otherwise it will simply return false,
and you can check the [[yii\db\ActiveRecord::errors|errors]] property to retrieve the validation error messages.

Tip: If you are certain that your data do not need validation (e.g., the data comes from trustable sources),
you can call save(false) to skip the validation.

Massive Assignment

Like normal models, Active Record instances also enjoy the massive assignment feature.
Using this feature, you can assign values to multiple attributes of an Active Record instance in a single PHP statement,
like shown below. Do remember that only safe attributes can be massively assigned, though.

$values = [
 'name' => 'James',
 'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();

Updating Counters

It is a common task to increment or decrement a column in a database table. We call these columns “counter columns”.
You can use [[yii\db\ActiveRecord::updateCounters()|updateCounters()]] to update one or multiple counter columns.
For example,

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);

Note: If you use [[yii\db\ActiveRecord::save()]] to update a counter column, you may end up with inaccurate result,
because it is likely the same counter is being saved by multiple requests which read and write the same counter value.

Dirty Attributes

When you call [[yii\db\ActiveRecord::save()|save()]] to save an Active Record instance, only dirty attributes
are being saved. An attribute is considered dirty if its value has been modified since it was loaded from DB or
saved to DB most recently. Note that data validation will be performed regardless if the Active Record
instance has dirty attributes or not.

Active Record automatically maintains the list of dirty attributes. It does so by maintaining an older version of
the attribute values and comparing them with the latest one. You can call [[yii\db\ActiveRecord::getDirtyAttributes()]]
to get the attributes that are currently dirty. You can also call [[yii\db\ActiveRecord::markAttributeDirty()]]
to explicitly mark an attribute as dirty.

If you are interested in the attribute values prior to their most recent modification, you may call
[[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]] or [[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]].

Note: The comparison of old and new values will be done using the === operator so a value will be considered dirty
even if it has the same value but a different type. This is often the case when the model receives user input from
HTML forms where every value is represented as a string.
To ensure the correct type for e.g. integer values you may apply a validation filter:
['attributeName', 'filter', 'filter' => 'intval']. This works with all the typecasting functions of PHP like
intval() [http://php.net/manual/en/function.intval.php], floatval() [http://php.net/manual/en/function.floatval.php],
boolval [http://php.net/manual/en/function.boolval.php], etc...

Default Attribute Values

Some of your table columns may have default values defined in the database. Sometimes, you may want to pre-populate your
Web form for an Active Record instance with these default values. To avoid writing the same default values again,
you can call [[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]] to populate the DB-defined default values
into the corresponding Active Record attributes:

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz will be assigned the default value declared when defining the "xyz" column

Attributes Typecasting

Being populated by query results [[yii\db\ActiveRecord]] performs automatic typecast for its attribute values, using
information from database table schema. This allows data retrieved from table column
declared as integer to be populated in ActiveRecord instance with PHP integer, boolean with boolean and so on.
However, typecasting mechanism has several limitations:

	Float values are not be converted and will be represented as strings, otherwise they may loose precision.

	Conversion of the integer values depends on the integer capacity of the operation system you use. In particular:
values of column declared as ‘unsigned integer’ or ‘big integer’ will be converted to PHP integer only at 64-bit
operation system, while on 32-bit ones - they will be represented as strings.

Note that attribute typecast is performed only during populating ActiveRecord instance from query result. There is no
automatic conversion for the values loaded from HTTP request or set directly via property access.
The table schema will also be used while preparing SQL statements for the ActiveRecord data saving, ensuring
values are bound to the query with correct type. However, ActiveRecord instance attribute values will not be
converted during saving process.

Tip: you may use [[yii\behaviors\AttributeTypecastBehavior]] to facilitate attribute values typecasting
on ActiveRecord validation or saving.

Updating Multiple Rows

The methods described above all work on individual Active Record instances, causing inserting or updating of individual
table rows. To update multiple rows simultaneously, you should call [[yii\db\ActiveRecord::updateAll()|updateAll()]], instead,
which is a static method.

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com%`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);

Similarly, you can call [[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] to update counter columns of
multiple rows at the same time.

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);

Deleting Data

To delete a single row of data, first retrieve the Active Record instance corresponding to that row and then call
the [[yii\db\ActiveRecord::delete()]] method.

$customer = Customer::findOne(123);
$customer->delete();

You can call [[yii\db\ActiveRecord::deleteAll()]] to delete multiple or all rows of data. For example,

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);

Note: Be very careful when calling [[yii\db\ActiveRecord::deleteAll()|deleteAll()]] because it may totally
erase all data from your table if you make a mistake in specifying the condition.

Active Record Life Cycles

It is important to understand the life cycles of Active Record when it is used for different purposes.
During each life cycle, a certain sequence of methods will be invoked, and you can override these methods
to get a chance to customize the life cycle. You can also respond to certain Active Record events triggered
during a life cycle to inject your custom code. These events are especially useful when you are developing
Active Record behaviors which need to customize Active Record life cycles.

In the following, we will summarize the various Active Record life cycles and the methods/events that are involved
in the life cycles.

New Instance Life Cycle

When creating a new Active Record instance via the new operator, the following life cycle will happen:

	Class constructor.

	[[yii\db\ActiveRecord::init()|init()]]: triggers an [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] event.

Querying Data Life Cycle

When querying data through one of the querying methods, each newly populated Active Record will
undergo the following life cycle:

	Class constructor.

	[[yii\db\ActiveRecord::init()|init()]]: triggers an [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] event.

	[[yii\db\ActiveRecord::afterFind()|afterFind()]]: triggers an [[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]] event.

Saving Data Life Cycle

When calling [[yii\db\ActiveRecord::save()|save()]] to insert or update an Active Record instance, the following
life cycle will happen:

	an [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs data validation. If data validation fails, the steps after Step 3 will be skipped.

	an [[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]] event.

	an [[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]]
or [[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs the actual data insertion or updating.

	an [[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
or [[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]] event.

Deleting Data Life Cycle

When calling [[yii\db\ActiveRecord::delete()|delete()]] to delete an Active Record instance, the following
life cycle will happen:

	an [[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs the actual data deletion.

	an [[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]] event.

Note: Calling any of the following methods will NOT initiate any of the above life cycles because they work on the
database directly and not on a record basis:

	[[yii\db\ActiveRecord::updateAll()]]

	[[yii\db\ActiveRecord::deleteAll()]]

	[[yii\db\ActiveRecord::updateCounters()]]

	[[yii\db\ActiveRecord::updateAllCounters()]]

Refreshing Data Life Cycle

When calling [[yii\db\ActiveRecord::refresh()|refresh()]] to refresh an Active Record instance, the
[[yii\db\ActiveRecord::EVENT_AFTER_REFRESH|EVENT_AFTER_REFRESH]] event is triggered if refresh is successful and the method returns true.

Working with Transactions

There are two ways of using transactions while working with Active Record.

The first way is to explicitly enclose Active Record method calls in a transactional block, like shown below,

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
 $customer->id = 200;
 $customer->save();
 // ...other DB operations...
});

// or alternatively

$transaction = Customer::getDb()->beginTransaction();
try {
 $customer->id = 200;
 $customer->save();
 // ...other DB operations...
 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

Note: in the above code we have two catch-blocks for compatibility
with PHP 5.x and PHP 7.x. \Exception implements the \Throwable interface [http://php.net/manual/en/class.throwable.php]
since PHP 7.0, so you can skip the part with \Exception if your app uses only PHP 7.0 and higher.

The second way is to list the DB operations that require transactional support in the [[yii\db\ActiveRecord::transactions()]]
method. For example,

class Customer extends ActiveRecord
{
 public function transactions()
 {
 return [
 'admin' => self::OP_INSERT,
 'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
 // the above is equivalent to the following:
 // 'api' => self::OP_ALL,
];
 }
}

The [[yii\db\ActiveRecord::transactions()]] method should return an array whose keys are scenario
names and values are the corresponding operations that should be enclosed within transactions. You should use the following
constants to refer to different DB operations:

	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: insertion operation performed by [[yii\db\ActiveRecord::insert()|insert()]];

	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: update operation performed by [[yii\db\ActiveRecord::update()|update()]];

	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: deletion operation performed by [[yii\db\ActiveRecord::delete()|delete()]].

Use the | operators to concatenate the above constants to indicate multiple operations. You may also use the shortcut
constant [[yii\db\ActiveRecord::OP_ALL|OP_ALL]] to refer to all three operations above.

Transactions that are created using this method will be started before calling [yii\db\ActiveRecord::beforeSave()|beforeSave()]
and will be committed after [yii\db\ActiveRecord::afterSave()|afterSave()] has run.

Optimistic Locks

Optimistic locking is a way to prevent conflicts that may occur when a single row of data is being
updated by multiple users. For example, both user A and user B are editing the same wiki article
at the same time. After user A saves his edits, user B clicks on the “Save” button in an attempt to
save his edits as well. Because user B was actually working on an outdated version of the article,
it would be desirable to have a way to prevent him from saving the article and show him some hint message.

Optimistic locking solves the above problem by using a column to record the version number of each row.
When a row is being saved with an outdated version number, a [[yii\db\StaleObjectException]] exception
will be thrown, which prevents the row from being saved. Optimistic locking is only supported when you
update or delete an existing row of data using [[yii\db\ActiveRecord::update()]] or [[yii\db\ActiveRecord::delete()]],
respectively.

To use optimistic locking,

	Create a column in the DB table associated with the Active Record class to store the version number of each row.
The column should be of big integer type (in MySQL it would be BIGINT DEFAULT 0).

	Override the [[yii\db\ActiveRecord::optimisticLock()]] method to return the name of this column.

	In the Web form that takes user inputs, add a hidden field to store the current version number of the row being updated.
Be sure your version attribute has input validation rules and validates successfully.

	In the controller action that updates the row using Active Record, try and catch the [[yii\db\StaleObjectException]]
exception. Implement necessary business logic (e.g. merging the changes, prompting staled data) to resolve the conflict.

For example, assume the version column is named as version. You can implement optimistic locking with the code like
the following.

// ------ view code -------

use yii\helpers\Html;

// ...other input fields
echo Html::activeHiddenInput($model, 'version');

// ------ controller code -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
 $model = $this->findModel($id);

 try {
 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('update', [
 'model' => $model,
]);
 }
 } catch (StaleObjectException $e) {
 // logic to resolve the conflict
 }
}

Working with Relational Data

Besides working with individual database tables, Active Record is also capable of bringing together related data,
making them readily accessible through the primary data. For example, the customer data is related with the order
data because one customer may have placed one or multiple orders. With appropriate declaration of this relation,
you’ll be able to access a customer’s order information using the expression $customer->orders which gives
back the customer’s order information in terms of an array of Order Active Record instances.

Declaring Relations

To work with relational data using Active Record, you first need to declare relations in Active Record classes.
The task is as simple as declaring a relation method for every interested relation, like the following,

class Customer extends ActiveRecord
{
 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 // ...

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

In the above code, we have declared an orders relation for the Customer class, and a customer relation
for the Order class.

Each relation method must be named as getXyz. We call xyz (the first letter is in lower case) the relation name.
Note that relation names are case sensitive.

While declaring a relation, you should specify the following information:

	the multiplicity of the relation: specified by calling either [[yii\db\ActiveRecord::hasMany()|hasMany()]]
or [[yii\db\ActiveRecord::hasOne()|hasOne()]]. In the above example you may easily read in the relation
declarations that a customer has many orders while an order only has one customer.

	the name of the related Active Record class: specified as the first parameter to
either [[yii\db\ActiveRecord::hasMany()|hasMany()]] or [[yii\db\ActiveRecord::hasOne()|hasOne()]].
A recommended practice is to call Xyz::className() to get the class name string so that you can receive
IDE auto-completion support as well as error detection at compiling stage.

	the link between the two types of data: specifies the column(s) through which the two types of data are related.
The array values are the columns of the primary data (represented by the Active Record class that you are declaring
relations), while the array keys are the columns of the related data.

An easy rule to remember this is, as you see in the example above, you write the column that belongs to the related
Active Record directly next to it. You see there that customer_id is a property of Order and id is a property
of Customer.

Accessing Relational Data

After declaring relations, you can access relational data through relation names. This is just like accessing
an object property defined by the relation method. For this reason, we call it relation property.
For example,

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders is an array of Order objects
$orders = $customer->orders;

Info: When you declare a relation named xyz via a getter method getXyz(), you will be able to access
xyz like an object property. Note that the name is case sensitive.

If a relation is declared with [[yii\db\ActiveRecord::hasMany()|hasMany()]], accessing this relation property
will return an array of the related Active Record instances; if a relation is declared with
[[yii\db\ActiveRecord::hasOne()|hasOne()]], accessing the relation property will return the related
Active Record instance or null if no related data is found.

When you access a relation property for the first time, a SQL statement will be executed, like shown in the
above example. If the same property is accessed again, the previous result will be returned without re-executing
the SQL statement. To force re-executing the SQL statement, you should unset the relation property
first: unset($customer->orders).

Note: While this concept looks similar to the object property feature, there is an
important difference. For normal object properties the property value is of the same type as the defining getter method.
A relation method however returns an [[yii\db\ActiveQuery]] instance, while accessing a relation property will either
return a [[yii\db\ActiveRecord]] instance or an array of these.

$customer->orders; // is an array of `Order` objects
$customer->getOrders(); // returns an ActiveQuery instance

This is useful for creating customized queries, which is described in the next section.

Dynamic Relational Query

Because a relation method returns an instance of [[yii\db\ActiveQuery]], you can further build this query
using query building methods before performing DB query. For example,

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getOrders()
 ->where(['>', 'subtotal', 200])
 ->orderBy('id')
 ->all();

Unlike accessing a relation property, each time you perform a dynamic relational query via a relation method,
a SQL statement will be executed, even if the same dynamic relational query was performed before.

Sometimes you may even want to parametrize a relation declaration so that you can more easily perform
dynamic relational query. For example, you may declare a bigOrders relation as follows,

class Customer extends ActiveRecord
{
 public function getBigOrders($threshold = 100)
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id'])
 ->where('subtotal > :threshold', [':threshold' => $threshold])
 ->orderBy('id');
 }
}

Then you will be able to perform the following relational queries:

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100 ORDER BY `id`
$orders = $customer->bigOrders;

Relations via a Junction Table

In database modelling, when the multiplicity between two related tables is many-to-many,
a junction table [https://en.wikipedia.org/wiki/Junction_table] is usually introduced. For example, the order
table and the item table may be related via a junction table named order_item. One order will then correspond
to multiple order items, while one product item will also correspond to multiple order items.

When declaring such relations, you would call either [[yii\db\ActiveQuery::via()|via()]] or [[yii\db\ActiveQuery::viaTable()|viaTable()]]
to specify the junction table. The difference between [[yii\db\ActiveQuery::via()|via()]] and [[yii\db\ActiveQuery::viaTable()|viaTable()]]
is that the former specifies the junction table in terms of an existing relation name while the latter directly uses
the junction table. For example,

class Order extends ActiveRecord
{
 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->viaTable('order_item', ['order_id' => 'id']);
 }
}

or alternatively,

class Order extends ActiveRecord
{
 public function getOrderItems()
 {
 return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);
 }

 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->via('orderItems');
 }
}

The usage of relations declared with a junction table is the same as that of normal relations. For example,

// SELECT * FROM `order` WHERE `id` = 100
$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100
// SELECT * FROM `item` WHERE `item_id` IN (...)
// returns an array of Item objects
$items = $order->items;

Lazy Loading and Eager Loading

In Accessing Relational Data, we explained that you can access a relation property
of an Active Record instance like accessing a normal object property. A SQL statement will be executed only when
you access the relation property the first time. We call such relational data accessing method lazy loading.
For example,

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$orders = $customer->orders;

// no SQL executed
$orders2 = $customer->orders;

Lazy loading is very convenient to use. However, it may suffer from a performance issue when you need to access
the same relation property of multiple Active Record instances. Consider the following code example. How many
SQL statements will be executed?

// SELECT * FROM `customer` LIMIT 100
$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {
 // SELECT * FROM `order` WHERE `customer_id` = ...
 $orders = $customer->orders;
}

As you can see from the code comment above, there are 101 SQL statements being executed! This is because each
time you access the orders relation property of a different Customer object in the for-loop, a SQL statement
will be executed.

To solve this performance problem, you can use the so-called eager loading approach as shown below,

// SELECT * FROM `customer` LIMIT 100;
// SELECT * FROM `orders` WHERE `customer_id` IN (...)
$customers = Customer::find()
 ->with('orders')
 ->limit(100)
 ->all();

foreach ($customers as $customer) {
 // no SQL executed
 $orders = $customer->orders;
}

By calling [[yii\db\ActiveQuery::with()]], you instruct Active Record to bring back the orders for the first 100
customers in one single SQL statement. As a result, you reduce the number of the executed SQL statements from 101 to 2!

You can eagerly load one or multiple relations. You can even eagerly load nested relations. A nested relation is a relation
that is declared within a related Active Record class. For example, Customer is related with Order through the orders
relation, and Order is related with Item through the items relation. When querying for Customer, you can eagerly
load items using the nested relation notation orders.items.

The following code shows different usage of [[yii\db\ActiveQuery::with()|with()]]. We assume the Customer class
has two relations orders and country, while the Order class has one relation items.

// eager loading both "orders" and "country"
$customers = Customer::find()->with('orders', 'country')->all();
// equivalent to the array syntax below
$customers = Customer::find()->with(['orders', 'country'])->all();
// no SQL executed
$orders= $customers[0]->orders;
// no SQL executed
$country = $customers[0]->country;

// eager loading "orders" and the nested relation "orders.items"
$customers = Customer::find()->with('orders.items')->all();
// access the items of the first order of the first customer
// no SQL executed
$items = $customers[0]->orders[0]->items;

You can eagerly load deeply nested relations, such as a.b.c.d. All parent relations will be eagerly loaded.
That is, when you call [[yii\db\ActiveQuery::with()|with()]] using a.b.c.d, you will eagerly load
a, a.b, a.b.c and a.b.c.d.

Info: In general, when eagerly loading N relations among which M relations are defined with a
junction table, a total number of N+M+1 SQL statements will be executed.
Note that a nested relation a.b.c.d counts as 4 relations.

When eagerly loading a relation, you can customize the corresponding relational query using an anonymous function.
For example,

// find customers and bring back together their country and active orders
// SELECT * FROM `customer`
// SELECT * FROM `country` WHERE `id` IN (...)
// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1
$customers = Customer::find()->with([
 'country',
 'orders' => function ($query) {
 $query->andWhere(['status' => Order::STATUS_ACTIVE]);
 },
])->all();

When customizing the relational query for a relation, you should specify the relation name as an array key
and use an anonymous function as the corresponding array value. The anonymous function will receive a $query parameter
which represents the [[yii\db\ActiveQuery]] object used to perform the relational query for the relation.
In the code example above, we are modifying the relational query by appending an additional condition about order status.

Note: If you call [[yii\db\Query::select()|select()]] while eagerly loading relations, you have to make sure
the columns referenced in the relation declarations are being selected. Otherwise, the related models may not
be loaded properly. For example,

$orders = Order::find()->select(['id', 'amount'])->with('customer')->all();
// $orders[0]->customer is always `null`. To fix the problem, you should do the following:
$orders = Order::find()->select(['id', 'amount', 'customer_id'])->with('customer')->all();

Joining with Relations

Note: The content described in this subsection is only applicable to relational databases, such as
MySQL, PostgreSQL, etc.

The relational queries that we have described so far only reference the primary table columns when
querying for the primary data. In reality we often need to reference columns in the related tables. For example,
we may want to bring back the customers who have at least one active order. To solve this problem, we can
build a join query like the following:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id`
// WHERE `order`.`status` = 1
//
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()
 ->select('customer.*')
 ->leftJoin('order', '`order`.`customer_id` = `customer`.`id`')
 ->where(['order.status' => Order::STATUS_ACTIVE])
 ->with('orders')
 ->all();

Note: It is important to disambiguate column names when building relational queries involving JOIN SQL statements.
A common practice is to prefix column names with their corresponding table names.

However, a better approach is to exploit the existing relation declarations by calling [[yii\db\ActiveQuery::joinWith()]]:

$customers = Customer::find()
 ->joinWith('orders')
 ->where(['order.status' => Order::STATUS_ACTIVE])
 ->all();

Both approaches execute the same set of SQL statements. The latter approach is much cleaner and drier, though.

By default, [[yii\db\ActiveQuery::joinWith()|joinWith()]] will use LEFT JOIN to join the primary table with the
related table. You can specify a different join type (e.g. RIGHT JOIN) via its third parameter $joinType. If
the join type you want is INNER JOIN, you can simply call [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]], instead.

Calling [[yii\db\ActiveQuery::joinWith()|joinWith()]] will eagerly load the related data by default.
If you do not want to bring in the related data, you can specify its second parameter $eagerLoading as false.

Like [[yii\db\ActiveQuery::with()|with()]], you can join with one or multiple relations; you may customize the relation
queries on-the-fly; you may join with nested relations; and you may mix the use of [[yii\db\ActiveQuery::with()|with()]]
and [[yii\db\ActiveQuery::joinWith()|joinWith()]]. For example,

$customers = Customer::find()->joinWith([
 'orders' => function ($query) {
 $query->andWhere(['>', 'subtotal', 100]);
 },
])->with('country')
 ->all();

Sometimes when joining two tables, you may need to specify some extra conditions in the ON part of the JOIN query.
This can be done by calling the [[yii\db\ActiveQuery::onCondition()]] method like the following:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id` AND `order`.`status` = 1
//
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()->joinWith([
 'orders' => function ($query) {
 $query->onCondition(['order.status' => Order::STATUS_ACTIVE]);
 },
])->all();

This above query brings back all customers, and for each customer it brings back all active orders.
Note that this differs from our earlier example which only brings back customers who have at least one active order.

Info: When [[yii\db\ActiveQuery]] is specified with a condition via [[yii\db\ActiveQuery::onCondition()|onCondition()]],
the condition will be put in the ON part if the query involves a JOIN query. If the query does not involve
JOIN, the on-condition will be automatically appended to the WHERE part of the query.
Thus it may only contain conditions including columns of the related table.

Relation table aliases

As noted before, when using JOIN in a query, we need to disambiguate column names. Therefor often an alias is
defined for a table. Setting an alias for the relational query would be possible by customizing the relation query in the following way:

$query->joinWith([
 'orders' => function ($q) {
 $q->from(['o' => Order::tableName()]);
 },
])

This however looks very complicated and involves either hardcoding the related objects table name or calling Order::tableName().
Since version 2.0.7, Yii provides a shortcut for this. You may now define and use the alias for the relation table like the following:

// join the orders relation and sort the result by orders.id
$query->joinWith(['orders o'])->orderBy('o.id');

The above syntax works for simple relations. If you need an alias for an intermediate table when joining over
nested relations, e.g. $query->joinWith(['orders.product']),
you need to nest the joinWith calls like in the following example:

$query->joinWith(['orders o' => function($q) {
 $q->joinWith('product p');
 }])
 ->where('o.amount > 100');

Inverse Relations

Relation declarations are often reciprocal between two Active Record classes. For example, Customer is related
to Order via the orders relation, and Order is related back to Customer via the customer relation.

class Customer extends ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

Now consider the following piece of code:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// SELECT * FROM `customer` WHERE `id` = 123
$customer2 = $order->customer;

// displays "not the same"
echo $customer2 === $customer ? 'same' : 'not the same';

We would think $customer and $customer2 are the same, but they are not! Actually they do contain the same
customer data, but they are different objects. When accessing $order->customer, an extra SQL statement
is executed to populate a new object $customer2.

To avoid the redundant execution of the last SQL statement in the above example, we should tell Yii that
customer is an inverse relation of orders by calling the [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] method
like shown below:

class Customer extends ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id'])->inverseOf('customer');
 }
}

With this modified relation declaration, we will have:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// No SQL will be executed
$customer2 = $order->customer;

// displays "same"
echo $customer2 === $customer ? 'same' : 'not the same';

Note: Inverse relations cannot be defined for relations involving a junction table.
That is, if a relation is defined with [[yii\db\ActiveQuery::via()|via()]] or [[yii\db\ActiveQuery::viaTable()|viaTable()]],
you should not call [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] further.

Saving Relations

When working with relational data, you often need to establish relationships between different data or destroy
existing relationships. This requires setting proper values for the columns that define the relations. Using Active Record,
you may end up writing the code like the following:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

// setting the attribute that defines the "customer" relation in Order
$order->customer_id = $customer->id;
$order->save();

Active Record provides the [[yii\db\ActiveRecord::link()|link()]] method that allows you to accomplish this task more nicely:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

$order->link('customer', $customer);

The [[yii\db\ActiveRecord::link()|link()]] method requires you to specify the relation name and the target Active Record
instance that the relationship should be established with. The method will modify the values of the attributes that
link two Active Record instances and save them to the database. In the above example, it will set the customer_id
attribute of the Order instance to be the value of the id attribute of the Customer instance and then save it
to the database.

Note: You cannot link two newly created Active Record instances.

The benefit of using [[yii\db\ActiveRecord::link()|link()]] is even more obvious when a relation is defined via
a junction table. For example, you may use the following code to link an Order instance
with an Item instance:

$order->link('items', $item);

The above code will automatically insert a row in the order_item junction table to relate the order with the item.

Info: The [[yii\db\ActiveRecord::link()|link()]] method will NOT perform any data validation while
saving the affected Active Record instance. It is your responsibility to validate any input data before
calling this method.

The opposite operation to [[yii\db\ActiveRecord::link()|link()]] is [[yii\db\ActiveRecord::unlink()|unlink()]]
which breaks an existing relationship between two Active Record instances. For example,

$customer = Customer::find()->with('orders')->where(['id' => 123])->one();
$customer->unlink('orders', $customer->orders[0]);

By default, the [[yii\db\ActiveRecord::unlink()|unlink()]] method will set the foreign key value(s) that specify
the existing relationship to be null. You may, however, choose to delete the table row that contains the foreign key value
by passing the $delete parameter as true to the method.

When a junction table is involved in a relation, calling [[yii\db\ActiveRecord::unlink()|unlink()]] will cause
the foreign keys in the junction table to be cleared, or the deletion of the corresponding row in the junction table
if $delete is true.

Cross-Database Relations

Active Record allows you to declare relations between Active Record classes that are powered by different databases.
The databases can be of different types (e.g. MySQL and PostgreSQL, or MS SQL and MongoDB), and they can run on
different servers. You can use the same syntax to perform relational queries. For example,

// Customer is associated with the "customer" table in a relational database (e.g. MySQL)
class Customer extends \yii\db\ActiveRecord
{
 public static function tableName()
 {
 return 'customer';
 }

 public function getComments()
 {
 // a customer has many comments
 return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
 }
}

// Comment is associated with the "comment" collection in a MongoDB database
class Comment extends \yii\mongodb\ActiveRecord
{
 public static function collectionName()
 {
 return 'comment';
 }

 public function getCustomer()
 {
 // a comment has one customer
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

$customers = Customer::find()->with('comments')->all();

You can use most of the relational query features that have been described in this section.

Note: Usage of [[yii\db\ActiveQuery::joinWith()|joinWith()]] is limited to databases that allow cross-database JOIN queries.
For this reason, you cannot use this method in the above example because MongoDB does not support JOIN.

Customizing Query Classes

By default, all Active Record queries are supported by [[yii\db\ActiveQuery]]. To use a customized query class
in an Active Record class, you should override the [[yii\db\ActiveRecord::find()]] method and return an instance
of your customized query class. For example,

// file Comment.php
namespace app\models;

use yii\db\ActiveRecord;

class Comment extends ActiveRecord
{
 public static function find()
 {
 return new CommentQuery(get_called_class());
 }
}

Now whenever you are performing a query (e.g. find(), findOne()) or defining a relation (e.g. hasOne())
with Comment, you will be calling an instance of CommentQuery instead of ActiveQuery.

You now have to define the CommentQuery class, which can be customized in many creative ways to improve your query building experience. For example,

// file CommentQuery.php
namespace app\models;

use yii\db\ActiveQuery;

class CommentQuery extends ActiveQuery
{
 // conditions appended by default (can be skipped)
 public function init()
 {
 $this->andOnCondition(['deleted' => false]);
 parent::init();
 }

 // ... add customized query methods here ...

 public function active($state = true)
 {
 return $this->andOnCondition(['active' => $state]);
 }
}

Note: Instead of calling [[yii\db\ActiveQuery::onCondition()|onCondition()]], you usually should call
[[yii\db\ActiveQuery::andOnCondition()|andOnCondition()]] or [[yii\db\ActiveQuery::orOnCondition()|orOnCondition()]] to append additional conditions when defining new query building methods so that any existing conditions are not overwritten.

This allows you to write query building code like the following:

$comments = Comment::find()->active()->all();
$inactiveComments = Comment::find()->active(false)->all();

Tip: In big projects, it is recommended that you use customized query classes to hold most query-related code
so that the Active Record classes can be kept clean.

You can also use the new query building methods when defining relations about Comment or performing relational query:

class Customer extends \yii\db\ActiveRecord
{
 public function getActiveComments()
 {
 return $this->hasMany(Comment::className(), ['customer_id' => 'id'])->active();
 }
}

$customers = Customer::find()->joinWith('activeComments')->all();

// or alternatively
class Customer extends \yii\db\ActiveRecord
{
 public function getComments()
 {
 return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
 }
}

$customers = Customer::find()->joinWith([
 'comments' => function($q) {
 $q->active();
 }
])->all();

Info: In Yii 1.1, there is a concept called scope. Scope is no longer directly supported in Yii 2.0,
and you should use customized query classes and query methods to achieve the same goal.

Selecting extra fields

When Active Record instance is populated from query results, its attributes are filled up by corresponding column
values from received data set.

You are able to fetch additional columns or values from query and store it inside the Active Record.
For example, assume we have a table named room, which contains information about rooms available in the hotel.
Each room stores information about its geometrical size using fields length, width, height.
Imagine we need to retrieve list of all available rooms with their volume in descendant order.
So you can not calculate volume using PHP, because we need to sort the records by its value, but you also want volume
to be displayed in the list.
To achieve the goal, you need to declare an extra field in your Room Active Record class, which will store volume value:

class Room extends \yii\db\ActiveRecord
{
 public $volume;

 // ...
}

Then you need to compose a query, which calculates volume of the room and performs the sort:

$rooms = Room::find()
 ->select([
 '{{room}}.*', // select all columns
 '([[length]] * [[width]] * [[height]]) AS volume', // calculate a volume
])
 ->orderBy('volume DESC') // apply sort
 ->all();

foreach ($rooms as $room) {
 echo $room->volume; // contains value calculated by SQL
}

Ability to select extra fields can be exceptionally useful for aggregation queries.
Assume you need to display a list of customers with the count of orders they have made.
First of all, you need to declare a Customer class with orders relation and extra field for count storage:

class Customer extends \yii\db\ActiveRecord
{
 public $ordersCount;

 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

Then you can compose a query, which joins the orders and calculates their count:

$customers = Customer::find()
 ->select([
 '{{customer}}.*', // select all customer fields
 'COUNT({{order}}.id) AS ordersCount' // calculate orders count
])
 ->joinWith('orders') // ensure table junction
 ->groupBy('{{customer}}.id') // group the result to ensure aggregation function works
 ->all();

A disadvantage of using this method would be that, if the information isn’t loaded on the SQL query - it has to be calculated
separately. Thus, if you have found particular record via regular query without extra select statements, it
will be unable to return actual value for the extra field. Same will happen for the newly saved record.

$room = new Room();
$room->length = 100;
$room->width = 50;
$room->height = 2;

$room->volume; // this value will be `null`, since it was not declared yet

Using the [[yii\db\BaseActiveRecord::__get()|__get()]] and [[yii\db\BaseActiveRecord::__set()|__set()]] magic methods
we can emulate the behavior of a property:

class Room extends \yii\db\ActiveRecord
{
 private $_volume;

 public function setVolume($volume)
 {
 $this->_volume = (float) $volume;
 }

 public function getVolume()
 {
 if (empty($this->length) || empty($this->width) || empty($this->height)) {
 return null;
 }

 if ($this->_volume === null) {
 $this->setVolume(
 $this->length * $this->width * $this->height
);
 }

 return $this->_volume;
 }

 // ...
}

When the select query doesn’t provide the volume, the model will be able to calculate it automatically using
the attributes of the model.

You can calculate the aggregation fields as well using defined relations:

class Customer extends \yii\db\ActiveRecord
{
 private $_ordersCount;

 public function setOrdersCount($count)
 {
 $this->_ordersCount = (int) $count;
 }

 public function getOrdersCount()
 {
 if ($this->isNewRecord) {
 return null; // this avoid calling a query searching for null primary keys
 }

 if ($this->_ordersCount === null) {
 $this->setOrdersCount($this->getOrders()->count()); // calculate aggregation on demand from relation
 }

 return $this->_ordersCount;
 }

 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

With this code, in case ‘ordersCount’ is present in ‘select’ statement - Customer::ordersCount will be populated
by query results, otherwise it will be calculated on demand using Customer::orders relation.

This approach can be as well used for creation of the shortcuts for some relational data, especially for the aggregation.
For example:

class Customer extends \yii\db\ActiveRecord
{
 /**
 * Defines read-only virtual property for aggregation data.
 */
 public function getOrdersCount()
 {
 if ($this->isNewRecord) {
 return null; // this avoid calling a query searching for null primary keys
 }

 return empty($this->ordersAggregation) ? 0 : $this->ordersAggregation[0]['counted'];
 }

 /**
 * Declares normal 'orders' relation.
 */
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }

 /**
 * Declares new relation based on 'orders', which provides aggregation.
 */
 public function getOrdersAggregation()
 {
 return $this->getOrders()
 ->select(['customer_id', 'counted' => 'count(*)'])
 ->groupBy('customer_id')
 ->asArray(true);
 }

 // ...
}

foreach (Customer::find()->with('ordersAggregation')->all() as $customer) {
 echo $customer->ordersCount; // outputs aggregation data from relation without extra query due to eager loading
}

$customer = Customer::findOne($pk);
$customer->ordersCount; // output aggregation data from lazy loaded relation

Configurations

Configurations are widely used in Yii when creating new objects or initializing existing objects.
Configurations usually include the class name of the object being created, and a list of initial values
that should be assigned to the object’s properties. Configurations may also include a list of
handlers that should be attached to the object’s events and/or a list of
behaviors that should also be attached to the object.

In the following, a configuration is used to create and initialize a database connection:

$config = [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

$db = Yii::createObject($config);

The [[Yii::createObject()]] method takes a configuration array as its argument, and creates an object by instantiating
the class named in the configuration. When the object is instantiated, the rest of the configuration
will be used to initialize the object’s properties, event handlers, and behaviors.

If you already have an object, you may use [[Yii::configure()]] to initialize the object’s properties with
a configuration array:

Yii::configure($object, $config);

Note that, in this case, the configuration array should not contain a class element.

Configuration Format

The format of a configuration can be formally described as:

[
 'class' => 'ClassName',
 'propertyName' => 'propertyValue',
 'on eventName' => $eventHandler,
 'as behaviorName' => $behaviorConfig,
]

where

	The class element specifies a fully qualified class name for the object being created.

	The propertyName elements specify the initial values for the named property. The keys are the property names, and the
values are the corresponding initial values. Only public member variables and properties
defined by getters/setters can be configured.

	The on eventName elements specify what handlers should be attached to the object’s events.
Notice that the array keys are formed by prefixing event names with on. Please refer to
the Events section for supported event handler formats.

	The as behaviorName elements specify what behaviors should be attached to the object.
Notice that the array keys are formed by prefixing behavior names with as; the value, $behaviorConfig, represents
the configuration for creating a behavior, like a normal configuration described here.

Below is an example showing a configuration with initial property values, event handlers, and behaviors:

[
 'class' => 'app\components\SearchEngine',
 'apiKey' => 'xxxxxxxx',
 'on search' => function ($event) {
 Yii::info("Keyword searched: " . $event->keyword);
 },
 'as indexer' => [
 'class' => 'app\components\IndexerBehavior',
 // ... property init values ...
],
]

Using Configurations

Configurations are used in many places in Yii. At the beginning of this section, we have shown how to
create an object according to a configuration by using [[Yii::createObject()]]. In this subsection, we will
describe application configurations and widget configurations - two major usages of configurations.

Application Configurations

The configuration for an application is probably one of the most complex arrays in Yii.
This is because the [[yii\web\Application|application]] class has a lot of configurable properties and events.
More importantly, its [[yii\web\Application::components|components]] property can receive an array of configurations
for creating components that are registered through the application. The following is an abstract from the application
configuration file for the Basic Project Template.

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
];

The configuration does not have a class key. This is because it is used as follows in
an entry script, where the class name is already given,

(new yii\web\Application($config))->run();

More details about configuring the components property of an application can be found
in the Applications section and the Service Locator section.

Since version 2.0.11, the application configuration supports Dependency Injection Container
configuration using container property. For example:

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'container' => [
 'definitions' => [
 'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
],
 'singletons' => [
 // Dependency Injection Container singletons configuration
]
]
];

To know more about the possible values of definitions and singletons configuration arrays and real-life examples,
please read Advanced Practical Usage subsection of the
Dependency Injection Container article.

Widget Configurations

When using widgets, you often need to use configurations to customize the widget properties.
Both of the [[yii\base\Widget::widget()]] and [[yii\base\Widget::begin()]] methods can be used to create
a widget. They take a configuration array, like the following,

use yii\widgets\Menu;

echo Menu::widget([
 'activateItems' => false,
 'items' => [
 ['label' => 'Home', 'url' => ['site/index']],
 ['label' => 'Products', 'url' => ['product/index']],
 ['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
],
]);

The above code creates a Menu widget and initializes its activateItems property to be false.
The items property is also configured with menu items to be displayed.

Note that because the class name is already given, the configuration array should NOT have the class key.

Configuration Files

When a configuration is very complex, a common practice is to store it in one or multiple PHP files, known as
configuration files. A configuration file returns a PHP array representing the configuration.
For example, you may keep an application configuration in a file named web.php, like the following,

return [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'components' => require(__DIR__ . '/components.php'),
];

Because the components configuration is complex too, you store it in a separate file called components.php
and “require” this file in web.php as shown above. The content of components.php is as follows,

return [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
];

To get a configuration stored in a configuration file, simply “require” it, like the following:

$config = require('path/to/web.php');
(new yii\web\Application($config))->run();

Default Configurations

The [[Yii::createObject()]] method is implemented based on a dependency injection container.
It allows you to specify a set of the so-called default configurations which will be applied to ALL instances of
the specified classes when they are being created using [[Yii::createObject()]]. The default configurations
can be specified by calling Yii::$container->set() in the bootstrapping code.

For example, if you want to customize [[yii\widgets\LinkPager]] so that ALL link pagers will show at most 5 page buttons
(the default value is 10), you may use the following code to achieve this goal:

\Yii::$container->set('yii\widgets\LinkPager', [
 'maxButtonCount' => 5,
]);

Without using default configurations, you would have to configure maxButtonCount in every place where you use
link pagers.

Environment Constants

Configurations often vary according to the environment in which an application runs. For example,
in development environment, you may want to use a database named mydb_dev, while on production server
you may want to use the mydb_prod database. To facilitate switching environments, Yii provides a constant
named YII_ENV that you may define in the entry script of your application.
For example,

defined('YII_ENV') or define('YII_ENV', 'dev');

You may define YII_ENV as one of the following values:

	prod: production environment. The constant YII_ENV_PROD will evaluate as true.
This is the default value of YII_ENV if you do not define it.

	dev: development environment. The constant YII_ENV_DEV will evaluate as true.

	test: testing environment. The constant YII_ENV_TEST will evaluate as true.

With these environment constants, you may specify your configurations conditionally based on
the current environment. For example, your application configuration may contain the following
code to enable the debug toolbar and debugger in development environment.

$config = [...];

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;

Properties

In PHP, class member variables are also called properties. These variables are part of the class definition, and are used
to represent the state of a class instance (i.e., to differentiate one instance of the class from another).
In practice, you may often want to handle the reading or writing of properties in special ways. For example,
you may want to always trim a string when it is being assigned
to a label property. You could use the following code to achieve this task:

$object->label = trim($label);

The drawback of the above code is that you would have to call trim() everywhere in your code where you might set the label
property. If, in the future, the label property gets a new requirement, such as the first letter must be capitalized,
you would again have to modify every bit of code that assigns a value to label.
The repetition of code leads to bugs, and is a practice you want to avoid as much as possible.

To solve this problem, Yii introduces a base class called [[yii\base\Object]] that supports defining properties
based on getter and setter class methods. If a class needs that functionality, it should extend from
[[yii\base\Object]], or from a child class.

Info: Nearly every core class in the Yii framework extends from [[yii\base\Object]] or a child class.
This means, that whenever you see a getter or setter in a core class, you can use it like a property.

A getter method is a method whose name starts with the word get; a setter method starts with set.
The name after the get or set prefix defines the name of a property. For example, a getter getLabel() and/or
a setter setLabel() defines a property named label, as shown in the following code:

namespace app\components;

use yii\base\Object;

class Foo extends Object
{
 private $_label;

 public function getLabel()
 {
 return $this->_label;
 }

 public function setLabel($value)
 {
 $this->_label = trim($value);
 }
}

To be clear, the getter and setter methods create the property label, which in this case internally refers to a private
property named _label.

Properties defined by getters and setters can be used like class member variables. The main difference is that
when such property is being read, the corresponding getter method will be called; when the property is
being assigned a value, the corresponding setter method will be called. For example:

// equivalent to $label = $object->getLabel();
$label = $object->label;

// equivalent to $object->setLabel('abc');
$object->label = 'abc';

A property defined by a getter without a setter is read only. Trying to assign a value to such a property will cause
an [[yii\base\InvalidCallException|InvalidCallException]]. Similarly, a property defined by a setter without a getter
is write only, and trying to read such a property will also cause an exception. It is not common to have write-only
properties.

There are several special rules for, and limitations on, the properties defined via getters and setters:

	The names of such properties are case-insensitive. For example, $object->label and $object->Label are the same.
This is because method names in PHP are case-insensitive.

	If the name of such a property is the same as a class member variable, the latter will take precedence.
For example, if the above Foo class has a member variable label, then the assignment $object->label = 'abc'
will affect the member variable label; that line would not call the setLabel() setter method.

	These properties do not support visibility. It makes no difference to the defining getter or setter method if the property is public, protected or private.

	The properties can only be defined by non-static getters and/or setters. Static methods will not be treated in the same manner.

	A normal call to property_exists() does not work to determine magic properties. You should call [[yii\base\Object::canGetProperty()|canGetProperty()]]
or [[yii\base\Object::canSetProperty()|canSetProperty()]] respectively.

Returning back to the problem described at the beginning of this guide, instead of calling trim() everywhere a label value is assigned,
trim() now only needs to be invoked within the setter setLabel().
And if a new requirement makes it necessary that the label be initially capitalized, the setLabel() method can quickly
be modified without touching any other code. The one change will universally affect every assignment to label.

Responses

When an application finishes handling a request, it generates a [[yii\web\Response|response]] object
and sends it to the end user. The response object contains information such as the HTTP status code, HTTP headers and body.
The ultimate goal of Web application development is essentially to build such response objects upon various requests.

In most cases you should mainly deal with the response application component
which is an instance of [[yii\web\Response]], by default. However, Yii also allows you to create your own response
objects and send them to end users as we will explain in the following.

In this section, we will describe how to compose and send responses to end users.

Status Code

One of the first things you would do when building a response is to state whether the request is successfully handled.
This is done by setting the [[yii\web\Response::statusCode]] property which can take one of the valid
HTTP status codes [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html]. For example, to indicate the request
is successfully handled, you may set the status code to be 200, like the following:

Yii::$app->response->statusCode = 200;

However, in most cases you do not need to explicitly set the status code. This is because the default value
of [[yii\web\Response::statusCode]] is 200. And if you want to indicate the request is unsuccessful, you may
throw an appropriate HTTP exception like the following:

throw new \yii\web\NotFoundHttpException;

When the error handler catches an exception, it will extract the status code
from the exception and assign it to the response. For the [[yii\web\NotFoundHttpException]] above, it is
associated with the HTTP status 404. The following HTTP exceptions are predefined in Yii:

	[[yii\web\BadRequestHttpException]]: status code 400.

	[[yii\web\ConflictHttpException]]: status code 409.

	[[yii\web\ForbiddenHttpException]]: status code 403.

	[[yii\web\GoneHttpException]]: status code 410.

	[[yii\web\MethodNotAllowedHttpException]]: status code 405.

	[[yii\web\NotAcceptableHttpException]]: status code 406.

	[[yii\web\NotFoundHttpException]]: status code 404.

	[[yii\web\ServerErrorHttpException]]: status code 500.

	[[yii\web\TooManyRequestsHttpException]]: status code 429.

	[[yii\web\UnauthorizedHttpException]]: status code 401.

	[[yii\web\UnsupportedMediaTypeHttpException]]: status code 415.

If the exception that you want to throw is not among the above list, you may create one by extending
from [[yii\web\HttpException]], or directly throw it with a status code, for example,

throw new \yii\web\HttpException(402);

HTTP Headers

You can send HTTP headers by manipulating the [[yii\web\Response::headers|header collection]] in the response component.
For example,

$headers = Yii::$app->response->headers;

// add a Pragma header. Existing Pragma headers will NOT be overwritten.
$headers->add('Pragma', 'no-cache');

// set a Pragma header. Any existing Pragma headers will be discarded.
$headers->set('Pragma', 'no-cache');

// remove Pragma header(s) and return the removed Pragma header values in an array
$values = $headers->remove('Pragma');

Info: Header names are case insensitive. And the newly registered headers are not sent to the user until
the [[yii\web\Response::send()]] method is called.

Response Body

Most responses should have a body which gives the content that you want to show to end users.

If you already have a formatted body string, you may assign it to the [[yii\web\Response::content]] property
of the response. For example,

Yii::$app->response->content = 'hello world!';

If your data needs to be formatted before sending it to end users, you should set both of the
[[yii\web\Response::format|format]] and [[yii\web\Response::data|data]] properties. The [[yii\web\Response::format|format]]
property specifies in which format the [[yii\web\Response::data|data]] should be formatted. For example,

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];

Yii supports the following formats out of the box, each implemented by a [[yii\web\ResponseFormatterInterface|formatter]] class.
You can customize these formatters or add new ones by configuring the [[yii\web\Response::formatters]] property.

	[[yii\web\Response::FORMAT_HTML|HTML]]: implemented by [[yii\web\HtmlResponseFormatter]].

	[[yii\web\Response::FORMAT_XML|XML]]: implemented by [[yii\web\XmlResponseFormatter]].

	[[yii\web\Response::FORMAT_JSON|JSON]]: implemented by [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: implemented by [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_RAW|RAW]]: use this format if you want to send the response directly without applying any formatting.

While the response body can be set explicitly as shown above, in most cases you may set it implicitly by the return value
of action methods. A common use case is like the following:

public function actionIndex()
{
 return $this->render('index');
}

The index action above returns the rendering result of the index view. The return value will be taken
by the response component, formatted and then sent to end users.

Because by default the response format is [[yii\web\Response::FORMAT_HTML|HTML]], you should only return a string
in an action method. If you want to use a different response format, you should set it first before returning the data.
For example,

public function actionInfo()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'hello world',
 'code' => 100,
];
}

As aforementioned, besides using the default response application component, you can also create your own
response objects and send them to end users. You can do so by returning such object in an action method, like the following,

public function actionInfo()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',
 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'hello world',
 'code' => 100,
],
]);
}

Note: If you are creating your own response objects, you will not be able to take advantage of the configurations
that you set for the response component in the application configuration. You can, however, use
dependency injection to apply a common configuration to your new response objects.

Browser Redirection

Browser redirection relies on sending a Location HTTP header. Because this feature is commonly used, Yii provides
some special support for it.

You can redirect the user browser to a URL by calling the [[yii\web\Response::redirect()]] method. The method
sets the appropriate Location header with the given URL and returns the response object itself. In an action method,
you can call its shortcut version [[yii\web\Controller::redirect()]]. For example,

public function actionOld()
{
 return $this->redirect('http://example.com/new', 301);
}

In the above code, the action method returns the result of the redirect() method. As explained before, the response
object returned by an action method will be used as the response sending to end users.

In places other than an action method, you should call [[yii\web\Response::redirect()]] directly followed by
a chained call to the [[yii\web\Response::send()]] method to ensure no extra content will be appended to the response.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: By default, the [[yii\web\Response::redirect()]] method sets the response status code to be 302 which instructs
the browser that the resource being requested is temporarily located in a different URI. You can pass in a status
code 301 to tell the browser that the resource has been permanently relocated.

When the current request is an AJAX request, sending a Location header will not automatically cause the browser
to redirect. To solve this problem, the [[yii\web\Response::redirect()]] method sets an X-Redirect header with
the redirection URL as its value. On the client-side, you may write JavaScript code to read this header value and
redirect the browser accordingly.

Info: Yii comes with a yii.js JavaScript file which provides a set of commonly used JavaScript utilities,
including browser redirection based on the X-Redirect header. Therefore, if you are using this JavaScript file
(by registering the [[yii\web\YiiAsset]] asset bundle), you do not need to write anything to support AJAX redirection.
More information about yii.js can be found in the Client Scripts Section.

Sending Files

Like browser redirection, file sending is another feature that relies on specific HTTP headers. Yii provides
a set of methods to support various file sending needs. They all have built-in support for the HTTP range header.

	[[yii\web\Response::sendFile()]]: sends an existing file to a client.

	[[yii\web\Response::sendContentAsFile()]]: sends a text string as a file to a client.

	[[yii\web\Response::sendStreamAsFile()]]: sends an existing file stream as a file to a client.

These methods have the same method signature with the response object as the return value. If the file
to be sent is very big, you should consider using [[yii\web\Response::sendStreamAsFile()]] because it is more
memory efficient. The following example shows how to send a file in a controller action:

public function actionDownload()
{
 return \Yii::$app->response->sendFile('path/to/file.txt');
}

If you are calling the file sending method in places other than an action method, you should also call
the [[yii\web\Response::send()]] method afterwards to ensure no extra content will be appended to the response.

\Yii::$app->response->sendFile('path/to/file.txt')->send();

Some Web servers have a special file sending support called X-Sendfile. The idea is to redirect the
request for a file to the Web server which will directly serve the file. As a result, the Web application
can terminate earlier while the Web server is sending the file. To use this feature, you may call
the [[yii\web\Response::xSendFile()]]. The following list summarizes how to enable the X-Sendfile feature
for some popular Web servers:

	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]

Sending Response

The content in a response is not sent to the user until the [[yii\web\Response::send()]] method is called.
By default, this method will be called automatically at the end of [[yii\base\Application::run()]]. You can, however,
explicitly call this method to force sending out the response immediately.

The [[yii\web\Response::send()]] method takes the following steps to send out a response:

	Trigger the [[yii\web\Response::EVENT_BEFORE_SEND]] event.

	Call [[yii\web\Response::prepare()]] to format [[yii\web\Response::data|response data]] into
[[yii\web\Response::content|response content]].

	Trigger the [[yii\web\Response::EVENT_AFTER_PREPARE]] event.

	Call [[yii\web\Response::sendHeaders()]] to send out the registered HTTP headers.

	Call [[yii\web\Response::sendContent()]] to send out the response body content.

	Trigger the [[yii\web\Response::EVENT_AFTER_SEND]] event.

After the [[yii\web\Response::send()]] method is called once, any further call to this method will be ignored.
This means once the response is sent out, you will not be able to append more content to it.

As you can see, the [[yii\web\Response::send()]] method triggers several useful events. By responding to
these events, it is possible to adjust or decorate the response.

Application Components

Applications are service locators. They host a set of the so-called
application components that provide different services for processing requests. For example,
the urlManager component is responsible for routing Web requests to appropriate controllers;
the db component provides DB-related services; and so on.

Each application component has an ID that uniquely identifies itself among other application components
in the same application. You can access an application component through the expression:

\Yii::$app->componentID

For example, you can use \Yii::$app->db to get the [[yii\db\Connection|DB connection]],
and \Yii::$app->cache to get the [[yii\caching\Cache|primary cache]] registered with the application.

An application component is created the first time it is accessed through the above expression. Any
further accesses will return the same component instance.

Application components can be any objects. You can register them by configuring
the [[yii\base\Application::components]] property in application configurations.
For example,

[
 'components' => [
 // register "cache" component using a class name
 'cache' => 'yii\caching\ApcCache',

 // register "db" component using a configuration array
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],

 // register "search" component using an anonymous function
 'search' => function () {
 return new app\components\SolrService;
 },
],
]

Info: While you can register as many application components as you want, you should do this judiciously.
Application components are like global variables. Using too many application components can potentially
make your code harder to test and maintain. In many cases, you can simply create a local component
and use it when needed.

Bootstrapping Components

As mentioned above, an application component will only be instantiated when it is being accessed the first time.
If it is not accessed at all during a request, it will not be instantiated. Sometimes, however, you may want
to instantiate an application component for every request, even if it is not explicitly accessed.
To do so, you may list its ID in the [[yii\base\Application::bootstrap|bootstrap]] property of the application.

For example, the following application configuration makes sure the log component is always loaded:

[
 'bootstrap' => [
 'log',
],
 'components' => [
 'log' => [
 // configuration for "log" component
],
],
]

Core Application Components

Yii defines a set of core application components with fixed IDs and default configurations. For example,
the [[yii\web\Application::request|request]] component is used to collect information about
a user request and resolve it into a route; the [[yii\base\Application::db|db]]
component represents a database connection through which you can perform database queries.
It is with help of these core application components that Yii applications are able to handle user requests.

Below is the list of the predefined core application components. You may configure and customize them
like you do with normal application components. When you are configuring a core application component,
if you do not specify its class, the default one will be used.

	[[yii\web\AssetManager|assetManager]]: manages asset bundles and asset publishing.
Please refer to the Managing Assets section for more details.

	[[yii\db\Connection|db]]: represents a database connection through which you can perform DB queries.
Note that when you configure this component, you must specify the component class as well as other required
component properties, such as [[yii\db\Connection::dsn]].
Please refer to the Data Access Objects section for more details.

	[[yii\base\Application::errorHandler|errorHandler]]: handles PHP errors and exceptions.
Please refer to the Handling Errors section for more details.

	[[yii\i18n\Formatter|formatter]]: formats data when they are displayed to end users. For example, a number
may be displayed with thousand separator, a date may be formatted in long format.
Please refer to the Data Formatting section for more details.

	[[yii\i18n\I18N|i18n]]: supports message translation and formatting.
Please refer to the Internationalization section for more details.

	[[yii\log\Dispatcher|log]]: manages log targets.
Please refer to the Logging section for more details.

	[[yii\swiftmailer\Mailer|mailer]]: supports mail composing and sending.
Please refer to the Mailing section for more details.

	[[yii\base\Application::response|response]]: represents the response being sent to end users.
Please refer to the Responses section for more details.

	[[yii\base\Application::request|request]]: represents the request received from end users.
Please refer to the Requests section for more details.

	[[yii\web\Session|session]]: represents the session information. This component is only available
in [[yii\web\Application|Web applications]].
Please refer to the Sessions and Cookies section for more details.

	[[yii\web\UrlManager|urlManager]]: supports URL parsing and creation.
Please refer to the Routing and URL Creation section for more details.

	[[yii\web\User|user]]: represents the user authentication information. This component is only available
in [[yii\web\Application|Web applications]].
Please refer to the Authentication section for more details.

	[[yii\web\View|view]]: supports view rendering.
Please refer to the Views section for more details.

Functional Tests

Note: This section is under development.

	Codeception Functional Tests [http://codeception.com/docs/04-FunctionalTests]

Running basic and advanced template functional tests

Please refer to instructions provided in apps/advanced/tests/README.md and apps/basic/tests/README.md.

Components

Components are the main building blocks of Yii applications. Components are instances of [[yii\base\Component]],
or an extended class. The three main features that components provide to other classes are:

	Properties

	Events

	Behaviors

Separately and combined, these features make Yii classes much more customizable and easier to use. For example,
the included [[yii\jui\DatePicker|date picker widget]], a user interface component, can be used in a view
to generate an interactive date picker:

use yii\jui\DatePicker;

echo DatePicker::widget([
 'language' => 'ru',
 'name' => 'country',
 'clientOptions' => [
 'dateFormat' => 'yy-mm-dd',
],
]);

The widget’s properties are easily writable because the class extends [[yii\base\Component]].

While components are very powerful, they are a bit heavier than normal objects, due to the fact that
it takes extra memory and CPU time to support event and behavior functionality in particular.
If your components do not need these two features, you may consider extending your component class from
[[yii\base\Object]] instead of [[yii\base\Component]]. Doing so will make your components as efficient as normal PHP objects,
but with added support for properties.

When extending your class from [[yii\base\Component]] or [[yii\base\Object]], it is recommended that you follow
these conventions:

	If you override the constructor, specify a $config parameter as the constructor’s last parameter, and then pass this parameter
to the parent constructor.

	Always call the parent constructor at the end of your overriding constructor.

	If you override the [[yii\base\Object::init()]] method, make sure you call the parent implementation of init() at the beginning of your init() method.

For example:

<?php

namespace yii\components\MyClass;

use yii\base\Object;

class MyClass extends Object
{
 public $prop1;
 public $prop2;

 public function __construct($param1, $param2, $config = [])
 {
 // ... initialization before configuration is applied

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... initialization after configuration is applied
 }
}

Following these guidelines will make your components configurable when they are created. For example:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// alternatively
$component = \Yii::createObject([
 'class' => MyClass::className(),
 'prop1' => 3,
 'prop2' => 4,
], [1, 2]);

Info: While the approach of calling [[Yii::createObject()]] looks more complicated, it is more powerful because it is
implemented on top of a dependency injection container.

The [[yii\base\Object]] class enforces the following object lifecycle:

	Pre-initialization within the constructor. You can set default property values here.

	Object configuration via $config. The configuration may overwrite the default values set within the constructor.

	Post-initialization within [[yii\base\Object::init()|init()]]. You may override this method to perform sanity checks and normalization of the properties.

	Object method calls.

The first three steps all happen within the object’s constructor. This means that once you get a class instance (i.e., an object),
that object has already been initialized to a proper, reliable state.

Working with Passwords

Most developers know that passwords cannot be stored in plain text, but many developers believe it’s still safe to hash
passwords using md5 or sha1. There was a time when using the aforementioned hashing algorithms was sufficient,
but modern hardware makes it possible to reverse such hashes and even stronger ones very quickly using brute force attacks.

In order to provide increased security for user passwords, even in the worst case scenario (your application is breached),
you need to use a hashing algorithm that is resilient against brute force attacks. The best current choice is bcrypt.
In PHP, you can create a bcrypt hash using the crypt function [http://php.net/manual/en/function.crypt.php]. Yii provides
two helper functions which make using crypt to securely generate and verify hashes easier.

When a user provides a password for the first time (e.g., upon registration), the password needs to be hashed:

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

The hash can then be associated with the corresponding model attribute, so it can be stored in the database for later use.

When a user attempts to log in, the submitted password must be verified against the previously hashed and stored password:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
 // all good, logging user in
} else {
 // wrong password
}

Rate Limiting

To prevent abuse, you should consider adding rate limiting to your APIs. For example, you may want to limit the API usage
of each user to be at most 100 API calls within a period of 10 minutes. If too many requests are received from a user
within the stated period of the time, a response with status code 429 (meaning “Too Many Requests”) should be returned.

To enable rate limiting, the [[yii\web\User::identityClass|user identity class]] should implement [[yii\filters\RateLimitInterface]].
This interface requires implementation of three methods:

	getRateLimit(): returns the maximum number of allowed requests and the time period (e.g., [100, 600] means there can be at most 100 API calls within 600 seconds).

	loadAllowance(): returns the number of remaining requests allowed and the corresponding UNIX timestamp
when the rate limit was last checked.

	saveAllowance(): saves both the number of remaining requests allowed and the current UNIX timestamp.

You may want to use two columns in the user table to record the allowance and timestamp information. With those defined,
then loadAllowance() and saveAllowance() can be implemented to read and save the values
of the two columns corresponding to the current authenticated user. To improve performance, you may also
consider storing these pieces of information in a cache or NoSQL storage.

Implementation in the User model could look like the following:

public function getRateLimit($request, $action)
{
 return [$this->rateLimit, 1]; // $rateLimit requests per second
}

public function loadAllowance($request, $action)
{
 return [$this->allowance, $this->allowance_updated_at];
}

public function saveAllowance($request, $action, $allowance, $timestamp)
{
 $this->allowance = $allowance;
 $this->allowance_updated_at = $timestamp;
 $this->save();
}

Once the identity class implements the required interface, Yii will automatically use [[yii\filters\RateLimiter]]
configured as an action filter for [[yii\rest\Controller]] to perform rate limiting check. The rate limiter
will throw a [[yii\web\TooManyRequestsHttpException]] when the rate limit is exceeded.

You may configure the rate limiter
as follows in your REST controller classes:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['rateLimiter']['enableRateLimitHeaders'] = false;
 return $behaviors;
}

When rate limiting is enabled, by default every response will be sent with the following HTTP headers containing
the current rate limiting information:

	X-Rate-Limit-Limit, the maximum number of requests allowed with a time period

	X-Rate-Limit-Remaining, the number of remaining requests in the current time period

	X-Rate-Limit-Reset, the number of seconds to wait in order to get the maximum number of allowed requests

You may disable these headers by configuring [[yii\filters\RateLimiter::enableRateLimitHeaders]] to be false,
as shown in the above code example.

Events

Events allow you to inject custom code into existing code at certain execution points. You can attach custom
code to an event so that when the event is triggered, the code gets executed automatically. For example,
a mailer object may trigger a messageSent event when it successfully sends a message. If you want to keep
track of the messages that are successfully sent, you could then simply attach the tracking code to the messageSent event.

Yii introduces a base class called [[yii\base\Component]] to support events. If a class needs to trigger
events, it should extend from [[yii\base\Component]], or from a child class.

Event Handlers

An event handler is a PHP callback [http://www.php.net/manual/en/language.types.callable.php] that gets executed
when the event it is attached to is triggered. You can use any of the following callbacks:

	a global PHP function specified as a string (without parentheses), e.g., 'trim';

	an object method specified as an array of an object and a method name as a string (without parentheses), e.g., [$object, 'methodName'];

	a static class method specified as an array of a class name and a method name as a string (without parentheses), e.g., ['ClassName', 'methodName'];

	an anonymous function, e.g., function ($event) { ... }.

The signature of an event handler is:

function ($event) {
 // $event is an object of yii\base\Event or a child class
}

Through the $event parameter, an event handler may get the following information about the event that occurred:

	[[yii\base\Event::name|event name]];

	[[yii\base\Event::sender|event sender]]: the object whose trigger() method was called;

	[[yii\base\Event::data|custom data]]: the data that is provided when attaching the event handler (to be explained next).

Attaching Event Handlers

You can attach a handler to an event by calling the [[yii\base\Component::on()]] method. For example:

$foo = new Foo;

// this handler is a global function
$foo->on(Foo::EVENT_HELLO, 'function_name');

// this handler is an object method
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// this handler is a static class method
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// this handler is an anonymous function
$foo->on(Foo::EVENT_HELLO, function ($event) {
 // event handling logic
});

You may also attach event handlers through configurations. For more details, please
refer to the Configurations section.

When attaching an event handler, you may provide additional data as the third parameter to [[yii\base\Component::on()]].
The data will be made available to the handler when the event is triggered and the handler is called. For example:

// The following code will display "abc" when the event is triggered
// because $event->data contains the data passed as the 3rd argument to "on"
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
 echo $event->data;
}

Event Handler Order

You may attach one or more handlers to a single event. When an event is triggered, the attached handlers
will be called in the order that they were attached to the event. If a handler needs to stop the invocation of the
handlers that follow it, it may set the [[yii\base\Event::handled]] property of the $event parameter to be true:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 $event->handled = true;
});

By default, a newly attached handler is appended to the existing handler queue for the event.
As a result, the handler will be called in the last place when the event is triggered.
To insert the new handler at the start of the handler queue so that the handler gets called first, you may call [[yii\base\Component::on()]], passing false for the fourth parameter $append:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 // ...
}, $data, false);

Triggering Events

Events are triggered by calling the [[yii\base\Component::trigger()]] method. The method requires an event name,
and optionally an event object that describes the parameters to be passed to the event handlers. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
 const EVENT_HELLO = 'hello';

 public function bar()
 {
 $this->trigger(self::EVENT_HELLO);
 }
}

With the above code, any calls to bar() will trigger an event named hello.

Tip: It is recommended to use class constants to represent event names. In the above example, the constant
EVENT_HELLO represents the hello event. This approach has three benefits. First, it prevents typos. Second, it can make events recognizable for IDE
auto-completion support. Third, you can tell what events are supported in a class by simply checking its constant declarations.

Sometimes when triggering an event you may want to pass along additional information to the event handlers.
For example, a mailer may want to pass the message information to the handlers of the messageSent event so that the handlers
can know the particulars of the sent messages. To do so, you can provide an event object as the second parameter to
the [[yii\base\Component::trigger()]] method. The event object must be an instance of the [[yii\base\Event]] class
or a child class. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
 public $message;
}

class Mailer extends Component
{
 const EVENT_MESSAGE_SENT = 'messageSent';

 public function send($message)
 {
 // ...sending $message...

 $event = new MessageEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_MESSAGE_SENT, $event);
 }
}

When the [[yii\base\Component::trigger()]] method is called, it will call all handlers attached to
the named event.

Detaching Event Handlers

To detach a handler from an event, call the [[yii\base\Component::off()]] method. For example:

// the handler is a global function
$foo->off(Foo::EVENT_HELLO, 'function_name');

// the handler is an object method
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// the handler is a static class method
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// the handler is an anonymous function
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

Note that in general you should not try to detach an anonymous function unless you store it
somewhere when it is attached to the event. In the above example, it is assumed that the anonymous
function is stored as a variable $anonymousFunction.

To detach all handlers from an event, simply call [[yii\base\Component::off()]] without the second parameter:

$foo->off(Foo::EVENT_HELLO);

Class-Level Event Handlers

The above subsections described how to attach a handler to an event on an instance level.
Sometimes, you may want to respond to an event triggered by every instance of a class instead of only by
a specific instance. Instead of attaching an event handler to every instance, you may attach the handler
on the class level by calling the static method [[yii\base\Event::on()]].

For example, an Active Record object will trigger an [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
event whenever it inserts a new record into the database. In order to track insertions done by every
Active Record object, you may use the following code:

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
 Yii::trace(get_class($event->sender) . ' is inserted');
});

The event handler will be invoked whenever an instance of [[yii\db\ActiveRecord|ActiveRecord]], or one of its child classes, triggers
the [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] event. In the handler, you can get the object
that triggered the event through $event->sender.

When an object triggers an event, it will first call instance-level handlers, followed by the class-level handlers.

You may trigger a class-level event by calling the static method [[yii\base\Event::trigger()]]. A class-level
event is not associated with a particular object. As a result, it will cause the invocation of class-level event
handlers only. For example:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
 var_dump($event->sender); // displays "null"
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

Note that, in this case, $event->sender is null instead of an object instance.

Note: Because a class-level handler will respond to an event triggered by any instance of that class, or any child
classes, you should use it carefully, especially if the class is a low-level base class, such as [[yii\base\Object]].

To detach a class-level event handler, call [[yii\base\Event::off()]]. For example:

// detach $handler
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// detach all handlers of Foo::EVENT_HELLO
Event::off(Foo::className(), Foo::EVENT_HELLO);

Events using interfaces

There is even more abstract way to deal with events. You can create a separated interface for the special event and
implement it in classes, where you need it.

For example, we can create the following interface:

namespace app\interfaces;

interface DanceEventInterface
{
 const EVENT_DANCE = 'dance';
}

And two classes, that implement it:

class Dog extends Component implements DanceEventInterface
{
 public function meetBuddy()
 {
 echo "Woof!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

class Developer extends Component implements DanceEventInterface
{
 public function testsPassed()
 {
 echo "Yay!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

To handle the EVENT_DANCE, triggered by any of these classes, call [[yii\base\Event::on()|Event::on()]] and
pass the interface class name as the first argument:

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
 Yii::trace(get_class($event->sender) . ' just danced'); // Will log that Dog or Developer danced
});

You can trigger the event of those classes:

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);

But please notice, that you can not trigger all the classes, that implement the interface:

// DOES NOT WORK. Classes that implement this interface will NOT be triggered.
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

To detach event handler, call [[yii\base\Event::off()|Event::off()]]. For example:

// detaches $handler
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// detaches all handlers of DanceEventInterface::EVENT_DANCE
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

Global Events

Yii supports a so-called global event, which is actually a trick based on the event mechanism described above.
The global event requires a globally accessible Singleton, such as the application instance itself.

To create the global event, an event sender calls the Singleton’s trigger() method
to trigger the event, instead of calling the sender’s own trigger() method. Similarly, the event handlers are attached to the event on the Singleton. For example:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
 echo get_class($event->sender); // displays "app\components\Foo"
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

A benefit of using global events is that you do not need an object when attaching a handler to the event
which will be triggered by the object. Instead, the handler attachment and the event triggering are both
done through the Singleton (e.g. the application instance).

However, because the namespace of the global events is shared by all parties, you should name the global events
wisely, such as introducing some sort of namespace (e.g. “frontend.mail.sent”, “backend.mail.sent”).

Error Handling

When handling a RESTful API request, if there is an error in the user request or if something unexpected
happens on the server, you may simply throw an exception to notify the user that something went wrong.
If you can identify the cause of the error (e.g., the requested resource does not exist), you should
consider throwing an exception along with a proper HTTP status code (e.g., [[yii\web\NotFoundHttpException]]
represents a 404 status code). Yii will send the response along with the corresponding HTTP status
code and text. Yii will also include the serialized representation of the
exception in the response body. For example:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

The following list summarizes the HTTP status codes that are used by the Yii REST framework:

	200: OK. Everything worked as expected.

	201: A resource was successfully created in response to a POST request. The Location header
contains the URL pointing to the newly created resource.

	204: The request was handled successfully and the response contains no body content (like a DELETE request).

	304: The resource was not modified. You can use the cached version.

	400: Bad request. This could be caused by various actions by the user, such as providing invalid JSON
data in the request body, providing invalid action parameters, etc.

	401: Authentication failed.

	403: The authenticated user is not allowed to access the specified API endpoint.

	404: The requested resource does not exist.

	405: Method not allowed. Please check the Allow header for the allowed HTTP methods.

	415: Unsupported media type. The requested content type or version number is invalid.

	422: Data validation failed (in response to a POST request, for example). Please check the response body for detailed error messages.

	429: Too many requests. The request was rejected due to rate limiting.

	500: Internal server error. This could be caused by internal program errors.

Customizing Error Response

Sometimes you may want to customize the default error response format. For example, instead of relying on
using different HTTP statuses to indicate different errors, you would like to always use 200 as HTTP status
and enclose the actual HTTP status code as part of the JSON structure in the response, like shown in the following,

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

To achieve this goal, you can respond to the beforeSend event of the response component in the application configuration:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null && Yii::$app->request->get('suppress_response_code')) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

The above code will reformat the response (for both successful and failed responses) as explained when
suppress_response_code is passed as a GET parameter.

Working with Databases

This section will describe how to create a new page that displays country data fetched from
a database table named country. To achieve this goal, you will configure a database connection,
create an Active Record class, define an action,
and create a view.

Through this tutorial, you will learn how to:

	configure a DB connection,

	define an Active Record class,

	query data using the Active Record class,

	display data in a view in a paginated fashion.

Note that in order to finish this section, you should have basic knowledge and experience using databases.
In particular, you should know how to create a database, and how to execute SQL statements using a DB client tool.

Preparing the Database

To begin, create a database named yii2basic, from which you will fetch data in your application.
You may create an SQLite, MySQL, PostgreSQL, MSSQL or Oracle database, as Yii has built-in support for many database applications. For simplicity, MySQL will be assumed in the following description.

Next, create a table named country in the database, and insert some sample data. You may run the following SQL statements to do so:

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

At this point, you have a database named yii2basic, and within it a country table with three columns, containing ten rows of data.

Configuring a DB Connection

Before proceeding, make sure you have installed both the PDO [http://www.php.net/manual/en/book.pdo.php] PHP extension and
the PDO driver for the database you are using (e.g. pdo_mysql for MySQL). This is a basic requirement
if your application uses a relational database.

With those installed, open the file config/db.php and change the parameters to be correct for your database. By default,
the file contains the following:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

The config/db.php file is a typical file-based configuration tool. This particular configuration file specifies the parameters
needed to create and initialize a [[yii\db\Connection]] instance through which you can make SQL queries
against the underlying database.

The DB connection configured above can be accessed in the application code via the expression Yii::$app->db.

Info: The config/db.php file will be included by the main application configuration config/web.php,
which specifies how the application instance should be initialized.
For more information, please refer to the Configurations section.

If you need to work with databases support for which isn’t bundled with Yii, check the following extensions:

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

Creating an Active Record

To represent and fetch the data in the country table, create an Active Record-derived
class named Country, and save it in the file models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

The Country class extends from [[yii\db\ActiveRecord]]. You do not need to write any code inside of it! With just the above code,
Yii will guess the associated table name from the class name.

Info: If no direct match can be made from the class name to the table name, you can
override the [[yii\db\ActiveRecord::tableName()]] method to explicitly specify the associated table name.

Using the Country class, you can easily manipulate data in the country table, as shown in these snippets:

use app\models\Country;

// get all rows from the country table and order them by "name"
$countries = Country::find()->orderBy('name')->all();

// get the row whose primary key is "US"
$country = Country::findOne('US');

// displays "United States"
echo $country->name;

// modifies the country name to be "U.S.A." and save it to database
$country->name = 'U.S.A.';
$country->save();

Info: Active Record is a powerful way to access and manipulate database data in an object-oriented fashion.
You may find more detailed information in the Active Record section. Alternatively, you may also interact with a database using a lower-level data accessing method called Data Access Objects.

Creating an Action

To expose the country data to end users, you need to create a new action. Instead of placing the new action in the site
controller, like you did in the previous sections, it makes more sense to create a new controller specifically
for all actions related to the country data. Name this new controller CountryController, and create
an index action in it, as shown in the following.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Save the above code in the file controllers/CountryController.php.

The index action calls Country::find(). This Active Record method builds a DB query and retrieves all of the data from the country table.
To limit the number of countries returned in each request, the query is paginated with the help of a
[[yii\data\Pagination]] object. The Pagination object serves two purposes:

	Sets the offset and limit clauses for the SQL statement represented by the query so that it only
returns a single page of data at a time (at most 5 rows in a page).

	It’s used in the view to display a pager consisting of a list of page buttons, as will be explained in
the next subsection.

At the end of the code, the index action renders a view named index, and passes the country data as well as the pagination
information to it.

Creating a View

Under the views directory, first create a sub-directory named country. This folder will be used to hold all the
views rendered by the country controller. Within the views/country directory, create a file named index.php
containing the following:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->name} ({$country->code})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

The view has two sections relative to displaying the country data. In the first part, the provided country data is traversed and rendered as an unordered HTML list.
In the second part, a [[yii\widgets\LinkPager]] widget is rendered using the pagination information passed from the action.
The LinkPager widget displays a list of page buttons. Clicking on any of them will refresh the country data
in the corresponding page.

Trying it Out

To see how all of the above code works, use your browser to access the following URL:

http://hostname/index.php?r=country%2Findex

[image: Country List]

At first, you will see a page showing five countries. Below the countries, you will see a pager with four buttons.
If you click on the button “2”, you will see the page display another five countries in the database: the second page of records.
Observe more carefully and you will find that the URL in the browser also changes to

http://hostname/index.php?r=country%2Findex&page=2

Behind the scenes, [[yii\data\Pagination|Pagination]] is providing all of the necessary functionality to paginate a data set:

	Initially, [[yii\data\Pagination|Pagination]] represents the first page, which reflects the country SELECT query
with the clause LIMIT 5 OFFSET 0. As a result, the first five countries will be fetched and displayed.

	The [[yii\widgets\LinkPager|LinkPager]] widget renders the page buttons using the URLs
created by [[yii\data\Pagination::createUrl()|Pagination]]. The URLs will contain the query parameter page, which
represents the different page numbers.

	If you click the page button “2”, a new request for the route country/index will be triggered and handled.
[[yii\data\Pagination|Pagination]] reads the page query parameter from the URL and sets the current page number to 2.
The new country query will thus have the clause LIMIT 5 OFFSET 5 and return the next five countries
for display.

Summary

In this section, you learned how to work with a database. You also learned how to fetch and display
data in pages with the help of [[yii\data\Pagination]] and [[yii\widgets\LinkPager]].

In the next section, you will learn how to use the powerful code generation tool, called Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md],
to help you rapidly implement some commonly required features, such as the Create-Read-Update-Delete (CRUD)
operations for working with the data in a database table. As a matter of fact, the code you have just written can all
be automatically generated in Yii using the Gii tool.

Working with Third-Party Code

From time to time, you may need to use some third-party code in your Yii applications. Or you may want to
use Yii as a library in some third-party systems. In this section, we will show how to achieve these goals.

Using Third-Party Libraries in Yii

To use a third-party library in a Yii application, you mainly need to make sure the classes in the library
are properly included or can be autoloaded.

Using Composer Packages

Many third-party libraries are released in terms of Composer [https://getcomposer.org/] packages.
You can install such libraries by taking the following two simple steps:

	modify the composer.json file of your application and specify which Composer packages you want to install.

	run composer install to install the specified packages.

The classes in the installed Composer packages can be autoloaded using the Composer autoloader. Make sure
the entry script of your application contains the following lines to install
the Composer autoloader:

// install Composer autoloader
require(__DIR__ . '/../vendor/autoload.php');

// include Yii class file
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

Using Downloaded Libraries

If a library is not released as a Composer package, you should follow its installation instructions to install it.
In most cases, you will need to download a release file manually and unpack it in the BasePath/vendor directory,
where BasePath represents the base path of your application.

If a library carries its own class autoloader, you may install it in the entry script
of your application. It is recommended the installation is done before you include the Yii.php file so that
the Yii class autoloader can take precedence in autoloading classes.

If a library does not provide a class autoloader, but its class naming follows PSR-4 [http://www.php-fig.org/psr/psr-4/],
you may use the Yii class autoloader to autoload the classes. All you need to do is just to declare a
root alias for each root namespace used in its classes. For example,
assume you have installed a library in the directory vendor/foo/bar, and the library classes are under
the xyz root namespace. You can include the following code in your application configuration:

[
 'aliases' => [
 '@xyz' => '@vendor/foo/bar',
],
]

If neither of the above is the case, it is likely that the library relies on PHP include path configuration to
correctly locate and include class files. Simply follow its instruction on how to configure the PHP include path.

In the worst case when the library requires explicitly including every class file, you can use the following method
to include the classes on demand:

	Identify which classes the library contains.

	List the classes and the corresponding file paths in Yii::$classMap in the entry script
of the application. For example,

Yii::$classMap['Class1'] = 'path/to/Class1.php';
Yii::$classMap['Class2'] = 'path/to/Class2.php';

Using Yii in Third-Party Systems

Because Yii provides many excellent features, sometimes you may want to use some of its features to support
developing or enhancing 3rd-party systems, such as WordPress, Joomla, or applications developed using other PHP
frameworks. For example, you may want to use the [[yii\helpers\ArrayHelper]] class or use the
Active Record feature in a third-party system. To achieve this goal, you mainly need to
take two steps: install Yii, and bootstrap Yii.

If the third-party system uses Composer to manage its dependencies, you can simply run the following commands
to install Yii:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer require yiisoft/yii2
composer install

The first command installs the composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/]
which allows managing bower and npm package dependencies through Composer. Even if you only want to use the database
layer or other non-asset related features of Yii, this is required to install the Yii composer package.

If you want to use the Asset publishing feature of Yii you should also add the following configuration
to the extra section in your composer.json:

{
 ...
 "extra": {
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
 }
}

See also the general section about installing Yii for more information
on Composer and solution to possible issues popping up during the installation.

Otherwise, you can download [http://www.yiiframework.com/download/] the Yii release file and unpack it in
the BasePath/vendor directory.

Next, you should modify the entry script of the 3rd-party system by including the following code at the beginning:

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$yiiConfig = require(__DIR__ . '/../config/yii/web.php');
new yii\web\Application($yiiConfig); // Do NOT call run() here

As you can see, the code above is very similar to that in the entry script of
a typical Yii application. The only difference is that after the application instance is created, the run() method
is not called. This is because by calling run(), Yii will take over the control of the request handling workflow
which is not needed in this case and already handled by the existing application.

Like in a Yii application, you should configure the application instance based on the environment running
the third-party system. For example, to use the Active Record feature, you need to configure
the db application component with the DB connection setting used by the third-party system.

Now you can use most features provided by Yii. For example, you can create Active Record classes and use them
to work with databases.

Using Yii 2 with Yii 1

If you were using Yii 1 previously, it is likely you have a running Yii 1 application. Instead of rewriting
the whole application in Yii 2, you may just want to enhance it using some of the features only available in Yii 2.
This can be achieved as described below.

Note: Yii 2 requires PHP 5.4 or above. You should make sure that both your server and the existing application
support this.

First, install Yii 2 in your existing application by following the instructions given in the last subsection.

Second, modify the entry script of the application as follows,

// include the customized Yii class described below
require(__DIR__ . '/../components/Yii.php');

// configuration for Yii 2 application
$yii2Config = require(__DIR__ . '/../config/yii2/web.php');
new yii\web\Application($yii2Config); // Do NOT call run(), yii2 app is only used as service locator

// configuration for Yii 1 application
$yii1Config = require(__DIR__ . '/../config/yii1/main.php');
Yii::createWebApplication($yii1Config)->run();

Because both Yii 1 and Yii 2 have the Yii class, you should create a customized version to combine them.
The above code includes the customized Yii class file, which can be created as follows.

$yii2path = '/path/to/yii2';
require($yii2path . '/BaseYii.php'); // Yii 2.x

$yii1path = '/path/to/yii1';
require($yii1path . '/YiiBase.php'); // Yii 1.x

class Yii extends \yii\BaseYii
{
 // copy-paste the code from YiiBase (1.x) here
}

Yii::$classMap = include($yii2path . '/classes.php');
// register Yii 2 autoloader via Yii 1
Yii::registerAutoloader(['yii\BaseYii', 'autoload']);
// create the dependency injection container
Yii::$container = new yii\di\Container;

That’s all! Now in any part of your code, you can use Yii::$app to access the Yii 2 application instance, while
Yii::app() will give you the Yii 1 application instance:

echo get_class(Yii::app()); // outputs 'CWebApplication'
echo get_class(Yii::$app); // outputs 'yii\web\Application'

Aliases

Aliases are used to represent file paths or URLs so that you don’t have to hard-code absolute paths or URLs in your
project. An alias must start with the @ character to be differentiated from normal file paths and URLs. Alias defined
without leading @ will be prefixed with @ character.

Yii has many pre-defined aliases already available. For example, the alias @yii represents the installation path of
the Yii framework; @web represents the base URL for the currently running Web application.

Defining Aliases

You can define an alias for a file path or URL by calling [[Yii::setAlias()]]:

// an alias of a file path
Yii::setAlias('@foo', '/path/to/foo');

// an alias of a URL
Yii::setAlias('@bar', 'http://www.example.com');

Note: The file path or URL being aliased may not necessarily refer to an existing file or resource.

Given a defined alias, you may derive a new alias (without the need of calling [[Yii::setAlias()]]) by appending
a slash / followed with one or more path segments. The aliases defined via [[Yii::setAlias()]] becomes the
root alias, while aliases derived from it are derived aliases. For example, @foo is a root alias,
while @foo/bar/file.php is a derived alias.

You can define an alias using another alias (either root or derived):

Yii::setAlias('@foobar', '@foo/bar');

Root aliases are usually defined during the bootstrapping stage.
For example, you may call [[Yii::setAlias()]] in the entry script.
For convenience, Application provides a writable property named aliases
that you can configure in the application configuration:

return [
 // ...
 'aliases' => [
 '@foo' => '/path/to/foo',
 '@bar' => 'http://www.example.com',
],
];

Resolving Aliases

You can call [[Yii::getAlias()]] to resolve a root alias into the file path or URL it represents.
The same method can also resolve a derived alias into the corresponding file path or URL:

echo Yii::getAlias('@foo'); // displays: /path/to/foo
echo Yii::getAlias('@bar'); // displays: http://www.example.com
echo Yii::getAlias('@foo/bar/file.php'); // displays: /path/to/foo/bar/file.php

The path/URL represented by a derived alias is determined by replacing the root alias part with its corresponding
path/URL in the derived alias.

Note: The [[Yii::getAlias()]] method does not check whether the resulting path/URL refers to an existing file or resource.

A root alias may also contain slash / characters. The [[Yii::getAlias()]] method
is intelligent enough to tell which part of an alias is a root alias and thus correctly determines
the corresponding file path or URL:

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // displays: /path/to/foo/test/file.php
Yii::getAlias('@foo/bar/file.php'); // displays: /path2/bar/file.php

If @foo/bar is not defined as a root alias, the last statement would display /path/to/foo/bar/file.php.

Using Aliases

Aliases are recognized in many places in Yii without needing to call [[Yii::getAlias()]] to convert
them into paths or URLs. For example, [[yii\caching\FileCache::cachePath]] can accept both a file path
and an alias representing a file path, thanks to the @ prefix which allows it to differentiate a file path
from an alias.

use yii\caching\FileCache;

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

Please pay attention to the API documentation to see if a property or method parameter supports aliases.

Predefined Aliases

Yii predefines a set of aliases to easily reference commonly used file paths and URLs:

	@yii, the directory where the BaseYii.php file is located (also called the framework directory).

	@app, the [[yii\base\Application::basePath|base path]] of the currently running application.

	@runtime, the [[yii\base\Application::runtimePath|runtime path]] of the currently running application. Defaults to @app/runtime.

	@webroot, the Web root directory of the currently running Web application. It is determined based on the directory
containing the entry script.

	@web, the base URL of the currently running Web application. It has the same value as [[yii\web\Request::baseUrl]].

	@vendor, the [[yii\base\Application::vendorPath|Composer vendor directory]]. Defaults to @app/vendor.

	@bower, the root directory that contains bower packages [http://bower.io/]. Defaults to @vendor/bower.

	@npm, the root directory that contains npm packages [https://www.npmjs.org/]. Defaults to @vendor/npm.

The @yii alias is defined when you include the Yii.php file in your entry script.
The rest of the aliases are defined in the application constructor when applying the application
configuration.

Extension Aliases

An alias is automatically defined for each extension that is installed via Composer.
Each alias is named after the root namespace of the extension as declared in its composer.json file, and each alias
represents the root directory of the package. For example, if you install the yiisoft/yii2-jui extension,
you will automatically have the alias @yii/jui defined during the bootstrapping stage, equivalent to:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

Testing environment setup

Note: This section is under development.

Yii 2 has officially maintained integration with Codeception [https://github.com/Codeception/Codeception] testing
framework that allows you to create the following test types:

	Unit testing - verifies that a single unit of code is working as expected;

	Functional testing - verifies scenarios from a user’s perspective via browser emulation;

	Acceptance testing - verifies scenarios from a user’s perspective in a browser.

Yii provides ready to use test sets for all three test types in both
yii2-basic [https://github.com/yiisoft/yii2-app-basic] and
yii2-advanced [https://github.com/yiisoft/yii2-app-advanced] project templates.

In order to run tests you need to install Codeception [https://github.com/Codeception/Codeception].
You can install it either locally - for particular project only, or globally - for your development machine.

For the local installation use following commands:

composer require "codeception/codeception=2.1.*"
composer require "codeception/specify=*"
composer require "codeception/verify=*"

For the global installation you will need to use global directive:

composer global require "codeception/codeception=2.1.*"
composer global require "codeception/specify=*"
composer global require "codeception/verify=*"

If you’ve never used Composer for global packages before, run composer global status. It should output:

Changed current directory to <directory>

Then add <directory>/vendor/bin to you PATH environment variable. Now we’re able to use codecept from command
line globally.

Note: global installation allows you use Codeception for all projects you are working on your development machine and
allows running codecept shell command globally without specifying path. However, such approach may be inappropriate,
for example, if 2 different projects require different versions of Codeception installed.
For the simplicity all shell commands related to the tests running around this guide are written assuming Codeception
has been installed globally.

Url Helper

Url helper provides a set of static methods for managing URLs.

Getting Common URLs

There are two methods you can use to get common URLs: home URL and base URL of the current request. In order to get
home URL, use the following:

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');

If no parameter is passed, the generated URL is relative. You can either pass true to get an absolute URL for the current
schema or specify a schema explicitly (https, http).

To get the base URL of the current request use the following:

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');

The only parameter of the method works exactly the same as for Url::home().

Creating URLs

In order to create a URL to a given route use the Url::toRoute() method. The method uses [[\yii\web\UrlManager]] to create
a URL:

$url = Url::toRoute(['product/view', 'id' => 42]);

You may specify the route as a string, e.g., site/index. You may also use an array if you want to specify additional
query parameters for the URL being created. The array format must be:

// generates: /index.php?r=site%2Findex¶m1=value1¶m2=value2
['site/index', 'param1' => 'value1', 'param2' => 'value2']

If you want to create a URL with an anchor, you can use the array format with a # parameter. For example,

// generates: /index.php?r=site%2Findex¶m1=value1#name
['site/index', 'param1' => 'value1', '#' => 'name']

A route may be either absolute or relative. An absolute route has a leading slash (e.g. /site/index) while a relative
route has none (e.g. site/index or index). A relative route will be converted into an absolute one by the following rules:

	If the route is an empty string, the current [[\yii\web\Controller::route|route]] will be used;

	If the route contains no slashes at all (e.g. index), it is considered to be an action ID of the current controller
and will be prepended with [[\yii\web\Controller::uniqueId]];

	If the route has no leading slash (e.g. site/index), it is considered to be a route relative to the current module
and will be prepended with the module’s [[\yii\base\Module::uniqueId|uniqueId]].

Starting from version 2.0.2, you may specify a route in terms of an alias. If this is the case,
the alias will first be converted into the actual route which will then be turned into an absolute route according
to the above rules.

Below are some examples of using this method:

// /index.php?r=site%2Findex
echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is defined as "post/edit"
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', 'https');

There’s another method Url::to() that is very similar to [[toRoute()]]. The only difference is that this method
requires a route to be specified as an array only. If a string is given, it will be treated as a URL.

The first argument could be:

	an array: [[toRoute()]] will be called to generate the URL. For example:
['site/index'], ['post/index', 'page' => 2]. Please refer to [[toRoute()]] for more details
on how to specify a route.

	a string with a leading @: it is treated as an alias, and the corresponding aliased string
will be returned.

	an empty string: the currently requested URL will be returned;

	a normal string: it will be returned as is.

When $scheme is specified (either a string or true), an absolute URL with host info (obtained from
[[\yii\web\UrlManager::hostInfo]]) will be returned. If $url is already an absolute URL, its scheme
will be replaced with the specified one.

Below are some usage examples:

// /index.php?r=site%2Findex
echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is defined as "post/edit"
echo Url::to(['@postEdit', 'id' => 100]);

// the currently requested URL
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');

Starting from version 2.0.3, you may use [[yii\helpers\Url::current()]] to create a URL based on the currently
requested route and GET parameters. You may modify or remove some of the GET parameters or add new ones by
passing a $params parameter to the method. For example,

// assume $_GET = ['id' => 123, 'src' => 'google'], current route is "post/view"

// /index.php?r=post%2Fview&id=123&src=google
echo Url::current();

// /index.php?r=post%2Fview&id=123
echo Url::current(['src' => null]);
// /index.php?r=post%2Fview&id=100&src=google
echo Url::current(['id' => 100]);

Remember URLs

There are cases when you need to remember URL and afterwards use it during processing of the one of sequential requests.
It can be achieved in the following way:

// Remember current URL
Url::remember();

// Remember URL specified. See Url::to() for argument format.
Url::remember(['product/view', 'id' => 42]);

// Remember URL specified with a name given
Url::remember(['product/view', 'id' => 42], 'product');

In the next request we can get URL remembered in the following way:

$url = Url::previous();
$productUrl = Url::previous('product');

Checking Relative URLs

To find out if URL is relative i.e. it doesn’t have host info part, you can use the following code:

$isRelative = Url::isRelative('test/it');

Database Migration

During the course of developing and maintaining a database-driven application, the structure of the database
being used evolves just like the source code does. For example, during the development of an application,
a new table may be found necessary; after the application is deployed to production, it may be discovered
that an index should be created to improve the query performance; and so on. Because a database structure change
often requires some source code changes, Yii supports the so-called database migration feature that allows
you to keep track of database changes in terms of database migrations which are version-controlled together
with the source code.

The following steps show how database migration can be used by a team during development:

	Tim creates a new migration (e.g. creates a new table, changes a column definition, etc.).

	Tim commits the new migration into the source control system (e.g. Git, Mercurial).

	Doug updates his repository from the source control system and receives the new migration.

	Doug applies the migration to his local development database, thereby synchronizing his database
to reflect the changes that Tim has made.

And the following steps show how to deploy a new release with database migrations to production:

	Scott creates a release tag for the project repository that contains some new database migrations.

	Scott updates the source code on the production server to the release tag.

	Scott applies any accumulated database migrations to the production database.

Yii provides a set of migration command line tools that allow you to:

	create new migrations;

	apply migrations;

	revert migrations;

	re-apply migrations;

	show migration history and status.

All these tools are accessible through the command yii migrate. In this section we will describe in detail
how to accomplish various tasks using these tools. You may also get the usage of each tool via the help
command yii help migrate.

Tip: migrations could affect not only database schema but adjust existing data to fit new schema, create RBAC
hierarchy or clean up cache.

Creating Migrations

To create a new migration, run the following command:

yii migrate/create <name>

The required name argument gives a brief description about the new migration. For example, if
the migration is about creating a new table named news, you may use the name create_news_table
and run the following command:

yii migrate/create create_news_table

Note: Because the name argument will be used as part of the generated migration class name,
it should only contain letters, digits, and/or underscore characters.

The above command will create a new PHP class file named m150101_185401_create_news_table.php
in the @app/migrations directory. The file contains the following code which mainly declares
a migration class m150101_185401_create_news_table with the skeleton code:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {

 }

 public function down()
 {
 echo "m101129_185401_create_news_table cannot be reverted.\n";

 return false;
 }

 /*
 // Use safeUp/safeDown to run migration code within a transaction
 public function safeUp()
 {
 }

 public function safeDown()
 {
 }
 */
}

Each database migration is defined as a PHP class extending from [[yii\db\Migration]]. The migration
class name is automatically generated in the format of m<YYMMDD_HHMMSS>_<Name>, where

	<YYMMDD_HHMMSS> refers to the UTC datetime at which the migration creation command is executed.

	<Name> is the same as the value of the name argument that you provide to the command.

In the migration class, you are expected to write code in the up() method that makes changes to the database structure.
You may also want to write code in the down() method to revert the changes made by up(). The up() method is invoked
when you upgrade the database with this migration, while the down() method is invoked when you downgrade the database.
The following code shows how you may implement the migration class to create a news table:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => Schema::TYPE_PK,
 'title' => Schema::TYPE_STRING . ' NOT NULL',
 'content' => Schema::TYPE_TEXT,
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

Info: Not all migrations are reversible. For example, if the up() method deletes a row of a table, you may
not be able to recover this row in the down() method. Sometimes, you may be just too lazy to implement
the down(), because it is not very common to revert database migrations. In this case, you should return
false in the down() method to indicate that the migration is not reversible.

The base migration class [[yii\db\Migration]] exposes a database connection via the [[yii\db\Migration::db|db]]
property. You can use it to manipulate the database schema using the methods as described in
Working with Database Schema.

Rather than using physical types, when creating a table or column you should use abstract types
so that your migrations are independent of specific DBMS. The [[yii\db\Schema]] class defines
a set of constants to represent the supported abstract types. These constants are named in the format
of TYPE_<Name>. For example, TYPE_PK refers to auto-incremental primary key type; TYPE_STRING
refers to a string type. When a migration is applied to a particular database, the abstract types
will be translated into the corresponding physical types. In the case of MySQL, TYPE_PK will be turned
into int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY, while TYPE_STRING becomes varchar(255).

You can append additional constraints when using abstract types. In the above example, NOT NULL is appended
to Schema::TYPE_STRING to specify that the column cannot be null.

Info: The mapping between abstract types and physical types is specified by
the [[yii\db\QueryBuilder::$typeMap|$typeMap]] property in each concrete QueryBuilder class.

Since version 2.0.6, you can make use of the newly introduced schema builder which provides more convenient way of defining column schema.
So the migration above could be written like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

A list of all available methods for defining the column types is available in the API documentation of [[yii\db\SchemaBuilderTrait]].

Generating Migrations

Since version 2.0.7 migration console provides a convenient way to create migrations.

If the migration name is of a special form, for example create_xxx_table or drop_xxx_table then the generated migration
file will contain extra code, in this case for creating/dropping tables.
In the following all variants of this feature are described.

Create Table

yii migrate/create create_post_table

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey()
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

To create table fields right away, specify them via --fields option.

yii migrate/create create_post_table --fields="title:string,body:text"

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(),
 'body' => $this->text(),
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

You can specify more field parameters.

yii migrate/create create_post_table --fields="title:string(12):notNull:unique,body:text"

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Note: primary key is added automatically and is named id by default. If you want to use another name you may
specify it explicitly like --fields="name:primaryKey".

Foreign keys

Since 2.0.8 the generator supports foreign keys using the foreignKey keyword.

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"

generates

/**
 * Handles the creation for table `post`.
 * Has foreign keys to the tables:
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'author_id' => $this->integer()->notNull(),
 'category_id' => $this->integer()->defaultValue(1),
 'title' => $this->string(),
 'body' => $this->text(),
]);

 // creates index for column `author_id`
 $this->createIndex(
 'idx-post-author_id',
 'post',
 'author_id'
);

 // add foreign key for table `user`
 $this->addForeignKey(
 'fk-post-author_id',
 'post',
 'author_id',
 'user',
 'id',
 'CASCADE'
);

 // creates index for column `category_id`
 $this->createIndex(
 'idx-post-category_id',
 'post',
 'category_id'
);

 // add foreign key for table `category`
 $this->addForeignKey(
 'fk-post-category_id',
 'post',
 'category_id',
 'category',
 'id',
 'CASCADE'
);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 // drops foreign key for table `user`
 $this->dropForeignKey(
 'fk-post-author_id',
 'post'
);

 // drops index for column `author_id`
 $this->dropIndex(
 'idx-post-author_id',
 'post'
);

 // drops foreign key for table `category`
 $this->dropForeignKey(
 'fk-post-category_id',
 'post'
);

 // drops index for column `category_id`
 $this->dropIndex(
 'idx-post-category_id',
 'post'
);

 $this->dropTable('post');
 }
}

The position of the foreignKey keyword in the column description doesn’t
change the generated code. That means:

	author_id:integer:notNull:foreignKey(user)

	author_id:integer:foreignKey(user):notNull

	author_id:foreignKey(user):integer:notNull

All generate the same code.

The foreignKey keyword can take a parameter between parenthesis which will be
the name of the related table for the generated foreign key. If no parameter
is passed then the table name will be deduced from the column name.

In the example above author_id:integer:notNull:foreignKey(user) will generate a
column named author_id with a foreign key to the user table while
category_id:integer:defaultValue(1):foreignKey will generate a column
category_id with a foreign key to the category table.

Since 2.0.11, foreignKey keyword accepts a second parameter, separated by whitespace.
It accepts the name of the related column for the foreign key generated.
If no second parameter is passed, the column name will be fetched from table schema.
If no schema exists, primary key isn’t set or is composite, default name id will be used.

Drop Table

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique,body:text"

generates

class m150811_220037_drop_post_table extends Migration
{
 public function up()
 {
 $this->dropTable('post');
 }

 public function down()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }
}

Add Column

If the migration name is of the form add_xxx_column_to_yyy_table then the file
content would contain addColumn and dropColumn statements necessary.

To add column:

yii migrate/create add_position_column_to_post_table --fields="position:integer"

generates

class m150811_220037_add_position_column_to_post_table extends Migration
{
 public function up()
 {
 $this->addColumn('post', 'position', $this->integer());
 }

 public function down()
 {
 $this->dropColumn('post', 'position');
 }
}

You can specify multiple columns as follows:

yii migrate/create add_xxx_column_yyy_column_to_zzz_table --fields="xxx:integer,yyy:text"

Drop Column

If the migration name is of the form drop_xxx_column_from_yyy_table then
the file content would contain addColumn and dropColumn statements necessary.

yii migrate/create drop_position_column_from_post_table --fields="position:integer"

generates

class m150811_220037_drop_position_column_from_post_table extends Migration
{
 public function up()
 {
 $this->dropColumn('post', 'position');
 }

 public function down()
 {
 $this->addColumn('post', 'position', $this->integer());
 }
}

Add Junction Table

If the migration name is of the form create_junction_table_for_xxx_and_yyy_tables or create_junction_xxx_and_yyy_tables
then code necessary to create junction table will be generated.

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="created_at:dateTime"

generates

/**
 * Handles the creation for table `post_tag`.
 * Has foreign keys to the tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post_tag', [
 'post_id' => $this->integer(),
 'tag_id' => $this->integer(),
 'created_at' => $this->dateTime(),
 'PRIMARY KEY(post_id, tag_id)',
]);

 // creates index for column `post_id`
 $this->createIndex(
 'idx-post_tag-post_id',
 'post_tag',
 'post_id'
);

 // add foreign key for table `post`
 $this->addForeignKey(
 'fk-post_tag-post_id',
 'post_tag',
 'post_id',
 'post',
 'id',
 'CASCADE'
);

 // creates index for column `tag_id`
 $this->createIndex(
 'idx-post_tag-tag_id',
 'post_tag',
 'tag_id'
);

 // add foreign key for table `tag`
 $this->addForeignKey(
 'fk-post_tag-tag_id',
 'post_tag',
 'tag_id',
 'tag',
 'id',
 'CASCADE'
);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 // drops foreign key for table `post`
 $this->dropForeignKey(
 'fk-post_tag-post_id',
 'post_tag'
);

 // drops index for column `post_id`
 $this->dropIndex(
 'idx-post_tag-post_id',
 'post_tag'
);

 // drops foreign key for table `tag`
 $this->dropForeignKey(
 'fk-post_tag-tag_id',
 'post_tag'
);

 // drops index for column `tag_id`
 $this->dropIndex(
 'idx-post_tag-tag_id',
 'post_tag'
);

 $this->dropTable('post_tag');
 }
}

Since 2.0.11 foreign key column names for junction tables are fetched from table schema.
In case table isn’t defined in schema, or the primary key isn’t set or is composite, default name id is used.

Transactional Migrations

While performing complex DB migrations, it is important to ensure each migration to either succeed or fail as a whole
so that the database can maintain integrity and consistency. To achieve this goal, it is recommended that you
enclose the DB operations of each migration in a transaction.

An even easier way of implementing transactional migrations is to put migration code in the safeUp() and safeDown()
methods. These two methods differ from up() and down() in that they are enclosed implicitly in a transaction.
As a result, if any operation in these methods fails, all prior operations will be rolled back automatically.

In the following example, besides creating the news table we also insert an initial row into this table.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function safeUp()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);

 $this->insert('news', [
 'title' => 'test 1',
 'content' => 'content 1',
]);
 }

 public function safeDown()
 {
 $this->delete('news', ['id' => 1]);
 $this->dropTable('news');
 }
}

Note that usually when you perform multiple DB operations in safeUp(), you should reverse their execution order
in safeDown(). In the above example we first create the table and then insert a row in safeUp(); while
in safeDown() we first delete the row and then drop the table.

Note: Not all DBMS support transactions. And some DB queries cannot be put into a transaction. For some examples,
please refer to implicit commit [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html]. If this is the case,
you should still implement up() and down(), instead.

Database Accessing Methods

The base migration class [[yii\db\Migration]] provides a set of methods to let you access and manipulate databases.
You may find these methods are named similarly as the DAO methods provided by the [[yii\db\Command]] class.
For example, the [[yii\db\Migration::createTable()]] method allows you to create a new table,
just like [[yii\db\Command::createTable()]] does.

The benefit of using the methods provided by [[yii\db\Migration]] is that you do not need to explicitly
create [[yii\db\Command]] instances and the execution of each method will automatically display useful messages
telling you what database operations are done and how long they take.

Below is the list of all these database accessing methods:

	[[yii\db\Migration::execute()|execute()]]: executing a SQL statement

	[[yii\db\Migration::insert()|insert()]]: inserting a single row

	[[yii\db\Migration::batchInsert()|batchInsert()]]: inserting multiple rows

	[[yii\db\Migration::update()|update()]]: updating rows

	[[yii\db\Migration::delete()|delete()]]: deleting rows

	[[yii\db\Migration::createTable()|createTable()]]: creating a table

	[[yii\db\Migration::renameTable()|renameTable()]]: renaming a table

	[[yii\db\Migration::dropTable()|dropTable()]]: removing a table

	[[yii\db\Migration::truncateTable()|truncateTable()]]: removing all rows in a table

	[[yii\db\Migration::addColumn()|addColumn()]]: adding a column

	[[yii\db\Migration::renameColumn()|renameColumn()]]: renaming a column

	[[yii\db\Migration::dropColumn()|dropColumn()]]: removing a column

	[[yii\db\Migration::alterColumn()|alterColumn()]]: altering a column

	[[yii\db\Migration::addPrimaryKey()|addPrimaryKey()]]: adding a primary key

	[[yii\db\Migration::dropPrimaryKey()|dropPrimaryKey()]]: removing a primary key

	[[yii\db\Migration::addForeignKey()|addForeignKey()]]: adding a foreign key

	[[yii\db\Migration::dropForeignKey()|dropForeignKey()]]: removing a foreign key

	[[yii\db\Migration::createIndex()|createIndex()]]: creating an index

	[[yii\db\Migration::dropIndex()|dropIndex()]]: removing an index

	[[yii\db\Migration::addCommentOnColumn()|addCommentOnColumn()]]: adding comment to column

	[[yii\db\Migration::dropCommentFromColumn()|dropCommentFromColumn()]]: dropping comment from column

	[[yii\db\Migration::addCommentOnTable()|addCommentOnTable()]]: adding comment to table

	[[yii\db\Migration::dropCommentFromTable()|dropCommentFromTable()]]: dropping comment from table

Info: [[yii\db\Migration]] does not provide a database query method. This is because you normally do not need
to display extra message about retrieving data from a database. It is also because you can use the powerful
Query Builder to build and run complex queries.

Note: When manipulating data using a migration you may find that using your Active Record classes
for this might be useful because some of the logic is already implemented there. Keep in mind however, that in contrast
to code written in the migrations, who’s nature is to stay constant forever, application logic is subject to change.
So when using Active Record in migration code, changes to the logic in the Active Record layer may accidentally break
existing migrations. For this reason migration code should be kept independent from other application logic such
as Active Record classes.

Applying Migrations

To upgrade a database to its latest structure, you should apply all available new migrations using the following command:

yii migrate

This command will list all migrations that have not been applied so far. If you confirm that you want to apply
these migrations, it will run the up() or safeUp() method in every new migration class, one after another,
in the order of their timestamp values. If any of the migrations fails, the command will quit without applying
the rest of the migrations.

Tip: In case you don’t have command line at your server you may try web shell [https://github.com/samdark/yii2-webshell]
extension.

For each migration that has been successfully applied, the command will insert a row into a database table named
migration to record the successful application of the migration. This will allow the migration tool to identify
which migrations have been applied and which have not.

Info: The migration tool will automatically create the migration table in the database specified by
the [[yii\console\controllers\MigrateController::db|db]] option of the command. By default, the database
is specified by the db application component.

Sometimes, you may only want to apply one or a few new migrations, instead of all available migrations.
You can do so by specifying the number of migrations that you want to apply when running the command.
For example, the following command will try to apply the next three available migrations:

yii migrate 3

You can also explicitly specify a particular migration to which the database should be migrated
by using the migrate/to command in one of the following formats:

yii migrate/to 150101_185401 # using timestamp to specify the migration
yii migrate/to "2015-01-01 18:54:01" # using a string that can be parsed by strtotime()
yii migrate/to m150101_185401_create_news_table # using full name
yii migrate/to 1392853618 # using UNIX timestamp

If there are any unapplied migrations earlier than the specified one, they will all be applied before the specified
migration is applied.

If the specified migration has already been applied before, any later applied migrations will be reverted.

Reverting Migrations

To revert (undo) one or multiple migrations that have been applied before, you can run the following command:

yii migrate/down # revert the most recently applied migration
yii migrate/down 3 # revert the most 3 recently applied migrations

Note: Not all migrations are reversible. Trying to revert such migrations will cause an error and stop the
entire reverting process.

Redoing Migrations

Redoing migrations means first reverting the specified migrations and then applying again. This can be done
as follows:

yii migrate/redo # redo the last applied migration
yii migrate/redo 3 # redo the last 3 applied migrations

Note: If a migration is not reversible, you will not be able to redo it.

Listing Migrations

To list which migrations have been applied and which are not, you may use the following commands:

yii migrate/history # showing the last 10 applied migrations
yii migrate/history 5 # showing the last 5 applied migrations
yii migrate/history all # showing all applied migrations

yii migrate/new # showing the first 10 new migrations
yii migrate/new 5 # showing the first 5 new migrations
yii migrate/new all # showing all new migrations

Modifying Migration History

Instead of actually applying or reverting migrations, sometimes you may simply want to mark that your database
has been upgraded to a particular migration. This often happens when you manually change the database to a particular
state and you do not want the migration(s) for that change to be re-applied later. You can achieve this goal with
the following command:

yii migrate/mark 150101_185401 # using timestamp to specify the migration
yii migrate/mark "2015-01-01 18:54:01" # using a string that can be parsed by strtotime()
yii migrate/mark m150101_185401_create_news_table # using full name
yii migrate/mark 1392853618 # using UNIX timestamp

The command will modify the migration table by adding or deleting certain rows to indicate that the database
has been applied migrations to the specified one. No migrations will be applied or reverted by this command.

Customizing Migrations

There are several ways to customize the migration command.

Using Command Line Options

The migration command comes with a few command-line options that can be used to customize its behaviors:

	interactive: boolean (defaults to true), specifies whether to perform migrations in an interactive mode.
When this is true, the user will be prompted before the command performs certain actions.
You may want to set this to false if the command is being used in a background process.

	migrationPath: string (defaults to @app/migrations), specifies the directory storing all migration
class files. This can be specified as either a directory path or a path alias.
Note that the directory must exist, or the command may trigger an error.

	migrationTable: string (defaults to migration), specifies the name of the database table for storing
migration history information. The table will be automatically created by the command if it does not exist.
You may also manually create it using the structure version varchar(255) primary key, apply_time integer.

	db: string (defaults to db), specifies the ID of the database application component.
It represents the database that will be migrated using this command.

	templateFile: string (defaults to @yii/views/migration.php), specifies the path of the template file
that is used for generating skeleton migration class files. This can be specified as either a file path
or a path alias. The template file is a PHP script in which you can use a predefined variable
named $className to get the migration class name.

	generatorTemplateFiles: array (defaults to ['create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php']), specifies template files for generating migration code. See “Generating Migrations“
for more details.

	fields: array of column definition strings used for creating migration code. Defaults to []. The format of each
definition is COLUMN_NAME:COLUMN_TYPE:COLUMN_DECORATOR. For example, --fields=name:string(12):notNull produces
a string column of size 12 which is not null.

The following example shows how you can use these options.

For example, if we want to migrate a forum module whose migration files
are located within the module’s migrations directory, we can use the following
command:

migrate the migrations in a forum module non-interactively
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0

Configuring Command Globally

Instead of entering the same option values every time you run the migration command, you may configure it
once for all in the application configuration like shown below:

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationTable' => 'backend_migration',
],
],
];

With the above configuration, each time you run the migration command, the backend_migration table
will be used to record the migration history. You no longer need to specify it via the migrationTable
command-line option.

Namespaced Migrations

Since 2.0.10 you can use namespaces for the migration classes. You can specify the list of the migration namespaces via
[[yii\console\controllers\MigrateController::migrationNamespaces|migrationNamespaces]]. Using of the namespaces for
migration classes allows you usage of the several source locations for the migrations. For example:

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => [
 'app\migrations', // Common migrations for the whole application
 'module\migrations', // Migrations for the specific project's module
 'some\extension\migrations', // Migrations for the specific extension
],
],
],
];

Note: migrations applied from different namespaces will create a single migration history, e.g. you might be
unable to apply or revert migrations from particular namespace only.

While operating namespaced migrations: creating new, reverting and so on, you should specify full namespace before
migration name. Note that backslash (\) symbol is usually considered a special character in the shell, so you need
to escape it properly to avoid shell errors or incorrect behavior. For example:

yii migrate/create 'app\\migrations\\createUserTable'

Note: migrations specified via [[yii\console\controllers\MigrateController::migrationPath|migrationPath]] can not
contain a namespace, namespaced migration can be applied only via [[yii\console\controllers\MigrateController::migrationNamespaces]]
property.

Separated Migrations

Sometimes using single migration history for all project migrations is not desirable. For example: you may install some
‘blog’ extension, which contains fully separated functionality and contain its own migrations, which should not affect
the ones dedicated to main project functionality.

If you want several migrations to be applied and tracked down completely separated from each other, you can configure multiple
migration commands which will use different namespaces and migration history tables:

return [
 'controllerMap' => [
 // Common migrations for the whole application
 'migrate-app' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['app\migrations'],
 'migrationTable' => 'migration_app',
 'migrationPath' => null,
],
 // Migrations for the specific project's module
 'migrate-module' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['module\migrations'],
 'migrationTable' => 'migration_module',
 'migrationPath' => null,
],
 // Migrations for the specific extension
 'migrate-rbac' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationPath' => '@yii/rbac/migrations',
 'migrationTable' => 'migration_rbac',
],
],
];

Note that to synchronize database you now need to run multiple commands instead of one:

yii migrate-app
yii migrate-module
yii migrate-rbac

Migrating Multiple Databases

By default, migrations are applied to the same database specified by the db application component.
If you want them to be applied to a different database, you may specify the db command-line option like shown below,

yii migrate --db=db2

The above command will apply migrations to the db2 database.

Sometimes it may happen that you want to apply some of the migrations to one database, while some others to another
database. To achieve this goal, when implementing a migration class you should explicitly specify the DB component
ID that the migration would use, like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function init()
 {
 $this->db = 'db2';
 parent::init();
 }
}

The above migration will be applied to db2, even if you specify a different database through the db command-line
option. Note that the migration history will still be recorded in the database specified by the db command-line option.

If you have multiple migrations that use the same database, it is recommended that you create a base migration class
with the above init() code. Then each migration class can extend from this base class.

Tip: Besides setting the [[yii\db\Migration::db|db]] property, you can also operate on different databases
by creating new database connections to them in your migration classes. You then use the DAO methods
with these connections to manipulate different databases.

Another strategy that you can take to migrate multiple databases is to keep migrations for different databases in
different migration paths. Then you can migrate these databases in separate commands like the following:

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...

The first command will apply migrations in @app/migrations/db1 to the db1 database, the second command
will apply migrations in @app/migrations/db2 to db2, and so on.

Sorting

When displaying multiple rows of data, it is often needed that the data be sorted according to some columns
specified by end users. Yii uses a [[yii\data\Sort]] object to represent the information about a sorting schema.
In particular,

	[[yii\data\Sort::$attributes|attributes]] specifies the attributes by which the data can be sorted.
An attribute can be as simple as a model attribute. It can also be a composite
one by combining multiple model attributes or DB columns. More details will be given in the following.

	[[yii\data\Sort::$attributeOrders|attributeOrders]] gives the currently requested ordering directions for
each attribute.

	[[yii\data\Sort::$orders|orders]] gives the ordering directions in terms of the low-level columns.

To use [[yii\data\Sort]], first declare which attributes can be sorted. Then retrieve the currently requested
ordering information from [[yii\data\Sort::$attributeOrders|attributeOrders]] or [[yii\data\Sort::$orders|orders]]
and use them to customize the data query. For example,

use yii\data\Sort;

$sort = new Sort([
 'attributes' => [
 'age',
 'name' => [
 'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],
 'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],
 'default' => SORT_DESC,
 'label' => 'Name',
],
],
]);

$articles = Article::find()
 ->where(['status' => 1])
 ->orderBy($sort->orders)
 ->all();

In the above example, two attributes are declared for the [[yii\data\Sort|Sort]] object: age and name.

The age attribute is a simple attribute corresponding to the age attribute of the Article Active Record class.
It is equivalent to the following declaration:

'age' => [
 'asc' => ['age' => SORT_ASC],
 'desc' => ['age' => SORT_DESC],
 'default' => SORT_ASC,
 'label' => Inflector::camel2words('age'),
]

The name attribute is a composite attribute defined by first_name and last_name of Article. It is declared
using the following array structure:

	The asc and desc elements specify how to sort by the attribute in ascending and descending directions, respectively.
Their values represent the actual columns and the directions by which the data should be sorted by. You can specify
one or multiple columns to indicate simple ordering or composite ordering.

	The default element specifies the direction by which the attribute should be sorted when initially requested.
It defaults to ascending order, meaning if it is not sorted before and you request to sort by this attribute,
the data will be sorted by this attribute in ascending order.

	The label element specifies what label should be used when calling [[yii\data\Sort::link()]] to create a sort link.
If not set, [[yii\helpers\Inflector::camel2words()]] will be called to generate a label from the attribute name.
Note that it will not be HTML-encoded.

Info: You can directly feed the value of [[yii\data\Sort::$orders|orders]] to the database query to build
its ORDER BY clause. Do not use [[yii\data\Sort::$attributeOrders|attributeOrders]] because some of the
attributes may be composite and cannot be recognized by the database query.

You can call [[yii\data\Sort::link()]] to generate a hyperlink upon which end users can click to request sorting
the data by the specified attribute. You may also call [[yii\data\Sort::createUrl()]] to create a sortable URL.
For example,

// specifies the route that the URL to be created should use
// If you do not specify this, the currently requested route will be used
$sort->route = 'article/index';

// display links leading to sort by name and age, respectively
echo $sort->link('name') . ' | ' . $sort->link('age');

// displays: /index.php?r=article%2Findex&sort=age
echo $sort->createUrl('age');

[[yii\data\Sort]] checks the sort query parameter to determine which attributes are being requested for sorting.
You may specify a default ordering via [[yii\data\Sort::defaultOrder]] when the query parameter is not present.
You may also customize the name of the query parameter by configuring the [[yii\data\Sort::sortParam|sortParam]] property.

Query Builder

Built on top of Database Access Objects, query builder allows you to construct a SQL query
in a programmatic and DBMS-agnostic way. Compared to writing raw SQL statements, using query builder will help you write
more readable SQL-related code and generate more secure SQL statements.

Using query builder usually involves two steps:

	Build a [[yii\db\Query]] object to represent different parts (e.g. SELECT, FROM) of a SELECT SQL statement.

	Execute a query method (e.g. all()) of [[yii\db\Query]] to retrieve data from the database.

The following code shows a typical way of using query builder:

$rows = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->all();

The above code generates and executes the following SQL query, where the :last_name parameter is bound with the
string 'Smith'.

SELECT `id`, `email`
FROM `user`
WHERE `last_name` = :last_name
LIMIT 10

Info: You usually mainly work with [[yii\db\Query]] instead of [[yii\db\QueryBuilder]]. The latter is invoked
by the former implicitly when you call one of the query methods. [[yii\db\QueryBuilder]] is the class responsible
for generating DBMS-dependent SQL statements (e.g. quoting table/column names differently) from DBMS-independent
[[yii\db\Query]] objects.

Building Queries

To build a [[yii\db\Query]] object, you call different query building methods to specify different parts of
a SQL query. The names of these methods resemble the SQL keywords used in the corresponding parts of the SQL
statement. For example, to specify the FROM part of a SQL query, you would call the [[yii\db\Query::from()|from()]] method.
All the query building methods return the query object itself, which allows you to chain multiple calls together.

In the following, we will describe the usage of each query building method.

[[yii\db\Query::select()|select()]]

The [[yii\db\Query::select()|select()]] method specifies the SELECT fragment of a SQL statement. You can specify
columns to be selected in either an array or a string, like the following. The column names being selected will
be automatically quoted when the SQL statement is being generated from a query object.

$query->select(['id', 'email']);

// equivalent to:

$query->select('id, email');

The column names being selected may include table prefixes and/or column aliases, like you do when writing raw SQL queries.
For example,

$query->select(['user.id AS user_id', 'email']);

// equivalent to:

$query->select('user.id AS user_id, email');

If you are using the array format to specify columns, you can also use the array keys to specify the column aliases.
For example, the above code can be rewritten as follows,

$query->select(['user_id' => 'user.id', 'email']);

If you do not call the [[yii\db\Query::select()|select()]] method when building a query, * will be selected, which
means selecting all columns.

Besides column names, you can also select DB expressions. You must use the array format when selecting a DB expression
that contains commas to avoid incorrect automatic name quoting. For example,

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email']);

As with all places where raw SQL is involved, you may use the DBMS agnostic quoting syntax
for table and column names when writing DB expressions in select.

Starting from version 2.0.1, you may also select sub-queries. You should specify each sub-query in terms of
a [[yii\db\Query]] object. For example,

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');

To select distinct rows, you may call [[yii\db\Query::distinct()|distinct()]], like the following:

// SELECT DISTINCT `user_id` ...
$query->select('user_id')->distinct();

You can call [[yii\db\Query::addSelect()|addSelect()]] to select additional columns. For example,

$query->select(['id', 'username'])
 ->addSelect(['email']);

[[yii\db\Query::from()|from()]]

The [[yii\db\Query::from()|from()]] method specifies the FROM fragment of a SQL statement. For example,

// SELECT * FROM `user`
$query->from('user');

You can specify the table(s) being selected from in either a string or an array. The table names may contain
schema prefixes and/or table aliases, like you do when writing raw SQL statements. For example,

$query->from(['public.user u', 'public.post p']);

// equivalent to:

$query->from('public.user u, public.post p');

If you are using the array format, you can also use the array keys to specify the table aliases, like the following:

$query->from(['u' => 'public.user', 'p' => 'public.post']);

Besides table names, you can also select from sub-queries by specifying them in terms of [[yii\db\Query]] objects.
For example,

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u
$query->from(['u' => $subQuery]);

Prefixes

Also a default [[yii\db\Connection::$tablePrefix|tablePrefix]] can be applied. Implementation instructions
are in the “Quoting Tables” section of the “Database Access Objects” guide.

[[yii\db\Query::where()|where()]]

The [[yii\db\Query::where()|where()]] method specifies the WHERE fragment of a SQL query. You can use one of
the three formats to specify a WHERE condition:

	string format, e.g., 'status=1'

	hash format, e.g. ['status' => 1, 'type' => 2]

	operator format, e.g. ['like', 'name', 'test']

String Format

String format is best used to specify very simple conditions or if you need to use built-in functions of the DBMS.
It works as if you are writing a raw SQL. For example,

$query->where('status=1');

// or use parameter binding to bind dynamic parameter values
$query->where('status=:status', [':status' => $status]);

// raw SQL using MySQL YEAR() function on a date field
$query->where('YEAR(somedate) = 2015');

Do NOT embed variables directly in the condition like the following, especially if the variable values come from
end user inputs, because this will make your application subject to SQL injection attacks.

// Dangerous! Do NOT do this unless you are very certain $status must be an integer.
$query->where("status=$status");

When using parameter binding, you may call [[yii\db\Query::params()|params()]] or [[yii\db\Query::addParams()|addParams()]]
to specify parameters separately.

$query->where('status=:status')
 ->addParams([':status' => $status]);

As with all places where raw SQL is involved, you may use the DBMS agnostic quoting syntax
for table and column names when writing conditions in string format.

Hash Format

Hash format is best used to specify multiple AND-concatenated sub-conditions each being a simple equality assertion.
It is written as an array whose keys are column names and values the corresponding values that the columns should be.
For example,

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))
$query->where([
 'status' => 10,
 'type' => null,
 'id' => [4, 8, 15],
]);

As you can see, the query builder is intelligent enough to properly handle values that are nulls or arrays.

You can also use sub-queries with hash format like the following:

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)
$query->where(['id' => $userQuery]);

Using the Hash Format, Yii internally uses parameter binding so in contrast to the string format, here
you do not have to add parameters manually.

Operator Format

Operator format allows you to specify arbitrary conditions in a programmatic way. It takes the following format:

[operator, operand1, operand2, ...]

where the operands can each be specified in string format, hash format or operator format recursively, while
the operator can be one of the following:

	and: the operands should be concatenated together using AND. For example,
['and', 'id=1', 'id=2'] will generate id=1 AND id=2. If an operand is an array,
it will be converted into a string using the rules described here. For example,
['and', 'type=1', ['or', 'id=1', 'id=2']] will generate type=1 AND (id=1 OR id=2).
The method will NOT do any quoting or escaping.

	or: similar to the and operator except that the operands are concatenated using OR.

	between: operand 1 should be the column name, and operand 2 and 3 should be the
starting and ending values of the range that the column is in.
For example, ['between', 'id', 1, 10] will generate id BETWEEN 1 AND 10.

	not between: similar to between except the BETWEEN is replaced with NOT BETWEEN
in the generated condition.

	in: operand 1 should be a column or DB expression. Operand 2 can be either an array or a Query object.
It will generate an IN condition. If Operand 2 is an array, it will represent the range of the values
that the column or DB expression should be; If Operand 2 is a Query object, a sub-query will be generated
and used as the range of the column or DB expression. For example,
['in', 'id', [1, 2, 3]] will generate id IN (1, 2, 3).
The method will properly quote the column name and escape values in the range.
The in operator also supports composite columns. In this case, operand 1 should be an array of the columns,
while operand 2 should be an array of arrays or a Query object representing the range of the columns.

	not in: similar to the in operator except that IN is replaced with NOT IN in the generated condition.

	like: operand 1 should be a column or DB expression, and operand 2 be a string or an array representing
the values that the column or DB expression should be like.
For example, ['like', 'name', 'tester'] will generate name LIKE '%tester%'.
When the value range is given as an array, multiple LIKE predicates will be generated and concatenated
using AND. For example, ['like', 'name', ['test', 'sample']] will generate
name LIKE '%test%' AND name LIKE '%sample%'.
You may also provide an optional third operand to specify how to escape special characters in the values.
The operand should be an array of mappings from the special characters to their
escaped counterparts. If this operand is not provided, a default escape mapping will be used.
You may use false or an empty array to indicate the values are already escaped and no escape
should be applied. Note that when using an escape mapping (or the third operand is not provided),
the values will be automatically enclosed within a pair of percentage characters.

Note: When using PostgreSQL you may also use ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE]
instead of like for case-insensitive matching.

	or like: similar to the like operator except that OR is used to concatenate the LIKE
predicates when operand 2 is an array.

	not like: similar to the like operator except that LIKE is replaced with NOT LIKE
in the generated condition.

	or not like: similar to the not like operator except that OR is used to concatenate
the NOT LIKE predicates.

	exists: requires one operand which must be an instance of [[yii\db\Query]] representing the sub-query.
It will build an EXISTS (sub-query) expression.

	not exists: similar to the exists operator and builds a NOT EXISTS (sub-query) expression.

	>, <=, or any other valid DB operator that takes two operands: the first operand must be a column name
while the second operand a value. For example, ['>', 'age', 10] will generate age>10.

Using the Operator Format, Yii internally uses parameter binding so in contrast to the string format, here
you do not have to add parameters manually.

Appending Conditions

You can use [[yii\db\Query::andWhere()|andWhere()]] or [[yii\db\Query::orWhere()|orWhere()]] to append
additional conditions to an existing one. You can call them multiple times to append multiple conditions
separately. For example,

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
 $query->andWhere(['like', 'title', $search]);
}

If $search is not empty, the following WHERE condition will be generated:

WHERE (`status` = 10) AND (`title` LIKE '%yii%')

Filter Conditions

When building WHERE conditions based on input from end users, you usually want to ignore those input values, that are empty.
For example, in a search form that allows you to search by username and email, you would like to ignore the username/email
condition if the user does not enter anything in the username/email input field. You can achieve this goal by
using the [[yii\db\Query::filterWhere()|filterWhere()]] method:

// $username and $email are from user inputs
$query->filterWhere([
 'username' => $username,
 'email' => $email,
]);

The only difference between [[yii\db\Query::filterWhere()|filterWhere()]] and [[yii\db\Query::where()|where()]]
is that the former will ignore empty values provided in the condition in hash format. So if $email
is empty while $username is not, the above code will result in the SQL condition WHERE username=:username.

Info: A value is considered empty if it is null, an empty array, an empty string or a string consisting of whitespaces only.

Like [[yii\db\Query::andWhere()|andWhere()]] and [[yii\db\Query::orWhere()|orWhere()]], you can use
[[yii\db\Query::andFilterWhere()|andFilterWhere()]] and [[yii\db\Query::orFilterWhere()|orFilterWhere()]]
to append additional filter conditions to the existing one.

Additionally, there is [[yii\db\Query::andFilterCompare()]] that can intelligently determine operator based on what’s
in the value:

$query->andFilterCompare('name', 'John Doe');
$query->andFilterCompare('rating', '>9');
$query->andFilterCompare('value', '<=100');

You can also specify operator explicitly:

$query->andFilterCompare('name', 'Doe', 'like');

Since Yii 2.0.11 there are similar methods for HAVING condition:

	[[yii\db\Query::filterHaving()|filterHaving()]]

	[[yii\db\Query::andFilterHaving()|andFilterHaving()]]

	[[yii\db\Query::orFilterHaving()|orFilterHaving()]]

[[yii\db\Query::orderBy()|orderBy()]]

The [[yii\db\Query::orderBy()|orderBy()]] method specifies the ORDER BY fragment of a SQL query. For example,

// ... ORDER BY `id` ASC, `name` DESC
$query->orderBy([
 'id' => SORT_ASC,
 'name' => SORT_DESC,
]);

In the above code, the array keys are column names while the array values are the corresponding order by directions.
The PHP constant SORT_ASC specifies ascending sort and SORT_DESC descending sort.

If ORDER BY only involves simple column names, you can specify it using a string, just like you do when writing
raw SQL statements. For example,

$query->orderBy('id ASC, name DESC');

Note: You should use the array format if ORDER BY involves some DB expression.

You can call [[yii\db\Query::addOrderBy()|addOrderBy()]] to add additional columns to the ORDER BY fragment.
For example,

$query->orderBy('id ASC')
 ->addOrderBy('name DESC');

[[yii\db\Query::groupBy()|groupBy()]]

The [[yii\db\Query::groupBy()|groupBy()]] method specifies the GROUP BY fragment of a SQL query. For example,

// ... GROUP BY `id`, `status`
$query->groupBy(['id', 'status']);

If GROUP BY only involves simple column names, you can specify it using a string, just like you do when writing
raw SQL statements. For example,

$query->groupBy('id, status');

Note: You should use the array format if GROUP BY involves some DB expression.

You can call [[yii\db\Query::addGroupBy()|addGroupBy()]] to add additional columns to the GROUP BY fragment.
For example,

$query->groupBy(['id', 'status'])
 ->addGroupBy('age');

[[yii\db\Query::having()|having()]]

The [[yii\db\Query::having()|having()]] method specifies the HAVING fragment of a SQL query. It takes
a condition which can be specified in the same way as that for where(). For example,

// ... HAVING `status` = 1
$query->having(['status' => 1]);

Please refer to the documentation for where() for more details about how to specify a condition.

You can call [[yii\db\Query::andHaving()|andHaving()]] or [[yii\db\Query::orHaving()|orHaving()]] to append
additional conditions to the HAVING fragment. For example,

// ... HAVING (`status` = 1) AND (`age` > 30)
$query->having(['status' => 1])
 ->andHaving(['>', 'age', 30]);

[[yii\db\Query::limit()|limit()]] and [[yii\db\Query::offset()|offset()]]

The [[yii\db\Query::limit()|limit()]] and [[yii\db\Query::offset()|offset()]] methods specify the LIMIT
and OFFSET fragments of a SQL query. For example,

// ... LIMIT 10 OFFSET 20
$query->limit(10)->offset(20);

If you specify an invalid limit or offset (e.g. a negative value), it will be ignored.

Info: For DBMS that do not support LIMIT and OFFSET (e.g. MSSQL), query builder will generate a SQL
statement that emulates the LIMIT/OFFSET behavior.

[[yii\db\Query::join()|join()]]

The [[yii\db\Query::join()|join()]] method specifies the JOIN fragment of a SQL query. For example,

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

The [[yii\db\Query::join()|join()]] method takes four parameters:

	$type: join type, e.g., 'INNER JOIN', 'LEFT JOIN'.

	$table: the name of the table to be joined.

	$on: optional, the join condition, i.e., the ON fragment. Please refer to where() for details
about specifying a condition. Note, that the array syntax does not work for specifying a column based
condition, e.g. ['user.id' => 'comment.userId'] will result in a condition where the user id must be equal
to the string 'comment.userId'. You should use the string syntax instead and specify the condition as
'user.id = comment.userId'.

	$params: optional, the parameters to be bound to the join condition.

You can use the following shortcut methods to specify INNER JOIN, LEFT JOIN and RIGHT JOIN, respectively.

	[[yii\db\Query::innerJoin()|innerJoin()]]

	[[yii\db\Query::leftJoin()|leftJoin()]]

	[[yii\db\Query::rightJoin()|rightJoin()]]

For example,

$query->leftJoin('post', 'post.user_id = user.id');

To join with multiple tables, call the above join methods multiple times, once for each table.

Besides joining with tables, you can also join with sub-queries. To do so, specify the sub-queries to be joined
as [[yii\db\Query]] objects. For example,

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');

In this case, you should put the sub-query in an array and use the array key to specify the alias.

[[yii\db\Query::union()|union()]]

The [[yii\db\Query::union()|union()]] method specifies the UNION fragment of a SQL query. For example,

$query1 = (new \yii\db\Query())
 ->select("id, category_id AS type, name")
 ->from('post')
 ->limit(10);

$query2 = (new \yii\db\Query())
 ->select('id, type, name')
 ->from('user')
 ->limit(10);

$query1->union($query2);

You can call [[yii\db\Query::union()|union()]] multiple times to append more UNION fragments.

Query Methods

[[yii\db\Query]] provides a whole set of methods for different query purposes:

	[[yii\db\Query::all()|all()]]: returns an array of rows with each row being an associative array of name-value pairs.

	[[yii\db\Query::one()|one()]]: returns the first row of the result.

	[[yii\db\Query::column()|column()]]: returns the first column of the result.

	[[yii\db\Query::scalar()|scalar()]]: returns a scalar value located at the first row and first column of the result.

	[[yii\db\Query::exists()|exists()]]: returns a value indicating whether the query contains any result.

	[[yii\db\Query::count()|count()]]: returns the result of a COUNT query.

	Other aggregation query methods, including [[yii\db\Query::sum()|sum($q)]], [[yii\db\Query::average()|average($q)]],
[[yii\db\Query::max()|max($q)]], [[yii\db\Query::min()|min($q)]]. The $q parameter is mandatory for these methods
and can be either a column name or a DB expression.

For example,

// SELECT `id`, `email` FROM `user`
$rows = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->all();

// SELECT * FROM `user` WHERE `username` LIKE `%test%`
$row = (new \yii\db\Query())
 ->from('user')
 ->where(['like', 'username', 'test'])
 ->one();

Note: The [[yii\db\Query::one()|one()]] method only returns the first row of the query result. It does NOT
add LIMIT 1 to the generated SQL statement. This is fine and preferred if you know the query will return only one
or a few rows of data (e.g. if you are querying with some primary keys). However, if the query may potentially
result in many rows of data, you should call limit(1) explicitly to improve the performance, e.g.,
(new \yii\db\Query())->from('user')->limit(1)->one().

All these query methods take an optional $db parameter representing the [[yii\db\Connection|DB connection]] that
should be used to perform a DB query. If you omit this parameter, the db application component will be used
as the DB connection. Below is another example using the [[yii\db\Query::count()|count()]] query method:

// executes SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name
$count = (new \yii\db\Query())
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->count();

When you call a query method of [[yii\db\Query]], it actually does the following work internally:

	Call [[yii\db\QueryBuilder]] to generate a SQL statement based on the current construct of [[yii\db\Query]];

	Create a [[yii\db\Command]] object with the generated SQL statement;

	Call a query method (e.g. [[yii\db\Command::queryAll()|queryAll()]]) of [[yii\db\Command]] to execute the SQL statement and retrieve the data.

Sometimes, you may want to examine or use the SQL statement built from a [[yii\db\Query]] object. You can
achieve this goal with the following code:

$command = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->createCommand();

// show the SQL statement
echo $command->sql;
// show the parameters to be bound
print_r($command->params);

// returns all rows of the query result
$rows = $command->queryAll();

Indexing Query Results

When you call [[yii\db\Query::all()|all()]], it will return an array of rows which are indexed by consecutive integers.
Sometimes you may want to index them differently, such as indexing by a particular column or expression values.
You can achieve this goal by calling [[yii\db\Query::indexBy()|indexBy()]] before [[yii\db\Query::all()|all()]].
For example,

// returns [100 => ['id' => 100, 'username' => '...', ...], 101 => [...], 103 => [...], ...]
$query = (new \yii\db\Query())
 ->from('user')
 ->limit(10)
 ->indexBy('id')
 ->all();

To index by expression values, pass an anonymous function to the [[yii\db\Query::indexBy()|indexBy()]] method:

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy(function ($row) {
 return $row['id'] . $row['username'];
 })->all();

The anonymous function takes a parameter $row which contains the current row data and should return a scalar
value which will be used as the index value for the current row.

Note: In contrast to query methods like [[yii\db\Query::groupBy()|groupBy()]] or [[yii\db\Query::orderBy()|orderBy()]]
which are converted to SQL and are part of the query, this method works after the data has been fetched from the database.
That means that only those column names can be used that have been part of SELECT in your query.
Also if you selected a column with table prefix, e.g. customer.id, the result set will only contain id so you have to call
->indexBy('id') without table prefix.

Batch Query

When working with large amounts of data, methods such as [[yii\db\Query::all()]] are not suitable
because they require loading all data into the memory. To keep the memory requirement low, Yii
provides the so-called batch query support. A batch query makes use of the data cursor and fetches
data in batches.

Batch query can be used like the following:

use yii\db\Query;

$query = (new Query())
 ->from('user')
 ->orderBy('id');

foreach ($query->batch() as $users) {
 // $users is an array of 100 or fewer rows from the user table
}

// or if you want to iterate the row one by one
foreach ($query->each() as $user) {
 // $user represents one row of data from the user table
}

The method [[yii\db\Query::batch()]] and [[yii\db\Query::each()]] return an [[yii\db\BatchQueryResult]] object
which implements the Iterator interface and thus can be used in the foreach construct.
During the first iteration, a SQL query is made to the database. Data are then fetched in batches
in the remaining iterations. By default, the batch size is 100, meaning 100 rows of data are being fetched in each batch.
You can change the batch size by passing the first parameter to the batch() or each() method.

Compared to the [[yii\db\Query::all()]], the batch query only loads 100 rows of data at a time into the memory.
If you process the data and then discard it right away, the batch query can help reduce memory usage.

If you specify the query result to be indexed by some column via [[yii\db\Query::indexBy()]], the batch query
will still keep the proper index. For example,

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy('username');

foreach ($query->batch() as $users) {
 // $users is indexed by the "username" column
}

foreach ($query->each() as $username => $user) {
 // ...
}

Response Formatting

When handling a RESTful API request, an application usually takes the following steps that are related
with response formatting:

	Determine various factors that may affect the response format, such as media type, language, version, etc.
This process is also known as content negotiation [http://en.wikipedia.org/wiki/Content_negotiation].

	Convert resource objects into arrays, as described in the Resources section.
This is done by [[yii\rest\Serializer]].

	Convert arrays into a string in the format as determined by the content negotiation step. This is
done by [[yii\web\ResponseFormatterInterface|response formatters]] registered with
the [[yii\web\Response::formatters|formatters]] property of the
response application component.

Content Negotiation

Yii supports content negotiation via the [[yii\filters\ContentNegotiator]] filter. The RESTful API base
controller class [[yii\rest\Controller]] is equipped with this filter under the name of contentNegotiator.
The filter provides response format negotiation as well as language negotiation. For example, if a RESTful
API request contains the following header,

Accept: application/json; q=1.0, */*; q=0.1

it will get a response in JSON format, like the following:

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Behind the scene, before a RESTful API controller action is executed, the [[yii\filters\ContentNegotiator]]
filter will check the Accept HTTP header in the request and set the [[yii\web\Response::format|response format]]
to be 'json'. After the action is executed and returns the resulting resource object or collection,
[[yii\rest\Serializer]] will convert the result into an array. And finally, [[yii\web\JsonResponseFormatter]]
will serialize the array into a JSON string and include it in the response body.

By default, RESTful APIs support both JSON and XML formats. To support a new format, you should configure
the [[yii\filters\ContentNegotiator::formats|formats]] property of the contentNegotiator filter like
the following in your API controller classes:

use yii\web\Response;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['text/html'] = Response::FORMAT_HTML;
 return $behaviors;
}

The keys of the formats property are the supported MIME types, while the values are the corresponding
response format names which must be supported in [[yii\web\Response::formatters]].

Data Serializing

As we have described above, [[yii\rest\Serializer]] is the central piece responsible for converting resource
objects or collections into arrays. It recognizes objects implementing [[yii\base\Arrayable]] as
well as [[yii\data\DataProviderInterface]]. The former is mainly implemented by resource objects, while
the latter resource collections.

You may configure the serializer by setting the [[yii\rest\Controller::serializer]] property with a configuration array.
For example, sometimes you may want to help simplify the client development work by including pagination information
directly in the response body. To do so, configure the [[yii\rest\Serializer::collectionEnvelope]] property
as follows:

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
 public $serializer = [
 'class' => 'yii\rest\Serializer',
 'collectionEnvelope' => 'items',
];
}

You may then get the following response for request http://localhost/users:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "items": [
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
],
 "_links": {
 "self": {
 "href": "http://localhost/users?page=1"
 },
 "next": {
 "href": "http://localhost/users?page=2"
 },
 "last": {
 "href": "http://localhost/users?page=50"
 }
 },
 "_meta": {
 "totalCount": 1000,
 "pageCount": 50,
 "currentPage": 1,
 "perPage": 20
 }
}

Controlling JSON output

The JSON response is generated by the [[yii\web\JsonResponseFormatter|JsonResponseFormatter]] class which will
use the [[yii\helpers\Json|JSON helper]] internally. This formatter can be configured with different options like
for example the [[yii\web\JsonResponseFormatter::$prettyPrint|$prettyPrint]] option, which is useful on development for
better readable responses, or [[yii\web\JsonResponseFormatter::$encodeOptions|$encodeOptions]] to control the output
of the JSON encoding.

The formatter can be configured in the [[yii\web\Response::formatters|formatters]] property of the response application
component in the application configuration like the following:

'response' => [
 // ...
 'formatters' => [
 \yii\web\Response::FORMAT_JSON => [
 'class' => 'yii\web\JsonResponseFormatter',
 'prettyPrint' => YII_DEBUG, // use "pretty" output in debug mode
 'encodeOptions' => JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE,
 // ...
],
],
],

When returning data from a database using the DAO database layer all data will be represented
as strings, which is not always the expected result especially numeric values should be represented as
numbers in JSON. When using the ActiveRecord layer for retrieving data from the database, the values for numeric
columns will be converted to integers when data is fetched from the database in [[yii\db\ActiveRecord::populateRecord()]].

Routing

With resource and controller classes ready, you can access the resources using the URL like
http://localhost/index.php?r=user/create, similar to what you can do with normal Web applications.

In practice, you usually want to enable pretty URLs and take advantage of HTTP verbs.
For example, a request POST /users would mean accessing the user/create action.
This can be done easily by configuring the urlManager application component
in the application configuration like the following:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

Compared to the URL management for Web applications, the main new thing above is the use of
[[yii\rest\UrlRule]] for routing RESTful API requests. This special URL rule class will
create a whole set of child URL rules to support routing and URL creation for the specified controller(s).
For example, the above code is roughly equivalent to the following rules:

[
 'PUT,PATCH users/<id>' => 'user/update',
 'DELETE users/<id>' => 'user/delete',
 'GET,HEAD users/<id>' => 'user/view',
 'POST users' => 'user/create',
 'GET,HEAD users' => 'user/index',
 'users/<id>' => 'user/options',
 'users' => 'user/options',
]

And the following API endpoints are supported by this rule:

	GET /users: list all users page by page;

	HEAD /users: show the overview information of user listing;

	POST /users: create a new user;

	GET /users/123: return the details of the user 123;

	HEAD /users/123: show the overview information of user 123;

	PATCH /users/123 and PUT /users/123: update the user 123;

	DELETE /users/123: delete the user 123;

	OPTIONS /users: show the supported verbs regarding endpoint /users;

	OPTIONS /users/123: show the supported verbs regarding endpoint /users/123.

You may configure the only and except options to explicitly list which actions to support or which
actions should be disabled, respectively. For example,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'except' => ['delete', 'create', 'update'],
],

You may also configure patterns or extraPatterns to redefine existing patterns or add new patterns supported by this rule.
For example, to support a new action search by the endpoint GET /users/search, configure the extraPatterns option as follows,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'extraPatterns' => [
 'GET search' => 'search',
],
]

You may have noticed that the controller ID user appears in plural form as users in the endpoint URLs.
This is because [[yii\rest\UrlRule]] automatically pluralizes controller IDs when creating child URL rules.
You may disable this behavior by setting [[yii\rest\UrlRule::pluralize]] to be false.

Info: The pluralization of controller IDs is done by [[yii\helpers\Inflector::pluralize()]]. The method respects
special pluralization rules. For example, the word box will be pluralized as boxes instead of boxs.

In case when the automatic pluralization does not meet your requirement, you may also configure the
[[yii\rest\UrlRule::controller]] property to explicitly specify how to map a name used in endpoint URLs to
a controller ID. For example, the following code maps the name u to the controller ID user.

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['u' => 'user'],
]

Extra configuration for contained rules

It could be useful to specify extra configuration that is applied to each rule contained within [[yii\rest\UrlRule]].
A good example would be specifying defaults for expand parameter:

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['user'],
 'ruleConfig' => [
 'class' => 'yii\web\UrlRule',
 'defaults' => [
 'expand' => 'profile',
]
],
],

A

alias

Alias is a string that’s used by Yii to refer to the class or directory such as @app/vendor.

application

The application is the central object during HTTP request. It contains a number of components and with these is getting info from request and dispatching it to an appropriate controller for further processing.

The application object is instantiated as a singleton by the entry script. The application singleton can be accessed at any place via \Yii::$app.

assets

Asset refers to a resource file. Typically it contains JavaScript or CSS code but can be anything else that is accessed via HTTP.

attribute

An attribute is a model property (a class member variable or a magic property defined via __get()/__set()) that stores business data.

B

bundle

Bundle, known as package in Yii 1.1, refers to a number of assets and a configuration file that describes dependencies and lists assets.

C

configuration

Configuration may refer either to the process of setting properties of an object or to a configuration file that stores settings for an object or a class of objects.

E

extension

Extension is a set of classes, asset bundles and configurations that adds more features to the application.

I

installation

Installation is a process of preparing something to work either by following a readme file or by executing specially prepared script. In case of Yii it’s setting permissions and fullfilling software requirements.

M

module

Module is a sub-application which contains MVC elements by itself, such as models, views, controllers, etc. and can be used withing the main application. Typically by forwarding requests to the module instead of handling it via controllers.

N

namespace

Namespace refers to a PHP language feature [http://php.net/manual/en/language.namespaces.php] which is actively used in Yii 2.

P

package

See bundle.

V

vendor

Vendor is an organization or individual developer providing code in form of extensions, modules or libraries.

Testing

Testing is an important part of software development. Whether we are aware of it or not, we conduct testing continuously.
For example, when we write a class in PHP, we may debug it step by step or simply use echo or die statements to verify
the implementation works according to our initial plan. In the case of a web application, we’re entering some test data
in forms to ensure the page interacts with us as expected.

The testing process could be automated so that each time when we need to verify something, we just need to call up the code that does it for us. The code that verifies the result matches
what we’ve planned is called test and the process of its creation and further execution is known as automated testing,
which is the main topic of these testing chapters.

Developing with tests

Test-Driven Development (TDD) and Behavior-Driven Development (BDD) are approaches of developing
software by describing behavior of a piece of code or the whole feature as a set of scenarios or tests before
writing actual code and only then creating the implementation that allows these tests to pass verifying that intended
behavior is achieved.

The process of developing a feature is the following:

	Create a new test that describes a feature to be implemented.

	Run the new test and make sure it fails. It is expected since there’s no implementation yet.

	Write simple code to make the new test pass.

	Run all tests and make sure they all pass.

	Improve code and make sure tests are still OK.

After it’s done the process is repeated again for another feature or improvement. If the existing feature is to be changed,
tests should be changed as well.

Tip: If you feel that you are losing time doing a lot of small and simple iterations, try covering more by your
test scenario so you do more before executing tests again. If you’re debugging too much, try doing the opposite.

The reason to create tests before doing any implementation is that it allows us to focus on what we want to achieve
and fully dive into “how to do it” afterwards. Usually it leads to better abstractions and easier test maintenance when
it comes to feature adjustments or less coupled components.

So to sum up the pros of such an approach are the following:

	Keeps you focused on one thing at a time which results in improved planning and implementation.

	Results in test-covering more features in greater detail i.e. if tests are OK most likely nothing’s broken.

In the long term it usually gives you a good time-saving effect.

Tip: If you want to know more about the principles for gathering software requirements and modeling the subject
matter it’s good to learn Domain Driven Development (DDD) [https://en.wikipedia.org/wiki/Domain-driven_design].

When and how to test

While the test first approach described above makes sense for long term and relatively complex projects it could be overkill
for simpler ones. There are some indicators of when it’s appropriate:

	Project is already large and complex.

	Project requirements are starting to get complex. Project grows constantly.

	Project is meant to be long term.

	The cost of the failure is too high.

There’s nothing wrong in creating tests covering behavior of existing implementation.

	Project is a legacy one to be gradually renewed.

	You’ve got a project to work on and it has no tests.

In some cases any form of automated testing could be overkill:

	Project is simple and isn’t getting anymore complex.

	It’s a one-time project that will no longer be worked on.

Still if you have time it’s good to automate testing in these cases as well.

Further reading

	Test Driven Development: By Example / Kent Beck. ISBN: 0321146530.

Console applications

Besides the rich features for building web applications, Yii also has full-featured support for console applications
which are mainly used to create background and maintenance tasks that need to be performed for a website.

The structure of console applications is very similar to a Yii web application. It consists of one
or more [[yii\console\Controller]] classes, which are often referred to as commands in the console environment.
Each controller can also have one or more actions, just like web controllers.

Both project templates already have a console application with them.
You can run it by calling the yii script, which is located in the base directory of the repository.
This will give you a list of available commands when you run it without any further parameters:

[image: Running ./yii command for help output]

As you can see in the screenshot, Yii has already defined a set of commands that are available by default:

	[[yii\console\controllers\AssetController|AssetController]] - Allows you to combine and compress your JavaScript and CSS files.
You can learn more about this command in the Assets Section.

	[[yii\console\controllers\CacheController|CacheController]] - Allows you to flush application caches.

	[[yii\console\controllers\FixtureController|FixtureController]] - Manages fixture data loading and unloading for testing purposes.
This command is described in more detail in the Testing Section about Fixtures.

	[[yii\console\controllers\HelpController|HelpController]] - Provides help information about console commands, this is the default command
and prints what you have seen in the above output.

	[[yii\console\controllers\MessageController|MessageController]] - Extracts messages to be translated from source files.
To learn more about this command, please refer to the I18N Section.

	[[yii\console\controllers\MigrateController|MigrateController]] - Manages application migrations.
Database migrations are described in more detail in the Database Migration Section.

	[[yii\console\controllers\ServeController|ServeController]] - Allows you run PHP built-in web server.

Usage

You execute a console controller action using the following syntax:

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]

In the above, <route> refers to the route to the controller action. The options will populate the class
properties and arguments are the parameters of the action method.

For example, the [[yii\console\controllers\MigrateController::actionUp()|MigrateController::actionUp()]]
with [[yii\console\controllers\MigrateController::$migrationTable|MigrateController::$migrationTable]] set to migrations
and a limit of 5 migrations can be called like so:

yii migrate/up 5 --migrationTable=migrations

Note: When using * in console, don’t forget to quote it as "*" in order to avoid executing it as a shell
glob that will be replaced by all file names of the current directory.

The entry script

The console application entry script is equivalent to the index.php bootstrap file used for the web application.
The console entry script is typically called yii, and located in your application’s root directory.
It contains code like the following:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/vendor/autoload.php');
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

This script will be created as part of your application; you’re free to edit it to suit your needs. The YII_DEBUG constant can be set to false if you do
not want to see a stack trace on error, and/or if you want to improve the overall performance. In both basic and advanced application
templates, the console application entry script has debugging enabled by default to provide a more developer-friendly environment.

Configuration

As can be seen in the code above, the console application uses its own configuration file, named console.php. In this file
you should configure various application components and properties for the console application in particular.

If your web application and console application share a lot of configuration parameters and values, you may consider moving the common
parts into a separate file, and including this file in both of the application configurations (web and console).
You can see an example of this in the advanced project template.

Tip: Sometimes, you may want to run a console command using an application configuration that is different
from the one specified in the entry script. For example, you may want to use the yii migrate command to
upgrade your test databases, which are configured in each individual test suite. To change the configuration
dynamically, simply specify a custom application configuration
file via the appconfig option when executing the command:

yii <route> --appconfig=path/to/config.php ...

Console command completion

Auto-completion of command arguments is a useful thing when working with the shell.
Since version 2.0.11, the ./yii command provides auto completion for the Bash and ZSH out of the box.

Bash completion

Make sure bash completion is installed. For most of installations it is available by default.

Place the completion script in /etc/bash_completion.d/:

 curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/bash/yii -o /etc/bash_completion.d/yii

For temporary usage you can put the file into the current directory and include it in the current session via source yii.
If globally installed you may need to restart the terminal or source ~/.bashrc to activate it.

Check the Bash Manual [https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html] for
other ways of including completion script to your environment.

ZSH completion

Put the completion script in directory for completions, using e.g. ~/.zsh/completion/

mkdir -p ~/.zsh/completion
curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/zsh/_yii -o ~/.zsh/completion/_yii

Include the directory in the $fpath, e.g. by adding it to ~/.zshrc

fpath=(~/.zsh/completion $fpath)

Make sure compinit is loaded or do it by adding in ~/.zshrc

autoload -Uz compinit && compinit -i

Then reload your shell

exec $SHELL -l

Creating your own console commands

Console Controller and Action

A console command is defined as a controller class extending from [[yii\console\Controller]]. In the controller class,
you define one or more actions that correspond to sub-commands of the controller. Within each action, you write code that implements the appropriate tasks for that particular sub-command.

When running a command, you need to specify the route to the controller action. For example,
the route migrate/create invokes the sub-command that corresponds to the
[[yii\console\controllers\MigrateController::actionCreate()|MigrateController::actionCreate()]] action method.
If a route offered during execution does not contain an action ID, the default action will be executed (as with a web controller).

Options

By overriding the [[yii\console\Controller::options()]] method, you can specify options that are available
to a console command (controller/actionID). The method should return a list of the controller class’s public properties.
When running a command, you may specify the value of an option using the syntax --optionName=optionValue.
This will assign optionValue to the optionName property of the controller class.

If the default value of an option is of an array type and you set this option while running the command,
the option value will be converted into an array by splitting the input string on any commas.

Options Aliases

Since version 2.0.8 console command provides [[yii\console\Controller::optionAliases()]] method to add
aliases for options.

To define an alias, override [[yii\console\Controller::optionAliases()]] in your controller, for example:

namespace app\commands;

use yii\console\Controller;

class HelloController extends Controller
{
 public $message;

 public function options($actionID)
 {
 return ['message'];
 }

 public function optionAliases()
 {
 return ['m' => 'message'];
 }

 public function actionIndex()
 {
 echo $this->message . "\n";
 }
}

Now, you can use the following syntax to run the command:

yii hello -m=hello

Arguments

Besides options, a command can also receive arguments. The arguments will be passed as the parameters to the action
method corresponding to the requested sub-command. The first argument corresponds to the first parameter, the second
corresponds to the second, and so on. If not enough arguments are provided when the command is called, the corresponding parameters
will take the declared default values, if defined. If no default value is set, and no value is provided at runtime, the command will exit with an error.

You may use the array type hint to indicate that an argument should be treated as an array. The array will be generated
by splitting the input string on commas.

The following example shows how to declare arguments:

class ExampleController extends \yii\console\Controller
{
 // The command "yii example/create test" will call "actionCreate('test')"
 public function actionCreate($name) { ... }

 // The command "yii example/index city" will call "actionIndex('city', 'name')"
 // The command "yii example/index city id" will call "actionIndex('city', 'id')"
 public function actionIndex($category, $order = 'name') { ... }

 // The command "yii example/add test" will call "actionAdd(['test'])"
 // The command "yii example/add test1,test2" will call "actionAdd(['test1', 'test2'])"
 public function actionAdd(array $name) { ... }
}

Exit Code

Using exit codes is a best practice for console application development. Conventionally, a command returns 0 to indicate that
everything is OK. If the command returns a number greater than zero, that’s considered to be indicative of an error. The number returned will be the error
code, potentially usable to find out details about the error.
For example 1 could stand generally for an unknown error and all codes above would be reserved for specific cases: input errors, missing files, and so forth.

To have your console command return an exit code, simply return an integer in the controller action
method:

public function actionIndex()
{
 if (/* some problem */) {
 echo "A problem occurred!\n";
 return 1;
 }
 // do something
 return 0;
}

There are some predefined constants you can use:

	[[yii\console\Controller::EXIT_CODE_NORMAL|Controller::EXIT_CODE_NORMAL]] with value of 0;

	[[yii\console\Controller::EXIT_CODE_ERROR|Controller::EXIT_CODE_ERROR]] with value of 1.

It’s a good practice to define meaningful constants for your controller in case you have more error code types.

Formatting and colors

Yii console supports formatted output that is automatically degraded to non-formatted one if it’s not supported
by terminal running the command.

Outputting formatted strings is simple. Here’s how to output some bold text:

$this->stdout("Hello?\n", Console::BOLD);

If you need to build string dynamically combining multiple styles it’s better to use [[yii\helpers\Console::ansiFormat()|ansiFormat()]]:

$name = $this->ansiFormat('Alex', Console::FG_YELLOW);
echo "Hello, my name is $name.";

Entry Scripts

Entry scripts are the first step in the application bootstrapping process. An application (either
Web application or console application) has a single entry script. End users make requests to
entry scripts which instantiate application instances and forward the requests to them.

Entry scripts for Web applications must be stored under Web accessible directories so that they
can be accessed by end users. They are often named as index.php, but can also use any other names,
provided Web servers can locate them.

Entry scripts for console applications are usually stored under the base path
of applications and are named as yii (with the .php suffix). They should be made executable
so that users can run console applications through the command ./yii <route> [arguments] [options].

Entry scripts mainly do the following work:

	Define global constants;

	Register Composer autoloader [https://getcomposer.org/doc/01-basic-usage.md#autoloading];

	Include the [[Yii]] class file;

	Load application configuration;

	Create and configure an application instance;

	Call [[yii\base\Application::run()]] to process the incoming request.

Web Applications

The following is the code in the entry script for the Basic Web Project Template.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require(__DIR__ . '/../vendor/autoload.php');

// include Yii class file
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// load application configuration
$config = require(__DIR__ . '/../config/web.php');

// create, configure and run application
(new yii\web\Application($config))->run();

Console Applications

Similarly, the following is the code for the entry script of a console application:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require(__DIR__ . '/vendor/autoload.php');

// include Yii class file
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

// load application configuration
$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

Defining Constants

Entry scripts are the best place for defining global constants. Yii supports the following three constants:

	YII_DEBUG: specifies whether the application is running in debug mode. When in debug mode, an application
will keep more log information, and will reveal detailed error call stacks if exceptions are thrown. For this
reason, debug mode should be used mainly during development. The default value of YII_DEBUG is false.

	YII_ENV: specifies which environment the application is running in. This will be described in
more detail in the Configurations section.
The default value of YII_ENV is 'prod', meaning the application is running in production environment.

	YII_ENABLE_ERROR_HANDLER: specifies whether to enable the error handler provided by Yii. The default
value of this constant is true.

When defining a constant, we often use the code like the following:

defined('YII_DEBUG') or define('YII_DEBUG', true);

which is equivalent to the following code:

if (!defined('YII_DEBUG')) {
 define('YII_DEBUG', true);
}

Clearly the former is more succinct and easier to understand.

Constant definitions should be done at the very beginning of an entry script so that they can take effect
when other PHP files are being included.

Cryptography

In this section we’ll review the following security aspects:

	Generating random data

	Encryption and Decryption

	Confirming Data Integrity

Generating Pseudorandom Data

Pseudorandom data is useful in many situations. For example when resetting a password via email you need to generate a
token, save it to the database, and send it via email to end user which in turn will allow them to prove ownership of
that account. It is very important that this token be unique and hard to guess, else there is a possibility that attacker
can predict the token’s value and reset the user’s password.

Yii security helper makes generating pseudorandom data simple:

$key = Yii::$app->getSecurity()->generateRandomString();

Encryption and Decryption

Yii provides convenient helper functions that allow you to encrypt/decrypt data using a secret key. The data is passed through the encryption function so that only the person which has the secret key will be able to decrypt it.
For example, we need to store some information in our database but we need to make sure only the user who has the secret key can view it (even if the application database is compromised):

// $data and $secretKey are obtained from the form
$encryptedData = Yii::$app->getSecurity()->encryptByPassword($data, $secretKey);
// store $encryptedData to database

Subsequently when user wants to read the data:

// $secretKey is obtained from user input, $encryptedData is from the database
$data = Yii::$app->getSecurity()->decryptByPassword($encryptedData, $secretKey);

It’s also possible to use key instead of password via [[\yii\base\Security::encryptByKey()]] and
[[\yii\base\Security::decryptByKey()]].

Confirming Data Integrity

There are situations in which you need to verify that your data hasn’t been tampered with by a third party or even corrupted in some way. Yii provides an easy way to confirm data integrity in the form of two helper functions.

Prefix the data with a hash generated from the secret key and data

// $secretKey our application or user secret, $genuineData obtained from a reliable source
$data = Yii::$app->getSecurity()->hashData($genuineData, $secretKey);

Checks if the data integrity has been compromised

// $secretKey our application or user secret, $data obtained from an unreliable source
$data = Yii::$app->getSecurity()->validateData($data, $secretKey);

Generating Code with Gii

This section will describe how to use Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] to automatically generate code
that implements some common Web site features. Using Gii to auto-generate code is simply a matter of entering the right information per the instructions shown on the Gii Web pages.

Through this tutorial, you will learn how to:

	enable Gii in your application,

	use Gii to generate an Active Record class,

	use Gii to generate the code implementing the CRUD operations for a DB table,

	customize the code generated by Gii.

Starting Gii

Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] is provided in Yii as a module. You can enable Gii
by configuring it in the [[yii\base\Application::modules|modules]] property of the application. Depending upon how you created your application, you may find the following code is already provided in the config/web.php configuration file:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

The above configuration states that when in development environment,
the application should include a module named gii, which is of class [[yii\gii\Module]].

If you check the entry script web/index.php of your application, you will
find the following line, which essentially makes YII_ENV_DEV to be true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Thanks to that line, your application is in development mode, and will have already enabled Gii, per the above configuration. You can now access Gii via the following URL:

http://hostname/index.php?r=gii

Note: If you are accessing Gii from a machine other than localhost, the access will be denied by default
for security purpose. You can configure Gii to add the allowed IP addresses as follows,

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // adjust this to your needs
],

[image: Gii]

Generating an Active Record Class

To use Gii to generate an Active Record class, select the “Model Generator” (by clicking the link on the Gii index page). Then fill out the form as follows:

	Table Name: country

	Model Class: Country

[image: Model Generator]

Next, click on the “Preview” button. You will see models/Country.php is listed in the resulting class file to be created. You may click on the name of the class file to preview its content.

When using Gii, if you have already created the same file and would be overwriting it, click
the diff button next to the file name to see the differences between the code to be generated
and the existing version.

[image: Model Generator Preview]

When overwriting an existing file, check the box next to “overwrite” and then click the “Generate” button. If creating a new file, you can just click “Generate”.

Next, you will see
a confirmation page indicating the code has been successfully generated. If you had an existing file, you’ll also see a message indicating that it was overwritten with the newly generated code.

Generating CRUD Code

CRUD stands for Create, Read, Update, and Delete, representing the four common tasks taken with data on most Web sites. To create CRUD functionality using Gii, select the “CRUD Generator” (by clicking the link on the Gii index page). For the “country” example, fill out the resulting form as follows:

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: CRUD Generator]

Next, click on the “Preview” button. You will see a list of files to be generated, as shown below.

[image: CRUD Generator Preview]

If you previously created the controllers/CountryController.php and
views/country/index.php files (in the databases section of the guide), check the “overwrite” box to replace them. (The previous versions did not have full CRUD support.)

Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=country%2Findex

You will see a data grid showing the countries from the database table. You may sort the grid,
or filter it by entering filter conditions in the column headers.

For each country displayed in the grid, you may choose to view its details, update it, or delete it.
You may also click on the “Create Country” button on top of the grid to be provided with a form for creating a new country.

[image: Data Grid of Countries]

[image: Updating a Country]

The following is the list of the files generated by Gii, in case you want to investigate how these features are implemented,
or to customize them:

	Controller: controllers/CountryController.php

	Models: models/Country.php and models/CountrySearch.php

	Views: views/country/*.php

Info: Gii is designed to be a highly customizable and extensible code generation tool. Using it wisely
can greatly accelerate your application development speed. For more details, please refer to
the Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] section.

Summary

In this section, you have learned how to use Gii to generate the code that implements complete
CRUD functionality for content stored in a database table.

Models

Models are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are objects representing business data, rules and logic.

You can create model classes by extending [[yii\base\Model]] or its child classes. The base class
[[yii\base\Model]] supports many useful features:

	Attributes: represent the business data and can be accessed like normal object properties
or array elements;

	Attribute labels: specify the display labels for attributes;

	Massive assignment: supports populating multiple attributes in a single step;

	Validation rules: ensures input data based on the declared validation rules;

	Data Exporting: allows model data to be exported in terms of arrays with customizable formats.

The Model class is also the base class for more advanced models, such as Active Record.
Please refer to the relevant documentation for more details about these advanced models.

Info: You are not required to base your model classes on [[yii\base\Model]]. However, because there are many Yii
components built to support [[yii\base\Model]], it is usually the preferable base class for a model.

Attributes

Models represent business data in terms of attributes. Each attribute is like a publicly accessible property
of a model. The method [[yii\base\Model::attributes()]] specifies what attributes a model class has.

You can access an attribute like accessing a normal object property:

$model = new \app\models\ContactForm;

// "name" is an attribute of ContactForm
$model->name = 'example';
echo $model->name;

You can also access attributes like accessing array elements, thanks to the support for
ArrayAccess [http://php.net/manual/en/class.arrayaccess.php] and Traversable [http://php.net/manual/en/class.traversable.php]
by [[yii\base\Model]]:

$model = new \app\models\ContactForm;

// accessing attributes like array elements
$model['name'] = 'example';
echo $model['name'];

// Model is traversable using foreach.
foreach ($model as $name => $value) {
 echo "$name: $value\n";
}

Defining Attributes

By default, if your model class extends directly from [[yii\base\Model]], all its non-static public member
variables are attributes. For example, the ContactForm model class below has four attributes: name, email,
subject and body. The ContactForm model is used to represent the input data received from an HTML form.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;
}

You may override [[yii\base\Model::attributes()]] to define attributes in a different way. The method should
return the names of the attributes in a model. For example, [[yii\db\ActiveRecord]] does so by returning
the column names of the associated database table as its attribute names. Note that you may also need to
override the magic methods such as __get(), __set() so that the attributes can be accessed like
normal object properties.

Attribute Labels

When displaying values or getting input for attributes, you often need to display some labels associated
with attributes. For example, given an attribute named firstName, you may want to display a label First Name
which is more user-friendly when displayed to end users in places such as form inputs and error messages.

You can get the label of an attribute by calling [[yii\base\Model::getAttributeLabel()]]. For example,

$model = new \app\models\ContactForm;

// displays "Name"
echo $model->getAttributeLabel('name');

By default, attribute labels are automatically generated from attribute names. The generation is done by
the method [[yii\base\Model::generateAttributeLabel()]]. It will turn camel-case variable names into
multiple words with the first letter in each word in upper case. For example, username becomes Username,
and firstName becomes First Name.

If you do not want to use automatically generated labels, you may override [[yii\base\Model::attributeLabels()]]
to explicitly declare attribute labels. For example,

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;

 public function attributeLabels()
 {
 return [
 'name' => 'Your name',
 'email' => 'Your email address',
 'subject' => 'Subject',
 'body' => 'Content',
];
 }
}

For applications supporting multiple languages, you may want to translate attribute labels. This can be done
in the [[yii\base\Model::attributeLabels()|attributeLabels()]] method as well, like the following:

public function attributeLabels()
{
 return [
 'name' => \Yii::t('app', 'Your name'),
 'email' => \Yii::t('app', 'Your email address'),
 'subject' => \Yii::t('app', 'Subject'),
 'body' => \Yii::t('app', 'Content'),
];
}

You may even conditionally define attribute labels. For example, based on the scenario the model
is being used in, you may return different labels for the same attribute.

Info: Strictly speaking, attribute labels are part of views. But declaring labels
in models is often very convenient and can result in very clean and reusable code.

Scenarios

A model may be used in different scenarios. For example, a User model may be used to collect user login inputs,
but it may also be used for the user registration purpose. In different scenarios, a model may use different
business rules and logic. For example, the email attribute may be required during user registration,
but not so during user login.

A model uses the [[yii\base\Model::scenario]] property to keep track of the scenario it is being used in.
By default, a model supports only a single scenario named default. The following code shows two ways of
setting the scenario of a model:

// scenario is set as a property
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// scenario is set through configuration
$model = new User(['scenario' => User::SCENARIO_LOGIN]);

By default, the scenarios supported by a model are determined by the validation rules declared
in the model. However, you can customize this behavior by overriding the [[yii\base\Model::scenarios()]] method,
like the following:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
 }
}

Info: In the above and following examples, the model classes are extending from [[yii\db\ActiveRecord]]
because the usage of multiple scenarios usually happens to Active Record classes.

The scenarios() method returns an array whose keys are the scenario names and values the corresponding
active attributes. An active attribute can be massively assigned and is subject
to validation. In the above example, the username and password attributes are active
in the login scenario; while in the register scenario, email is also active besides username and password.

The default implementation of scenarios() will return all scenarios found in the validation rule declaration
method [[yii\base\Model::rules()]]. When overriding scenarios(), if you want to introduce new scenarios
in addition to the default ones, you may write code like the following:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 $scenarios = parent::scenarios();
 $scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];
 $scenarios[self::SCENARIO_REGISTER] = ['username', 'email', 'password'];
 return $scenarios;
 }
}

The scenario feature is primarily used by validation and massive attribute assignment.
You can, however, use it for other purposes. For example, you may declare attribute labels
differently based on the current scenario.

Validation Rules

When the data for a model is received from end users, it should be validated to make sure it satisfies
certain rules (called validation rules, also known as business rules). For example, given a ContactForm model,
you may want to make sure all attributes are not empty and the email attribute contains a valid email address.
If the values for some attributes do not satisfy the corresponding business rules, appropriate error messages
should be displayed to help the user to fix the errors.

You may call [[yii\base\Model::validate()]] to validate the received data. The method will use
the validation rules declared in [[yii\base\Model::rules()]] to validate every relevant attribute. If no error
is found, it will return true. Otherwise, it will keep the errors in the [[yii\base\Model::errors]] property
and return false. For example,

$model = new \app\models\ContactForm;

// populate model attributes with user inputs
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // all inputs are valid
} else {
 // validation failed: $errors is an array containing error messages
 $errors = $model->errors;
}

To declare validation rules associated with a model, override the [[yii\base\Model::rules()]] method by returning
the rules that the model attributes should satisfy. The following example shows the validation rules declared
for the ContactForm model:

public function rules()
{
 return [
 // the name, email, subject and body attributes are required
 [['name', 'email', 'subject', 'body'], 'required'],

 // the email attribute should be a valid email address
 ['email', 'email'],
];
}

A rule can be used to validate one or multiple attributes, and an attribute may be validated by one or multiple rules.
Please refer to the Validating Input section for more details on how to declare
validation rules.

Sometimes, you may want a rule to be applied only in certain scenarios. To do so, you can
specify the on property of a rule, like the following:

public function rules()
{
 return [
 // username, email and password are all required in "register" scenario
 [['username', 'email', 'password'], 'required', 'on' => self::SCENARIO_REGISTER],

 // username and password are required in "login" scenario
 [['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN],
];
}

If you do not specify the on property, the rule would be applied in all scenarios. A rule is called
an active rule if it can be applied in the current [[yii\base\Model::scenario|scenario]].

An attribute will be validated if and only if it is an active attribute declared in scenarios() and
is associated with one or multiple active rules declared in rules().

Massive Assignment

Massive assignment is a convenient way of populating a model with user inputs using a single line of code.
It populates the attributes of a model by assigning the input data directly to the [[yii\base\Model::$attributes]]
property. The following two pieces of code are equivalent, both trying to assign the form data submitted by end users
to the attributes of the ContactForm model. Clearly, the former, which uses massive assignment, is much cleaner
and less error prone than the latter:

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;

Safe Attributes

Massive assignment only applies to the so-called safe attributes which are the attributes listed in
[[yii\base\Model::scenarios()]] for the current [[yii\base\Model::scenario|scenario]] of a model.
For example, if the User model has the following scenario declaration, then when the current scenario
is login, only the username and password can be massively assigned. Any other attributes will
be kept untouched.

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
}

Info: The reason that massive assignment only applies to safe attributes is because you want to
control which attributes can be modified by end user data. For example, if the User model
has a permission attribute which determines the permission assigned to the user, you would
like this attribute to be modifiable by administrators through a backend interface only.

Because the default implementation of [[yii\base\Model::scenarios()]] will return all scenarios and attributes
found in [[yii\base\Model::rules()]], if you do not override this method, it means an attribute is safe as long
as it appears in one of the active validation rules.

For this reason, a special validator aliased safe is provided so that you can declare an attribute
to be safe without actually validating it. For example, the following rules declare that both title
and description are safe attributes.

public function rules()
{
 return [
 [['title', 'description'], 'safe'],
];
}

Unsafe Attributes

As described above, the [[yii\base\Model::scenarios()]] method serves for two purposes: determining which attributes
should be validated, and determining which attributes are safe. In some rare cases, you may want to validate
an attribute but do not want to mark it safe. You can do so by prefixing an exclamation mark ! to the attribute
name when declaring it in scenarios(), like the secret attribute in the following:

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
];
}

When the model is in the login scenario, all three attributes will be validated. However, only the username
and password attributes can be massively assigned. To assign an input value to the secret attribute, you
have to do it explicitly as follows,

$model->secret = $secret;

The same can be done in rules() method:

public function rules()
{
 return [
 [['username', 'password', '!secret'], 'required', 'on' => 'login']
];
}

In this case attributes username, password and secret are required, but secret must be assigned explicitly.

Data Exporting

Models often need to be exported in different formats. For example, you may want to convert a collection of
models into JSON or Excel format. The exporting process can be broken down into two independent steps:

	models are converted into arrays;

	the arrays are converted into target formats.

You may just focus on the first step, because the second step can be achieved by generic
data formatters, such as [[yii\web\JsonResponseFormatter]].

The simplest way of converting a model into an array is to use the [[yii\base\Model::$attributes]] property.
For example,

$post = \app\models\Post::findOne(100);
$array = $post->attributes;

By default, the [[yii\base\Model::$attributes]] property will return the values of all attributes
declared in [[yii\base\Model::attributes()]].

A more flexible and powerful way of converting a model into an array is to use the [[yii\base\Model::toArray()]]
method. Its default behavior is the same as that of [[yii\base\Model::$attributes]]. However, it allows you
to choose which data items, called fields, to be put in the resulting array and how they should be formatted.
In fact, it is the default way of exporting models in RESTful Web service development, as described in
the Response Formatting.

Fields

A field is simply a named element in the array that is obtained by calling the [[yii\base\Model::toArray()]] method
of a model.

By default, field names are equivalent to attribute names. However, you can change this behavior by overriding
the [[yii\base\Model::fields()|fields()]] and/or [[yii\base\Model::extraFields()|extraFields()]] methods. Both methods
should return a list of field definitions. The fields defined by fields() are default fields, meaning that
toArray() will return these fields by default. The extraFields() method defines additionally available fields
which can also be returned by toArray() as long as you specify them via the $expand parameter. For example,
the following code will return all fields defined in fields() and the prettyName and fullAddress fields
if they are defined in extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);

You can override fields() to add, remove, rename or redefine fields. The return value of fields()
should be an array. The array keys are the field names, and the array values are the corresponding
field definitions which can be either property/attribute names or anonymous functions returning the
corresponding field values. In the special case when a field name is the same as its defining attribute
name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the changes
// in your DB table or model attributes do not cause your field changes (to keep API backward compatibility).
public function fields()
{
 return [
 // field name is the same as the attribute name
 'id',

 // field name is "email", the corresponding attribute name is "email_address"
 'email' => 'email_address',

 // field name is "name", its value is defined by a PHP callback
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// filter out some fields, best used when you want to inherit the parent implementation
// and blacklist some sensitive fields.
public function fields()
{
 $fields = parent::fields();

 // remove fields that contain sensitive information
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: Because by default all attributes of a model will be included in the exported array, you should
examine your data to make sure they do not contain sensitive information. If there is such information,
you should override fields() to filter them out. In the above example, we choose
to filter out auth_key, password_hash and password_reset_token.

Best Practices

Models are the central places to represent business data, rules and logic. They often need to be reused
in different places. In a well-designed application, models are usually much fatter than
controllers.

In summary, models

	may contain attributes to represent business data;

	may contain validation rules to ensure the data validity and integrity;

	may contain methods implementing business logic;

	should NOT directly access request, session, or any other environmental data. These data should be injected
by controllers into models;

	should avoid embedding HTML or other presentational code - this is better done in views;

	avoid having too many scenarios in a single model.

You may usually consider the last recommendation above when you are developing large complex systems.
In these systems, models could be very fat because they are used in many places and may thus contain many sets
of rules and business logic. This often ends up in a nightmare in maintaining the model code
because a single touch of the code could affect several different places. To make the model code more maintainable,
you may take the following strategy:

	Define a set of base model classes that are shared by different applications or
modules. These model classes should contain minimal sets of rules and logic that
are common among all their usages.

	In each application or module that uses a model,
define a concrete model class by extending from the corresponding base model class. The concrete model classes
should contain rules and logic that are specific for that application or module.

For example, in the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], you may define a base model
class common\models\Post. Then for the front end application, you define and use a concrete model class
frontend\models\Post which extends from common\models\Post. And similarly for the back end application,
you define backend\models\Post. With this strategy, you will be sure that the code in frontend\models\Post
is only specific to the front end application, and if you make any change to it, you do not need to worry if
the change may break the back end application.

Acceptance Tests

Note: This section is under development.

	Codeception Acceptance Tests [http://codeception.com/docs/03-AcceptanceTests]

Running basic and advanced template acceptance tests

Please refer to instructions provided in apps/advanced/tests/README.md and apps/basic/tests/README.md.

Shared Hosting Environment

Shared hosting environments are often quite limited about configuration and directory structure. Still in most cases you
can run Yii 2.0 on a shared hosting environment with a few adjustments.

Deploying a basic project template

Since in a shared hosting environment there’s typically only one webroot, use the basic project template if you can.
Refer to the Installing Yii chapter and install the basic project template locally.
After you have the application working locally, we’ll make some adjustments so it can be hosted on your shared hosting
server.

Renaming webroot

Connect to your shared host using FTP or by other means. You will probably see something like the following.

config
logs
www

In the above, www is your webserver webroot directory. It could be named differently. Common names are: www,
htdocs, and public_html.

The webroot in our basic project template is named web. Before uploading the application to your webserver rename
your local webroot to match your server, i.e., from web to www, public_html or whatever the name of your hosting
webroot.

FTP root directory is writeable

If you can write to the root level directory i.e. where config, logs and www are, then upload assets, commands
etc. as is to the root level directory.

Add extras for webserver

If your webserver is Apache you’ll need to add an .htaccess file with the following content to web
(or public_html or whatever) (where the index.php file is located):

Options +FollowSymLinks
IndexIgnore */*

RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

In case of nginx you should not need any extra config files.

Check requirements

In order to run Yii, your webserver must meet its requirements. The very minimum requirement is PHP 5.4. In order to
check the requirements copy requirements.php from your root directory into the webroot directory and run it via
browser using http://example.com/requirements.php URL. Don’t forget to delete the file afterwards.

Deploying an advanced project template

Deploying an advanced application to shared hosting is a bit trickier than a basic application but it could be achieved.
Follow instructions described in
advanced project template documentation [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/topic-shared-hosting.md].

Fixtures

Fixtures are an important part of testing. Their main purpose is to set up the environment in a fixed/known state
so that your tests are repeatable and run in an expected way. Yii provides a fixture framework that allows
you to define your fixtures precisely and use them easily.

A key concept in the Yii fixture framework is the so-called fixture object. A fixture object represents
a particular aspect of a test environment and is an instance of [[yii\test\Fixture]] or its child class. For example,
you may use UserFixture to make sure the user DB table contains a fixed set of data. You load one or multiple
fixture objects before running a test and unload them when finishing.

A fixture may depend on other fixtures, specified via its [[yii\test\Fixture::depends]] property.
When a fixture is being loaded, the fixtures it depends on will be automatically loaded BEFORE the fixture;
and when the fixture is being unloaded, the dependent fixtures will be unloaded AFTER the fixture.

Defining a Fixture

To define a fixture, create a new class by extending [[yii\test\Fixture]] or [[yii\test\ActiveFixture]].
The former is best suited for general purpose fixtures, while the latter has enhanced features specifically
designed to work with database and ActiveRecord.

The following code defines a fixture about the User ActiveRecord and the corresponding user table.

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
 public $modelClass = 'app\models\User';
}

Tip: Each ActiveFixture is about preparing a DB table for testing purpose. You may specify the table
by setting either the [[yii\test\ActiveFixture::tableName]] property or the [[yii\test\ActiveFixture::modelClass]]
property. If the latter, the table name will be taken from the ActiveRecord class specified by modelClass.

Note: [[yii\test\ActiveFixture]] is only suited for SQL databases. For NoSQL databases, Yii provides the following
ActiveFixture classes:

	Mongo DB: [[yii\mongodb\ActiveFixture]]

	Elasticsearch: [[yii\elasticsearch\ActiveFixture]] (since version 2.0.2)

The fixture data for an ActiveFixture fixture is usually provided in a file located at FixturePath/data/TableName.php,
where FixturePath stands for the directory containing the fixture class file, and TableName
is the name of the table associated with the fixture. In the example above, the file should be
@app/tests/fixtures/data/user.php. The data file should return an array of data rows
to be inserted into the user table. For example,

<?php
return [
 'user1' => [
 'username' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 'user2' => [
 'username' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

You may give an alias to a row so that later in your test, you may refer to the row via the alias. In the above example,
the two rows are aliased as user1 and user2, respectively.

Also, you do not need to specify the data for auto-incremental columns. Yii will automatically fill the actual
values into the rows when the fixture is being loaded.

Tip: You may customize the location of the data file by setting the [[yii\test\ActiveFixture::dataFile]] property.
You may also override [[yii\test\ActiveFixture::getData()]] to provide the data.

As we described earlier, a fixture may depend on other fixtures. For example, a UserProfileFixture may need to depends on UserFixture
because the user profile table contains a foreign key pointing to the user table.
The dependency is specified via the [[yii\test\Fixture::depends]] property, like the following,

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture
{
 public $modelClass = 'app\models\UserProfile';
 public $depends = ['app\tests\fixtures\UserFixture'];
}

The dependency also ensures, that the fixtures are loaded and unloaded in a well defined order. In the above example UserFixture will
always be loaded before UserProfileFixture to ensure all foreign key references exist and will be unloaded after UserProfileFixture
has been unloaded for the same reason.

In the above, we have shown how to define a fixture about a DB table. To define a fixture not related with DB
(e.g. a fixture about certain files and directories), you may extend from the more general base class
[[yii\test\Fixture]] and override the [[yii\test\Fixture::load()|load()]] and [[yii\test\Fixture::unload()|unload()]] methods.

Using Fixtures

If you are using Codeception [http://codeception.com/] to test your code, you should consider using
the yii2-codeception extension which has built-in support for loading and accessing fixtures.
If you are using other testing frameworks, you may use [[yii\test\FixtureTrait]] in your test cases
to achieve the same goal.

In the following we will describe how to write a UserProfile unit test class using yii2-codeception.

In your unit test class extending [[yii\codeception\DbTestCase]] or [[yii\codeception\TestCase]],
declare which fixtures you want to use in the [[yii\test\FixtureTrait::fixtures()|fixtures()]] method. For example,

namespace app\tests\unit\models;

use yii\codeception\DbTestCase;
use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends DbTestCase
{
 public function fixtures()
 {
 return [
 'profiles' => UserProfileFixture::className(),
];
 }

 // ...test methods...
}

The fixtures listed in the fixtures() method will be automatically loaded before running every test method
in the test case and unloaded after finishing every test method. And as we described before, when a fixture is
being loaded, all its dependent fixtures will be automatically loaded first. In the above example, because
UserProfileFixture depends on UserFixture, when running any test method in the test class,
two fixtures will be loaded sequentially: UserFixture and UserProfileFixture.

When specifying fixtures in fixtures(), you may use either a class name or a configuration array to refer to
a fixture. The configuration array will let you customize the fixture properties when the fixture is loaded.

You may also assign an alias to a fixture. In the above example, the UserProfileFixture is aliased as profiles.
In the test methods, you may then access a fixture object using its alias. For example, $this->profiles will
return the UserProfileFixture object.

Because UserProfileFixture extends from ActiveFixture, you may further use the following syntax to access
the data provided by the fixture:

// returns the data row aliased as 'user1'
$row = $this->profiles['user1'];
// returns the UserProfile model corresponding to the data row aliased as 'user1'
$profile = $this->profiles('user1');
// traverse every data row in the fixture
foreach ($this->profiles as $row) ...

Info: $this->profiles is still of UserProfileFixture type. The above access features are implemented
through PHP magic methods.

Defining and Using Global Fixtures

The fixtures described above are mainly used by individual test cases. In most cases, you also need some global
fixtures that are applied to ALL or many test cases. An example is [[yii\test\InitDbFixture]] which does
two things:

	Perform some common initialization tasks by executing a script located at @app/tests/fixtures/initdb.php;

	Disable the database integrity check before loading other DB fixtures, and re-enable it after other DB fixtures are unloaded.

Using global fixtures is similar to using non-global ones. The only difference is that you declare these fixtures
in [[yii\codeception\TestCase::globalFixtures()]] instead of fixtures(). When a test case loads fixtures, it will
first load global fixtures and then non-global ones.

By default, [[yii\codeception\DbTestCase]] already declares InitDbFixture in its globalFixtures() method.
This means you only need to work with @app/tests/fixtures/initdb.php if you want to do some initialization work
before each test. You may otherwise simply focus on developing each individual test case and the corresponding fixtures.

Organizing Fixture Classes and Data Files

By default, fixture classes look for the corresponding data files under the data folder which is a sub-folder
of the folder containing the fixture class files. You can follow this convention when working with simple projects.
For big projects, chances are that you often need to switch different data files for the same fixture class for
different tests. We thus recommend that you organize the data files in a hierarchical way that is similar to
your class namespaces. For example,

under folder tests\unit\fixtures

data\
 components\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
 models\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
and so on

In this way you will avoid collision of fixture data files between tests and use them as you need.

Note: In the example above fixture files are named only for example purpose. In real life you should name them
according to which fixture class your fixture classes are extending from. For example, if you are extending
from [[yii\test\ActiveFixture]] for DB fixtures, you should use DB table names as the fixture data file names;
If you are extending from [[yii\mongodb\ActiveFixture]] for MongoDB fixtures, you should use collection names as the file names.

The similar hierarchy can be used to organize fixture class files. Instead of using data as the root directory, you may
want to use fixtures as the root directory to avoid conflict with the data files.

Summary

Note: This section is under development.

In the above, we have described how to define and use fixtures. Below we summarize the typical workflow
of running unit tests related with DB:

	Use yii migrate tool to upgrade your test database to the latest version;

	Run a test case:
	Load fixtures: clean up the relevant DB tables and populate them with fixture data;

	Perform the actual test;

	Unload fixtures.

	Repeat Step 2 until all tests finish.

To be cleaned up below

Managing Fixtures

Note: This section is under development.

todo: this tutorial may be merged with the above part of test-fixtures.md

Fixtures are important part of testing. Their main purpose is to populate you with data that needed by testing
different cases. With this data using your tests becoming more efficient and useful.

Yii supports fixtures via the yii fixture command line tool. This tool supports:

	Loading fixtures to different storage such as: RDBMS, NoSQL, etc;

	Unloading fixtures in different ways (usually it is clearing storage);

	Auto-generating fixtures and populating it with random data.

Fixtures format

Fixtures are objects with different methods and configurations, refer to official documentation [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md] on them.
Lets assume we have fixtures data to load:

#users.php file under fixtures data path, by default @tests\unit\fixtures\data

return [
 [
 'name' => 'Chase',
 'login' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 [
 'name' => 'Celestine',
 'login' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

If we are using fixture that loads data into database then these rows will be applied to users table. If we are using nosql fixtures, for example mongodb
fixture, then this data will be applied to users mongodb collection. In order to learn about implementing various loading strategies and more, refer to official documentation [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md].
Above fixture example was auto-generated by yii2-faker extension, read more about it in these section.
Fixture classes name should not be plural.

Loading fixtures

Fixture classes should be suffixed by Fixture class. By default fixtures will be searched under tests\unit\fixtures namespace, you can
change this behavior with config or command options. You can exclude some fixtures due load or unload by specifying - before its name like -User.

To load fixture, run the following command:

Note: Prior to loading data unload sequence is executed. Usually that results in cleaning up all the existing data inserted by previous fixture executions.

yii fixture/load <fixture_name>

The required fixture_name parameter specifies a fixture name which data will be loaded. You can load several fixtures at once.
Below are correct formats of this command:

// load `User` fixture
yii fixture/load User

// same as above, because default action of "fixture" command is "load"
yii fixture User

// load several fixtures
yii fixture "User, UserProfile"

// load all fixtures
yii fixture/load "*"

// same as above
yii fixture "*"

// load all fixtures except ones
yii fixture "*, -DoNotLoadThisOne"

// load fixtures, but search them in different namespace. By default namespace is: tests\unit\fixtures.
yii fixture User --namespace='alias\my\custom\namespace'

// load global fixture `some\name\space\CustomFixture` before other fixtures will be loaded.
// By default this option is set to `InitDbFixture` to disable/enable integrity checks. You can specify several
// global fixtures separated by comma.
yii fixture User --globalFixtures='some\name\space\Custom'

Unloading fixtures

To unload fixture, run the following command:

// unload Users fixture, by default it will clear fixture storage (for example "users" table, or "users" collection if this is mongodb fixture).
yii fixture/unload User

// Unload several fixtures
yii fixture/unload "User, UserProfile"

// unload all fixtures
yii fixture/unload "*"

// unload all fixtures except ones
yii fixture/unload "*, -DoNotUnloadThisOne"

Same command options like: namespace, globalFixtures also can be applied to this command.

Configure Command Globally

While command line options allow us to configure the migration command
on-the-fly, sometimes we may want to configure the command once for all. For example you can configure
different migration path as follows:

'controllerMap' => [
 'fixture' => [
 'class' => 'yii\console\controllers\FixtureController',
 'namespace' => 'myalias\some\custom\namespace',
 'globalFixtures' => [
 'some\name\space\Foo',
 'other\name\space\Bar'
],
],
]

Auto-generating fixtures

Yii also can auto-generate fixtures for you based on some template. You can generate your fixtures with different data on different languages and formats.
This feature is done by Faker [https://github.com/fzaninotto/Faker] library and yii2-faker extension.
See extension guide [https://github.com/yiisoft/yii2-faker] for more docs.

Logging

Yii provides a powerful logging framework that is highly customizable and extensible. Using this framework, you
can easily log various types of messages, filter them, and gather them at different targets, such as files, databases,
emails.

Using the Yii logging framework involves the following steps:

	Record log messages at various places in your code;

	Configure log targets in the application configuration to filter and export log messages;

	Examine the filtered logged messages exported by different targets (e.g. the Yii debugger).

In this section, we will mainly describe the first two steps.

Log Messages

Recording log messages is as simple as calling one of the following logging methods:

	[[Yii::trace()]]: record a message to trace how a piece of code runs. This is mainly for development use.

	[[Yii::info()]]: record a message that conveys some useful information.

	[[Yii::warning()]]: record a warning message that indicates something unexpected has happened.

	[[Yii::error()]]: record a fatal error that should be investigated as soon as possible.

These logging methods record log messages at various severity levels and categories. They share
the same function signature function ($message, $category = 'application'), where $message stands for
the log message to be recorded, while $category is the category of the log message. The code in the following
example records a trace message under the default category application:

Yii::trace('start calculating average revenue');

Info: Log messages can be strings as well as complex data, such as arrays or objects. It is the responsibility
of log targets to properly deal with log messages. By default, if a log message is not a string,
it will be exported as a string by calling [[yii\helpers\VarDumper::export()]].

To better organize and filter log messages, it is recommended that you specify an appropriate category for each
log message. You may choose a hierarchical naming scheme for categories, which will make it easier for
log targets to filter messages based on their categories. A simple yet effective naming scheme
is to use the PHP magic constant __METHOD__ for the category names. This is also the approach used in the core
Yii framework code. For example,

Yii::trace('start calculating average revenue', __METHOD__);

The __METHOD__ constant evaluates as the name of the method (prefixed with the fully qualified class name) where
the constant appears. For example, it is equal to the string 'app\controllers\RevenueController::calculate' if
the above line of code is called within this method.

Info: The logging methods described above are actually shortcuts to the [[yii\log\Logger::log()|log()]] method
of the [[yii\log\Logger|logger object]] which is a singleton accessible through the expression Yii::getLogger(). When
enough messages are logged or when the application ends, the logger object will call a
[[yii\log\Dispatcher|message dispatcher]] to send recorded log messages to the registered log targets.

Log Targets

A log target is an instance of the [[yii\log\Target]] class or its child class. It filters the log messages by their
severity levels and categories and then exports them to some medium. For example, a [[yii\log\DbTarget|database target]]
exports the filtered log messages to a database table, while an [[yii\log\EmailTarget|email target]] exports
the log messages to specified email addresses.

You can register multiple log targets in an application by configuring them through the log application component
in the application configuration, like the following:

return [
 // the "log" component must be loaded during bootstrapping time
 'bootstrap' => ['log'],

 'components' => [
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\DbTarget',
 'levels' => ['error', 'warning'],
],
 [
 'class' => 'yii\log\EmailTarget',
 'levels' => ['error'],
 'categories' => ['yii\db*'],
 'message' => [
 'from' => ['log@example.com'],
 'to' => ['admin@example.com', 'developer@example.com'],
 'subject' => 'Database errors at example.com',
],
],
],
],
],
];

Note: The log component must be loaded during bootstrapping time so that
it can dispatch log messages to targets promptly. That is why it is listed in the bootstrap array as shown above.

In the above code, two log targets are registered in the [[yii\log\Dispatcher::targets]] property:

	the first target selects error and warning messages and saves them in a database table;

	the second target selects error messages under the categories whose names start with yii\db\, and sends
them in an email to both admin@example.com and developer@example.com.

Yii comes with the following built-in log targets. Please refer to the API documentation about these classes to
learn how to configure and use them.

	[[yii\log\DbTarget]]: stores log messages in a database table.

	[[yii\log\EmailTarget]]: sends log messages to pre-specified email addresses.

	[[yii\log\FileTarget]]: saves log messages in files.

	[[yii\log\SyslogTarget]]: saves log messages to syslog by calling the PHP function syslog().

In the following, we will describe the features common to all log targets.

Message Filtering

For each log target, you can configure its [[yii\log\Target::levels|levels]] and
[[yii\log\Target::categories|categories]] properties to specify which severity levels and categories of the messages the target should process.

The [[yii\log\Target::levels|levels]] property takes an array consisting of one or several of the following values:

	error: corresponding to messages logged by [[Yii::error()]].

	warning: corresponding to messages logged by [[Yii::warning()]].

	info: corresponding to messages logged by [[Yii::info()]].

	trace: corresponding to messages logged by [[Yii::trace()]].

	profile: corresponding to messages logged by [[Yii::beginProfile()]] and [[Yii::endProfile()]], which will
be explained in more details in the Profiling subsection.

If you do not specify the [[yii\log\Target::levels|levels]] property, it means the target will process messages
of any severity level.

The [[yii\log\Target::categories|categories]] property takes an array consisting of message category names or patterns.
A target will only process messages whose category can be found or match one of the patterns in this array.
A category pattern is a category name prefix with an asterisk * at its end. A category name matches a category pattern
if it starts with the same prefix of the pattern. For example, yii\db\Command::execute and yii\db\Command::query
are used as category names for the log messages recorded in the [[yii\db\Command]] class. They both match
the pattern yii\db*.

If you do not specify the [[yii\log\Target::categories|categories]] property, it means the target will process
messages of any category.

Besides whitelisting the categories by the [[yii\log\Target::categories|categories]] property, you may also
blacklist certain categories by the [[yii\log\Target::except|except]] property. If the category of a message
is found or matches one of the patterns in this property, it will NOT be processed by the target.

The following target configuration specifies that the target should only process error and warning messages
under the categories whose names match either yii\db* or yii\web\HttpException:*, but not yii\web\HttpException:404.

[
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
 'categories' => [
 'yii\db*',
 'yii\web\HttpException:*',
],
 'except' => [
 'yii\web\HttpException:404',
],
]

Info: When an HTTP exception is caught by the error handler, an error message
will be logged with the category name in the format of yii\web\HttpException:ErrorCode. For example,
the [[yii\web\NotFoundHttpException]] will cause an error message of category yii\web\HttpException:404.

Message Formatting

Log targets export the filtered log messages in a certain format. For example, if you install
a log target of the class [[yii\log\FileTarget]], you may find a log message similar to the following in the
runtime/log/app.log file:

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug

By default, log messages will be formatted as follows by the [[yii\log\Target::formatMessage()]]:

Timestamp [IP address][User ID][Session ID][Severity Level][Category] Message Text

You may customize this format by configuring the [[yii\log\Target::prefix]] property which takes a PHP callable
returning a customized message prefix. For example, the following code configures a log target to prefix each
log message with the current user ID (IP address and Session ID are removed for privacy reasons).

[
 'class' => 'yii\log\FileTarget',
 'prefix' => function ($message) {
 $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
 $userID = $user ? $user->getId(false) : '-';
 return "[$userID]";
 }
]

Besides message prefixes, log targets also append some context information to each batch of log messages.
By default, the values of these global PHP variables are included: $_GET, $_POST, $_FILES, $_COOKIE,
$_SESSION and $_SERVER. You may adjust this behavior by configuring the [[yii\log\Target::logVars]] property
with the names of the global variables that you want to include by the log target. For example, the following
log target configuration specifies that only the value of the $_SERVER variable will be appended to the log messages.

[
 'class' => 'yii\log\FileTarget',
 'logVars' => ['_SERVER'],
]

You may configure logVars to be an empty array to totally disable the inclusion of context information.
Or if you want to implement your own way of providing context information, you may override the
[[yii\log\Target::getContextMessage()]] method.

Message Trace Level

During development, it is often desirable to see where each log message is coming from. This can be achieved by
configuring the [[yii\log\Dispatcher::traceLevel|traceLevel]] property of the log component like the following:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [...],
],
],
];

The above application configuration sets [[yii\log\Dispatcher::traceLevel|traceLevel]] to be 3 if YII_DEBUG is on
and 0 if YII_DEBUG is off. This means, if YII_DEBUG is on, each log message will be appended with at most 3
levels of the call stack at which the log message is recorded; and if YII_DEBUG is off, no call stack information
will be included.

Info: Getting call stack information is not trivial. Therefore, you should only use this feature during development
or when debugging an application.

Message Flushing and Exporting

As aforementioned, log messages are maintained in an array by the [[yii\log\Logger|logger object]]. To limit the
memory consumption by this array, the logger will flush the recorded messages to the log targets
each time the array accumulates a certain number of log messages. You can customize this number by configuring
the [[yii\log\Dispatcher::flushInterval|flushInterval]] property of the log component:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 100, // default is 1000
 'targets' => [...],
],
],
];

Info: Message flushing also occurs when the application ends, which ensures log targets can receive complete log messages.

When the [[yii\log\Logger|logger object]] flushes log messages to log targets, they do not get exported
immediately. Instead, the message exporting only occurs when a log target accumulates certain number of the filtered
messages. You can customize this number by configuring the [[yii\log\Target::exportInterval|exportInterval]]
property of individual log targets, like the following,

[
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 100, // default is 1000
]

Because of the flushing and exporting level setting, by default when you call Yii::trace() or any other logging
method, you will NOT see the log message immediately in the log targets. This could be a problem for some long-running
console applications. To make each log message appear immediately in the log targets, you should set both
[[yii\log\Dispatcher::flushInterval|flushInterval]] and [[yii\log\Target::exportInterval|exportInterval]] to be 1,
as shown below:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 1,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 1,
],
],
],
],
];

Note: Frequent message flushing and exporting will degrade the performance of your application.

Toggling Log Targets

You can enable or disable a log target by configuring its [[yii\log\Target::enabled|enabled]] property.
You may do so via the log target configuration or by the following PHP statement in your code:

Yii::$app->log->targets['file']->enabled = false;

The above code requires you to name a target as file, as shown below by using string keys in the
targets array:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'targets' => [
 'file' => [
 'class' => 'yii\log\FileTarget',
],
 'db' => [
 'class' => 'yii\log\DbTarget',
],
],
],
],
];

Creating New Targets

Creating a new log target class is very simple. You mainly need to implement the [[yii\log\Target::export()]] method
sending the content of the [[yii\log\Target::messages]] array to a designated medium. You may call the
[[yii\log\Target::formatMessage()]] method to format each message. For more details, you may refer to any of the
log target classes included in the Yii release.

Tip: Instead of creating your own loggers you may try any PSR-3 compatible logger such
as Monolog [https://github.com/Seldaek/monolog] by using
PSR log target extension [https://github.com/samdark/yii2-psr-log-target].

Performance Profiling

Performance profiling is a special type of message logging that is used to measure the time taken by certain
code blocks and find out what are the performance bottlenecks. For example, the [[yii\db\Command]] class uses
performance profiling to find out the time taken by each DB query.

To use performance profiling, first identify the code blocks that need to be profiled. Then enclose each
code block like the following:

\Yii::beginProfile('myBenchmark');

...code block being profiled...

\Yii::endProfile('myBenchmark');

where myBenchmark stands for a unique token identifying a code block. Later when you examine the profiling
result, you will use this token to locate the time spent by the corresponding code block.

It is important to make sure that the pairs of beginProfile and endProfile are properly nested.
For example,

\Yii::beginProfile('block1');

 // some code to be profiled

 \Yii::beginProfile('block2');
 // some other code to be profiled
 \Yii::endProfile('block2');

\Yii::endProfile('block1');

If you miss \Yii::endProfile('block1') or switch the order of \Yii::endProfile('block1') and
\Yii::endProfile('block2'), the performance profiling will not work.

For each code block being profiled, a log message with the severity level profile is recorded. You can configure
a log target to collect such messages and export them. The Yii debugger has
a built-in performance profiling panel showing the profiling results.

Dependency Injection Container

A dependency injection (DI) container is an object that knows how to instantiate and configure objects and
all their dependent objects. Martin Fowler’s article [http://martinfowler.com/articles/injection.html] has well
explained why DI container is useful. Here we will mainly explain the usage of the DI container provided by Yii.

Dependency Injection

Yii provides the DI container feature through the class [[yii\di\Container]]. It supports the following kinds of
dependency injection:

	Constructor injection;

	Method injection;

	Setter and property injection;

	PHP callable injection;

Constructor Injection

The DI container supports constructor injection with the help of type hints for constructor parameters.
The type hints tell the container which classes or interfaces are dependent when it is used to create a new object.
The container will try to get the instances of the dependent classes or interfaces and then inject them
into the new object through the constructor. For example,

class Foo
{
 public function __construct(Bar $bar)
 {
 }
}

$foo = $container->get('Foo');
// which is equivalent to the following:
$bar = new Bar;
$foo = new Foo($bar);

Method Injection

Usually the dependencies of a class are passed to the constructor and are available inside of the class during the whole lifecycle.
With Method Injection it is possible to provide a dependency that is only needed by a single method of the class
and passing it to the constructor may not be possible or may cause too much overhead in the majority of use cases.

A class method can be defined like the doSomething() method in the following example:

class MyClass extends \yii\base\Component
{
 public function __construct(/*Some lightweight dependencies here*/, $config = [])
 {
 // ...
 }

 public function doSomething($param1, \my\heavy\Dependency $something)
 {
 // do something with $something
 }
}

You may call that method either by passing an instance of \my\heavy\Dependency yourself or using [[yii\di\Container::invoke()]] like the following:

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something will be provided by the DI container

Setter and Property Injection

Setter and property injection is supported through configurations.
When registering a dependency or when creating a new object, you can provide a configuration which
will be used by the container to inject the dependencies through the corresponding setters or properties.
For example,

use yii\base\Object;

class Foo extends Object
{
 public $bar;

 private $_qux;

 public function getQux()
 {
 return $this->_qux;
 }

 public function setQux(Qux $qux)
 {
 $this->_qux = $qux;
 }
}

$container->get('Foo', [], [
 'bar' => $container->get('Bar'),
 'qux' => $container->get('Qux'),
]);

Info: The [[yii\di\Container::get()]] method takes its third parameter as a configuration array that should
be applied to the object being created. If the class implements the [[yii\base\Configurable]] interface (e.g.
[[yii\base\Object]]), the configuration array will be passed as the last parameter to the class constructor;
otherwise, the configuration will be applied after the object is created.

PHP Callable Injection

In this case, the container will use a registered PHP callable to build new instances of a class.
Each time when [[yii\di\Container::get()]] is called, the corresponding callable will be invoked.
The callable is responsible to resolve the dependencies and inject them appropriately to the newly
created objects. For example,

$container->set('Foo', function () {
 $foo = new Foo(new Bar);
 // ... other initializations ...
 return $foo;
});

$foo = $container->get('Foo');

To hide the complex logic for building a new object, you may use a static class method as callable. For example,

class FooBuilder
{
 public static function build()
 {
 $foo = new Foo(new Bar);
 // ... other initializations ...
 return $foo;
 }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');

By doing so, the person who wants to configure the Foo class no longer needs to be aware of how it is built.

Registering Dependencies

You can use [[yii\di\Container::set()]] to register dependencies. The registration requires a dependency name
as well as a dependency definition. A dependency name can be a class name, an interface name, or an alias name;
and a dependency definition can be a class name, a configuration array, or a PHP callable.

$container = new \yii\di\Container;

// register a class name as is. This can be skipped.
$container->set('yii\db\Connection');

// register an interface
// When a class depends on the interface, the corresponding class
// will be instantiated as the dependent object
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// register an alias name. You can use $container->get('foo')
// to create an instance of Connection
$container->set('foo', 'yii\db\Connection');

// register a class with configuration. The configuration
// will be applied when the class is instantiated by get()
$container->set('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// register an alias name with class configuration
// In this case, a "class" element is required to specify the class
$container->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// register a PHP callable
// The callable will be executed each time when $container->get('db') is called
$container->set('db', function ($container, $params, $config) {
 return new \yii\db\Connection($config);
});

// register a component instance
// $container->get('pageCache') will return the same instance each time it is called
$container->set('pageCache', new FileCache);

Tip: If a dependency name is the same as the corresponding dependency definition, you do not
need to register it with the DI container.

A dependency registered via set() will generate an instance each time the dependency is needed.
You can use [[yii\di\Container::setSingleton()]] to register a dependency that only generates
a single instance:

$container->setSingleton('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Resolving Dependencies

Once you have registered dependencies, you can use the DI container to create new objects,
and the container will automatically resolve dependencies by instantiating them and injecting
them into the newly created objects. The dependency resolution is recursive, meaning that
if a dependency has other dependencies, those dependencies will also be resolved automatically.

You can use [[yii\di\Container::get()|get()]] to either create or get object instance.
The method takes a dependency name, which can be a class name, an interface name or an alias name.
The dependency name may be registered via [[yii\di\Container::set()|set()]]
or [[yii\di\Container::setSingleton()|setSingleton()]]. You may optionally provide a list of class
constructor parameters and a configuration to configure the newly created object.

For example:

// "db" is a previously registered alias name
$db = $container->get('db');

// equivalent to: $engine = new \app\components\SearchEngine($apiKey, $apiSecret, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey, $apiSecret], ['type' => 1]);

Behind the scene, the DI container does much more work than just creating a new object.
The container will first inspect the class constructor to find out dependent class or interface names
and then automatically resolve those dependencies recursively.

The following code shows a more sophisticated example. The UserLister class depends on an object implementing
the UserFinderInterface interface; the UserFinder class implements this interface and depends on
a Connection object. All these dependencies are declared through type hinting of the class constructor parameters.
With property dependency registration, the DI container is able to resolve these dependencies automatically
and creates a new UserLister instance with a simple call of get('userLister').

namespace app\models;

use yii\base\Object;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
 function findUser();
}

class UserFinder extends Object implements UserFinderInterface
{
 public $db;

 public function __construct(Connection $db, $config = [])
 {
 $this->db = $db;
 parent::__construct($config);
 }

 public function findUser()
 {
 }
}

class UserLister extends Object
{
 public $finder;

 public function __construct(UserFinderInterface $finder, $config = [])
 {
 $this->finder = $finder;
 parent::__construct($config);
 }
}

$container = new Container;
$container->set('yii\db\Connection', [
 'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
 'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// which is equivalent to:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

Practical Usage

Yii creates a DI container when you include the Yii.php file in the entry script
of your application. The DI container is accessible via [[Yii::$container]]. When you call [[Yii::createObject()]],
the method will actually call the container’s [[yii\di\Container::get()|get()]] method to create a new object.
As aforementioned, the DI container will automatically resolve the dependencies (if any) and inject them
into obtained object. Because Yii uses [[Yii::createObject()]] in most of its core code to create
new objects, this means you can customize the objects globally by dealing with [[Yii::$container]].

For example, let’s customize globally the default number of pagination buttons of [[yii\widgets\LinkPager]].

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Now if you use the widget in a view with the following code, the maxButtonCount property will be initialized
as 5 instead of the default value 10 as defined in the class.

echo \yii\widgets\LinkPager::widget();

You can still override the value set via DI container, though:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Note: Properties given in the widget call will always override the definition in the DI container.
Even if you specify an array, e.g. 'options' => ['id' => 'mypager'] these will not be merged
with other options but replace them.

Another example is to take advantage of the automatic constructor injection of the DI container.
Assume your controller class depends on some other objects, such as a hotel booking service. You
can declare the dependency through a constructor parameter and let the DI container to resolve it for you.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
 protected $bookingService;

 public function __construct($id, $module, BookingInterface $bookingService, $config = [])
 {
 $this->bookingService = $bookingService;
 parent::__construct($id, $module, $config);
 }
}

If you access this controller from browser, you will see an error complaining the BookingInterface
cannot be instantiated. This is because you need to tell the DI container how to deal with this dependency:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');

Now if you access the controller again, an instance of app\components\BookingService will be
created and injected as the 3rd parameter to the controller’s constructor.

Advanced Practical Usage

Say we work on API application and have:

	app\components\Request class that extends yii\web\Request and provides additional functionality

	app\components\Response class that extends yii\web\Response and should have format property
set to json on creation

	app\storage\FileStorage and app\storage\DocumentsReader classes that implement some logic on
working with documents that are located in some file storage:

class FileStorage
{
 public function __contruct($root) {
 // whatever
 }
}

class DocumentsReader
{
 public function __contruct(FileStorage $fs) {
 // whatever
 }
}

It is possible to configure multiple definitions at once, passing configuration array to
[[yii\di\Container::setDefinitions()|setDefinitions()]] or [[yii\di\Container::setSingletons()|setSingletons()]] method.
Iterating over the configuration array, the methods will call [[yii\di\Container::set()|set()]]
or [[yii\di\Container::setSingleton()|setSingleton()]] respectively for each item.

The configuration array format is:

	key: class name, interface name or alias name. The key will be passed to the
[[yii\di\Container::set()|set()]] method as a first argument $class.

	value: the definition associated with $class. Possible values are described in [[yii\di\Container::set()|set()]]
documentation for the $definition parameter. Will be passed to the [[set()]] method as
the second argument $definition.

For example, let’s configure our container to follow the aforementioned requirements:

$container->setDefinitions([
 'yii\web\Request' => 'app\components\Request',
 'yii\web\Response' => [
 'class' => 'app\components\Response',
 'format' => 'json'
],
 'app\storage\DocumentsReader' => function () {
 $fs = new app\storage\FileStorage('/var/tempfiles');
 return new app\storage\DocumentsReader($fs);
 }
]);

$reader = $container->get('app\storage\DocumentsReader);
// Will create DocumentReader object with its dependencies as described in the config

Tip: Container may be configured in declarative style using application configuration since version 2.0.11.
Check out the Application Configurations subsection of
the Configurations guide article.

Everything works, but in case we need to create DocumentWriter class,
we shall copy-paste the line that creates FileStorage object, that is not the smartest way, obviously.

As described in the Resolving Dependencies subsection, [[yii\di\Container::set()|set()]]
and [[yii\di\Container::setSingleton()|setSingleton()]] can optionally take dependency’s constructor parameters as
a third argument. To set the constructor parameters, you may use the following configuration array format:

	key: class name, interface name or alias name. The key will be passed to the
[[yii\di\Container::set()|set()]] method as a first argument $class.

	value: array of two elements. The first element will be passed to the [[yii\di\Container::set()|set()]] method as the
second argument $definition, the second one — as $params.

Let’s modify our example:

$container->setDefinitions([
 'tempFileStorage' => [// we've created an alias for convenience
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles'] // could be extracted from some config files
],
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader);
// Will behave exactly the same as in the previous example.

You might notice Instance::of('tempFileStorage') notation. It means, that the [[yii\di\Container|Container]]
will implicitly provide a dependency registered with the name of tempFileStorage and pass it as the first argument
of app\storage\DocumentsWriter constructor.

Note: [[yii\di\Container::setDefinitions()|setDefinitions()]] and [[yii\di\Container::setSingletons()|setSingletons()]]
methods are available since version 2.0.11.

Another step on configuration optimization is to register some dependencies as singletons.
A dependency registered via [[yii\di\Container::set()|set()]] will be instantiated each time it is needed.
Some classes do not change the state during runtime, therefore they may be registered as singletons
in order to increase the application performance.

A good example could be app\storage\FileStorage class, that executes some operations on file system with a simple
API (e.g. $fs->read(), $fs->write()). These operations do not change the internal class state, so we can
create its instance once and use it multiple times.

$container->setSingletons([
 'tempFileStorage' => [
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles']
],
]);

$container->setDefinitions([
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader');

When to Register Dependencies

Because dependencies are needed when new objects are being created, their registration should be done
as early as possible. The following are the recommended practices:

	If you are the developer of an application, you can register your dependencies using application configuration.
Please, read the Application Configurations subsection of
the Configurations guide article.

	If you are the developer of a redistributable extension, you can register dependencies
in the bootstrapping class of the extension.

Summary

Both dependency injection and service locator are popular design patterns
that allow building software in a loosely-coupled and more testable fashion. We highly recommend you to read
Martin’s article [http://martinfowler.com/articles/injection.html] to get a deeper understanding of
dependency injection and service locator.

Yii implements its service locator on top of the dependency injection (DI) container.
When a service locator is trying to create a new object instance, it will forward the call to the DI container.
The latter will resolve the dependencies automatically as described above.

Helpers

Note: This section is under development.

Yii provides many classes that help simplify common coding tasks, such as string or array manipulations,
HTML code generation, and so on. These helper classes are organized under the yii\helpers namespace and
are all static classes (meaning they contain only static properties and methods and should not be instantiated).

You use a helper class by directly calling one of its static methods, like the following:

use yii\helpers\Html;

echo Html::encode('Test > test');

Note: To support customizing helper classes, Yii breaks each core helper class
into two classes: a base class (e.g. BaseArrayHelper) and a concrete class (e.g. ArrayHelper).
When you use a helper, you should only use the concrete version and never use the base class.

Core Helper Classes

The following core helper classes are provided in the Yii releases:

	ArrayHelper

	Console

	FileHelper

	FormatConverter

	Html

	HtmlPurifier

	Imagine (provided by yii2-imagine extension)

	Inflector

	Json

	Markdown

	StringHelper

	Url

	VarDumper

Customizing Helper Classes

To customize a core helper class (e.g. [[yii\helpers\ArrayHelper]]), you should create a new class extending
from the helpers corresponding base class (e.g. [[yii\helpers\BaseArrayHelper]]) and name your class the same
as the corresponding concrete class (e.g. [[yii\helpers\ArrayHelper]]), including its namespace. This class
will then be set up to replace the original implementation of the framework.

The following example shows how to customize the [[yii\helpers\ArrayHelper::merge()|merge()]] method of the
[[yii\helpers\ArrayHelper]] class:

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
 public static function merge($a, $b)
 {
 // your custom implementation
 }
}

Save your class in a file named ArrayHelper.php. The file can be in any directory, for example @app/components.

Next, in your application’s entry script, add the following line of code
after including the yii.php file to tell the Yii class autoloader to load your custom
class instead of the original helper class from the framework:

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';

Note that customizing of helper classes is only useful if you want to change the behavior of an existing function
of the helpers. If you want to add additional functions to use in your application, you may be better off creating a separate
helper for that.

Installing Yii

You can install Yii in two ways, using the Composer [https://getcomposer.org/] package manager or by downloading an archive file.
The former is the preferred way, as it allows you to install new extensions or update Yii by simply running a single command.

Standard installations of Yii result in both the framework and a project template being downloaded and installed.
A project template is a working Yii project implementing some basic features, such as login, contact form, etc.
Its code is organized in a recommended way. Therefore, it can serve as a good starting point for your projects.

In this and the next few sections, we will describe how to install Yii with the so-called Basic Project Template and
how to implement new features on top of this template. Yii also provides another template called
the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md] which is better used in a team development environment
to develop applications with multiple tiers.

Info: The Basic Project Template is suitable for developing 90 percent of Web applications. It differs
from the Advanced Project Template mainly in how their code is organized. If you are new to Yii, we strongly
recommend you stick to the Basic Project Template for its simplicity yet sufficient functionalities.

Installing via Composer

Installing Composer

If you do not already have Composer installed, you may do so by following the instructions at
getcomposer.org [https://getcomposer.org/download/]. On Linux and Mac OS X, you’ll run the following commands:

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

On Windows, you’ll download and run Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Please refer to the Troubleshooting section of the Composer Documentation [https://getcomposer.org/doc/articles/troubleshooting.md]
if you encounter any problems.
If you are new to Composer, we also recommend to read at least the Basic usage section [https://getcomposer.org/doc/01-basic-usage.md]
of the Composer documentation.

In this guide all composer commands assume you have installed composer globally [https://getcomposer.org/doc/00-intro.md#globally]
so that it is available as the composer command. If you are using the composer.phar in the local directory instead,
you have to adjust the example commands accordingly.

If you had Composer already installed before, make sure you use an up to date version. You can update Composer
by running composer self-update.

Note: During the installation of Yii, Composer will need to request a lot of information from the Github API.
The number of requests depends on the number of dependencies your application has and may be bigger than the
Github API rate limit. If you hit this limit, Composer may ask for your Github login credentials to obtain
a Github API access token. On fast connections you may hit this limit earlier than Composer can handle so we
recommend to configure the access token before installing Yii.
Please refer to the Composer documentation about Github API tokens [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens]
for instructions on how to do this.

Installing Yii

With Composer installed, you can install Yii by running the following commands under a Web-accessible folder:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

The first command installs the composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/]
which allows managing bower and npm package dependencies through Composer. You only need to run this command
once for all. The second command installs the latest stable version of Yii in a directory named basic.
You can choose a different directory name if you want.

Info: If the composer create-project command fails make sure you have the composer asset plugin installed correctly.
You can do that by running composer global show, which should contain an entry fxp/composer-asset-plugin.
You may also refer to the Troubleshooting section of the Composer Documentation [https://getcomposer.org/doc/articles/troubleshooting.md]
for common errors. When you have fixed the error, you can resume the aborted installation
by running composer update inside of the basic directory.

Tip: If you want to install the latest development version of Yii, you may use the following command instead,
which adds a stability option [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Note that the development version of Yii should not be used for production as it may break your running code.

Installing from an Archive File

Installing Yii from an archive file involves three steps:

	Download the archive file from yiiframework.com [http://www.yiiframework.com/download/].

	Unpack the downloaded file to a Web-accessible folder.

	Modify the config/web.php file by entering a secret key for the cookieValidationKey configuration item
(this is done automatically if you are installing Yii using Composer):

// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',

Other Installation Options

The above installation instructions show how to install Yii, which also creates a basic Web application that works out of the box.
This approach is a good starting point for most projects, either small or big. It is especially suitable if you just
start learning Yii.

But there are other installation options available:

	If you only want to install the core framework and would like to build an entire application from scratch,
you may follow the instructions as explained in Building Application from Scratch.

	If you want to start with a more sophisticated application, better suited to team development environments,
you may consider installing the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md].

Verifying the Installation

After installation is done, either configure your web server (see next section) or use the
built-in PHP web server [https://secure.php.net/manual/en/features.commandline.webserver.php] by running the following
console command while in the project web directory:

php yii serve

Note: By default the HTTP-server will listen to port 8080. However if that port is already in use or you wish to
serve multiple applications this way, you might want to specify what port to use. Just add the –port argument:

php yii serve --port=8888

You can use your browser to access the installed Yii application with the following URL:

http://localhost:8080/

[image: Successful Installation of Yii]

You should see the above “Congratulations!” page in your browser. If not, please check if your PHP installation satisfies
Yii’s requirements. You can check if the minimum requirements are met using one of the following approaches:

	Copy /requirements.php to /web/requirements.php and then use a browser to access it via http://localhost/requirements.php

	Run the following commands:

cd basic
php requirements.php

You should configure your PHP installation so that it meets the minimum requirements of Yii. Most importantly, you
should have PHP 5.4 or above. Ideally latest PHP 7. You should also install the PDO PHP Extension [http://www.php.net/manual/en/pdo.installation.php]
and a corresponding database driver (such as pdo_mysql for MySQL databases), if your application needs a database.

Configuring Web Servers

Info: You may skip this subsection for now if you are just test driving Yii with no intention
of deploying it to a production server.

The application installed according to the above instructions should work out of box with either
an Apache HTTP server [http://httpd.apache.org/] or an Nginx HTTP server [http://nginx.org/], on
Windows, Mac OS X, or Linux running PHP 5.4 or higher. Yii 2.0 is also compatible with facebook’s
HHVM [http://hhvm.com/]. However, there are some edge cases where HHVM behaves different than native
PHP, so you have to take some extra care when using HHVM.

On a production server, you may want to configure your Web server so that the application can be accessed
via the URL http://www.example.com/index.php instead of http://www.example.com/basic/web/index.php. Such configuration
requires pointing the document root of your Web server to the basic/web folder. You may also
want to hide index.php from the URL, as described in the Routing and URL Creation section.
In this subsection, you’ll learn how to configure your Apache or Nginx server to achieve these goals.

Info: By setting basic/web as the document root, you also prevent end users from accessing
your private application code and sensitive data files that are stored in the sibling directories
of basic/web. Denying access to those other folders is a security improvement.

Info: If your application will run in a shared hosting environment where you do not have permission
to modify its Web server configuration, you may still adjust the structure of your application for better security. Please refer to
the Shared Hosting Environment section for more details.

Recommended Apache Configuration

Use the following configuration in Apache’s httpd.conf file or within a virtual host configuration. Note that you
should replace path/to/basic/web with the actual path for basic/web.

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

Recommended Nginx Configuration

To use Nginx [http://wiki.nginx.org/], you should install PHP as an FPM SAPI [http://php.net/install.fpm].
You may use the following Nginx configuration, replacing path/to/basic/web with the actual path for
basic/web and mysite.local with the actual hostname to serve.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.local;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 # deny accessing php files for the /assets directory
 location ~ ^/assets/.*\.php$ {
 deny all;
 }

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~* /\. {
 deny all;
 }
}

When using this configuration, you should also set cgi.fix_pathinfo=0 in the php.ini file
in order to avoid many unnecessary system stat() calls.

Also note that when running an HTTPS server, you need to add fastcgi_param HTTPS on; so that Yii
can properly detect if a connection is secure.

Looking Ahead

If you’ve read through the entire “Getting Started” chapter, you have now created a complete Yii application. In the process, you have learned how to implement some commonly
needed features, such as getting data from users via an HTML form, fetching data from a database, and
displaying data in a paginated fashion. You have also learned how to use Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] to generate
code automatically. Using Gii for code generation turns the bulk of your Web development process into a task as simple as just filling out some forms.

This section will summarize the Yii resources available to help you be more productive when using the framework.

	Documentation
	The Definitive Guide [http://www.yiiframework.com/doc-2.0/guide-README.html]:
As the name indicates, the guide precisely defines how Yii should work and provides general guidance
about using Yii. It is the single most important Yii tutorial, and one that you should read
before writing any Yii code.

	The Class Reference [http://www.yiiframework.com/doc-2.0/index.html]:
This specifies the usage of every class provided by Yii. It should be mainly used when you are writing
code and want to understand the usage of a particular class, method, property. Usage of the class reference is best only after a contextual understanding of the entire framework.

	The Wiki Articles [http://www.yiiframework.com/wiki/?tag=yii2]:
The wiki articles are written by Yii users based on their own experiences. Most of them are written
like cookbook recipes, and show how to solve particular problems using Yii. While the quality of these
articles may not be as good as the Definitive Guide, they are useful in that they cover broader topics
and can often provide ready-to-use solutions.

	Books [http://www.yiiframework.com/doc/]

	Extensions [http://www.yiiframework.com/extensions/]:
Yii boasts a library of thousands of user-contributed extensions that can be easily plugged into your applications, thereby making your application development even faster and easier.

	Community
	Forum: http://www.yiiframework.com/forum/

	IRC chat: The #yii channel on the freenode network (irc://irc.freenode.net/yii)

	Gitter chat: https://gitter.im/yiisoft/yii2

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

Html helper

Every web application generates lots of HTML markup. If the markup is static, it can be done efficiently by
mixing PHP and HTML in a single file [http://php.net/manual/en/language.basic-syntax.phpmode.php], but when it is
generated dynamically it starts to get tricky to handle it without extra help. Yii provides such help in the form
of an Html helper, which provides a set of static methods for handling commonly used HTML tags, their options, and their content.

Note: If your markup is nearly static, it’s better to use HTML directly. There’s no need to wrap absolutely everything
in Html helper calls.

Basics

Since building dynamic HTML by string concatenation can get messy very fast, Yii provides a set of methods to
manipulate tag options and build tags based on these options.

Generating Tags

The code for generating a tag looks like the following:

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>

The first argument is the tag name. The second one is the content to be enclosed between the start and end tags.
Note that we are using Html::encode —

 that’s because the content isn’t encoded automatically to allow using HTML when needed.
The third one is an array of HTML options, or in other words, tag attributes.
In this array the key is the name of the attribute (such as class, href or target), and the value is its value.

The code above will generate the following HTML:

<p class="username">samdark</p>

In case you need just an opening or closing tag, you can use the Html::beginTag() and Html::endTag() methods.

Options are used in many methods of the Html helper and various widgets. In all these cases there is some extra handling to
know about:

	If a value is null, the corresponding attribute will not be rendered.

	Attributes whose values are of boolean type will be treated as
boolean attributes [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes].

	The values of attributes will be HTML-encoded using [[yii\helpers\Html::encode()|Html::encode()]].

	If the value of an attribute is an array, it will be handled as follows:
	If the attribute is a data attribute as listed in [[yii\helpers\Html::$dataAttributes]], such as data or ng,
a list of attributes will be rendered, one for each element in the value array. For example,
'data' => ['id' => 1, 'name' => 'yii'] generates data-id="1" data-name="yii"; and
'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] generates
data-params='{"id":1,"name":"yii"}' data-status="ok". Note that in the latter example JSON format is used
to render a sub-array.

	If the attribute is NOT a data attribute, the value will be JSON-encoded. For example,
['params' => ['id' => 1, 'name' => 'yii'] generates params='{"id":1,"name":"yii"}'.

Forming CSS Classes and Styles

When building options for HTML tags we often start with defaults which we need to modify. In order to add or
remove a CSS class you can use the following:

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
 Html::removeCssClass($options, 'btn-default');
 Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Pwede na', $options);

// if the value of $type is 'success' it will render
// <div class="btn btn-success">Pwede na</div>

You may specify multiple CSS classes using the array style as well:

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

You may also use the array style when adding or removing classes:

$options = ['class' => 'btn'];

if ($type === 'success') {
 Html::addCssClass($options, ['btn-success', 'btn-lg']);
}

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-success btn-lg">Save</div>'

Html::addCssClass() prevents duplication, so you don’t need to worry about the same class appearing twice:

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // class 'btn-default' is already present

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

If the CSS class option is specified using the array style, you may use a named key to mark the logical purpose of the class.
In this case, a class with the same key in the array style will be ignored in Html::addCssClass():

$options = [
 'class' => [
 'btn',
 'theme' => 'btn-default',
]
];

Html::addCssClass($options, ['theme' => 'btn-success']); // 'theme' key is already taken

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

CSS styles can be set up in similar way using the style attribute:

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// gives style="width: 100px; height: 200px; position: absolute;"
Html::addCssStyle($options, 'height: 200px; position: absolute;');

// gives style="position: absolute;"
Html::removeCssStyle($options, ['width', 'height']);

When using [[yii\helpers\Html::addCssStyle()|addCssStyle()]], you can specify either an array of key-value pairs,
corresponding to CSS property names and values, or a string such as width: 100px; height: 200px;. These formats
can be converted from one to the other using [[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] and
[[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]]. The [[yii\helpers\Html::removeCssStyle()|removeCssStyle()]]
method accepts an array of properties to remove. If it’s a single property, it can be specified as a string.

Encoding and Decoding Content

In order for content to be displayed properly and securely in HTML, special characters in the content should be encoded.
In PHP this is done with htmlspecialchars [http://www.php.net/manual/en/function.htmlspecialchars.php] and
htmlspecialchars_decode [http://www.php.net/manual/en/function.htmlspecialchars-decode.php]. The issue with using
these methods directly is that you have to specify encoding and extra flags all the time. Since these flags are the same
all the time and the encoding should match the one of the application in order to prevent security issues, Yii provides two
compact and simple-to-use methods:

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);

Forms

Dealing with form markup is quite repetitive and error prone. Because of that, there is a group of methods to help
dealing with them.

Note: consider using [[yii\widgets\ActiveForm|ActiveForm]] in case you’re dealing with models and need validation.

Creating Forms

Forms can be opened with [[yii\helpers\Html::beginForm()|beginForm()]] method like the following:

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>

The first argument is the URL the form will be submitted to. It can be specified in the form of a Yii route and parameters accepted by [[yii\helpers\Url::to()|Url::to()]].
The second one is the method to use. post is the default. The third one is an array of options
for the form tag. In this case we’re changing the encoding of the form data in the POST request to multipart/form-data,
which is required in order to upload files.

Closing the form tag is simple:

<?= Html::endForm() ?>

Buttons

In order to generate buttons, you can use the following code:

<?= Html::button('Press me!', ['class' => 'teaser']) ?>
<?= Html::submitButton('Submit', ['class' => 'submit']) ?>
<?= Html::resetButton('Reset', ['class' => 'reset']) ?>

The first argument for all three methods is the button title, and the second one is an array of options.
The title isn’t encoded, so if you’re displaying data from the end user, encode it with [[yii\helpers\Html::encode()|Html::encode()]].

Input Fields

There are two groups of input methods. The ones starting with active, which are called active inputs, and the ones not starting with it.
Active inputs take data from the model and attribute specified, while in the case of a regular input, data is specified
directly.

The most generic methods are:

type, input name, input value, options
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

type, model, model attribute name, options
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>

If you know the input type in advance, it’s more convenient to use the shortcut methods:

	[[yii\helpers\Html::buttonInput()]]

	[[yii\helpers\Html::submitInput()]]

	[[yii\helpers\Html::resetInput()]]

	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]

	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]

	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]

	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]

	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]

Radios and checkboxes are a bit different in terms of method signature:

<?= Html::radio('agree', true, ['label' => 'I agree']);
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => 'I agree']);
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])

Dropdown lists and list boxes can be rendered like the following:

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

The first argument is the name of the input, the second one is the value that’s currently selected, and the third one is an array of key-value pairs, where the array key is the list value and the array value is the list label.

If you want multiple choices to be selectable, you can use a checkbox list:

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

If not, use radio list:

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

Labels and Errors

Same as inputs, there are two methods for generating form labels. Active, which takes data from the model, and non-active, which accepts data directly:

<?= Html::label('User name', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username']) ?>

In order to display form errors from a model or models as a summary, you could use:

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>

To display an individual error:

<?= Html::error($post, 'title', ['class' => 'error']) ?>

Input Names and Values

There are methods to get names, ids and values for input fields based on the model. These are mainly used internally,
but could be handy sometimes:

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// my first post
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');

In the above, the first argument is the model, while the second one is the attribute expression. In its simplest form the expression is just an attribute name, but it can be an attribute name prefixed and/or suffixed with array indexes, which is mainly used for tabular input:

	[0]content is used in tabular data input to represent the content attribute for the first model in tabular input;

	dates[0] represents the first array element of the dates attribute;

	[0]dates[0] represents the first array element of the dates attribute for the first model in tabular input.

In order to get the attribute name without suffixes or prefixes, one can use the following:

// dates
echo Html::getAttributeName('dates[0]');

Styles and Scripts

There are two methods to generate tags wrapping embedded styles and scripts:

<?= Html::style('.danger { color: #f00; }') ?>

Gives you

<style>.danger { color: #f00; }</style>

<?= Html::script('alert("Hello!");', ['defer' => true]);

Gives you

<script defer>alert("Hello!");</script>

If you want to use an external style in a CSS file:

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

generates

<!--[if IE 5]>
 <link href="http://example.com/css/ie5.css" />
<![endif]-->

The first argument is the URL. The second one is an array of options. In addition to the regular options, you can specify:

	condition to wrap <link in conditional comments with the specified condition. Hope you won’t need conditional
comments ever ;)

	noscript can be set to true to wrap <link in a <noscript> tag so it will be included only when there’s
either no JavaScript support in the browser or it was disabled by the user.

To link a JavaScript file:

<?= Html::jsFile('@web/js/main.js') ?>

Same as with CSS, the first argument specifies the URL of the file to be included. Options can be passed as the second argument.
In the options you can specify condition in the same way as in the options for cssFile.

Hyperlinks

There’s a method to generate hyperlinks conveniently:

<?= Html::a('Profile', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>

The first argument is the title. It’s not encoded, so if you’re using data entered by the user, you need to encode it with
Html::encode(). The second argument is what will be in the href attribute of the <a tag.
See Url::to() for details on what values it accepts.
The third argument is an array of tag attributes.

If you need to generate mailto links, you can use the following code:

<?= Html::mailto('Contact us', 'admin@example.com') ?>

Images

In order to generate an image tag, use the following:

<?= Html::img('@web/images/logo.png', ['alt' => 'My logo']) ?>

generates

Besides aliases, the first argument can accept routes, parameters and URLs, in the same way Url::to() does.

Lists

Unordered list can be generated like the following:

<?= Html::ul($posts, ['item' => function($item, $index) {
 return Html::tag(
 'li',
 $this->render('post', ['item' => $item]),
 ['class' => 'post']
);
}]) ?>

In order to get ordered list, use Html::ol() instead.

Controllers

After creating the resource classes and specifying how resource data should be formatted, the next thing
to do is to create controller actions to expose the resources to end users through RESTful APIs.

Yii provides two base controller classes to simplify your work of creating RESTful actions:
[[yii\rest\Controller]] and [[yii\rest\ActiveController]]. The difference between these two controllers
is that the latter provides a default set of actions that are specifically designed to deal with
resources represented as Active Record. So if you are using Active Record
and are comfortable with the provided built-in actions, you may consider extending your controller classes
from [[yii\rest\ActiveController]], which will allow you to create powerful RESTful APIs with minimal code.

Both [[yii\rest\Controller]] and [[yii\rest\ActiveController]] provide the following features, some of which
will be described in detail in the next few sections:

	HTTP method validation;

	Content negotiation and Data formatting;

	Authentication;

	Rate limiting.

[[yii\rest\ActiveController]] in addition provides the following features:

	A set of commonly needed actions: index, view, create, update, delete, options;

	User authorization in regard to the requested action and resource.

Creating Controller Classes

When creating a new controller class, a convention in naming the controller class is to use
the type name of the resource and use singular form. For example, to serve user information,
the controller may be named as UserController.

Creating a new action is similar to creating an action for a Web application. The only difference
is that instead of rendering the result using a view by calling the render() method, for RESTful actions
you directly return the data. The [[yii\rest\Controller::serializer|serializer]] and the
[[yii\web\Response|response object]] will handle the conversion from the original data to the requested
format. For example,

public function actionView($id)
{
 return User::findOne($id);
}

Filters

Most RESTful API features provided by [[yii\rest\Controller]] are implemented in terms of filters.
In particular, the following filters will be executed in the order they are listed:

	[[yii\filters\ContentNegotiator|contentNegotiator]]: supports content negotiation, to be explained in
the Response Formatting section;

	[[yii\filters\VerbFilter|verbFilter]]: supports HTTP method validation;

	[[yii\filters\auth\AuthMethod|authenticator]]: supports user authentication, to be explained in
the Authentication section;

	[[yii\filters\RateLimiter|rateLimiter]]: supports rate limiting, to be explained in
the Rate Limiting section.

These named filters are declared in the [[yii\rest\Controller::behaviors()|behaviors()]] method.
You may override this method to configure individual filters, disable some of them, or add your own filters.
For example, if you only want to use HTTP basic authentication, you may write the following code:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

CORS

Adding the Cross-Origin Resource Sharing filter to a controller is a bit more complicated
than adding other filters described above, because the CORS filter has to be applied before authentication methods
and thus needs a slightly different approach compared to other filters. Also authentication has to be disabled for the
CORS Preflight requests [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests]
so that a browser can safely determine whether a request can be made beforehand without the need for sending
authentication credentials. The following shows the code that is needed to add the [[yii\filters\Cors]] filter
to an existing controller that extends from [[yii\rest\ActiveController]]:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();

 // remove authentication filter
 $auth = $behaviors['authenticator'];
 unset($behaviors['authenticator']);

 // add CORS filter
 $behaviors['corsFilter'] = [
 'class' => \yii\filters\Cors::className(),
];

 // re-add authentication filter
 $behaviors['authenticator'] = $auth;
 // avoid authentication on CORS-pre-flight requests (HTTP OPTIONS method)
 $behaviors['authenticator']['except'] = ['options'];

 return $behaviors;
}

Extending ActiveController

If your controller class extends from [[yii\rest\ActiveController]], you should set
its [[yii\rest\ActiveController::modelClass|modelClass]] property to be the name of the resource class
that you plan to serve through this controller. The class must extend from [[yii\db\ActiveRecord]].

Customizing Actions

By default, [[yii\rest\ActiveController]] provides the following actions:

	[[yii\rest\IndexAction|index]]: list resources page by page;

	[[yii\rest\ViewAction|view]]: return the details of a specified resource;

	[[yii\rest\CreateAction|create]]: create a new resource;

	[[yii\rest\UpdateAction|update]]: update an existing resource;

	[[yii\rest\DeleteAction|delete]]: delete the specified resource;

	[[yii\rest\OptionsAction|options]]: return the supported HTTP methods.

All these actions are declared through the [[yii\rest\ActiveController::actions()|actions()]] method.
You may configure these actions or disable some of them by overriding the actions() method, like shown the following,

public function actions()
{
 $actions = parent::actions();

 // disable the "delete" and "create" actions
 unset($actions['delete'], $actions['create']);

 // customize the data provider preparation with the "prepareDataProvider()" method
 $actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'];

 return $actions;
}

public function prepareDataProvider()
{
 // prepare and return a data provider for the "index" action
}

Please refer to the class references for individual action classes to learn what configuration options are available.

Performing Access Check

When exposing resources through RESTful APIs, you often need to check if the current user has the permission
to access and manipulate the requested resource(s). With [[yii\rest\ActiveController]], this can be done
by overriding the [[yii\rest\ActiveController::checkAccess()|checkAccess()]] method like the following,

/**
 * Checks the privilege of the current user.
 *
 * This method should be overridden to check whether the current user has the privilege
 * to run the specified action against the specified data model.
 * If the user does not have access, a [[ForbiddenHttpException]] should be thrown.
 *
 * @param string $action the ID of the action to be executed
 * @param \yii\base\Model $model the model to be accessed. If `null`, it means no specific model is being accessed.
 * @param array $params additional parameters
 * @throws ForbiddenHttpException if the user does not have access
 */
public function checkAccess($action, $model = null, $params = [])
{
 // check if the user can access $action and $model
 // throw ForbiddenHttpException if access should be denied
 if ($action === 'update' || $action === 'delete') {
 if ($model->author_id !== \Yii::$app->user->id)
 throw new \yii\web\ForbiddenHttpException(sprintf('You can only %s articles that you\'ve created.', $action));
 }
}

The checkAccess() method will be called by the default actions of [[yii\rest\ActiveController]]. If you create
new actions and also want to perform access check, you should call this method explicitly in the new actions.

Tip: You may implement checkAccess() by using the Role-Based Access Control (RBAC) component.

Data Caching

Data caching is about storing some PHP variables in cache and retrieving it later from cache.
It is also the foundation for more advanced caching features, such as query caching
and page caching.

The following code is a typical usage pattern of data caching, where $cache refers to
a cache component:

// try retrieving $data from cache
$data = $cache->get($key);

if ($data === false) {
 // $data is not found in cache, calculate it from scratch
 $data = $this->calculateSomething();

 // store $data in cache so that it can be retrieved next time
 $cache->set($key, $data);
}

// $data is available here

Since version 2.0.11, cache component provides [[yii\caching\Cache::getOrSet()|getOrSet()]] method
that simplifies code for data getting, calculating and storing. The following code does exactly the same as the
previous example:

$data = $cache->getOrSet($key, function () {
 return $this->calculateSomething();
});

When cache has data associated with the $key, the cached value will be returned.
Otherwise, the passed anonymous function will be executed to calculate the value that will be cached and returned.

If the anonymous function requires some data from the outer scope, you can pass it with the use statement.
For example:

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
 return $this->calculateSomething($user_id);
});

Note: [[yii\caching\Cache::getOrSet()|getOrSet()]] method supports duration and dependencies as well.
See Cache Expiration and Cache Dependencies to know more.

Cache Components

Data caching relies on the so-called cache components which represent various cache storage,
such as memory, files, databases.

Cache components are usually registered as application components so
that they can be globally configurable
and accessible. The following code shows how to configure the cache application component to use
memcached [http://memcached.org/] with two cache servers:

'components' => [
 'cache' => [
 'class' => 'yii\caching\MemCache',
 'servers' => [
 [
 'host' => 'server1',
 'port' => 11211,
 'weight' => 100,
],
 [
 'host' => 'server2',
 'port' => 11211,
 'weight' => 50,
],
],
],
],

You can then access the above cache component using the expression Yii::$app->cache.

Because all cache components support the same set of APIs, you can swap the underlying cache component
with a different one by reconfiguring it in the application configuration without modifying the code that uses the cache.
For example, you can modify the above configuration to use [[yii\caching\ApcCache|APC cache]]:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
],
],

Tip: You can register multiple cache application components. The component named cache is used
by default by many cache-dependent classes (e.g. [[yii\web\UrlManager]]).

Supported Cache Storage

Yii supports a wide range of cache storage. The following is a summary:

	[[yii\caching\ApcCache]]: uses PHP APC [http://php.net/manual/en/book.apc.php] extension. This option can be
considered as the fastest one when dealing with cache for a centralized thick application (e.g. one
server, no dedicated load balancers, etc.).

	[[yii\caching\DbCache]]: uses a database table to store cached data. To use this cache, you must
create a table as specified in [[yii\caching\DbCache::cacheTable]].

	[[yii\caching\DummyCache]]: serves as a cache placeholder which does no real caching.
The purpose of this component is to simplify the code that needs to check the availability of cache.
For example, during development or if the server doesn’t have actual cache support, you may configure
a cache component to use this cache. When an actual cache support is enabled, you can switch to use
the corresponding cache component. In both cases, you may use the same code
Yii::$app->cache->get($key) to attempt retrieving data from the cache without worrying that
Yii::$app->cache might be null.

	[[yii\caching\FileCache]]: uses standard files to store cached data. This is particularly suitable
to cache large chunk of data, such as page content.

	[[yii\caching\MemCache]]: uses PHP memcache [http://php.net/manual/en/book.memcache.php]
and memcached [http://php.net/manual/en/book.memcached.php] extensions. This option can be considered as
the fastest one when dealing with cache in a distributed applications (e.g. with several servers, load
balancers, etc.)

	[[yii\redis\Cache]]: implements a cache component based on Redis [http://redis.io/] key-value store
(redis version 2.6.12 or higher is required).

	[[yii\caching\WinCache]]: uses PHP WinCache [http://iis.net/downloads/microsoft/wincache-extension]
(see also [http://php.net/manual/en/book.wincache.php]) extension.

	[[yii\caching\XCache]]: uses PHP XCache [http://xcache.lighttpd.net/] extension.

	Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm]
as the underlying caching medium.

Tip: You may use different cache storage in the same application. A common strategy is to use memory-based
cache storage to store data that is small but constantly used (e.g. statistical data), and use file-based
or database-based cache storage to store data that is big and less frequently used (e.g. page content).

Cache APIs

All cache components have the same base class [[yii\caching\Cache]] and thus support the following APIs:

	[[yii\caching\Cache::get()|get()]]: retrieves a data item from cache with a specified key. A false
value will be returned if the data item is not found in the cache or is expired/invalidated.

	[[yii\caching\Cache::set()|set()]]: stores a data item identified by a key in cache.

	[[yii\caching\Cache::add()|add()]]: stores a data item identified by a key in cache if the key is not found in the cache.

	[[yii\caching\Cache::getOrSet()|getOrSet()]]: retrieves a data item from cache with a specified key or executes passed
callback, stores return of the callback in a cache by a key and returns that data.

	[[yii\caching\Cache::multiGet()|multiGet()]]: retrieves multiple data items from cache with the specified keys.

	[[yii\caching\Cache::multiSet()|multiSet()]]: stores multiple data items in cache. Each item is identified by a key.

	[[yii\caching\Cache::multiAdd()|multiAdd()]]: stores multiple data items in cache. Each item is identified by a key.
If a key already exists in the cache, the data item will be skipped.

	[[yii\caching\Cache::exists()|exists()]]: returns a value indicating whether the specified key is found in the cache.

	[[yii\caching\Cache::delete()|delete()]]: removes a data item identified by a key from the cache.

	[[yii\caching\Cache::flush()|flush()]]: removes all data items from the cache.

Note: Do not cache a false boolean value directly because the [[yii\caching\Cache::get()|get()]] method uses
false return value to indicate the data item is not found in the cache. You may put false in an array and cache
this array instead to avoid this problem.

Some cache storage, such as MemCache, APC, support retrieving multiple cached values in a batch mode,
which may reduce the overhead involved in retrieving cached data. The APIs [[yii\caching\Cache::multiGet()|multiGet()]]
and [[yii\caching\Cache::multiAdd()|multiAdd()]] are provided to exploit this feature. In case the underlying cache storage
does not support this feature, it will be simulated.

Because [[yii\caching\Cache]] implements ArrayAccess, a cache component can be used like an array. The following
are some examples:

$cache['var1'] = $value1; // equivalent to: $cache->set('var1', $value1);
$value2 = $cache['var2']; // equivalent to: $value2 = $cache->get('var2');

Cache Keys

Each data item stored in cache is uniquely identified by a key. When you store a data item in cache,
you have to specify a key for it. Later when you retrieve the data item from cache, you should provide
the corresponding key.

You may use a string or an arbitrary value as a cache key. When a key is not a string, it will be automatically
serialized into a string.

A common strategy of defining a cache key is to include all determining factors in terms of an array.
For example, [[yii\db\Schema]] uses the following key to cache schema information about a database table:

[
 __CLASS__, // schema class name
 $this->db->dsn, // DB connection data source name
 $this->db->username, // DB connection login user
 $name, // table name
];

As you can see, the key includes all necessary information needed to uniquely specify a database table.

Note: Values stored in cache via [[yii\caching\Cache::multiSet()|multiSet()]] or [[yii\caching\Cache::multiAdd()|multiAdd()]] can
have only string or integer keys. If you need to set more complex key store the value separately via
[[yii\caching\Cache::set()|set()]] or [[yii\caching\Cache::add()|add()]].

When the same cache storage is used by different applications, you should specify a unique cache key prefix
for each application to avoid conflicts of cache keys. This can be done by configuring the [[yii\caching\Cache::keyPrefix]]
property. For example, in the application configuration you can write the following code:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
 'keyPrefix' => 'myapp', // a unique cache key prefix
],
],

To ensure interoperability, only alphanumeric characters should be used.

Cache Expiration

A data item stored in a cache will remain there forever unless it is removed because of some caching policy
enforcement (e.g. caching space is full and the oldest data are removed). To change this behavior, you can provide
an expiration parameter when calling [[yii\caching\Cache::set()|set()]] to store a data item. The parameter
indicates for how many seconds the data item can remain valid in the cache. When you call
[[yii\caching\Cache::get()|get()]] to retrieve the data item, if it has passed the expiration time, the method
will return false, indicating the data item is not found in the cache. For example,

// keep the data in cache for at most 45 seconds
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
 // $data is expired or is not found in the cache
}

Since 2.0.11 you may set [[yii\caching\Cache::$defaultDuration|defaultDuration]] value in your cache component configuration if you prefer a custom cache duration
over the default unlimited duration.
This will allow you not to pass custom duration parameter to [[yii\caching\Cache::set()|set()]] each time.

Cache Dependencies

Besides expiration setting, cached data item may also be invalidated by changes of the so-called cache dependencies.
For example, [[yii\caching\FileDependency]] represents the dependency of a file’s modification time.
When this dependency changes, it means the corresponding file is modified. As a result, any outdated
file content found in the cache should be invalidated and the [[yii\caching\Cache::get()|get()]] call
should return false.

Cache dependencies are represented as objects of [[yii\caching\Dependency]] descendant classes. When you call
[[yii\caching\Cache::set()|set()]] to store a data item in the cache, you can pass along an associated cache
dependency object. For example,

// Create a dependency on the modification time of file example.txt.
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// The data will expire in 30 seconds.
// It may also be invalidated earlier if example.txt is modified.
$cache->set($key, $data, 30, $dependency);

// The cache will check if the data has expired.
// It will also check if the associated dependency was changed.
// It will return false if any of these conditions are met.
$data = $cache->get($key);

Below is a summary of the available cache dependencies:

	[[yii\caching\ChainedDependency]]: the dependency is changed if any of the dependencies on the chain is changed.

	[[yii\caching\DbDependency]]: the dependency is changed if the query result of the specified SQL statement is changed.

	[[yii\caching\ExpressionDependency]]: the dependency is changed if the result of the specified PHP expression is changed.

	[[yii\caching\FileDependency]]: the dependency is changed if the file’s last modification time is changed.

	[[yii\caching\TagDependency]]: associates a cached data item with one or multiple tags. You may invalidate
the cached data items with the specified tag(s) by calling [[yii\caching\TagDependency::invalidate()]].

Note: Avoid using [[yii\caching\Cache::exists()|exists()]] method along with dependencies. It does not check whether
the dependency associated with the cached data, if there is any, has changed. So a call to
[[yii\caching\Cache::get()|get()]] may return false while [[yii\caching\Cache::exists()|exists()]] returns true.

Query Caching

Query caching is a special caching feature built on top of data caching. It is provided to cache the result
of database queries.

Query caching requires a [[yii\db\Connection|DB connection]] and a valid cache application component.
The basic usage of query caching is as follows, assuming $db is a [[yii\db\Connection]] instance:

$result = $db->cache(function ($db) {

 // the result of the SQL query will be served from the cache
 // if query caching is enabled and the query result is found in the cache
 return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});

Query caching can be used for DAO as well as ActiveRecord:

$result = Customer::getDb()->cache(function ($db) {
 return Customer::find()->where(['id' => 1])->one();
});

Info: Some DBMS (e.g. MySQL [http://dev.mysql.com/doc/refman/5.1/en/query-cache.html])
also support query caching on the DB server-side. You may choose to use either query caching mechanism.
The query caching described above has the advantage that you may specify flexible cache dependencies
and are potentially more efficient.

Cache Flushing

 Modules

Modules

Modules are self-contained software units that consist of models, views,
controllers, and other supporting components. End users can access the controllers
of a module when it is installed in application. For these reasons, modules are
often viewed as mini-applications. Modules differ from applications in that
modules cannot be deployed alone and must reside within applications.

Creating Modules

A module is organized as a directory which is called the [[yii\base\Module::basePath|base path]] of the module.
Within the directory, there are sub-directories, such as controllers, models, views, which hold controllers,
models, views, and other code, just like in an application. The following example shows the content within a module:

forum/
 Module.php the module class file
 controllers/ containing controller class files
 DefaultController.php the default controller class file
 models/ containing model class files
 views/ containing controller view and layout files
 layouts/ containing layout view files
 default/ containing view files for DefaultController
 index.php the index view file

Module Classes

Each module should have a unique module class which extends from [[yii\base\Module]]. The class should be located
directly under the module’s [[yii\base\Module::basePath|base path]] and should be autoloadable.
When a module is being accessed, a single instance of the corresponding module class will be created.
Like application instances, module instances are used to share data and components
for code within modules.

The following is an example how a module class may look like:

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... other initialization code ...
 }
}

If the init() method contains a lot of code initializing the module’s properties, you may also save them in terms
of a configuration and load it with the following code in init():

public function init()
{
 parent::init();
 // initialize the module with the configuration loaded from config.php
 \Yii::configure($this, require(__DIR__ . '/config.php'));
}

where the configuration file config.php may contain the following content, similar to that in an
application configuration.

<?php
return [
 'components' => [
 // list of component configurations
],
 'params' => [
 // list of parameters
],
];

Controllers in Modules

When creating controllers in a module, a convention is to put the controller classes under the controllers
sub-namespace of the namespace of the module class. This also means the controller class files should be
put in the controllers directory within the module’s [[yii\base\Module::basePath|base path]].
For example, to create a post controller in the forum module shown in the last subsection, you should
declare the controller class like the following:

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 // ...
}

You may customize the namespace of controller classes by configuring the [[yii\base\Module::controllerNamespace]]
property. In case some of the controllers are outside of this namespace, you may make them accessible
by configuring the [[yii\base\Module::controllerMap]] property, similar to what you do in an application.

Views in Modules

Views in a module should be put in the views directory within the module’s [[yii\base\Module::basePath|base path]].
For views rendered by a controller in the module, they should be put under the directory views/ControllerID,
where ControllerID refers to the controller ID. For example, if
the controller class is PostController, the directory would be views/post within the module’s
[[yii\base\Module::basePath|base path]].

A module can specify a layout that is applied to the views rendered by the module’s
controllers. The layout should be put in the views/layouts directory by default, and you should configure
the [[yii\base\Module::layout]] property to point to the layout name. If you do not configure the layout property,
the application’s layout will be used instead.

Console commands in Modules

Your module may also declare commands, that will be available through the Console mode.

In order for the command line utility to see your commands, you will need to change the [[yii\base\Module::controllerNamespace]]
property, when Yii is executed in the console mode, and point it to your commands namespace.

One way to achieve that is to test the instance type of the Yii application in the module’s init() method:

public function init()
{
 parent::init();
 if (Yii::$app instanceof \yii\console\Application) {
 $this->controllerNamespace = 'app\modules\forum\commands';
 }
}

Your commands will then be available from the command line using the following route:

yii <module_id>/<command>/<sub_command>

Using Modules

To use a module in an application, simply configure the application by listing the module in
the [[yii\base\Application::modules|modules]] property of the application. The following code in the
application configuration uses the forum module:

[
 'modules' => [
 'forum' => [
 'class' => 'app\modules\forum\Module',
 // ... other configurations for the module ...
],
],
]

The [[yii\base\Application::modules|modules]] property takes an array of module configurations. Each array key
represents a module ID which uniquely identifies the module among all modules in the application, and the corresponding
array value is a configuration for creating the module.

Routes

Like accessing controllers in an application, routes are used to address
controllers in a module. A route for a controller within a module must begin with the module ID followed by
the controller ID and action ID.
For example, if an application uses a module named forum, then the route
forum/post/index would represent the index action of the post controller in the module. If the route
only contains the module ID, then the [[yii\base\Module::defaultRoute]] property, which defaults to default,
will determine which controller/action should be used. This means a route forum would represent the default
controller in the forum module.

Accessing Modules

Within a module, you may often need to get the instance of the module class so that you can
access the module ID, module parameters, module components, etc. You can do so by using the following statement:

$module = MyModuleClass::getInstance();

where MyModuleClass refers to the name of the module class that you are interested in. The getInstance() method
will return the currently requested instance of the module class. If the module is not requested, the method will
return null. Note that you do not want to manually create a new instance of the module class because it will be
different from the one created by Yii in response to a request.

Info: When developing a module, you should not assume the module will use a fixed ID. This is because a module
can be associated with an arbitrary ID when used in an application or within another module. In order to get
the module ID, you should use the above approach to get the module instance first, and then get the ID via
$module->id.

You may also access the instance of a module using the following approaches:

// get the child module whose ID is "forum"
$module = \Yii::$app->getModule('forum');

// get the module to which the currently requested controller belongs
$module = \Yii::$app->controller->module;

The first approach is only useful when you know the module ID, while the second approach is best used when you
know about the controllers being requested.

Once you have the module instance, you can access parameters and components registered with the module. For example,

$maxPostCount = $module->params['maxPostCount'];

Bootstrapping Modules

Some modules may need to be run for every request. The [[yii\debug\Module|debug]] module is such an example.
To do so, list the IDs of such modules in the [[yii\base\Application::bootstrap|bootstrap]] property of the application.

For example, the following application configuration makes sure the debug module is always loaded:

[
 'bootstrap' => [
 'debug',
],

 'modules' => [
 'debug' => 'yii\debug\Module',
],
]

Nested Modules

Modules can be nested in unlimited levels. That is, a module can contain another module which can contain yet
another module. We call the former parent module while the latter child module. Child modules must be declared
in the [[yii\base\Module::modules|modules]] property of their parent modules. For example,

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->modules = [
 'admin' => [
 // you should consider using a shorter namespace here!
 'class' => 'app\modules\forum\modules\admin\Module',
],
];
 }
}

For a controller within a nested module, its route should include the IDs of all its ancestor modules.
For example, the route forum/admin/dashboard/index represents the index action of the dashboard controller
in the admin module which is a child module of the forum module.

Info: The [[yii\base\Module::getModule()|getModule()]] method only returns the child module directly belonging
to its parent. The [[yii\base\Application::loadedModules]] property keeps a list of loaded modules, including both
direct children and nested ones, indexed by their class names.

Best Practices

Modules are best used in large applications whose features can be divided into several groups, each consisting of
a set of closely related features. Each such feature group can be developed as a module which is developed and
maintained by a specific developer or team.

Modules are also a good way of reusing code at the feature group level. Some commonly used features, such as
user management, comment management, can all be developed in terms of modules so that they can be reused easily
in future projects.

 ArrayHelper

ArrayHelper

Additionally to the rich set of PHP array functions [http://php.net/manual/en/book.array.php], the Yii array helper provides
extra static methods allowing you to deal with arrays more efficiently.

Getting Values

Retrieving values from an array, an object or a complex structure consisting of both using standard PHP is quite
repetitive. You have to check if key exists with isset first, then if it does you’re getting it, if not,
providing default value:

class User
{
 public $name = 'Alex';
}

$array = [
 'foo' => [
 'bar' => new User(),
]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;

Yii provides a very convenient method to do it:

$value = ArrayHelper::getValue($array, 'foo.bar.name');

First method argument is where we’re getting value from. Second argument specifies how to get the data. It could be one
of the following:

	Name of array key or object property to retrieve value from.

	Set of dot separated array keys or object property names. The one we’ve used in the example above.

	A callback returning a value.

The callback should be the following:

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
 return $user->firstName . ' ' . $user->lastName;
});

Third optional argument is default value which is null if not specified. Could be used as follows:

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');

In case you want to get the value and then immediately remove it from array you can use remove method:

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');

After executing the code $array will contain ['options' => [1, 2]] and $type will be A. Note that unlike
getValue method, remove supports simple key names only.

Checking Existence of Keys

ArrayHelper::keyExists works the same way as array_key_exists [http://php.net/manual/en/function.array-key-exists.php]
except that it also supports case-insensitive key comparison. For example,

$data1 = [
 'userName' => 'Alex',
];

$data2 = [
 'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
 echo "Please provide username.";
}

Retrieving Columns

Often you need to get a column of values from array of data rows or objects. Common example is getting a list of IDs.

$array = [
 ['id' => '123', 'data' => 'abc'],
 ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');

The result will be ['123', '345'].

If additional transformations are required or the way of getting value is complex, second argument could be specified
as an anonymous function:

$result = ArrayHelper::getColumn($array, function ($element) {
 return $element['id'];
});

Re-indexing Arrays

In order to index an array according to a specified key, the index method can be used. The input should be either
multidimensional array or an array of objects. The $key can be either a key name of the sub-array, a property name of
object, or an anonymous function that must return the value that will be used as a key.

The $groups attribute is an array of keys, that will be used to group the input array into one or more sub-arrays
based on keys specified.

If the $key attribute or its value for the particular element is null and $groups is not defined, the array
element will be discarded. Otherwise, if $groups is specified, array element will be added to the result array
without any key.

For example:

$array = [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
];
$result = ArrayHelper::index($array, 'id');

The result will be an associative array, where the key is the value of id attribute:

[
 '123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 '345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
 // The second element of an original array is overwritten by the last element because of the same id
]

Anonymous function, passed as a $key, gives the same result:

$result = ArrayHelper::index($array, function ($element) {
 return $element['id'];
});

Passing id as a third argument will group $array by id:

$result = ArrayHelper::index($array, null, 'id');

The result will be a multidimensional array grouped by id on the first level and not indexed on the second level:

[
 '123' => [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
],
 '345' => [// all elements with this index are present in the result array
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
]
]

An anonymous function can be used in the grouping array as well:

$result = ArrayHelper::index($array, 'data', [function ($element) {
 return $element['id'];
}, 'device']);

The result will be a multidimensional array grouped by id on the first level, by device on the second level and
indexed by data on the third level:

[
 '123' => [
 'laptop' => [
 'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
]
],
 '345' => [
 'tablet' => [
 'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']
],
 'smartphone' => [
 'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
]
]
]

Building Maps

In order to build a map (key-value pairs) from a multidimensional array or an array of objects you can use map method.
The $from and $to parameters specify the key names or property names to set up the map. Optionally, one can further
group the map according to a grouping field $group. For example,

$array = [
 ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
 ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
 ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
];

$result = ArrayHelper::map($array, 'id', 'name');
// the result is:
// [
// '123' => 'aaa',
// '124' => 'bbb',
// '345' => 'ccc',
//]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// the result is:
// [
// 'x' => [
// '123' => 'aaa',
// '124' => 'bbb',
//],
// 'y' => [
// '345' => 'ccc',
//],
//]

Multidimensional Sorting

multisort method helps to sort an array of objects or nested arrays by one or several keys. For example,

$data = [
 ['age' => 30, 'name' => 'Alexander'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);

After sorting we’ll get the following in $data:

[
 ['age' => 19, 'name' => 'Barney'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 30, 'name' => 'Alexander'],
];

Second argument that specifies keys to sort by can be a string if it’s a single key, an array in case of multiple keys
or an anonymous function like the following one:

ArrayHelper::multisort($data, function($item) {
 return isset($item['age']) ? ['age', 'name'] : 'name';
});

Third argument is direction. In case of sorting by a single key it could be either SORT_ASC or
SORT_DESC. If sorting by multiple values you can sort each value differently by providing an array of
sort direction.

Last argument is PHP sort flag that could take the same values as the ones passed to
PHP sort() [http://php.net/manual/en/function.sort.php].

Detecting Array Types

It is handy to know whether an array is indexed or an associative. Here’s an example:

// no keys specified
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// all keys are strings
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);

HTML Encoding and Decoding Values

In order to encode or decode special characters in an array of strings into HTML entities you can use the following:

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);

Only values will be encoded by default. By passing second argument as false you can encode array’s keys as well.
Encoding will use application charset and could be changed via third argument.

Merging Arrays

You can use [[yii\helpers\ArrayHelper::merge()|ArrayHelper::merge()]] to merge two or more arrays into one recursively.
If each array has an element with the same string key value, the latter will overwrite the former
(different from array_merge_recursive() [http://php.net/manual/en/function.array-merge-recursive.php]).
Recursive merging will be conducted if both arrays have an element of array type and are having the same key.
For integer-keyed elements, the elements from the latter array will be appended to the former array.
You can use [[yii\helpers\UnsetArrayValue]] object to unset value from previous array or
[[yii\helpers\ReplaceArrayValue]] to force replace former value instead of recursive merging.

For example:

$array1 = [
 'name' => 'Yii',
 'version' => '1.1',
 'ids' => [
 1,
],
 'validDomains' => [
 'example.com',
 'www.example.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
 'dev' => 'dev@example.com',
],
];

$array2 = [
 'version' => '2.0',
 'ids' => [
 2,
],
 'validDomains' => new \yii\helpers\ReplaceArrayValue([
 'yiiframework.com',
 'www.yiiframework.com',
]),
 'emails' => [
 'dev' => new \yii\helpers\UnsetArrayValue(),
],
];

$result = ArrayHelper::merge($array1, $array2);

The result will be:

[
 'name' => 'Yii',
 'version' => '2.0',
 'ids' => [
 1,
 2,
],
 'validDomains' => [
 'yiiframework.com',
 'www.yiiframework.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
],
]

Converting Objects to Arrays

Often you need to convert an object or an array of objects into an array. The most common case is converting active record
models in order to serve data arrays via REST API or use it otherwise. The following code could be used to do it:

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
 'app\models\Post' => [
 'id',
 'title',
 // the key name in array result => property name
 'createTime' => 'created_at',
 // the key name in array result => anonymous function
 'length' => function ($post) {
 return strlen($post->content);
 },
],
]);

The first argument contains the data we want to convert. In our case we’re converting a Post AR model.

The second argument is conversion mapping per class. We’re setting a mapping for Post model.
Each mapping array contains a set of mappings. Each mapping could be:

	A field name to include as is.

	A key-value pair of desired array key name and model column name to take value from.

	A key-value pair of desired array key name and a callback which returns value.

The result of conversion above for single model will be:

[
 'id' => 123,
 'title' => 'test',
 'createTime' => '2013-01-01 12:00AM',
 'length' => 301,
]

It is possible to provide default way of converting object to array for a specific class by implementing
[[yii\base\Arrayable|Arrayable]] interface in that class.

Testing against Arrays

Often you need to check if an element is in an array or a set of elements is a subset of another.
While PHP offers in_array(), this does not support subsets or \Traversable objects.

To aid these kinds of tests, [[yii\helpers\ArrayHelper]] provides [[yii\helpers\ArrayHelper::isIn()|isIn()]]
and [[yii\helpers\ArrayHelper::isSubset()|isSubset()]] with the same signature as
in_array() [http://php.net/manual/en/function.in-array.php].

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new ArrayObject(['a']));

// true
ArrayHelper::isSubset(new ArrayObject(['a', 'c']), new ArrayObject(['a', 'b', 'c']));

 Requests

Requests

Requests made to an application are represented in terms of [[yii\web\Request]] objects which provide information
such as request parameters, HTTP headers, cookies, etc. For a given request, you can get access to the corresponding
request object via the request application component which is an instance
of [[yii\web\Request]], by default. In this section, we will describe how you can make use of this component in your applications.

Request Parameters

To get request parameters, you can call [[yii\web\Request::get()|get()]] and [[yii\web\Request::post()|post()]] methods
of the request component. They return the values of $_GET and $_POST, respectively. For example,

$request = Yii::$app->request;

$get = $request->get();
// equivalent to: $get = $_GET;

$id = $request->get('id');
// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);
// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post();
// equivalent to: $post = $_POST;

$name = $request->post('name');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : '';

Info: Instead of directly accessing $_GET and $_POST to retrieve the request parameters, it is recommended
that you get them via the request component as shown above. This will make writing tests easier because
you can create a mock request component with faked request data.

When implementing RESTful APIs, you often need to retrieve parameters that are submitted
via PUT, PATCH or other request methods. You can get these parameters by calling
the [[yii\web\Request::getBodyParam()]] methods. For example,

$request = Yii::$app->request;

// returns all parameters
$params = $request->bodyParams;

// returns the parameter "id"
$param = $request->getBodyParam('id');

Info: Unlike GET parameters, parameters submitted via POST, PUT, PATCH etc. are sent in the request body.
The request component will parse these parameters when you access them through the methods described above.
You can customize the way how these parameters are parsed by configuring the [[yii\web\Request::parsers]] property.

Request Methods

You can get the HTTP method used by the current request via the expression Yii::$app->request->method.
A whole set of boolean properties is also provided for you to check if the current method is of certain type.
For example,

$request = Yii::$app->request;

if ($request->isAjax) { /* the request is an AJAX request */ }
if ($request->isGet) { /* the request method is GET */ }
if ($request->isPost) { /* the request method is POST */ }
if ($request->isPut) { /* the request method is PUT */ }

Request URLs

The request component provides many ways of inspecting the currently requested URL.

Assuming the URL being requested is http://example.com/admin/index.php/product?id=100, you can get various
parts of this URL as summarized in the following:

	[[yii\web\Request::url|url]]: returns /admin/index.php/product?id=100, which is the URL without the host info part.

	[[yii\web\Request::absoluteUrl|absoluteUrl]]: returns http://example.com/admin/index.php/product?id=100,
which is the whole URL including the host info part.

	[[yii\web\Request::hostInfo|hostInfo]]: returns http://example.com, which is the host info part of the URL.

	[[yii\web\Request::pathInfo|pathInfo]]: returns /product, which is the part after the entry script and
before the question mark (query string).

	[[yii\web\Request::queryString|queryString]]: returns id=100, which is the part after the question mark.

	[[yii\web\Request::baseUrl|baseUrl]]: returns /admin, which is the part after the host info and before
the entry script name.

	[[yii\web\Request::scriptUrl|scriptUrl]]: returns /admin/index.php, which is the URL without path info and query string.

	[[yii\web\Request::serverName|serverName]]: returns example.com, which is the host name in the URL.

	[[yii\web\Request::serverPort|serverPort]]: returns 80, which is the port used by the Web server.

HTTP Headers

You can get the HTTP header information through the [[yii\web\HeaderCollection|header collection]] returned
by the [[yii\web\Request::headers]] property. For example,

// $headers is an object of yii\web\HeaderCollection
$headers = Yii::$app->request->headers;

// returns the Accept header value
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* there is User-Agent header */ }

The request component also provides support for quickly accessing some commonly used headers, including:

	[[yii\web\Request::userAgent|userAgent]]: returns the value of the User-Agent header.

	[[yii\web\Request::contentType|contentType]]: returns the value of the Content-Type header which indicates
the MIME type of the data in the request body.

	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: returns the content MIME types acceptable by users.
The returned types are ordered by their quality score. Types with the highest scores will be returned first.

	[[yii\web\Request::acceptableLanguages|acceptableLanguages]]: returns the languages acceptable by users.
The returned languages are ordered by their preference level. The first element represents the most preferred language.

If your application supports multiple languages and you want to display pages in the language that is the most preferred
by the end user, you may use the language negotiation method [[yii\web\Request::getPreferredLanguage()]].
This method takes a list of languages supported by your application, compares them with [[yii\web\Request::acceptableLanguages|acceptableLanguages]],
and returns the most appropriate language.

Tip: You may also use the [[yii\filters\ContentNegotiator|ContentNegotiator]] filter to dynamically determine
what content type and language should be used in the response. The filter implements the content negotiation
on top of the properties and methods described above.

Client Information

You can get the host name and IP address of the client machine through [[yii\web\Request::userHost|userHost]]
and [[yii\web\Request::userIP|userIP]], respectively. For example,

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

 Collecting tabular input

Collecting tabular input

Sometimes you need to handle multiple models of the same kind in a single form. For example, multiple settings, where
each setting is stored as a name-value pair and is represented by a Setting active record model.
This kind of form is also often referred to as “tabular input”.
In contrast to this, handling different models of different kind, is handled in the section
Complex Forms with Multiple Models.

The following shows how to implement tabular input with Yii.

There are three different situations to cover, which have to be handled slightly different:

	Updating a fixed set of records from the database

	Creating a dynamic set of new records

	Updating, creating and deleting of records on one page

In contrast to the single model forms explained before, we are working with an array of models now.
This array is passed to the view to display the input fields for each model in a table like style and we
will use helper methods of [[yii\base\Model]] that allow loading and validating multiple models at once:

	[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] load post data into an array of models.

	[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] validates an array of models.

Updating a fixed set of records

Let’s start with the controller action:

<?php

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use app\models\Setting;

class SettingsController extends Controller
{
 // ...

 public function actionUpdate()
 {
 $settings = Setting::find()->indexBy('id')->all();

 if (Model::loadMultiple($settings, Yii::$app->request->post()) && Model::validateMultiple($settings)) {
 foreach ($settings as $setting) {
 $setting->save(false);
 }
 return $this->redirect('index');
 }

 return $this->render('update', ['settings' => $settings]);
 }
}

In the code above we’re using [[yii\db\ActiveQuery::indexBy()|indexBy()]] when retrieving models from the database to populate an array indexed by models primary keys.
These will be later used to identify form fields. [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] fills multiple
models with the form data coming from POST
and [[yii\base\Model::validateMultiple()|Model::validateMultiple()]] validates all models at once.
As we have validated our models before, using validateMultiple(), we’re now passing false as
a parameter to [[yii\db\ActiveRecord::save()|save()]] to not run validation twice.

Now the form that’s in update view:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {
 echo $form->field($setting, "[$index]value")->label($setting->name);
}

ActiveForm::end();

Here for each setting we are rendering name and an input with a value. It is important to add a proper index
to input name since that is how [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] determines which model to fill with which values.

Creating a dynamic set of new records

Creating new records is similar to updating, except the part, where we instantiate the models:

public function actionCreate()
{
 $count = count(Yii::$app->request->post('Setting', []));
 $settings = [new Setting()];
 for($i = 1; $i < $count; $i++) {
 $settings[] = new Setting();
 }

 // ...
}

Here we create an initial $settings array containing one model by default so that always at least one text field will be
visible in the view. Additionally we add more models for each line of input we may have received.

In the view you can use javascript to add new input lines dynamically.

Combining Update, Create and Delete on one page

Note: This section is under development.

It has no content yet.

TBD

 Bootstrapping

Bootstrapping

Bootstrapping refers to the process of preparing the environment before an application starts
to resolve and process an incoming request. Bootstrapping is done in two places:
the entry script and the application.

In the entry script, class autoloaders for different libraries are
registered. This includes the Composer autoloader through its autoload.php file and the Yii
autoloader through its Yii class file. The entry script then loads the application
configuration and creates an application instance.

In the constructor of the application, the following bootstrapping work is done:

	[[yii\base\Application::preInit()|preInit()]] is called, which configures some high priority
application properties, such as [[yii\base\Application::basePath|basePath]].

	Register the [[yii\base\Application::errorHandler|error handler]].

	Initialize application properties using the given application configuration.

	[[yii\base\Application::init()|init()]] is called which in turn calls
[[yii\base\Application::bootstrap()|bootstrap()]] to run bootstrapping components.
	Include the extension manifest file vendor/yiisoft/extensions.php.

	Create and run bootstrap components
declared by extensions.

	Create and run application components and/or
modules that are declared in the application’s
bootstrap property.

Because the bootstrapping work has to be done before handling every request, it is very important
to keep this process light and optimize it as much as possible.

Try not to register too many bootstrapping components. A bootstrapping component is needed only
if it wants to participate the whole life cycle of requesting handling. For example, if a module
needs to register additional URL parsing rules, it should be listed in the
bootstrap property so that the new URL rules can take effect
before they are used to resolve requests.

In production mode, enable a bytecode cache, such as PHP OPcache [http://php.net/manual/en/intro.opcache.php] or APC [http://php.net/manual/en/book.apc.php], to minimize the time needed for including
and parsing PHP files.

Some large applications have very complex application configurations
which are divided into many smaller configuration files. If this is the case, consider caching
the whole configuration array and loading it directly from cache before creating the application instance
in the entry script.

 Pagination

Pagination

When there are too much data to be displayed on a single page, a common strategy is to display them in multiple
pages and on each page only display a small portion of the data. This strategy is known as pagination.

Yii uses a [[yii\data\Pagination]] object to represent the information about a pagination scheme. In particular,

	[[yii\data\Pagination::$totalCount|total count]] specifies the total number of data items. Note that this
is usually much more than the number of data items needed to display on a single page.

	[[yii\data\Pagination::$pageSize|page size]] specifies how many data items each page contains. The default
value is 20.

	[[yii\data\Pagination::$page|current page]] gives the current page number (zero-based). The default value is 0, meaning the first page.

With a fully specified [[yii\data\Pagination]] object, you can retrieve and display data partially. For example,
if you are fetching data from a database, you can specify the OFFSET and LIMIT clause of the DB query with
the corresponding values provided by the pagination. Below is an example,

use yii\data\Pagination;

// build a DB query to get all articles with status = 1
$query = Article::find()->where(['status' => 1]);

// get the total number of articles (but do not fetch the article data yet)
$count = $query->count();

// create a pagination object with the total count
$pagination = new Pagination(['totalCount' => $count]);

// limit the query using the pagination and retrieve the articles
$articles = $query->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

Which page of articles will be returned in the above example? It depends on whether a query parameter named page
is given. By default, the pagination will attempt to set the [[yii\data\Pagination::$page|current page]] to be
the value of the page parameter. If the parameter is not provided, then it will default to 0.

To facilitate building the UI element that supports pagination, Yii provides the [[yii\widgets\LinkPager]] widget
that displays a list of page buttons upon which users can click to indicate which page of data should be displayed.
The widget takes a pagination object so that it knows what is the current page and how many page buttons should
be displayed. For example,

use yii\widgets\LinkPager;

echo LinkPager::widget([
 'pagination' => $pagination,
]);

If you want to build UI element manually, you may use [[yii\data\Pagination::createUrl()]] to create URLs that
would lead to different pages. The method requires a page parameter and will create a properly formatted URL
containing the page parameter. For example,

// specifies the route that the URL to be created should use
// If you do not specify this, the currently requested route will be used
$pagination->route = 'article/index';

// displays: /index.php?r=article%2Findex&page=100
echo $pagination->createUrl(100);

// displays: /index.php?r=article%2Findex&page=101
echo $pagination->createUrl(101);

Tip: You can customize the name of the page query parameter by configuring the
[[yii\data\Pagination::pageParam|pageParam]] property when creating the pagination object.

 Theming

Theming

Theming is a way to replace a set of views with another without the need of touching
the original view rendering code. You can use theming to systematically change the look and feel of an application.

To use theming, you should configure the [[yii\base\View::theme|theme]] property of the view application component.
The property configures a [[yii\base\Theme]] object which governs how view files are being replaced. You should
mainly specify the following properties of [[yii\base\Theme]]:

	[[yii\base\Theme::basePath]]: specifies the base directory that contains the themed resources (CSS, JS, images, etc.)

	[[yii\base\Theme::baseUrl]]: specifies the base URL of the themed resources.

	[[yii\base\Theme::pathMap]]: specifies the replacement rules of view files. More details will be given in the following
subsections.

For example, if you call $this->render('about') in SiteController, you will be rendering the view file
@app/views/site/about.php. However, if you enable theming in the following application configuration,
the view file @app/themes/basic/site/about.php will be rendered, instead.

return [
 'components' => [
 'view' => [
 'theme' => [
 'basePath' => '@app/themes/basic',
 'baseUrl' => '@web/themes/basic',
 'pathMap' => [
 '@app/views' => '@app/themes/basic',
],
],
],
],
];

Info: Path aliases are supported by themes. When doing view replacement, path aliases will be turned into
the actual file paths or URLs.

You can access the [[yii\base\Theme]] object through the [[yii\base\View::theme]] property. For example,
in a view file, you can write the following code because $this refers to the view object:

$theme = $this->theme;

// returns: $theme->baseUrl . '/img/logo.gif'
$url = $theme->getUrl('img/logo.gif');

// returns: $theme->basePath . '/img/logo.gif'
$file = $theme->getPath('img/logo.gif');

The [[yii\base\Theme::pathMap]] property governs how view files should be replaced. It takes an array of
key-value pairs, where the keys are the original view paths to be replaced and the values are the corresponding
themed view paths. The replacement is based on partial match: if a view path starts with any key in
the [[yii\base\Theme::pathMap|pathMap]] array, that matching part will be replaced with the corresponding array value.
Using the above configuration example, because @app/views/site/about.php partially matches the key
@app/views, it will be replaced as @app/themes/basic/site/about.php.

Theming Modules

In order to theme modules, [[yii\base\Theme::pathMap]] can be configured like the following:

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/modules' => '@app/themes/basic/modules', // <-- !!!
],

It will allow you to theme @app/modules/blog/views/comment/index.php into @app/themes/basic/modules/blog/views/comment/index.php.

Theming Widgets

In order to theme widgets, you can configure [[yii\base\Theme::pathMap]] in the following way:

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/widgets' => '@app/themes/basic/widgets', // <-- !!!
],

This will allow you to theme @app/widgets/currency/views/index.php into @app/themes/basic/widgets/currency/index.php.

Theme Inheritance

Sometimes you may want to define a basic theme which contains a basic look and feel of the application, and then
based on the current holiday, you may want to vary the look and feel slightly. You can achieve this goal using
theme inheritance which is done by mapping a single view path to multiple targets. For example,

'pathMap' => [
 '@app/views' => [
 '@app/themes/christmas',
 '@app/themes/basic',
],
]

In this case, the view @app/views/site/index.php would be themed as either @app/themes/christmas/site/index.php
or @app/themes/basic/site/index.php, depending on which themed file exists. If both themed files exist, the first
one will take precedence. In practice, you would keep most themed view files in @app/themes/basic and customize
some of them in @app/themes/christmas.

 Views

Views

Views are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are code responsible for presenting data to end users. In a Web application, views are usually created
in terms of view templates which are PHP script files containing mainly HTML code and presentational PHP code.
They are managed by the [[yii\web\View|view]] application component which provides commonly used methods
to facilitate view composition and rendering. For simplicity, we often call view templates or view template files
as views.

Creating Views

As aforementioned, a view is simply a PHP script mixed with HTML and PHP code. The following is the view
that presents a login form. As you can see, PHP code is used to generate the dynamic content, such as the
page title and the form, while HTML code organizes them into a presentable HTML page.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'Login';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>Please fill out the following fields to login:</p>

<?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php ActiveForm::end(); ?>

Within a view, you can access $this which refers to the [[yii\web\View|view component]] managing
and rendering this view template.

Besides $this, there may be other predefined variables in a view, such as $model in the above
example. These variables represent the data that are pushed into the view by controllers
or other objects which trigger the view rendering.

Tip: The predefined variables are listed in a comment block at beginning of a view so that they can
be recognized by IDEs. It is also a good way of documenting your views.

Security

When creating views that generate HTML pages, it is important that you encode and/or filter the data coming
from end users before presenting them. Otherwise, your application may be subject to
cross-site scripting [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks.

To display a plain text, encode it first by calling [[yii\helpers\Html::encode()]]. For example, the following code
encodes the user name before displaying it:

<?php
use yii\helpers\Html;
?>

<div class="username">
 <?= Html::encode($user->name) ?>
</div>

To display HTML content, use [[yii\helpers\HtmlPurifier]] to filter the content first. For example, the following
code filters the post content before displaying it:

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
 <?= HtmlPurifier::process($post->text) ?>
</div>

Tip: While HTMLPurifier does excellent job in making output safe, it is not fast. You should consider
caching the filtering result if your application requires high performance.

Organizing Views

Like controllers and models, there are conventions to organize views.

	For views rendered by a controller, they should be put under the directory @app/views/ControllerID by default,
where ControllerID refers to the controller ID. For example, if
the controller class is PostController, the directory would be @app/views/post; if it is PostCommentController,
the directory would be @app/views/post-comment. In case the controller belongs to a module, the directory
would be views/ControllerID under the [[yii\base\Module::basePath|module directory]].

	For views rendered in a widget, they should be put under the WidgetPath/views directory by
default, where WidgetPath stands for the directory containing the widget class file.

	For views rendered by other objects, it is recommended that you follow the similar convention as that for widgets.

You may customize these default view directories by overriding the [[yii\base\ViewContextInterface::getViewPath()]]
method of controllers or widgets.

Rendering Views

You can render views in controllers, widgets, or any
other places by calling view rendering methods. These methods share a similar signature shown as follows,

/**
 * @param string $view view name or file path, depending on the actual rendering method
 * @param array $params the data to be passed to the view
 * @return string rendering result
 */
methodName($view, $params = [])

Rendering in Controllers

Within controllers, you may call the following controller methods to render views:

	[[yii\base\Controller::render()|render()]]: renders a named view and applies a layout
to the rendering result.

	[[yii\base\Controller::renderPartial()|renderPartial()]]: renders a named view without any layout.

	[[yii\web\Controller::renderAjax()|renderAjax()]]: renders a named view without any layout,
and injects all registered JS/CSS scripts and files. It is usually used in response to AJAX Web requests.

	[[yii\base\Controller::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

	[[yii\base\Controller::renderContent()|renderContent()]]: renders a static string by embedding it into
the currently applicable layout. This method is available since version 2.0.1.

For example,

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 // renders a view named "view" and applies a layout to it
 return $this->render('view', [
 'model' => $model,
]);
 }
}

Rendering in Widgets

Within widgets, you may call the following widget methods to render views.

	[[yii\base\Widget::render()|render()]]: renders a named view.

	[[yii\base\Widget::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

For example,

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
 public $items = [];

 public function run()
 {
 // renders a view named "list"
 return $this->render('list', [
 'items' => $this->items,
]);
 }
}

Rendering in Views

You can render a view within another view by calling one of the following methods provided by the [[yii\base\View|view component]]:

	[[yii\base\View::render()|render()]]: renders a named view.

	[[yii\web\View::renderAjax()|renderAjax()]]: renders a named view and injects all registered
JS/CSS scripts and files. It is usually used in response to AJAX Web requests.

	[[yii\base\View::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

For example, the following code in a view renders the _overview.php view file which is in the same directory
as the view being currently rendered. Remember that $this in a view refers to the [[yii\base\View|view]] component:

<?= $this->render('_overview') ?>

Rendering in Other Places

In any place, you can get access to the [[yii\base\View|view]] application component by the expression
Yii::$app->view and then call its aforementioned methods to render a view. For example,

// displays the view file "@app/views/site/license.php"
echo \Yii::$app->view->renderFile('@app/views/site/license.php');

Named Views

When you render a view, you can specify the view using either a view name or a view file path/alias. In most cases,
you would use the former because it is more concise and flexible. We call views specified using names as named views.

A view name is resolved into the corresponding view file path according to the following rules:

	A view name may omit the file extension name. In this case, .php will be used as the extension. For example,
the view name about corresponds to the file name about.php.

	If the view name starts with double slashes //, the corresponding view file path would be @app/views/ViewName.
That is, the view is looked for under the [[yii\base\Application::viewPath|application’s view path]].
For example, //site/about will be resolved into @app/views/site/about.php.

	If the view name starts with a single slash /, the view file path is formed by prefixing the view name
with the [[yii\base\Module::viewPath|view path]] of the currently active module.
If there is no active module, @app/views/ViewName will be used. For example, /user/create will be resolved into
@app/modules/user/views/user/create.php, if the currently active module is user. If there is no active module,
the view file path would be @app/views/user/create.php.

	If the view is rendered with a [[yii\base\View::context|context]] and the context implements [[yii\base\ViewContextInterface]],
the view file path is formed by prefixing the [[yii\base\ViewContextInterface::getViewPath()|view path]] of the
context to the view name. This mainly applies to the views rendered within controllers and widgets. For example,
about will be resolved into @app/views/site/about.php if the context is the controller SiteController.

	If a view is rendered within another view, the directory containing the other view file will be prefixed to
the new view name to form the actual view file path. For example, item will be resolved into @app/views/post/item.php
if it is being rendered in the view @app/views/post/index.php.

According to the above rules, calling $this->render('view') in a controller app\controllers\PostController will
actually render the view file @app/views/post/view.php, while calling $this->render('_overview') in that view
will render the view file @app/views/post/_overview.php.

Accessing Data in Views

There are two approaches to access data within a view: push and pull.

By passing the data as the second parameter to the view rendering methods, you are using the push approach.
The data should be represented as an array of name-value pairs. When the view is being rendered, the PHP
extract() function will be called on this array so that the array is extracted into variables in the view.
For example, the following view rendering code in a controller will push two variables to the report view:
$foo = 1 and $bar = 2.

echo $this->render('report', [
 'foo' => 1,
 'bar' => 2,
]);

The pull approach actively retrieves data from the [[yii\base\View|view component]] or other objects accessible
in views (e.g. Yii::$app). Using the code below as an example, within the view you can get the controller object
by the expression $this->context. And as a result, it is possible for you to access any properties or methods
of the controller in the report view, such as the controller ID shown in the following:

The controller ID is: <?= $this->context->id ?>

The push approach is usually the preferred way of accessing data in views, because it makes views less dependent
on context objects. Its drawback is that you need to manually build the data array all the time, which could
become tedious and error prone if a view is shared and rendered in different places.

Sharing Data among Views

The [[yii\base\View|view component]] provides the [[yii\base\View::params|params]] property that you can use
to share data among views.

For example, in an about view, you can have the following code which specifies the current segment of the
breadcrumbs.

$this->params['breadcrumbs'][] = 'About Us';

Then, in the layout file, which is also a view, you can display the breadcrumbs using the data
passed along [[yii\base\View::params|params]]:

<?= yii\widgets\Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>

Layouts

Layouts are a special type of views that represent the common parts of multiple views. For example, the pages
for most Web applications share the same page header and footer. While you can repeat the same page header and footer
in every view, a better way is to do this once in a layout and embed the rendering result of a content view at
an appropriate place in the layout.

Creating Layouts

Because layouts are also views, they can be created in the similar way as normal views. By default, layouts
are stored in the directory @app/views/layouts. For layouts used within a module,
they should be stored in the views/layouts directory under the [[yii\base\Module::basePath|module directory]].
You may customize the default layout directory by configuring the [[yii\base\Module::layoutPath]] property of
the application or modules.

The following example shows how a layout looks like. Note that for illustrative purpose, we have greatly simplified
the code in the layout. In practice, you may want to add more content to it, such as head tags, main menu, etc.

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <?= Html::csrfMetaTags() ?>
 <title><?= Html::encode($this->title) ?></title>
 <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
 <header>My Company</header>
 <?= $content ?>
 <footer>© 2014 by My Company</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

As you can see, the layout generates the HTML tags that are common to all pages. Within the <body> section,
the layout echoes the $content variable which represents the rendering result of content views and is pushed
into the layout when [[yii\base\Controller::render()]] is called.

Most layouts should call the following methods like shown in the above code. These methods mainly trigger events
about the rendering process so that scripts and tags registered in other places can be properly injected into
the places where these methods are called.

	[[yii\base\View::beginPage()|beginPage()]]: This method should be called at the very beginning of the layout.
It triggers the [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]] event which indicates the beginning of a page.

	[[yii\base\View::endPage()|endPage()]]: This method should be called at the end of the layout.
It triggers the [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]] event which indicates the end of a page.

	[[yii\web\View::head()|head()]]: This method should be called within the <head> section of an HTML page.
It generates a placeholder which will be replaced with the registered head HTML code (e.g. link tags, meta tags)
when a page finishes rendering.

	[[yii\web\View::beginBody()|beginBody()]]: This method should be called at the beginning of the <body> section.
It triggers the [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] event and generates a placeholder which will
be replaced by the registered HTML code (e.g. JavaScript) targeted at the body begin position.

	[[yii\web\View::endBody()|endBody()]]: This method should be called at the end of the <body> section.
It triggers the [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]] event and generates a placeholder which will
be replaced by the registered HTML code (e.g. JavaScript) targeted at the body end position.

Accessing Data in Layouts

Within a layout, you have access to two predefined variables: $this and $content. The former refers to
the [[yii\base\View|view]] component, like in normal views, while the latter contains the rendering result of a content
view which is rendered by calling the [[yii\base\Controller::render()|render()]] method in controllers.

If you want to access other data in layouts, you have to use the pull method as described in
the Accessing Data in Views subsection. If you want to pass data from a content view
to a layout, you may use the method described in the Sharing Data among Views subsection.

Using Layouts

As described in the Rendering in Controllers subsection, when you render a view
by calling the [[yii\base\Controller::render()|render()]] method in a controller, a layout will be applied
to the rendering result. By default, the layout @app/views/layouts/main.php will be used.

You may use a different layout by configuring either [[yii\base\Application::layout]] or [[yii\base\Controller::layout]].
The former governs the layout used by all controllers, while the latter overrides the former for individual controllers.
For example, the following code makes the post controller to use @app/views/layouts/post.php as the layout
when rendering its views. Other controllers, assuming their layout property is untouched, will still use the default
@app/views/layouts/main.php as the layout.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public $layout = 'post';

 // ...
}

For controllers belonging to a module, you may also configure the module’s [[yii\base\Module::layout|layout]] property to
use a particular layout for these controllers.

Because the layout property may be configured at different levels (controllers, modules, application),
behind the scene Yii takes two steps to determine what is the actual layout file being used for a particular controller.

In the first step, it determines the layout value and the context module:

	If the [[yii\base\Controller::layout]] property of the controller is not null, use it as the layout value and
the [[yii\base\Controller::module|module]] of the controller as the context module.

	If the [[yii\base\Controller::layout]] property of the controller is null, search through all ancestor modules (including the application itself) of the controller and
find the first module whose [[yii\base\Module::layout|layout]] property is not null. Use that module and
its [[yii\base\Module::layout|layout]] value as the context module and the chosen layout value.
If such a module cannot be found, it means no layout will be applied.

In the second step, it determines the actual layout file according to the layout value and the context module
determined in the first step. The layout value can be:

	a path alias (e.g. @app/views/layouts/main).

	an absolute path (e.g. /main): the layout value starts with a slash. The actual layout file will be
looked for under the application’s [[yii\base\Application::layoutPath|layout path]] which defaults to
@app/views/layouts.

	a relative path (e.g. main): the actual layout file will be looked for under the context module’s
[[yii\base\Module::layoutPath|layout path]] which defaults to the views/layouts directory under the
[[yii\base\Module::basePath|module directory]].

	the boolean value false: no layout will be applied.

If the layout value does not contain a file extension, it will use the default one .php.

Nested Layouts

Sometimes you may want to nest one layout in another. For example, in different sections of a Web site, you
want to use different layouts, while all these layouts share the same basic layout that generates the overall
HTML5 page structure. You can achieve this goal by calling [[yii\base\View::beginContent()|beginContent()]] and
[[yii\base\View::endContent()|endContent()]] in the child layouts like the following:

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...child layout content here...

<?php $this->endContent(); ?>

As shown above, the child layout content should be enclosed within [[yii\base\View::beginContent()|beginContent()]] and
[[yii\base\View::endContent()|endContent()]]. The parameter passed to [[yii\base\View::beginContent()|beginContent()]]
specifies what is the parent layout. It can be either a layout file or alias.

Using the above approach, you can nest layouts in more than one levels.

Using Blocks

Blocks allow you to specify the view content in one place while displaying it in another. They are often used together
with layouts. For example, you can define a block in a content view and display it in the layout.

You call [[yii\base\View::beginBlock()|beginBlock()]] and [[yii\base\View::endBlock()|endBlock()]] to define a block.
The block can then be accessed via $view->blocks[$blockID], where $blockID stands for a unique ID that you assign
to the block when defining it.

The following example shows how you can use blocks to customize specific parts of a layout in a content view.

First, in a content view, define one or multiple blocks:

...

<?php $this->beginBlock('block1'); ?>

...content of block1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...content of block3...

<?php $this->endBlock(); ?>

Then, in the layout view, render the blocks if they are available, or display some default content if a block is
not defined.

...
<?php if (isset($this->blocks['block1'])): ?>
 <?= $this->blocks['block1'] ?>
<?php else: ?>
 ... default content for block1 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
 <?= $this->blocks['block2'] ?>
<?php else: ?>
 ... default content for block2 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
 <?= $this->blocks['block3'] ?>
<?php else: ?>
 ... default content for block3 ...
<?php endif; ?>
...

Using View Components

[[yii\base\View|View components]] provides many view-related features. While you can get view components
by creating individual instances of [[yii\base\View]] or its child class, in most cases you will mainly use
the view application component. You can configure this component in application configurations
like the following:

[
 // ...
 'components' => [
 'view' => [
 'class' => 'app\components\View',
],
 // ...
],
]

View components provide the following useful view-related features, each described in more details in a separate section:

	theming: allows you to develop and change the theme for your Web site.

	fragment caching: allows you to cache a fragment within a Web page.

	client script handling: supports CSS and JavaScript registration and rendering.

	asset bundle handling: supports registering and rendering of asset bundles.

	alternative template engines: allows you to use other template engines, such as
Twig [http://twig.sensiolabs.org/], Smarty [http://www.smarty.net/].

You may also frequently use the following minor yet useful features when you are developing Web pages.

Setting Page Titles

Every Web page should have a title. Normally the title tag is being displayed in a layout. However, in practice
the title is often determined in content views rather than layouts. To solve this problem, [[yii\web\View]] provides
the [[yii\web\View::title|title]] property for you to pass the title information from content views to layouts.

To make use of this feature, in each content view, you can set the page title like the following:

<?php
$this->title = 'My page title';
?>

Then in the layout, make sure you have the following code in the <head> section:

<title><?= Html::encode($this->title) ?></title>

Registering Meta Tags

Web pages usually need to generate various meta tags needed by different parties. Like page titles, meta tags
appear in the <head> section and are usually generated in layouts.

If you want to specify what meta tags to generate in content views, you can call [[yii\web\View::registerMetaTag()]]
in a content view, like the following:

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>

The above code will register a “keywords” meta tag with the view component. The registered meta tag is
rendered after the layout finishes rendering. The following HTML code will be generated and inserted
at the place where you call [[yii\web\View::head()]] in the layout:

<meta name="keywords" content="yii, framework, php">

Note that if you call [[yii\web\View::registerMetaTag()]] multiple times, it will register multiple meta tags,
regardless whether the meta tags are the same or not.

To make sure there is only a single instance of a meta tag type, you can specify a key as a second parameter when calling the method.
For example, the following code registers two “description” meta tags. However, only the second one will be rendered.

$this->registerMetaTag(['name' => 'description', 'content' => 'This is my cool website made with Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'This website is about funny raccoons.'], 'description');

Registering Link Tags

Like meta tags, link tags are useful in many cases, such as customizing favicon, pointing to
RSS feed or delegating OpenID to another server. You can work with link tags in the similar way as meta tags
by using [[yii\web\View::registerLinkTag()]]. For example, in a content view, you can register a link tag like follows,

$this->registerLinkTag([
 'title' => 'Live News for Yii',
 'rel' => 'alternate',
 'type' => 'application/rss+xml',
 'href' => 'http://www.yiiframework.com/rss.xml/',
]);

The code above will result in

<link title="Live News for Yii" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">

Similar as [[yii\web\View::registerMetaTag()|registerMetaTag()]], you can specify a key when calling
[[yii\web\View::registerLinkTag()|registerLinkTag()]] to avoid generating repeated link tags.

View Events

[[yii\base\View|View components]] trigger several events during the view rendering process. You may respond
to these events to inject content into views or process the rendering results before they are sent to end users.

	[[yii\base\View::EVENT_BEFORE_RENDER|EVENT_BEFORE_RENDER]]: triggered at the beginning of rendering a file
in a controller. Handlers of this event may set [[yii\base\ViewEvent::isValid]] to be false to cancel the rendering process.

	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: triggered after rendering a file by the call of [[yii\base\View::afterRender()]].
Handlers of this event may obtain the rendering result through [[yii\base\ViewEvent::output]] and may modify
this property to change the rendering result.

	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: triggered by the call of [[yii\base\View::beginPage()]] in layouts.

	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: triggered by the call of [[yii\base\View::endPage()]] in layouts.

	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: triggered by the call of [[yii\web\View::beginBody()]] in layouts.

	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: triggered by the call of [[yii\web\View::endBody()]] in layouts.

For example, the following code injects the current date at the end of the page body:

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
 echo date('Y-m-d');
});

Rendering Static Pages

Static pages refer to those Web pages whose main content are mostly static without the need of accessing
dynamic data pushed from controllers.

You can output static pages by putting their code in the view, and then using the code like the following in a controller:

public function actionAbout()
{
 return $this->render('about');
}

If a Web site contains many static pages, it would be very tedious repeating the similar code many times.
To solve this problem, you may introduce a standalone action
called [[yii\web\ViewAction]] in a controller. For example,

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'page' => [
 'class' => 'yii\web\ViewAction',
],
];
 }
}

Now if you create a view named about under the directory @app/views/site/pages, you will be able to
display this view by the following URL:

http://localhost/index.php?r=site%2Fpage&view=about

The GET parameter view tells [[yii\web\ViewAction]] which view is requested. The action will then look
for this view under the directory @app/views/site/pages. You may configure [[yii\web\ViewAction::viewPrefix]]
to change the directory for searching these views.

Best Practices

Views are responsible for presenting models in the format that end users desire. In general, views

	should mainly contain presentational code, such as HTML, and simple PHP code to traverse, format and render data.

	should not contain code that performs DB queries. Such code should be done in models.

	should avoid direct access to request data, such as $_GET, $_POST. This belongs to controllers.
If request data is needed, they should be pushed into views by controllers.

	may read model properties, but should not modify them.

To make views more manageable, avoid creating views that are too complex or contain too much redundant code.
You may use the following techniques to achieve this goal:

	use layouts to represent common presentational sections (e.g. page header, footer).

	divide a complicated view into several smaller ones. The smaller views can be rendered and assembled into a bigger
one using the rendering methods that we have described.

	create and use widgets as building blocks of views.

	create and use helper classes to transform and format data in views.

 Working with Client Scripts

Working with Client Scripts

Modern web applications, additionally to static HTML pages that are
rendered and sent to the browser, contain JavaScript that is used
to modify the page in the browser by manipulating existing elements or
loading new content via AJAX.
This section describes methods provided by Yii for adding JavaScript and CSS to a website as well as dynamically adjusting these.

Registering scripts

When working with the [[yii\web\View]] object you can dynamically register frontend scripts.
There are two dedicated methods for this:

	[[yii\web\View::registerJs()|registerJs()]] for inline scripts

	[[yii\web\View::registerJsFile()|registerJsFile()]] for external scripts

Registering inline scripts

Inline scripts are useful for configuration, dynamically generated code and small snippets created by reusable frontend code contained in widgets.
The [[yii\web\View::registerJs()|registerJs()]] method for adding these can be used as follows:

$this->registerJs(
 "$('#myButton').on('click', function() { alert('Button clicked!'); });",
 View::POS_READY,
 'my-button-handler'
);

The first argument is the actual JS code we want to insert into the page.
It will be wrapped into a <script> tag. The second argument
determines at which position the script should be inserted into the page. Possible values are:

	[[yii\web\View::POS_HEAD|View::POS_HEAD]] for head section.

	[[yii\web\View::POS_BEGIN|View::POS_BEGIN]] for right after opening <body>.

	[[yii\web\View::POS_END|View::POS_END]] for right before closing </body>.

	[[yii\web\View::POS_READY|View::POS_READY]] for executing code on the document ready event [http://learn.jquery.com/using-jquery-core/document-ready/].
This will automatically register [[yii\web\JqueryAsset|jQuery]] and wrap the code into the appropriate jQuery code. This is the default position.

	[[yii\web\View::POS_LOAD|View::POS_LOAD]] for executing code on the
document load event [http://learn.jquery.com/using-jquery-core/document-ready/]. Same as the above, this will also register [[yii\web\JqueryAsset|jQuery]] automatically.

The last argument is a unique script ID that is used to identify the script code block and replace an existing one with the same ID
instead of adding a new one. If you don’t provide it, the JS code itself will be used as the ID. It is used to avoid registration of the same code muliple times.

Registering script files

The arguments for [[yii\web\View::registerJsFile()|registerJsFile()]] are similar to those for
[[yii\web\View::registerCssFile()|registerCssFile()]]. In the following example,
we register the main.js file with the dependency on the [[yii\web\JqueryAsset]]. It means that the main.js file
will be added AFTER jquery.js. Without such dependency specification, the relative order between
main.js and jquery.js would be undefined and the code would not work.

An external script can be added like the following:

$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::className()]]
);

This will add a tag for the /js/main.js script located under the application base URL.

It is highly recommended to use asset bundles to register external JS files rather than [[yii\web\View::registerJsFile()|registerJsFile()]] because these allow better flexibility and more granular dependency configuration. Also using asset bundles allows you to combine and compress
multiple JS files, which is desirable for high traffic websites.

Registering CSS

Similar to JavaScript, you can register CSS using
[[yii\web\View::registerCss()|registerCss()]] or
[[yii\web\View::registerCssFile()|registerCssFile()]].
The former registers a block of CSS code while the latter registers an external CSS file.

Registering inline CSS

$this->registerCss("body { background: #f00; }");

The code above will result in adding the following to the <head> section of the page:

<style>
body { background: #f00; }
</style>

If you want to specify additional properties of the style tag, pass an array of name-values to the second argument.
The last argument is a unique ID that is used to identify the style block and make sure it is only added once in case the same style is registered from different places in the code.

Registering CSS files

A CSS file can be registered using the following:

$this->registerCssFile("@web/css/themes/black-and-white.css", [
 'depends' => [\yii\bootstrap\BootstrapAsset::className()],
 'media' => 'print',
], 'css-print-theme');

The above code will add a link to the /css/themes/black-and-white.css CSS file to the <head> section of the page.

	The first argument specifies the CSS file to be registered.
The @web in this example is an alias for the applications base URL.

	The second argument specifies the HTML attributes for the resulting <link> tag. The option depends
is specially handled. It specifies which asset bundles this CSS file depends on. In this case, the dependent
asset bundle is [[yii\bootstrap\BootstrapAsset|BootstrapAsset]]. This means the CSS file will be added
after the CSS files from [[yii\bootstrap\BootstrapAsset|BootstrapAsset]].

	The last argument specifies an ID identifying this CSS file. If it is not provided, the URL of the CSS file will be
used instead.

It is highly recommended to use asset bundles to register external CSS files rather than
[[yii\web\View::registerCssFile()|registerCssFile()]]. Using asset bundles allows you to combine and compress
multiple CSS files, which is desirable for high traffic websites.
It also provides more flexibility as all asset dependencies of your application are configured in one place.

Registering asset bundles

As was mentioned earlier it’s recommended to use asset bundles instead of registering CSS and JavaScript files directly.
You can get details on how to define asset bundles in the
“Assets” section.
As for using already defined asset bundles, it’s very straightforward:

\frontend\assets\AppAsset::register($this);

In the above code, in the context of a view file, the AppAsset bundle is registered on the current view (represented by $this).
When registering asset bundles from within a widget, you would pass the
[[yii\base\Widget::$view|$view]] of the widget instead ($this->view).

Generating Dynamic Javascript

In view files often the HTML code is not written out directly but generated
by some PHP code dependent on the variables of the view.
In order for the generated HTML to be manipulated with Javascript, the JS code has to contain dynamic parts too, for example the IDs of the jQuery selectors.

To insert PHP variables into JS code, their values have to be
escaped properly. Especially when the JS code is inserted into
HTML instead of residing in a dedicated JS file.
Yii provides the [[yii\helpers\Json::htmlEncode()|htmlEncode()]] method of the [[yii\helpers\Json|Json]] helper for this purpose. Its usage will be shown in the following examples.

Registering a global JavaScript configuration

In this example we use an array to pass global configuration parameters from
the PHP part of the application to the JS frontend code.

$options = [
 'appName' => Yii::$app->name,
 'baseUrl' => Yii::$app->request->baseUrl,
 'language' => Yii::$app->language,
 // ...
];
$this->registerJs(
 "var yiiOptions = ".\yii\helpers\Json::htmlEncode($options).";",
 View::POS_HEAD,
 'yiiOptions'
);

The above code will register a <script>-tag containing the JavaScript
variable definition, e.g.:

var yiiOptions = {"appName":"My Yii Application","baseUrl":"/basic/web","language":"en"};

In your JavaScript code you can now access these like yiiOptions.baseUrl or yiiOptions.language.

Passing translated messages

You may encounter a case where your JavaScript needs to print a message reacting to some event. In an application that works with multiple languages this string has to be translated to the current application language.
One way to achieve this is to use the
message translation feature provided by Yii and passing the result to the JavaScript code.

$message = \yii\helpers\Json::htmlEncode(
 \Yii::t('app', 'Button clicked!')
);
$this->registerJs(<<<JS
 $('#myButton').on('click', function() { alert($message); });",
JS
);

The above example code uses PHP
Heredoc syntax [http://php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc] for better readability. This also enables better syntax highlighting in most IDEs so it is the
preferred way of writing inline JavaScript, especially useful for code that is longer than a single line. The variable $message is created in PHP and
thanks to [[yii\helpers\Json::htmlEncode|Json::htmlEncode]] it contains the
string in valid JS syntax, which can be inserted into the JavaScript code to place the dynamic string in the function call to alert().

Note: When using Heredoc, be careful with variable naming in JS code
as variables beginning with $ may be interpreted as PHP variables which
will be replaced by their content.
The jQuery function in form of $(or $. is not interpreted
as a PHP variable and can safely be used.

The yii.js script

Note: This section has not been written yet. It should contain explanation of the functionality provided by yii.js:

	Yii JavaScript Modules

	CSRF param handling

	data-confirm handler

	data-method handler

	script filtering

	redirect handling

 Controllers

Controllers

Controllers are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are objects of classes extending from [[yii\base\Controller]] and are responsible for processing requests and
generating responses. In particular, after taking over the control from applications,
controllers will analyze incoming request data, pass them to models, inject model results
into views, and finally generate outgoing responses.

Actions

Controllers are composed of actions which are the most basic units that end users can address and request for
execution. A controller can have one or multiple actions.

The following example shows a post controller with two actions: view and create:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 return $this->render('view', [
 'model' => $model,
]);
 }

 public function actionCreate()
 {
 $model = new Post;

 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('create', [
 'model' => $model,
]);
 }
 }
}

In the view action (defined by the actionView() method), the code first loads the model
according to the requested model ID; If the model is loaded successfully, it will display it using
a view named view. Otherwise, it will throw an exception.

In the create action (defined by the actionCreate() method), the code is similar. It first tries to populate
a new instance of the model using the request data and save the model. If both succeed it
will redirect the browser to the view action with the ID of the newly created model. Otherwise it will display
the create view through which users can provide the needed input.

Routes

End users address actions through the so-called routes. A route is a string that consists of the following parts:

	a module ID: this exists only if the controller belongs to a non-application module;

	a controller ID: a string that uniquely identifies the controller among all controllers within the same application
(or the same module if the controller belongs to a module);

	an action ID: a string that uniquely identifies the action among all actions within the same controller.

Routes take the following format:

ControllerID/ActionID

or the following format if the controller belongs to a module:

ModuleID/ControllerID/ActionID

So if a user requests with the URL http://hostname/index.php?r=site/index, the index action in the site controller
will be executed. For more details on how routes are resolved into actions, please refer to
the Routing and URL Creation section.

Creating Controllers

In [[yii\web\Application|Web applications]], controllers should extend from [[yii\web\Controller]] or its
child classes. Similarly in [[yii\console\Application|console applications]], controllers should extend from
[[yii\console\Controller]] or its child classes. The following code defines a site controller:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}

Controller IDs

Usually, a controller is designed to handle the requests regarding a particular type of resource.
For this reason, controller IDs are often nouns referring to the types of the resources that they are handling.
For example, you may use article as the ID of a controller that handles article data.

By default, controller IDs should contain these characters only: English letters in lower case, digits,
underscores, hyphens, and forward slashes. For example, article and post-comment are both valid controller IDs,
while article?, PostComment, admin\post are not.

A controller ID may also contain a subdirectory prefix. For example, admin/article stands for an article controller
in the admin subdirectory under the [[yii\base\Application::controllerNamespace|controller namespace]].
Valid characters for subdirectory prefixes include: English letters in lower and upper cases, digits, underscores, and
forward slashes, where forward slashes are used as separators for multi-level subdirectories (e.g. panels/admin).

Controller Class Naming

Controller class names can be derived from controller IDs according to the following procedure:

	Turn the first letter in each word separated by hyphens into upper case. Note that if the controller ID
contains slashes, this rule only applies to the part after the last slash in the ID.

	Remove hyphens and replace any forward slashes with backward slashes.

	Append the suffix Controller.

	Prepend the [[yii\base\Application::controllerNamespace|controller namespace]].

The following are some examples, assuming the [[yii\base\Application::controllerNamespace|controller namespace]]
takes the default value app\controllers:

	article becomes app\controllers\ArticleController;

	post-comment becomes app\controllers\PostCommentController;

	admin/post-comment becomes app\controllers\admin\PostCommentController;

	adminPanels/post-comment becomes app\controllers\adminPanels\PostCommentController.

Controller classes must be autoloadable. For this reason, in the above examples,
the article controller class should be saved in the file whose alias
is @app/controllers/ArticleController.php; while the admin/post-comment controller should be
in @app/controllers/admin/PostCommentController.php.

Info: The last example admin/post-comment shows how you can put a controller under a sub-directory
of the [[yii\base\Application::controllerNamespace|controller namespace]]. This is useful when you want
to organize your controllers into several categories and you do not want to use modules.

Controller Map

You can configure the [[yii\base\Application::controllerMap|controller map]] to overcome the constraints
of the controller IDs and class names described above. This is mainly useful when you are using
third-party controllers and you do not have control over their class names.

You may configure the [[yii\base\Application::controllerMap|controller map]] in the
application configuration. For example:

[
 'controllerMap' => [
 // declares "account" controller using a class name
 'account' => 'app\controllers\UserController',

 // declares "article" controller using a configuration array
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Default Controller

Each application has a default controller specified via the [[yii\base\Application::defaultRoute]] property.
When a request does not specify a route, the route specified by this property will be used.
For [[yii\web\Application|Web applications]], its value is 'site', while for [[yii\console\Application|console applications]],
it is help. Therefore, if a URL is http://hostname/index.php, then the site controller will handle the request.

You may change the default controller with the following application configuration:

[
 'defaultRoute' => 'main',
]

Creating Actions

Creating actions can be as simple as defining the so-called action methods in a controller class. An action method is
a public method whose name starts with the word action. The return value of an action method represents
the response data to be sent to end users. The following code defines two actions, index and hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index');
 }

 public function actionHelloWorld()
 {
 return 'Hello World';
 }
}

Action IDs

An action is often designed to perform a particular manipulation of a resource. For this reason,
action IDs are usually verbs, such as view, update, etc.

By default, action IDs should contain these characters only: English letters in lower case, digits,
underscores, and hyphens (you can use hyphens to separate words). For example,
view, update2, and comment-post are all valid action IDs, while view? and Update are not.

You can create actions in two ways: inline actions and standalone actions. An inline action is
defined as a method in the controller class, while a standalone action is a class extending
[[yii\base\Action]] or its child classes. Inline actions take less effort to create and are often preferred
if you have no intention to reuse these actions. Standalone actions, on the other hand, are mainly
created to be used in different controllers or be redistributed as extensions.

Inline Actions

Inline actions refer to the actions that are defined in terms of action methods as we just described.

The names of the action methods are derived from action IDs according to the following procedure:

	Turn the first letter in each word of the action ID into upper case.

	Remove hyphens.

	Prepend the prefix action.

For example, index becomes actionIndex, and hello-world becomes actionHelloWorld.

Note: The names of the action methods are case-sensitive. If you have a method named ActionIndex,
it will not be considered as an action method, and as a result, the request for the index action
will result in an exception. Also note that action methods must be public. A private or protected
method does NOT define an inline action.

Inline actions are the most commonly defined actions because they take little effort to create. However,
if you plan to reuse the same action in different places, or if you want to redistribute an action,
you should consider defining it as a standalone action.

Standalone Actions

Standalone actions are defined in terms of action classes extending [[yii\base\Action]] or its child classes.
For example, in the Yii releases, there are [[yii\web\ViewAction]] and [[yii\web\ErrorAction]], both of which
are standalone actions.

To use a standalone action, you should declare it in the action map by overriding the
[[yii\base\Controller::actions()]] method in your controller classes like the following:

public function actions()
{
 return [
 // declares "error" action using a class name
 'error' => 'yii\web\ErrorAction',

 // declares "view" action using a configuration array
 'view' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => '',
],
];
}

As you can see, the actions() method should return an array whose keys are action IDs and values the corresponding
action class names or configurations. Unlike inline actions, action IDs for standalone
actions can contain arbitrary characters, as long as they are declared in the actions() method.

To create a standalone action class, you should extend [[yii\base\Action]] or a child class, and implement
a public method named run(). The role of the run() method is similar to that of an action method. For example,

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
 public function run()
 {
 return "Hello World";
 }
}

Action Results

The return value of an action method or of the run() method of a standalone action is significant. It stands
for the result of the corresponding action.

The return value can be a response object which will be sent to the end user as the response.

	For [[yii\web\Application|Web applications]], the return value can also be some arbitrary data which will
be assigned to [[yii\web\Response::data]] and be further converted into a string representing the response body.

	For [[yii\console\Application|console applications]], the return value can also be an integer representing
the [[yii\console\Response::exitStatus|exit status]] of the command execution.

In the examples shown above, the action results are all strings which will be treated as the response body
to be sent to end users. The following example shows how an action can redirect the user browser to a new URL
by returning a response object (because the [[yii\web\Controller::redirect()|redirect()]] method returns
a response object):

public function actionForward()
{
 // redirect the user browser to http://example.com
 return $this->redirect('http://example.com');
}

Action Parameters

The action methods for inline actions and the run() methods for standalone actions can take parameters,
called action parameters. Their values are obtained from requests. For [[yii\web\Application|Web applications]],
the value of each action parameter is retrieved from $_GET using the parameter name as the key;
for [[yii\console\Application|console applications]], they correspond to the command line arguments.

In the following example, the view action (an inline action) has declared two parameters: $id and $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public function actionView($id, $version = null)
 {
 // ...
 }
}

The action parameters will be populated as follows for different requests:

	http://hostname/index.php?r=post/view&id=123: the $id parameter will be filled with the value
'123', while $version is still null because there is no version query parameter.

	http://hostname/index.php?r=post/view&id=123&version=2: the $id and $version parameters will
be filled with '123' and '2', respectively.

	http://hostname/index.php?r=post/view: a [[yii\web\BadRequestHttpException]] exception will be thrown
because the required $id parameter is not provided in the request.

	http://hostname/index.php?r=post/view&id[]=123: a [[yii\web\BadRequestHttpException]] exception will be thrown
because $id parameter is receiving an unexpected array value ['123'].

If you want an action parameter to accept array values, you should type-hint it with array, like the following:

public function actionView(array $id, $version = null)
{
 // ...
}

Now if the request is http://hostname/index.php?r=post/view&id[]=123, the $id parameter will take the value
of ['123']. If the request is http://hostname/index.php?r=post/view&id=123, the $id parameter will still
receive the same array value because the scalar value '123' will be automatically turned into an array.

The above examples mainly show how action parameters work for Web applications. For console applications,
please refer to the Console Commands section for more details.

Default Action

Each controller has a default action specified via the [[yii\base\Controller::defaultAction]] property.
When a route contains the controller ID only, it implies that the default action of
the specified controller is requested.

By default, the default action is set as index. If you want to change the default value, simply override
this property in the controller class, like the following:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $defaultAction = 'home';

 public function actionHome()
 {
 return $this->render('home');
 }
}

Controller Lifecycle

When processing a request, an application will create a controller
based on the requested route. The controller will then undergo the following lifecycle
to fulfill the request:

	The [[yii\base\Controller::init()]] method is called after the controller is created and configured.

	The controller creates an action object based on the requested action ID:
	If the action ID is not specified, the [[yii\base\Controller::defaultAction|default action ID]] will be used.

	If the action ID is found in the [[yii\base\Controller::actions()|action map]], a standalone action
will be created;

	If the action ID is found to match an action method, an inline action will be created;

	Otherwise an [[yii\base\InvalidRouteException]] exception will be thrown.

	The controller sequentially calls the beforeAction() method of the application, the module (if the controller
belongs to a module), and the controller.
	If one of the calls returns false, the rest of the uncalled beforeAction() methods will be skipped and the
action execution will be cancelled.

	By default, each beforeAction() method call will trigger a beforeAction event to which you can attach a handler.

	The controller runs the action.
	The action parameters will be analyzed and populated from the request data.

	The controller sequentially calls the afterAction() method of the controller, the module (if the controller
belongs to a module), and the application.
	By default, each afterAction() method call will trigger an afterAction event to which you can attach a handler.

	The application will take the action result and assign it to the response.

Best Practices

In a well-designed application, controllers are often very thin, with each action containing only a few lines of code.
If your controller is rather complicated, it usually indicates that you should refactor it and move some code
to other classes.

Here are some specific best practices. Controllers

	may access the request data;

	may call methods of models and other service components with request data;

	may use views to compose responses;

	should NOT process the request data - this should be done in the model layer;

	should avoid embedding HTML or other presentational code - this is better done in views.

 Versioning

Versioning

A good API is versioned: changes and new features are implemented in new versions of the API instead of continually altering just one version. Unlike Web applications, with which you have full control of both the client-side and server-side
code, APIs are meant to be used by clients beyond your control. For this reason, backward
compatibility (BC) of the APIs should be maintained whenever possible. If a change that may break BC is necessary, you should introduce it in new version of the API, and bump up the version number. Existing clients can continue to use the old, working version of the API; and new or upgraded clients can get the new functionality in the new API version.

Tip: Refer to Semantic Versioning [http://semver.org/]
for more information on designing API version numbers.

One common way to implement API versioning is to embed the version number in the API URLs.
For example, http://example.com/v1/users stands for the /users endpoint of API version 1.

Another method of API versioning,
which has gained momentum recently, is to put the version number in the HTTP request headers. This is typically done through the Accept header:

// via a parameter
Accept: application/json; version=v1
// via a vendor content type
Accept: application/vnd.company.myapp-v1+json

Both methods have their pros and cons, and there are a lot of debates about each approach. Below you’ll see a practical strategy
for API versioning that is a mix of these two methods:

	Put each major version of API implementation in a separate module whose ID is the major version number (e.g. v1, v2).
Naturally, the API URLs will contain major version numbers.

	Within each major version (and thus within the corresponding module), use the Accept HTTP request header
to determine the minor version number and write conditional code to respond to the minor versions accordingly.

For each module serving a major version, the module should include the resource and controller classes
serving that specific version. To better separate code responsibility, you may keep a common set of
base resource and controller classes, and subclass them in each individual version module. Within the subclasses,
implement the concrete code such as Model::fields().

Your code may be organized like the following:

api/
 common/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 modules/
 v1/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php
 v2/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php

Your application configuration would look like:

return [
 'modules' => [
 'v1' => [
 'class' => 'app\modules\v1\Module',
],
 'v2' => [
 'class' => 'app\modules\v2\Module',
],
],
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user', 'v1/post']],
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user', 'v2/post']],
],
],
],
];

As a result of the above code, http://example.com/v1/users will return the list of users in version 1, while
http://example.com/v2/users will return version 2 users.

Thanks to modules, the code for different major versions can be well isolated. But modules make it still possible
to reuse code across the modules via common base classes and other shared resources.

To deal with minor version numbers, you may take advantage of the content negotiation
feature provided by the [[yii\filters\ContentNegotiator|contentNegotiator]] behavior. The contentNegotiator
behavior will set the [[yii\web\Response::acceptParams]] property when it determines which
content type to support.

For example, if a request is sent with the HTTP header Accept: application/json; version=v1,
after content negotiation, [[yii\web\Response::acceptParams]] will contain the value ['version' => 'v1'].

Based on the version information in acceptParams, you may write conditional code in places
such as actions, resource classes, serializers, etc. to provide the appropriate functionality.

Since minor versions by definition require maintaining backward compatibility, hopefully there would not be many
version checks in your code. Otherwise, chances are that you may need to create a new major version.

 Fragment Caching

Fragment Caching

Fragment caching refers to caching a fragment of a Web page. For example, if a page displays a summary of
yearly sale in a table, you can store this table in cache to eliminate the time needed to generate this table
for each request. Fragment caching is built on top of data caching.

To use fragment caching, use the following construct in a view:

if ($this->beginCache($id)) {

 // ... generate content here ...

 $this->endCache();
}

That is, enclose content generation logic in a pair of [[yii\base\View::beginCache()|beginCache()]] and
[[yii\base\View::endCache()|endCache()]] calls. If the content is found in the cache, [[yii\base\View::beginCache()|beginCache()]]
will render the cached content and return false, thus skip the content generation logic.
Otherwise, your content generation logic will be called, and when [[yii\base\View::endCache()|endCache()]]
is called, the generated content will be captured and stored in the cache.

Like data caching, a unique $id is needed to identify a content cache.

Caching Options

You may specify additional options about fragment caching by passing the option array as the second
parameter to the [[yii\base\View::beginCache()|beginCache()]] method. Behind the scene, this option array
will be used to configure a [[yii\widgets\FragmentCache]] widget which implements the actual fragment caching
functionality.

Duration

Perhaps the most commonly used option of fragment caching is [[yii\widgets\FragmentCache::duration|duration]].
It specifies for how many seconds the content can remain valid in a cache. The following code
caches the content fragment for at most one hour:

if ($this->beginCache($id, ['duration' => 3600])) {

 // ... generate content here ...

 $this->endCache();
}

If the option is not set, it will take the default value 60, which means the cached content will expire in 60 seconds.

Dependencies

Like data caching, content fragment being cached can also have dependencies.
For example, the content of a post being displayed depends on whether or not the post is modified.

To specify a dependency, set the [[yii\widgets\FragmentCache::dependency|dependency]] option, which can be
either an [[yii\caching\Dependency]] object or a configuration array for creating a dependency object. The
following code specifies that the fragment content depends on the change of the updated_at column value:

$dependency = [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

 // ... generate content here ...

 $this->endCache();
}

Variations

Content being cached may be variated according to some parameters. For example, for a Web application
supporting multiple languages, the same piece of view code may generate the content in different languages.
Therefore, you may want to make the cached content variated according to the current application language.

To specify cache variations, set the [[yii\widgets\FragmentCache::variations|variations]] option, which
should be an array of scalar values, each representing a particular variation factor. For example,
to make the cached content variated by the language, you may use the following code:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

 // ... generate content here ...

 $this->endCache();
}

Toggling Caching

Sometimes you may want to enable fragment caching only when certain conditions are met. For example, for a page
displaying a form, you only want to cache the form when it is initially requested (via GET request). Any
subsequent display (via POST request) of the form should not be cached because the form may contain user input.
To do so, you may set the [[yii\widgets\FragmentCache::enabled|enabled]] option, like the following:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

 // ... generate content here ...

 $this->endCache();
}

Nested Caching

Fragment caching can be nested. That is, a cached fragment can be enclosed within another fragment which is also cached.
For example, the comments are cached in an inner fragment cache, and they are cached together with the
post content in an outer fragment cache. The following code shows how two fragment caches can be nested:

if ($this->beginCache($id1)) {

 // ...content generation logic...

 if ($this->beginCache($id2, $options2)) {

 // ...content generation logic...

 $this->endCache();
 }

 // ...content generation logic...

 $this->endCache();
}

Different caching options can be set for the nested caches. For example, the inner caches and the outer caches
can use different cache duration values. Even when the data cached in the outer cache is invalidated, the inner
cache may still provide the valid inner fragment. However, it is not true vice versa. If the outer cache is
evaluated to be valid, it will continue to provide the same cached copy even after the content in the
inner cache has been invalidated. Therefore, you must be careful in setting the durations or the dependencies
of the nested caches, otherwise the outdated inner fragments may be kept in the outer fragment.

Dynamic Content

When using fragment caching, you may encounter the situation where a large fragment of content is relatively
static except at one or a few places. For example, a page header may display the main menu bar together with
the name of the current user. Another problem is that the content being cached may contain PHP code that
must be executed for every request (e.g. the code for registering an asset bundle). Both problems can be solved
by the so-called dynamic content feature.

A dynamic content means a fragment of output that should not be cached even if it is enclosed within
a fragment cache. To make the content dynamic all the time, it has to be generated by executing some PHP code
for every request, even if the enclosing content is being served from cache.

You may call [[yii\base\View::renderDynamic()]] within a cached fragment to insert dynamic content
at the desired place, like the following,

if ($this->beginCache($id1)) {

 // ...content generation logic...

 echo $this->renderDynamic('return Yii::$app->user->identity->name;');

 // ...content generation logic...

 $this->endCache();
}

The [[yii\base\View::renderDynamic()|renderDynamic()]] method takes a piece of PHP code as its parameter.
The return value of the PHP code is treated as the dynamic content. The same PHP code will be executed
for every request, no matter the enclosing fragment is being served from cached or not.

 Authorization

Authorization

Authorization is the process of verifying that a user has enough permission to do something. Yii provides two authorization
methods: Access Control Filter (ACF) and Role-Based Access Control (RBAC).

Access Control Filter

Access Control Filter (ACF) is a simple authorization method implemented as [[yii\filters\AccessControl]] which
is best used by applications that only need some simple access control. As its name indicates, ACF is
an action filter that can be used in a controller or a module. While a user is requesting
to execute an action, ACF will check a list of [[yii\filters\AccessControl::rules|access rules]]
to determine if the user is allowed to access the requested action.

The code below shows how to use ACF in the site controller:

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }
 // ...
}

In the code above ACF is attached to the site controller as a behavior. This is the typical way of using an action
filter. The only option specifies that the ACF should only be applied to the login, logout and signup actions.
All other actions in the site controller are not subject to the access control. The rules option lists
the [[yii\filters\AccessRule|access rules]], which reads as follows:

	Allow all guest (not yet authenticated) users to access the login and signup actions. The roles option
contains a question mark ? which is a special token representing “guest users”.

	Allow authenticated users to access the logout action. The @ character is another special token representing
“authenticated users”.

ACF performs the authorization check by examining the access rules one by one from top to bottom until it finds
a rule that matches the current execution context. The allow value of the matching rule will then be used to
judge if the user is authorized or not. If none of the rules matches, it means the user is NOT authorized,
and ACF will stop further action execution.

When ACF determines a user is not authorized to access the current action, it takes the following measure by default:

	If the user is a guest, it will call [[yii\web\User::loginRequired()]] to redirect the user browser to the login page.

	If the user is already authenticated, it will throw a [[yii\web\ForbiddenHttpException]].

You may customize this behavior by configuring the [[yii\filters\AccessControl::denyCallback]] property like the following:

[
 'class' => AccessControl::className(),
 ...
 'denyCallback' => function ($rule, $action) {
 throw new \Exception('You are not allowed to access this page');
 }
]

[[yii\filters\AccessRule|Access rules]] support many options. Below is a summary of the supported options.
You may also extend [[yii\filters\AccessRule]] to create your own customized access rule classes.

	[[yii\filters\AccessRule::allow|allow]]: specifies whether this is an “allow” or “deny” rule.

	[[yii\filters\AccessRule::actions|actions]]: specifies which actions this rule matches. This should
be an array of action IDs. The comparison is case-sensitive. If this option is empty or not set,
it means the rule applies to all actions.

	[[yii\filters\AccessRule::controllers|controllers]]: specifies which controllers this rule
matches. This should be an array of controller IDs. Each controller ID is prefixed with the module ID (if any).
The comparison is case-sensitive. If this option is empty or not set, it means the rule applies to all controllers.

	[[yii\filters\AccessRule::roles|roles]]: specifies which user roles that this rule matches.
Two special roles are recognized, and they are checked via [[yii\web\User::isGuest]]:

	?: matches a guest user (not authenticated yet)

	@: matches an authenticated user

Using other role names will trigger the invocation of [[yii\web\User::can()]], which requires enabling RBAC
(to be described in the next subsection). If this option is empty or not set, it means this rule applies to all roles.

	[[yii\filters\AccessRule::ips|ips]]: specifies which [[yii\web\Request::userIP|client IP addresses]] this rule matches.
An IP address can contain the wildcard * at the end so that it matches IP addresses with the same prefix.
For example, ‘192.168.*‘ matches all IP addresses in the segment ‘192.168.’. If this option is empty or not set,
it means this rule applies to all IP addresses.

	[[yii\filters\AccessRule::verbs|verbs]]: specifies which request method (e.g. GET, POST) this rule matches.
The comparison is case-insensitive.

	[[yii\filters\AccessRule::matchCallback|matchCallback]]: specifies a PHP callable that should be called to determine
if this rule should be applied.

	[[yii\filters\AccessRule::denyCallback|denyCallback]]: specifies a PHP callable that should be called when this rule
will deny the access.

Below is an example showing how to make use of the matchCallback option, which allows you to write arbitrary access
check logic:

use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['special-callback'],
 'rules' => [
 [
 'actions' => ['special-callback'],
 'allow' => true,
 'matchCallback' => function ($rule, $action) {
 return date('d-m') === '31-10';
 }
],
],
],
];
 }

 // Match callback called! This page can be accessed only each October 31st
 public function actionSpecialCallback()
 {
 return $this->render('happy-halloween');
 }
}

Role Based Access Control (RBAC)

Role-Based Access Control (RBAC) provides a simple yet powerful centralized access control. Please refer to
the Wikipedia [http://en.wikipedia.org/wiki/Role-based_access_control] for details about comparing RBAC
with other more traditional access control schemes.

Yii implements a General Hierarchical RBAC, following the NIST RBAC model [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf].
It provides the RBAC functionality through the [[yii\rbac\ManagerInterface|authManager]] application component.

Using RBAC involves two parts of work. The first part is to build up the RBAC authorization data, and the second
part is to use the authorization data to perform access check in places where it is needed.

To facilitate our description next, we will first introduce some basic RBAC concepts.

Basic Concepts

A role represents a collection of permissions (e.g. creating posts, updating posts). A role may be assigned
to one or multiple users. To check if a user has a specified permission, we may check if the user is assigned
with a role that contains that permission.

Associated with each role or permission, there may be a rule. A rule represents a piece of code that will be
executed during access check to determine if the corresponding role or permission applies to the current user.
For example, the “update post” permission may have a rule that checks if the current user is the post creator.
During access checking, if the user is NOT the post creator, he/she will be considered not having the “update post” permission.

Both roles and permissions can be organized in a hierarchy. In particular, a role may consist of other roles or permissions;
and a permission may consist of other permissions. Yii implements a partial order hierarchy which includes the
more special tree hierarchy. While a role can contain a permission, it is not true vice versa.

Configuring RBAC

Before we set off to define authorization data and perform access checking, we need to configure the
[[yii\base\Application::authManager|authManager]] application component. Yii provides two types of authorization managers:
[[yii\rbac\PhpManager]] and [[yii\rbac\DbManager]]. The former uses a PHP script file to store authorization
data, while the latter stores authorization data in a database. You may consider using the former if your application
does not require very dynamic role and permission management.

Using PhpManager

The following code shows how to configure the authManager in the application configuration using the [[yii\rbac\PhpManager]] class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

The authManager can now be accessed via \Yii::$app->authManager.

By default, [[yii\rbac\PhpManager]] stores RBAC data in files under @app/rbac directory. Make sure the directory
and all the files in it are writable by the Web server process if permissions hierarchy needs to be changed online.

Using DbManager

The following code shows how to configure the authManager in the application configuration using the [[yii\rbac\DbManager]] class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
],
 // ...
],
];

Note: If you are using yii2-basic-app template, there is a config/console.php configuration file where the
authManager needs to be declared additionally to config/web.php.
In case of yii2-advanced-app the authManager should be declared only once in common/config/main.php.

DbManager uses four database tables to store its data:

	[[yii\rbac\DbManager::$itemTable|itemTable]]: the table for storing authorization items. Defaults to “auth_item”.

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: the table for storing authorization item hierarchy. Defaults to “auth_item_child”.

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: the table for storing authorization item assignments. Defaults to “auth_assignment”.

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: the table for storing rules. Defaults to “auth_rule”.

Before you can go on you need to create those tables in the database. To do this, you can use the migration stored in @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

Read more about working with migrations from different namespaces in
Separated Migrations section.

The authManager can now be accessed via \Yii::$app->authManager.

Building Authorization Data

Building authorization data is all about the following tasks:

	defining roles and permissions;

	establishing relations among roles and permissions;

	defining rules;

	associating rules with roles and permissions;

	assigning roles to users.

Depending on authorization flexibility requirements the tasks above could be done in different ways.

If your permissions hierarchy doesn’t change at all and you have a fixed number of users you can create a
console command that will initialize authorization data once via APIs offered by authManager:

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = Yii::$app->authManager;

 // add "createPost" permission
 $createPost = $auth->createPermission('createPost');
 $createPost->description = 'Create a post';
 $auth->add($createPost);

 // add "updatePost" permission
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = 'Update post';
 $auth->add($updatePost);

 // add "author" role and give this role the "createPost" permission
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // add "admin" role and give this role the "updatePost" permission
 // as well as the permissions of the "author" role
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // Assign roles to users. 1 and 2 are IDs returned by IdentityInterface::getId()
 // usually implemented in your User model.
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }
}

Note: If you are using advanced template, you need to put your RbacController inside console/controllers directory
and change namespace to console\controllers.

After executing the command with yii rbac/init we’ll get the following hierarchy:

[image: Simple RBAC hierarchy]

Author can create post, admin can update post and do everything author can.

If your application allows user signup you need to assign roles to these new users once. For example, in order for all
signed up users to become authors in your advanced project template you need to modify frontend\models\SignupForm::signup()
as follows:

public function signup()
{
 if ($this->validate()) {
 $user = new User();
 $user->username = $this->username;
 $user->email = $this->email;
 $user->setPassword($this->password);
 $user->generateAuthKey();
 $user->save(false);

 // the following three lines were added:
 $auth = \Yii::$app->authManager;
 $authorRole = $auth->getRole('author');
 $auth->assign($authorRole, $user->getId());

 return $user;
 }

 return null;
}

For applications that require complex access control with dynamically updated authorization data, special user interfaces
(i.e. admin panel) may need to be developed using APIs offered by authManager.

Using Rules

As aforementioned, rules add additional constraint to roles and permissions. A rule is a class extending
from [[yii\rbac\Rule]]. It must implement the [[yii\rbac\Rule::execute()|execute()]] method. In the hierarchy we’ve
created previously author cannot edit his own post. Let’s fix it. First we need a rule to verify that the user is the post author:

namespace app\rbac;

use yii\rbac\Rule;

/**
 * Checks if authorID matches user passed via params
 */
class AuthorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|int $user the user ID.
 * @param Item $item the role or permission that this rule is associated with
 * @param array $params parameters passed to ManagerInterface::checkAccess().
 * @return bool a value indicating whether the rule permits the role or permission it is associated with.
 */
 public function execute($user, $item, $params)
 {
 return isset($params['post']) ? $params['post']->createdBy == $user : false;
 }
}

The rule above checks if the post is created by $user. We’ll create a special permission updateOwnPost in the
command we’ve used previously:

$auth = Yii::$app->authManager;

// add the rule
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// add the "updateOwnPost" permission and associate the rule with it.
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = 'Update own post';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" will be used from "updatePost"
$auth->addChild($updateOwnPost, $updatePost);

// allow "author" to update their own posts
$auth->addChild($author, $updateOwnPost);

Now we have got the following hierarchy:

[image: RBAC hierarchy with a rule]

Access Check

With the authorization data ready, access check is as simple as a call to the [[yii\rbac\ManagerInterface::checkAccess()]]
method. Because most access check is about the current user, for convenience Yii provides a shortcut method
[[yii\web\User::can()]], which can be used like the following:

if (\Yii::$app->user->can('createPost')) {
 // create post
}

If the current user is Jane with ID=1 we are starting at createPost and trying to get to Jane:

[image: Access check]

In order to check if a user can update a post, we need to pass an extra parameter that is required by AuthorRule described before:

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
 // update post
}

Here is what happens if the current user is John:

[image: Access check]

We are starting with the updatePost and going through updateOwnPost. In order to pass the access check, AuthorRule
should return true from its execute() method. The method receives its $params from the can() method call so the value is
['post' => $post]. If everything is fine, we will get to author which is assigned to John.

In case of Jane it is a bit simpler since she is an admin:

[image: Access check]

Inside your controller there are a few ways to implement authorization. If you want granular permissions that
separate access to adding and deleting, then you need to check access for each action. You can either use the
above condition in each action method, or use [[yii\filters\AccessControl]]:

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 [
 'allow' => true,
 'actions' => ['index'],
 'roles' => ['managePost'],
],
 [
 'allow' => true,
 'actions' => ['view'],
 'roles' => ['viewPost'],
],
 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['createPost'],
],
 [
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
],
 [
 'allow' => true,
 'actions' => ['delete'],
 'roles' => ['deletePost'],
],
],
],
];
}

If all the CRUD operations are managed together then it’s a good idea to use a single permission, like managePost, and
check it in [[yii\web\Controller::beforeAction()]].

Using Default Roles

A default role is a role that is implicitly assigned to all users. The call to [[yii\rbac\ManagerInterface::assign()]]
is not needed, and the authorization data does not contain its assignment information.

A default role is usually associated with a rule which determines if the role applies to the user being checked.

Default roles are often used in applications which already have some sort of role assignment. For example, an application
may have a “group” column in its user table to represent which privilege group each user belongs to.
If each privilege group can be mapped to an RBAC role, you can use the default role feature to automatically
assign each user to an RBAC role. Let’s use an example to show how this can be done.

Assume in the user table, you have a group column which uses 1 to represent the administrator group and 2 the author group.
You plan to have two RBAC roles admin and author to represent the permissions for these two groups, respectively.
You can set up the RBAC data as follows,

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * Checks if user group matches
 */
class UserGroupRule extends Rule
{
 public $name = 'userGroup';

 public function execute($user, $item, $params)
 {
 if (!Yii::$app->user->isGuest) {
 $group = Yii::$app->user->identity->group;
 if ($item->name === 'admin') {
 return $group == 1;
 } elseif ($item->name === 'author') {
 return $group == 1 || $group == 2;
 }
 }
 return false;
 }
}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... add permissions as children of $author ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... add permissions as children of $admin ...

Note that in the above, because “author” is added as a child of “admin”, when you implement the execute() method
of the rule class, you need to respect this hierarchy as well. That is why when the role name is “author”,
the execute() method will return true if the user group is either 1 or 2 (meaning the user is in either “admin”
group or “author” group).

Next, configure authManager by listing the two roles in [[yii\rbac\BaseManager::$defaultRoles]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['admin', 'author'],
],
 // ...
],
];

Now if you perform an access check, both of the admin and author roles will be checked by evaluating
the rules associated with them. If the rule returns true, it means the role applies to the current user.
Based on the above rule implementation, this means if the group value of a user is 1, the admin role
would apply to the user; and if the group value is 2, the author role would apply.

 Page Caching

Page Caching

Page caching refers to caching the content of a whole page on the server-side. Later when the same page
is requested again, its content will be served from the cache instead of regenerating it from scratch.

Page caching is supported by [[yii\filters\PageCache]], an action filter.
It can be used like the following in a controller class:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['index'],
 'duration' => 60,
 'variations' => [
 \Yii::$app->language,
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT COUNT(*) FROM post',
],
],
];
}

The above code states that page caching should be used only for the index action. The page content should
be cached for at most 60 seconds and should be variated by the current application language
and the cached page should be invalidated if the total number of posts is changed.

As you can see, page caching is very similar to fragment caching. They both support options such
as duration, dependencies, variations, and enabled. Their main difference is that page caching is
implemented as an action filter while fragment caching a widget.

You can use fragment caching as well as dynamic content
together with page caching.

 Behaviors

Behaviors

Behaviors are instances of [[yii\base\Behavior]], or of a child class. Behaviors, also known
as mixins [http://en.wikipedia.org/wiki/Mixin], allow you to enhance the functionality
of an existing [[yii\base\Component|component]] class without needing to change the class’s inheritance.
Attaching a behavior to a component “injects” the behavior’s methods and properties into the component, making those methods and properties accessible as if they were defined in the component class itself. Moreover, a behavior
can respond to the events triggered by the component, which allows behaviors to also customize the normal
code execution of the component.

Defining Behaviors

To define a behavior, create a class that extends [[yii\base\Behavior]], or extends a child class. For example:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
 public $prop1;

 private $_prop2;

 public function getProp2()
 {
 return $this->_prop2;
 }

 public function setProp2($value)
 {
 $this->_prop2 = $value;
 }

 public function foo()
 {
 // ...
 }
}

The above code defines the behavior class app\components\MyBehavior, with two properties–
prop1 and prop2–and one method foo(). Note that property prop2
is defined via the getter getProp2() and the setter setProp2(). This is the case because [[yii\base\Behavior]] extends [[yii\base\Object]] and therefore supports defining properties via getters and setters.

Because this class is a behavior, when it is attached to a component, that component will then also have the prop1 and prop2 properties and the foo() method.

Tip: Within a behavior, you can access the component that the behavior is attached to through the [[yii\base\Behavior::owner]] property.

Note: In case [[yii\base\Behavior::__get()]] and/or [[yii\base\Behavior::__set()]] method of behavior is overridden you
need to override [[yii\base\Behavior::canGetProperty()]] and/or [[yii\base\Behavior::canSetProperty()]] as well.

Handling Component Events

If a behavior needs to respond to the events triggered by the component it is attached to, it should override the
[[yii\base\Behavior::events()]] method. For example:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

The [[yii\base\Behavior::events()|events()]] method should return a list of events and their corresponding handlers.
The above example declares that the [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] event exists and defines
its handler, beforeValidate(). When specifying an event handler, you may use one of the following formats:

	a string that refers to the name of a method of the behavior class, like the example above

	an array of an object or class name, and a method name as a string (without parentheses), e.g., [$object, 'methodName'];

	an anonymous function

The signature of an event handler should be as follows, where $event refers to the event parameter. Please refer
to the Events section for more details about events.

function ($event) {
}

Attaching Behaviors

You can attach a behavior to a [[yii\base\Component|component]] either statically or dynamically. The former is more common in practice.

To attach a behavior statically, override the [[yii\base\Component::behaviors()|behaviors()]] method of the component
class to which the behavior is being attached. The [[yii\base\Component::behaviors()|behaviors()]] method should return a list of behavior configurations.
Each behavior configuration can be either a behavior class name or a configuration array:

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
 public function behaviors()
 {
 return [
 // anonymous behavior, behavior class name only
 MyBehavior::className(),

 // named behavior, behavior class name only
 'myBehavior2' => MyBehavior::className(),

 // anonymous behavior, configuration array
 [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],

 // named behavior, configuration array
 'myBehavior4' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]
];
 }
}

You may associate a name with a behavior by specifying the array key corresponding to the behavior configuration. In this case, the behavior is called a named behavior. In the above example, there are two named behaviors:
myBehavior2 and myBehavior4. If a behavior is not associated with a name, it is called an anonymous behavior.

To attach a behavior dynamically, call the [[yii\base\Component::attachBehavior()]] method of the component to which the behavior is being attached:

use app\components\MyBehavior;

// attach a behavior object
$component->attachBehavior('myBehavior1', new MyBehavior);

// attach a behavior class
$component->attachBehavior('myBehavior2', MyBehavior::className());

// attach a configuration array
$component->attachBehavior('myBehavior3', [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]);

You may attach multiple behaviors at once using the [[yii\base\Component::attachBehaviors()]] method:

$component->attachBehaviors([
 'myBehavior1' => new MyBehavior, // a named behavior
 MyBehavior::className(), // an anonymous behavior
]);

You may also attach behaviors through configurations like the following:

[
 'as myBehavior2' => MyBehavior::className(),

 'as myBehavior3' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],
]

For more details,
please refer to the Configurations section.

Using Behaviors

To use a behavior, first attach it to a [[yii\base\Component|component]] per the instructions above. Once a behavior is attached to a component, its usage is straightforward.

You can access a public member variable or a property defined by a getter and/or a setter
of the behavior through the component it is attached to:

// "prop1" is a property defined in the behavior class
echo $component->prop1;
$component->prop1 = $value;

You can also call a public method of the behavior similarly:

// foo() is a public method defined in the behavior class
$component->foo();

As you can see, although $component does not define prop1 and foo(), they can be used as if they are part
of the component definition due to the attached behavior.

If two behaviors define the same property or method and they are both attached to the same component,
the behavior that is attached to the component first will take precedence when the property or method is accessed.

A behavior may be associated with a name when it is attached to a component. If this is the case, you may
access the behavior object using the name:

$behavior = $component->getBehavior('myBehavior');

You may also get all behaviors attached to a component:

$behaviors = $component->getBehaviors();

Detaching Behaviors

To detach a behavior, call [[yii\base\Component::detachBehavior()]] with the name associated with the behavior:

$component->detachBehavior('myBehavior1');

You may also detach all behaviors:

$component->detachBehaviors();

Using TimestampBehavior

To wrap up, let’s take a look at [[yii\behaviors\TimestampBehavior]]. This behavior supports automatically
updating the timestamp attributes of an [[yii\db\ActiveRecord|Active Record]] model anytime the model is saved via
insert(), update() or save() method.

First, attach this behavior to the [[yii\db\ActiveRecord|Active Record]] class that you plan to use:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
 // ...

 public function behaviors()
 {
 return [
 [
 'class' => TimestampBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
 ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
],
 // if you're using datetime instead of UNIX timestamp:
 // 'value' => new Expression('NOW()'),
],
];
 }
}

The behavior configuration above specifies that when the record is being:

	inserted, the behavior should assign the current UNIX timestamp to
the created_at and updated_at attributes

	updated, the behavior should assign the current UNIX timestamp to the updated_at attribute

Note: For the above implementation to work with MySQL database, please declare the columns(created_at, updated_at) as int(11) for being UNIX timestamp.

With that code in place, if you have a User object and try to save it, you will find its created_at and updated_at are automatically
filled with the current UNIX timestamp:

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at; // shows the current timestamp

The [[yii\behaviors\TimestampBehavior|TimestampBehavior]] also offers a useful method
[[yii\behaviors\TimestampBehavior::touch()|touch()]], which will assign the current timestamp
to a specified attribute and save it to the database:

$user->touch('login_time');

Other behaviors

There are several built-in and external behaviors available:

	[[yii\behaviors\BlameableBehavior]] - automatically fills the specified attributes with the current user ID.

	[[yii\behaviors\SluggableBehavior]] - automatically fills the specified attribute with a value that can be used
as a slug in a URL.

	[[yii\behaviors\AttributeBehavior]] - automatically assigns a specified value to one or multiple attributes of
an ActiveRecord object when certain events happen.

	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] - provides methods to soft-delete
and soft-restore ActiveRecord i.e. set flag or status which marks record as deleted.

	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] - allows managing records order in an
integer field by providing reordering methods.

Comparing Behaviors with Traits

While behaviors are similar to traits [http://www.php.net/traits] in that they both “inject” their
properties and methods to the primary class, they differ in many aspects. As explained below, they
both have pros and cons. They are more like complements to each other rather than alternatives.

Reasons to Use Behaviors

Behavior classes, like normal classes, support inheritance. Traits, on the other hand,
can be considered as language-supported copy and paste. They do not support inheritance.

Behaviors can be attached and detached to a component dynamically without requiring modification of the component class.
To use a trait, you must modify the code of the class using it.

Behaviors are configurable while traits are not.

Behaviors can customize the code execution of a component by responding to its events.

When there can be name conflicts among different behaviors attached to the same component, the conflicts are
automatically resolved by prioritizing the behavior attached to the component first.
Name conflicts caused by different traits requires manual resolution by renaming the affected
properties or methods.

Reasons to Use Traits

Traits are much more efficient than behaviors as behaviors are objects that take both time and memory.

IDEs are more friendly to traits as they are a native language construct.

 Creating your own Application structure

Creating your own Application structure

Note: This section is under development.

While the basic [https://github.com/yiisoft/yii2-app-basic] and advanced [https://github.com/yiisoft/yii2-app-advanced]
project templates are great for most of your needs, you may want to create your own project template with which
to start your projects.

Project templates in Yii are simply repositories containing a composer.json file, and registered as a Composer package.
Any repository can be identified as a Composer package, making it installable via create-project Composer command.

Since it’s a bit too much to start building your entire template from scratch, it is better to use one of the built-in
templates as a base. Let’s use the basic template here.

Clone the Basic Template

The first step is to clone the basic Yii template’s Git repository:

git clone git@github.com:yiisoft/yii2-app-basic.git

Then wait for the repository to be downloaded to your computer. Since the changes made to the template won’t be pushed back, you can delete the .git directory and all
of its contents from the download.

Modify the Files

Next, you’ll want to modify the composer.json to reflect your template. Change the name, description, keywords, homepage, license, and support values
to describe your new template. Also adjust the require, require-dev, suggest, and other options to match your template’s requirements.

Note: In the composer.json file, use the writable parameter under extra to specify
per file permissions to be set after an application is created using the template.

Next, actually modify the structure and contents of the application as you would like the default to be. Finally, update the README file to be applicable to your template.

Make a Package

With the template defined, create a Git repository from it, and push your files there. If you’re going to open source your template, Github [http://github.com] is the best place to host it. If you intend to keep your template non-collaborative, any Git repository site will do.

Next, you need to register your package for Composer’s sake. For public templates, the package should be registered at Packagist [https://packagist.org/].
For private templates, it is a bit more tricky to register the package. For instructions, see the Composer documentation [https://getcomposer.org/doc/05-repositories.md#hosting-your-own].

Use the Template

That’s all that’s required to create a new Yii project template. Now you can create projects using your template:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist --stability=dev mysoft/yii2-app-coolone new-project

 The Definitive Guide to Yii 2.0

The Definitive Guide to Yii 2.0

This tutorial is released under the Terms of Yii Documentation [http://www.yiiframework.com/doc/terms/].

All Rights Reserved.

2014 (c) Yii Software LLC.

Introduction

	About Yii

	Upgrading from Version 1.1

Getting Started

	Installing Yii

	Running Applications

	Saying Hello

	Working with Forms

	Working with Databases

	Generating Code with Gii

	Looking Ahead

Application Structure

	Overview

	Entry Scripts

	Applications

	Application Components

	Controllers

	Models

	Views

	Modules

	Filters

	Widgets

	Assets

	Extensions

Handling Requests

	Overview

	Bootstrapping

	Routing and URL Creation

	Requests

	Responses

	Sessions and Cookies

	Handling Errors

	Logging

Key Concepts

	Components

	Properties

	Events

	Behaviors

	Configurations

	Aliases

	Class Autoloading

	Service Locator

	Dependency Injection Container

Working with Databases

	Data Access Objects: Connecting to a database, basic queries, transactions, and schema manipulation

	Query Builder: Querying the database using a simple abstraction layer

	Active Record: The Active Record ORM, retrieving and manipulating records, and defining relations

	Migrations: Apply version control to your databases in a team development environment

	Sphinx [https://github.com/yiisoft/yii2-sphinx/blob/master/docs/guide/README.md]

	Redis [https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md]

	MongoDB [https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide/README.md]

	ElasticSearch [https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md]

Getting Data from Users

	Creating Forms

	Validating Input

	Uploading Files

	Collecting Tabular Input

	Getting Data for Multiple Models

Displaying Data

	Data Formatting

	Pagination

	Sorting

	Data Providers

	Data Widgets

	Working with Client Scripts

	Theming

Security

	Overview

	Authentication

	Authorization

	Working with Passwords

	Cryptography

	Auth Clients [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md]

	Best Practices

Caching

	Overview

	Data Caching

	Fragment Caching

	Page Caching

	HTTP Caching

RESTful Web Services

	Quick Start

	Resources

	Controllers

	Routing

	Response Formatting

	Authentication

	Rate Limiting

	Versioning

	Error Handling

Development Tools

	Debug Toolbar and Debugger [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Generating Code using Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md]

	Generating API Documentation [https://github.com/yiisoft/yii2-apidoc]

Testing

	Overview

	Testing environment setup

	Unit Tests

	Functional Tests

	Acceptance Tests

	Fixtures

Special Topics

	Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md]

	Building Application from Scratch

	Console Commands

	Core Validators

	Internationalization

	Mailing

	Performance Tuning

	Shared Hosting Environment

	Template Engines

	Working with Third-Party Code

Widgets

	GridView [http://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [http://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [http://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [http://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [http://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [http://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [http://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap Widgets [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/README.md]

	jQuery UI Widgets [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/README.md]

Helpers

	Overview

	ArrayHelper

	Html

	Url

 Creating Forms

Creating Forms

ActiveRecord based forms: ActiveForm

The primary way of using forms in Yii is through [[yii\widgets\ActiveForm]]. This approach should be preferred when
the form is based upon a model. Additionally, there are some useful methods in [[yii\helpers\Html]] that are typically
used for adding buttons and help text to any form.

A form, that is displayed on the client-side, will in most cases have a corresponding model which is used
to validate its input on the server-side (Check the Validating Input section for more details on validation).
When creating model-based forms, the first step is to define the model itself. The model can be either based upon
an Active Record class, representing some data from the database, or a generic Model class
(extending from [[yii\base\Model]]) to capture arbitrary input, for example a login form.

Tip: If the form fields are different from database columns or there are formatting and logic that is specific to that
form only, prefer creating a separate model extended from [[yii\base\Model]].

In the following example, we show how a generic model can be used for a login form:

<?php

class LoginForm extends \yii\base\Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // define validation rules here
];
 }
}

In the controller, we will pass an instance of that model to the view, wherein the [[yii\widgets\ActiveForm|ActiveForm]]
widget is used to display the form:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'login-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <div class="col-lg-offset-1 col-lg-11">
 <?= Html::submitButton('Login', ['class' => 'btn btn-primary']) ?>
 </div>
 </div>
<?php ActiveForm::end() ?>

Wrapping with begin() and end()

In the above code, [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] not only creates a form instance, but also marks the beginning of the form.
All of the content placed between [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] and
[[yii\widgets\ActiveForm::end()|ActiveForm::end()]] will be wrapped within the HTML <form> tag.
As with any widget, you can specify some options as to how the widget should be configured by passing an array to
the begin method. In this case, an extra CSS class and identifying ID are passed to be used in the opening <form> tag.
For all available options, please refer to the API documentation of [[yii\widgets\ActiveForm]].

ActiveField .

In order to create a form element in the form, along with the element’s label, and any applicable JavaScript validation,
the [[yii\widgets\ActiveForm::field()|ActiveForm::field()]] method is called, which returns an instance of [[yii\widgets\ActiveField]].
When the result of this method is echoed directly, the result is a regular (text) input.
To customize the output, you can chain additional methods of [[yii\widgets\ActiveField|ActiveField]] to this call:

// a password input
<?= $form->field($model, 'password')->passwordInput() ?>
// adding a hint and a customized label
<?= $form->field($model, 'username')->textInput()->hint('Please enter your name')->label('Name') ?>
// creating a HTML5 email input element
<?= $form->field($model, 'email')->input('email') ?>

This will create all the <label>, <input> and other tags according to the [[yii\widgets\ActiveField::$template|template]] defined by the form field.
The name of the input field is determined automatically from the model’s [[yii\base\Model::formName()|form name]] and the attribute name.
For example, the name for the input field for the username attribute in the above example will be LoginForm[username]. This naming rule will result in an array
of all attributes for the login form to be available in $_POST['LoginForm'] on the server-side.

Tip: If you have only one model in a form and want to simplify the input names you may skip the array part by
overriding the [[yii\base\Model::formName()|formName()]] method of the model to return an empty string.
This can be useful for filter models used in the GridView to create nicer URLs.

Specifying the attribute of the model can be done in more sophisticated ways. For example when an attribute may
take an array value when uploading multiple files or selecting multiple items you may specify it by appending []
to the attribute name:

// allow multiple files to be uploaded:
echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple']);

// allow multiple items to be checked:
echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' => 'Item B', 'c' => 'Item C']);

Be careful when naming form elements such as submit buttons. According to the jQuery documentation [https://api.jquery.com/submit/] there
are some reserved names that can cause conflicts:

Forms and their child elements should not use input names or ids that conflict with properties of a form,
such as submit, length, or method. Name conflicts can cause confusing failures.
For a complete list of rules and to check your markup for these problems, see DOMLint [http://kangax.github.io/domlint/].

Additional HTML tags can be added to the form using plain HTML or using the methods from the [[yii\helpers\Html|Html]]-helper
class like it is done in the above example with [[yii\helpers\Html::submitButton()|Html::submitButton()]].

Tip: If you are using Twitter Bootstrap CSS in your application you may want to use
[[yii\bootstrap\ActiveForm]] instead of [[yii\widgets\ActiveForm]]. The former extends from the latter and
uses Bootstrap-specific styles when generating form input fields.

Tip: In order to style required fields with asterisks, you can use the following CSS:

div.required label.control-label:after {
 content: " *";
 color: red;
}

Creating Lists

There are 3 types of lists:

	Dropdown lists

	Radio lists

	Checkbox lists

To create a list, you have to prepare the items. This can be done manually:

$items = [
 1 => 'item 1',
 2 => 'item 2'
]

or by retrieval from the DB:

$items = Category::find()
 ->select(['label'])
 ->indexBy('id')
 ->column();

These $items have to be processed by the different list widgets.
The value of the form field (and the current active item) will be automatically set
by the current value of the $model‘s attribute.

Creating a drop-down list

We can use ActiveField [[\yii\widgets\ActiveField::dropDownList()]] method to create a drop-down list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->dropdownList([
 1 => 'item 1',
 2 => 'item 2'
],
 ['prompt'=>'Select Category']
);

Creating a radio list

We can use ActiveField [[\yii\widgets\ActiveField::radioList()]] method to create a radio list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->radioList([
 1 => 'radio 1',
 2 => 'radio 2'
]);

Creating a checkbox List

We can use ActiveField [[\yii\widgets\ActiveField::checkboxList()]] method to create a checkbox list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->checkboxList([
 1 => 'checkbox 1',
 2 => 'checkbox 2'
]);

Working with Pjax

The [[yii\widgets\Pjax|Pjax]] widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the form
and replace its contents after the submission.

You can configure [[yii\widgets\Pjax::$formSelector|$formSelector]] to specify
which form submission may trigger pjax. If not set, all forms with data-pjax
attribute within the enclosed content of Pjax will trigger pjax requests.

use yii\widgets\Pjax;
use yii\widgets\ActiveForm;

Pjax::begin([
 // Pjax options
]);
 $form = ActiveForm::begin([
 'options' => ['data' => ['pjax' => true]],
 // more ActiveForm options
]);

 // ActiveForm content

 ActiveForm::end();
Pjax::end();

Tip: Be careful with the links inside the [[yii\widgets\Pjax|Pjax]] widget since
the response will also be rendered inside the widget. To prevent this, use the
data-pjax="0" HTML attribute.

Values in Submit Buttons and File Upload

There are known issues using jQuery.serializeArray() when dealing with
files [https://github.com/jquery/jquery/issues/2321] and
submit button values [https://github.com/jquery/jquery/issues/2321] which
won’t be solved and are instead deprecated in favor of the FormData class
introduced in HTML5.

That means the only official support for files and submit button values with
ajax or using the [[yii\widgets\Pjax|Pjax]] widget depends on the
browser support [https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility]
for the FormData class.

Further Reading

The next section Validating Input handles the validation of the submitted form data on the server-side as well as ajax and client-side validation.

To read about more complex usage of forms, you may want to check out the following sections:

	Collecting Tabular Input for collecting data for multiple models of the same kind.

	Getting Data for Multiple Models for handling multiple different models in the same form.

	Uploading Files on how to use forms for uploading files.

 Internationalization

Internationalization

Internationalization (I18N) refers to the process of designing a software application so that it can be adapted to
various languages and regions without engineering changes. For Web applications, this is of particular importance
because the potential users may be worldwide. Yii offers a full spectrum of I18N features that support message
translation, view translation, date and number formatting.

Locale and Language

Locale

Locale is a set of parameters that defines the user’s language, country and any special variant preferences
that the user wants to see in their user interface. It is usually identified by an ID consisting of a language
ID and a region ID.

For example, the ID en-US stands for the locale of “English and the United States”.

For consistency reasons, all locale IDs used in Yii applications should be canonicalized to the format of
ll-CC, where ll is a two- or three-letter lowercase language code according to
ISO-639 [http://www.loc.gov/standards/iso639-2/] and CC is a two-letter country code according to
ISO-3166 [http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html].
More details about locale can be found in the
documentation of the ICU project [http://userguide.icu-project.org/locale#TOC-The-Locale-Concept].

Language

In Yii, we often use the term “language” to refer to a locale.

A Yii application uses two kinds of languages:

	[[yii\base\Application::$sourceLanguage|source language]]: This refers to the language in which the text messages in the source code are written.

	[[yii\base\Application::$language|target language]]: This is the language that should be used to display content to end users.

The so-called message translation service mainly translates a text message from source language to target language.

Configuration

You can configure application languages in the “application configuration” like the following:

return [
 // set target language to be Russian
 'language' => 'ru-RU',

 // set source language to be English
 'sourceLanguage' => 'en-US',

];

The default value for the [[yii\base\Application::$sourceLanguage|source language]] is en-US, meaning
US English. It is recommended that you keep this default value unchanged. Usually it is much easier
to find people who can translate from “English to other languages” than from “non-English to non-English”.

You often need to set the [[yii\base\Application::$language|target language]] dynamically based on different
factors, such as the language preference of end users. Instead of configuring it in the application configuration,
you can use the following statement to change the target language:

// change target language to Chinese
\Yii::$app->language = 'zh-CN';

Tip: If your source language varies among different parts of your code, you can
override the source language for different message sources, which are described in the next section.

Message Translation

From source language to target language

The message translation service translates a text message from one language (usually the [[yii\base\Application::$sourceLanguage|source language]])
to another (usually the [[yii\base\Application::$language|target language]]).

It does the translation by looking up the message to be translated in a message source which stores the original messages and the translated messages. If the message is found, the corresponding translated message will be returned; otherwise the original message will be
returned untranslated.

How to implement

To use the message translation service, you mainly need to do the following work:

	Wrap every text message that needs to be translated in a call to the [[Yii::t()]] method.

	Configure one or multiple message sources in which the message translation service can look for translated messages.

	Let the translators translate messages and store them in the message source(s).

1. Wrap a text message

The method [[Yii::t()]] can be used like the following,

echo \Yii::t('app', 'This is a string to translate!');

where the second parameter refers to the text message to be translated, while the first parameter refers to
the name of the category which is used to categorize the message.

2. Configure one or multiple message sources

The [[Yii::t()]] method will call the i18n application component translate
method to perform the actual translation work. The component can be configured in the application configuration as follows,

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 //'basePath' => '@app/messages',
 //'sourceLanguage' => 'en-US',
 'fileMap' => [
 'app' => 'app.php',
 'app/error' => 'error.php',
],
],
],
],
],

In the above code, a message source supported by [[yii\i18n\PhpMessageSource]] is being configured.

Category wildcards with * symbol

The pattern app* indicates that all message categories whose names start with app should be translated using this
message source.

3. Let the translators translate messages and store them in the message source(s)

The [[yii\i18n\PhpMessageSource]] class uses PHP files with a simple PHP array to store message translations.
These files contain a map of the messages in source language to the translation in the target language.

Info: You can automatically generate these PHP files by using the message command,
which will be introduced later in this chapter.

Each PHP file corresponds to the messages of a single category. By default, the file name should be the same as
the category name. Example for app/messages/nl-NL/main.php:

<?php

/**
* Translation map for nl-NL
*/
return [
 'welcome' => 'welkom'
];

File mapping

You may configure [[yii\i18n\PhpMessageSource::fileMap|fileMap]] to map a category to a PHP file with a different naming approach.

In the above example, the category app/error is mapped to the PHP file @app/messages/ru-RU/error.php
(assuming ru-RU is the target language).
However, without this configuration the category would be mapped to @app/messages/ru-RU/app/error.php instead.

Other storage types

Besides storing the messages in PHP files, you may also use the following message sources to store translated messages
in different storage:

	[[yii\i18n\GettextMessageSource]] uses GNU Gettext MO or PO files to maintain translated messages.

	[[yii\i18n\DbMessageSource]] uses a database table to store translated messages.

Message Formatting

When translating a message, you can embed some placeholders and have them replaced by dynamic parameter values.
You can even use special placeholder syntax to have the parameter values formatted according to the target language.
In this subsection, we will describe different ways of formatting messages.

Message Parameters

In a message to be translated, you can embed one or multiple parameters (also called placeholders) so that they can be
replaced by the given values. By giving different sets of values, you can variate the translated message dynamically.
In the following example, the placeholder {username} in the message 'Hello, {username}!' will be replaced
by 'Alexander' and 'Qiang', respectively.

$username = 'Alexander';
// display a translated message with username being "Alexander"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

$username = 'Qiang';
// display a translated message with username being "Qiang"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

While translating a message containing placeholders, you should leave the placeholders as is. This is because the placeholders
will be replaced with the actual values when you call Yii::t() to translate a message.

You can use either named placeholders or positional placeholders, but not both, in a single message.

The previous example shows how you can use named placeholders. That is, each placeholder is written in the format of
{name}, and you provide an associative array whose keys are the placeholder names
(without the curly brackets) and whose values are the corresponding values placeholder to be replaced with.

Positional placeholders use zero-based integer sequence as names which are replaced by the provided values
according to their positions in the call of Yii::t(). In the following example, the positional placeholders
{0}, {1} and {2} will be replaced by the values of $price, $count and $subtotal, respectively.

$price = 100;
$count = 2;
$subtotal = 200;
echo \Yii::t('app', 'Price: {0}, Count: {1}, Subtotal: {2}', [$price, $count, $subtotal]);

In case of a single positional parameter its value could be specified without wrapping it into array:

echo \Yii::t('app', 'Price: {0}', $price);

Tip: In most cases you should use named placeholders. This is because the names will make the translators
understand better the whole messages being translated.

Parameter Formatting

You can specify additional formatting rules in the placeholders of a message so that the parameter values can be
formatted properly before they replace the placeholders. In the following example, the price parameter value will be
treated as a number and formatted as a currency value:

$price = 100;
echo \Yii::t('app', 'Price: {0,number,currency}', $price);

Note: Parameter formatting requires the installation of the intl PHP extension [http://www.php.net/manual/en/intro.intl.php].

You can use either the short form or the full form to specify a placeholder with formatting:

short form: {name,type}
full form: {name,type,style}

Note: If you need to use special characters such as {, }, ', #, wrap them in ':

echo Yii::t('app', "Example of string with ''-escaped characters'': '{' '}' '{test}' {count,plural,other{''count'' value is # '#{}'}}", ['count' => 3]);

Complete format is described in the ICU documentation [http://icu-project.org/apiref/icu4c/classMessageFormat.html].
In the following we will show some common usages.

Number

The parameter value is treated as a number. For example,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number}', $sum);

You can specify an optional parameter style as integer, currency, or percent:

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,currency}', $sum);

You can also specify a custom pattern to format the number. For example,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,,000,000000}', $sum);

Characters used in the custom format could be found in
ICU API reference [http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html] under “Special Pattern Characters”
section.

The value is always formatted according to the locale you are translating to i.e. you cannot change decimal or thousands
separators, currency symbol etc. without changing translation locale. If you need to customize these you can
use [[yii\i18n\Formatter::asDecimal()]] and [[yii\i18n\Formatter::asCurrency()]].

Date

The parameter value should be formatted as a date. For example,

echo \Yii::t('app', 'Today is {0,date}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'Today is {0,date,short}', time());

You can also specify a custom pattern to format the date value:

echo \Yii::t('app', 'Today is {0,date,yyyy-MM-dd}', time());

Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].

Time

The parameter value should be formatted as a time. For example,

echo \Yii::t('app', 'It is {0,time}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'It is {0,time,short}', time());

You can also specify a custom pattern to format the time value:

echo \Yii::t('app', 'It is {0,date,HH:mm}', time());

Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].

Spellout

The parameter value should be treated as a number and formatted as a spellout. For example,

// may produce "42 is spelled as forty-two"
echo \Yii::t('app', '{n,number} is spelled as {n,spellout}', ['n' => 42]);

By default the number is spelled out as cardinal. It could be changed:

// may produce "I am forty-seventh agent"
echo \Yii::t('app', 'I am {n,spellout,%spellout-ordinal} agent', ['n' => 47]);

Note that there should be no space after spellout, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Spellout” at http://intl.rmcreative.ru/.

Ordinal

The parameter value should be treated as a number and formatted as an ordinal name. For example,

// may produce "You are the 42nd visitor here!"
echo \Yii::t('app', 'You are the {n,ordinal} visitor here!', ['n' => 42]);

Ordinal supports more ways of formatting for languages such as Spanish:

// may produce 471ª
echo \Yii::t('app', '{n,ordinal,%digits-ordinal-feminine}', ['n' => 471]);

Note that there should be no space after ordinal, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Ordinal” at http://intl.rmcreative.ru/.

Duration

The parameter value should be treated as the number of seconds and formatted as a time duration string. For example,

// may produce "You are here for 47 sec. already!"
echo \Yii::t('app', 'You are here for {n,duration} already!', ['n' => 47]);

Duration supports more ways of formatting:

// may produce 130:53:47
echo \Yii::t('app', '{n,duration,%in-numerals}', ['n' => 471227]);

Note that there should be no space after duration, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Duration” at http://intl.rmcreative.ru/.

Plural

Different languages have different ways to inflect plurals. Yii provides a convenient way for translating messages in
different plural forms that works well even for very complex rules. Instead of dealing with the inflection rules directly,
it is sufficient to provide the translation of inflected words in certain situations only. For example,

// When $n = 0, it may produce "There are no cats!"
// When $n = 1, it may produce "There is one cat!"
// When $n = 42, it may produce "There are 42 cats!"
echo \Yii::t('app', 'There {n,plural,=0{are no cats} =1{is one cat} other{are # cats}}!', ['n' => $n]);

In the plural rule arguments above, = means explicit value. So =0 means exactly zero, =1 means exactly one.
other stands for any other value. # is replaced with the value of n formatted according to target language.

Plural forms can be very complicated in some languages. In the following Russian example, =1 matches exactly n = 1
while one matches 21 or 101:

Здесь {n,plural,=0{котов нет} =1{есть один кот} one{# кот} few{# кота} many{# котов} other{# кота}}!

These other, few, many and other special argument names vary depending on language. To learn which ones you should
specify for a particular locale, please refer to “Plural Rules, Cardinal” at http://intl.rmcreative.ru/.
Alternatively you can refer to rules reference at unicode.org [http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html].

Note: The above example Russian message is mainly used as a translated message, not an original message, unless you set
the [[yii\base\Application::$sourceLanguage|source language]] of your application as ru-RU and translating from Russian.

When a translation is not found for an original message specified in Yii::t() call, the plural rules for the
[[yii\base\Application::$sourceLanguage|source language]] will be applied to the original message.

There’s an offset parameter for the cases when the string is like the following:

$likeCount = 2;
echo Yii::t('app', 'You {likeCount,plural,
 offset: 1
 =0{did not like this}
 =1{liked this}
 one{and one other person liked this}
 other{and # others liked this}
}', [
 'likeCount' => $likeCount
]);

// You and one other person liked this

Ordinal selection

 Extensions

Extensions

Extensions are redistributable software packages specifically designed to be used in Yii applications and provide
ready-to-use features. For example, the yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug] extension adds a handy debug toolbar
at the bottom of every page in your application to help you more easily grasp how the pages are generated. You can
use extensions to accelerate your development process. You can also package your code as extensions to share with
other people your great work.

Info: We use the term “extension” to refer to Yii-specific software packages. For general purpose software packages
that can be used without Yii, we will refer to them using the term “package” or “library”.

Using Extensions

To use an extension, you need to install it first. Most extensions are distributed as Composer [https://getcomposer.org/]
packages which can be installed by taking the following two simple steps:

	modify the composer.json file of your application and specify which extensions (Composer packages) you want to install.

	run composer install to install the specified extensions.

Note that you may need to install Composer [https://getcomposer.org/] if you do not have it.

By default, Composer installs packages registered on Packagist [https://packagist.org/] - the biggest repository
for open source Composer packages. You can look for extensions on Packagist. You may also
create your own repository [https://getcomposer.org/doc/05-repositories.md#repository] and configure Composer
to use it. This is useful if you are developing private extensions that you want to share within your projects only.

Extensions installed by Composer are stored in the BasePath/vendor directory, where BasePath refers to the
application’s base path. Because Composer is a dependency manager, when
it installs a package, it will also install all its dependent packages.

For example, to install the yiisoft/yii2-imagine extension, modify your composer.json like the following:

{
 // ...

 "require": {
 // ... other dependencies

 "yiisoft/yii2-imagine": "*"
 }
}

After the installation, you should see the directory yiisoft/yii2-imagine under BasePath/vendor. You should
also see another directory imagine/imagine which contains the installed dependent package.

Info: The yiisoft/yii2-imagine is a core extension developed and maintained by the Yii developer team. All
core extensions are hosted on Packagist [https://packagist.org/] and named like yiisoft/yii2-xyz, where xyz
varies for different extensions.

Now you can use the installed extensions like they are part of your application. The following example shows
how you can use the yii\imagine\Image class provided by the yiisoft/yii2-imagine extension:

use Yii;
use yii\imagine\Image;

// generate a thumbnail image
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
 ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);

Info: Extension classes are autoloaded by the Yii class autoloader.

Installing Extensions Manually

In some rare occasions, you may want to install some or all extensions manually, rather than relying on Composer.
To do so, you should:

	download the extension archive files and unpack them in the vendor directory.

	install the class autoloaders provided by the extensions, if any.

	download and install all dependent extensions as instructed.

If an extension does not have a class autoloader but follows the PSR-4 standard [http://www.php-fig.org/psr/psr-4/],
you may use the class autoloader provided by Yii to autoload the extension classes. All you need to do is just to
declare a root alias for the extension root directory. For example,
assuming you have installed an extension in the directory vendor/mycompany/myext, and the extension classes
are under the myext namespace, then you can include the following code in your application configuration:

[
 'aliases' => [
 '@myext' => '@vendor/mycompany/myext',
],
]

Creating Extensions

You may consider creating an extension when you feel the need to share with other people your great code.
An extension can contain any code you like, such as a helper class, a widget, a module, etc.

It is recommended that you create an extension in terms of a Composer package [https://getcomposer.org/] so that
it can be more easily installed and used by other users, as described in the last subsection.

Below are the basic steps you may follow to create an extension as a Composer package.

	Create a project for your extension and host it on a VCS repository, such as github.com [https://github.com].
The development and maintenance work for the extension should be done on this repository.

	Under the root directory of the project, create a file named composer.json as required by Composer. Please
refer to the next subsection for more details.

	Register your extension with a Composer repository, such as Packagist [https://packagist.org/], so that
other users can find and install your extension using Composer.

composer.json

Each Composer package must have a composer.json file in its root directory. The file contains the metadata about
the package. You may find complete specification about this file in the Composer Manual [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup].
The following example shows the composer.json file for the yiisoft/yii2-imagine extension:

{
 // package name
 "name": "yiisoft/yii2-imagine",

 // package type
 "type": "yii2-extension",

 "description": "The Imagine integration for the Yii framework",
 "keywords": ["yii2", "imagine", "image", "helper"],
 "license": "BSD-3-Clause",
 "support": {
 "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
 "forum": "http://www.yiiframework.com/forum/",
 "wiki": "http://www.yiiframework.com/wiki/",
 "irc": "irc://irc.freenode.net/yii",
 "source": "https://github.com/yiisoft/yii2"
 },
 "authors": [
 {
 "name": "Antonio Ramirez",
 "email": "amigo.cobos@gmail.com"
 }
],

 // package dependencies
 "require": {
 "yiisoft/yii2": "~2.0.0",
 "imagine/imagine": "v0.5.0"
 },

 // class autoloading specs
 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

Package Name

Each Composer package should have a package name which uniquely identifies the package among all others.
The format of package names is vendorName/projectName. For example, in the package name yiisoft/yii2-imagine,
the vendor name and the project name are yiisoft and yii2-imagine, respectively.

Do NOT use yiisoft as your vendor name as it is reserved for use by the Yii core code.

We recommend you prefix yii2- to the project name for packages representing Yii 2 extensions, for example,
myname/yii2-mywidget. This will allow users to more easily tell whether a package is a Yii 2 extension.

Package Type

It is important that you specify the package type of your extension as yii2-extension so that the package can
be recognized as a Yii extension when being installed.

When a user runs composer install to install an extension, the file vendor/yiisoft/extensions.php
will be automatically updated to include the information about the new extension. From this file, Yii applications
can know which extensions are installed (the information can be accessed via [[yii\base\Application::extensions]]).

Dependencies

Your extension depends on Yii (of course). So you should list it (yiisoft/yii2) in the require entry in composer.json.
If your extension also depends on other extensions or third-party libraries, you should list them as well.
Make sure you also list appropriate version constraints (e.g. 1.*, @stable) for each dependent package. Use stable
dependencies when your extension is released in a stable version.

Most JavaScript/CSS packages are managed using Bower [http://bower.io/] and/or NPM [https://www.npmjs.org/],
instead of Composer. Yii uses the Composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin]
to enable managing these kinds of packages through Composer. If your extension depends on a Bower package, you can
simply list the dependency in composer.json like the following:

{
 // package dependencies
 "require": {
 "bower-asset/jquery": ">=1.11.*"
 }
}

The above code states that the extension depends on the jquery Bower package. In general, you can use
bower-asset/PackageName to refer to a Bower package in composer.json, and use npm-asset/PackageName
to refer to a NPM package. When Composer installs a Bower or NPM package, by default the package content will be
installed under the @vendor/bower/PackageName and @vendor/npm/Packages directories, respectively.
These two directories can also be referred to using the shorter aliases @bower/PackageName and @npm/PackageName.

For more details about asset management, please refer to the Assets section.

Class Autoloading

In order for your classes to be autoloaded by the Yii class autoloader or the Composer class autoloader,
you should specify the autoload entry in the composer.json file, like shown below:

{
 //

 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

You may list one or multiple root namespaces and their corresponding file paths.

When the extension is installed in an application, Yii will create for each listed root namespace
an alias that refers to the directory corresponding to the namespace.
For example, the above autoload declaration will correspond to an alias named @yii/imagine.

Recommended Practices

Because extensions are meant to be used by other people, you often need to make an extra effort during development. Below
we introduce some common and recommended practices in creating high quality extensions.

Namespaces

To avoid name collisions and make the classes in your extension autoloadable, you should use namespaces and
name the classes in your extension by following the PSR-4 standard [http://www.php-fig.org/psr/psr-4/] or
PSR-0 standard [http://www.php-fig.org/psr/psr-0/].

Your class namespaces should start with vendorName\extensionName, where extensionName is similar to the project name
in the package name except that it should not contain the yii2- prefix. For example, for the yiisoft/yii2-imagine
extension, we use yii\imagine as the namespace for its classes.

Do not use yii, yii2 or yiisoft as your vendor name. These names are reserved for use by the Yii core code.

Bootstrapping Classes

Sometimes, you may want your extension to execute some code during the bootstrapping process
stage of an application. For example, your extension may want to respond to the application’s beginRequest event
to adjust some environment settings. While you can instruct users of the extension to explicitly attach your event
handler in the extension to the beginRequest event, a better way is to do this automatically.

To achieve this goal, you can create a so-called bootstrapping class by implementing [[yii\base\BootstrapInterface]].
For example,

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
 public function bootstrap($app)
 {
 $app->on(Application::EVENT_BEFORE_REQUEST, function () {
 // do something here
 });
 }
}

You then list this class in the composer.json file of your extension like follows,

{
 // ...

 "extra": {
 "bootstrap": "myname\\mywidget\\MyBootstrapClass"
 }
}

When the extension is installed in an application, Yii will automatically instantiate the bootstrapping class
and call its [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method during the bootstrapping process for
every request.

Working with Databases

Your extension may need to access databases. Do not assume that the applications that use your extension will always
use Yii::$db as the DB connection. Instead, you should declare a db property for the classes that require DB access.
The property will allow users of your extension to customize which DB connection they would like your extension to use.
As an example, you may refer to the [[yii\caching\DbCache]] class and see how it declares and uses the db property.

If your extension needs to create specific DB tables or make changes to DB schema, you should

	provide migrations to manipulate DB schema, rather than using plain SQL files;

	try to make the migrations applicable to different DBMS;

	avoid using Active Record in the migrations.

Using Assets

If your extension is a widget or a module, chances are that it may require some assets to work.
For example, a module may display some pages which contain images, JavaScript, and CSS. Because the files of an
extension are all under the same directory which is not Web accessible when installed in an application, you have
two choices to make the asset files directly accessible via Web:

	ask users of the extension to manually copy the asset files to a specific Web-accessible folder;

	declare an asset bundle and rely on the asset publishing mechanism to automatically
copy the files listed in the asset bundle to a Web-accessible folder.

We recommend you use the second approach so that your extension can be more easily used by other people.
Please refer to the Assets section for more details about how to work with assets in general.

Internationalization and Localization

Your extension may be used by applications supporting different languages! Therefore, if your extension displays
content to end users, you should try to internationalize and localize it. In particular,

	If the extension displays messages intended for end users, the messages should be wrapped into Yii::t()
so that they can be translated. Messages meant for developers (such as internal exception messages) do not need
to be translated.

	If the extension displays numbers, dates, etc., they should be formatted using [[yii\i18n\Formatter]] with
appropriate formatting rules.

For more details, please refer to the Internationalization section.

Testing

You want your extension to run flawlessly without bringing problems to other people. To reach this goal, you should
test your extension before releasing it to public.

It is recommended that you create various test cases to cover your extension code rather than relying on manual tests.
Each time before you release a new version of your extension, you may simply run these test cases to make sure
everything is in good shape. Yii provides testing support, which can help you to more easily write unit tests,
acceptance tests and functionality tests. For more details, please refer to the Testing section.

Versioning

You should give each release of your extension a version number (e.g. 1.0.1). We recommend you follow the
semantic versioning [http://semver.org] practice when determining what version numbers should be used.

Releasing

To let other people know about your extension, you need to release it to the public.

If it is the first time you are releasing an extension, you should register it on a Composer repository, such as
Packagist [https://packagist.org/]. After that, all you need to do is simply create a release tag (e.g. v1.0.1)
on the VCS repository of your extension and notify the Composer repository about the new release. People will
then be able to find the new release, and install or update the extension through the Composer repository.

In the releases of your extension, in addition to code files, you should also consider including the following to
help other people learn about and use your extension:

	A readme file in the package root directory: it describes what your extension does and how to install and use it.
We recommend you write it in Markdown [http://daringfireball.net/projects/markdown/] format and name the file
as readme.md.

	A changelog file in the package root directory: it lists what changes are made in each release. The file
may be written in Markdown format and named as changelog.md.

	An upgrade file in the package root directory: it gives the instructions on how to upgrade from older releases
of the extension. The file may be written in Markdown format and named as upgrade.md.

	Tutorials, demos, screenshots, etc.: these are needed if your extension provides many features that cannot be
fully covered in the readme file.

	API documentation: your code should be well documented to allow other people to more easily read and understand it.
You may refer to the Object class file [https://github.com/yiisoft/yii2/blob/master/framework/base/Object.php]
to learn how to document your code.

Info: Your code comments can be written in Markdown format. The yiisoft/yii2-apidoc extension provides a tool
for you to generate pretty API documentation based on your code comments.

Info: While not a requirement, we suggest your extension adhere to certain coding styles. You may refer to
the core framework code style [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style].

Core Extensions

Yii provides the following core extensions that are developed and maintained by the Yii developer team. They are all
registered on Packagist [https://packagist.org/] and can be easily installed as described in the
Using Extensions subsection.

	yiisoft/yii2-apidoc [https://github.com/yiisoft/yii2-apidoc]:
provides an extensible and high-performance API documentation generator. It is also used to generate the core
framework API documentation.

	yiisoft/yii2-authclient [https://github.com/yiisoft/yii2-authclient]:
provides a set of commonly used auth clients, such as Facebook OAuth2 client, GitHub OAuth2 client.

	yiisoft/yii2-bootstrap [https://github.com/yiisoft/yii2-bootstrap]:
provides a set of widgets that encapsulate the Bootstrap [http://getbootstrap.com/] components and plugins.

	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception]:
provides testing support based on Codeception [http://codeception.com/].

	yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug]:
provides debugging support for Yii applications. When this extension is used, a debugger toolbar will appear
at the bottom of every page. The extension also provides a set of standalone pages to display more detailed
debug information.

	yiisoft/yii2-elasticsearch [https://github.com/yiisoft/yii2-elasticsearch]:
provides the support for using Elasticsearch [http://www.elasticsearch.org/]. It includes basic querying/search
support and also implements the Active Record pattern that allows you to store active records
in Elasticsearch.

	yiisoft/yii2-faker [https://github.com/yiisoft/yii2-faker]:
provides the support for using Faker [https://github.com/fzaninotto/Faker] to generate fake data for you.

	yiisoft/yii2-gii [https://github.com/yiisoft/yii2-gii]:
provides a Web-based code generator that is highly extensible and can be used to quickly generate models,
forms, modules, CRUD, etc.

	yiisoft/yii2-httpclient [https://github.com/yiisoft/yii2-httpclient]:
provides an HTTP client.

	yiisoft/yii2-imagine [https://github.com/yiisoft/yii2-imagine]:
provides commonly used image manipulation functions based on Imagine [http://imagine.readthedocs.org/].

	yiisoft/yii2-jui [https://github.com/yiisoft/yii2-jui]:
provides a set of widgets that encapsulate the JQuery UI [http://jqueryui.com/] interactions and widgets.

	yiisoft/yii2-mongodb [https://github.com/yiisoft/yii2-mongodb]:
provides the support for using MongoDB [http://www.mongodb.org/]. It includes features such as basic query,
Active Record, migrations, caching, code generation, etc.

	yiisoft/yii2-redis [https://github.com/yiisoft/yii2-redis]:
provides the support for using redis [http://redis.io/]. It includes features such as basic query,
Active Record, caching, etc.

	yiisoft/yii2-smarty [https://github.com/yiisoft/yii2-smarty]:
provides a template engine based on Smarty [http://www.smarty.net/].

	yiisoft/yii2-sphinx [https://github.com/yiisoft/yii2-sphinx]:
provides the support for using Sphinx [http://sphinxsearch.com]. It includes features such as basic query,
Active Record, code generation, etc.

	yiisoft/yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer]:
provides email sending features based on swiftmailer [http://swiftmailer.org/].

	yiisoft/yii2-twig [https://github.com/yiisoft/yii2-twig]:
provides a template engine based on Twig [http://twig.sensiolabs.org/].

 Database Access Objects

Database Access Objects

Built on top of PDO [http://www.php.net/manual/en/book.pdo.php], Yii DAO (Database Access Objects) provides an
object-oriented API for accessing relational databases. It is the foundation for other more advanced database
access methods, including query builder and active record.

When using Yii DAO, you mainly need to deal with plain SQLs and PHP arrays. As a result, it is the most efficient
way to access databases. However, because SQL syntax may vary for different databases, using Yii DAO also means
you have to take extra effort to create a database-agnostic application.

Yii DAO supports the following databases out of box:

	MySQL [http://www.mysql.com/]

	MariaDB [https://mariadb.com/]

	SQLite [http://sqlite.org/]

	PostgreSQL [http://www.postgresql.org/]: version 8.4 or higher

	CUBRID [http://www.cubrid.org/]: version 9.3 or higher.

	Oracle [http://www.oracle.com/us/products/database/overview/index.html]

	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: version 2008 or higher.

Note: New version of pdo_oci for PHP 7 currently exists only as the source code. Follow
instruction provided by community [https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268]
to compile it or use PDO emulation layer [https://github.com/taq/pdooci].

Creating DB Connections

To access a database, you first need to connect to it by creating an instance of [[yii\db\Connection]]:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Because a DB connection often needs to be accessed in different places, a common practice is to configure it
in terms of an application component like the following:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
 // ...
];

You can then access the DB connection via the expression Yii::$app->db.

Tip: You can configure multiple DB application components if your application needs to access multiple databases.

When configuring a DB connection, you should always specify its Data Source Name (DSN) via the [[yii\db\Connection::dsn|dsn]]
property. The format of DSN varies for different databases. Please refer to the PHP manual [http://www.php.net/manual/en/function.PDO-construct.php]
for more details. Below are some examples:

	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase

	SQLite: sqlite:/path/to/database/file

	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase

	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000

	MS SQL Server (via sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase

	MS SQL Server (via dblib driver): dblib:host=localhost;dbname=mydatabase

	MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase

	Oracle: oci:dbname=//localhost:1521/mydatabase

Note that if you are connecting with a database via ODBC, you should configure the [[yii\db\Connection::driverName]]
property so that Yii can know the actual database type. For example,

'db' => [
 'class' => 'yii\db\Connection',
 'driverName' => 'mysql',
 'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
 'username' => 'root',
 'password' => '',
],

Besides the [[yii\db\Connection::dsn|dsn]] property, you often need to configure [[yii\db\Connection::username|username]]
and [[yii\db\Connection::password|password]]. Please refer to [[yii\db\Connection]] for the full list of configurable properties.

Info: When you create a DB connection instance, the actual connection to the database is not established until
you execute the first SQL or you call the [[yii\db\Connection::open()|open()]] method explicitly.

Tip: Sometimes you may want to execute some queries right after the database connection is established to initialize
some environment variables (e.g., to set the timezone or character set). You can do so by registering an event handler
for the [[yii\db\Connection::EVENT_AFTER_OPEN|afterOpen]] event
of the database connection. You may register the handler directly in the application configuration like so:

'db' => [
 // ...
 'on afterOpen' => function($event) {
 // $event->sender refers to the DB connection
 $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
 }
],

Executing SQL Queries

Once you have a database connection instance, you can execute a SQL query by taking the following steps:

	Create a [[yii\db\Command]] with a plain SQL query;

	Bind parameters (optional);

	Call one of the SQL execution methods in [[yii\db\Command]].

The following example shows various ways of fetching data from a database:

// return a set of rows. each row is an associative array of column names and values.
// an empty array is returned if the query returned no results
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
 ->queryAll();

// return a single row (the first row)
// false is returned if the query has no result
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
 ->queryOne();

// return a single column (the first column)
// an empty array is returned if the query returned no results
$titles = Yii::$app->db->createCommand('SELECT title FROM post')
 ->queryColumn();

// return a scalar value
// false is returned if the query has no result
$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
 ->queryScalar();

Note: To preserve precision, the data fetched from databases are all represented as strings, even if the corresponding
database column types are numerical.

Binding Parameters

When creating a DB command from a SQL with parameters, you should almost always use the approach of binding parameters
to prevent SQL injection attacks. For example,

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValue(':id', $_GET['id'])
 ->bindValue(':status', 1)
 ->queryOne();

In the SQL statement, you can embed one or multiple parameter placeholders (e.g. :id in the above example). A parameter
placeholder should be a string starting with a colon. You may then call one of the following parameter binding methods
to bind the parameter values:

	[[yii\db\Command::bindValue()|bindValue()]]: bind a single parameter value

	[[yii\db\Command::bindValues()|bindValues()]]: bind multiple parameter values in one call

	[[yii\db\Command::bindParam()|bindParam()]]: similar to [[yii\db\Command::bindValue()|bindValue()]] but also
support binding parameter references.

The following example shows alternative ways of binding parameters:

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValues($params)
 ->queryOne();

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
 ->queryOne();

Parameter binding is implemented via prepared statements [http://php.net/manual/en/mysqli.quickstart.prepared-statements.php].
Besides preventing SQL injection attacks, it may also improve performance by preparing a SQL statement once and
executing it multiple times with different parameters. For example,

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
// ...

Because [[yii\db\Command::bindParam()|bindParam()]] supports binding parameters by references, the above code
can also be written like the following:

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
 ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();
// ...

Notice that you bind the placeholder to the $id variable before the execution, and then change the value of that variable
before each subsequent execution (this is often done with loops). Executing queries in this manner can be vastly
more efficient than running a new query for every different parameter value.

Executing Non-SELECT Queries

The queryXyz() methods introduced in the previous sections all deal with SELECT queries which fetch data from databases.
For queries that do not bring back data, you should call the [[yii\db\Command::execute()]] method instead. For example,

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')
 ->execute();

The [[yii\db\Command::execute()]] method returns the number of rows affected by the SQL execution.

For INSERT, UPDATE and DELETE queries, instead of writing plain SQLs, you may call [[yii\db\Command::insert()|insert()]],
[[yii\db\Command::update()|update()]], [[yii\db\Command::delete()|delete()]], respectively, to build the corresponding
SQLs. These methods will properly quote table and column names and bind parameter values. For example,

// INSERT (table name, column values)
Yii::$app->db->createCommand()->insert('user', [
 'name' => 'Sam',
 'age' => 30,
])->execute();

// UPDATE (table name, column values, condition)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (table name, condition)
Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();

You may also call [[yii\db\Command::batchInsert()|batchInsert()]] to insert multiple rows in one shot, which is much
more efficient than inserting one row at a time:

// table name, column names, column values
Yii::$app->db->createCommand()->batchInsert('user', ['name', 'age'], [
 ['Tom', 30],
 ['Jane', 20],
 ['Linda', 25],
])->execute();

Note that the aforementioned methods only create the query and you always have to call [[yii\db\Command::execute()|execute()]]
to actually run them.

Quoting Table and Column Names

When writing database-agnostic code, properly quoting table and column names is often a headache because
different databases have different name quoting rules. To overcome this problem, you may use the following
quoting syntax introduced by Yii:

	[[column name]]: enclose a column name to be quoted in double square brackets;

	{{table name}}: enclose a table name to be quoted in double curly brackets.

Yii DAO will automatically convert such constructs into the corresponding quoted column or table names using the
DBMS specific syntax.
For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
 ->queryScalar();

Using Table Prefix

If most of your DB tables names share a common prefix, you may use the table prefix feature provided
by Yii DAO.

First, specify the table prefix via the [[yii\db\Connection::tablePrefix]] property in the application config:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 // ...
 'tablePrefix' => 'tbl_',
],
],
];

Then in your code, whenever you need to refer to a table whose name contains such a prefix, use the syntax
{{%table_name}}. The percentage character will be automatically replaced with the table prefix that you have specified
when configuring the DB connection. For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `tbl_employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
 ->queryScalar();

Performing Transactions

When running multiple related queries in a sequence, you may need to wrap them in a transaction to ensure the integrity
and consistency of your database. If any of the queries fails, the database will be rolled back to the state as if
none of these queries were executed.

The following code shows a typical way of using transactions:

Yii::$app->db->transaction(function($db) {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... executing other SQL statements ...
});

The above code is equivalent to the following, which gives you more control about the error handling code:

$db = Yii::$app->db;
$transaction = $db->beginTransaction();
try {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... executing other SQL statements ...

 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

By calling the [[yii\db\Connection::beginTransaction()|beginTransaction()]] method, a new transaction is started.
The transaction is represented as a [[yii\db\Transaction]] object stored in the $transaction variable. Then,
the queries being executed are enclosed in a try...catch... block. If all queries are executed successfully,
the [[yii\db\Transaction::commit()|commit()]] method is called to commit the transaction. Otherwise, if an exception
will be triggered and caught, the [[yii\db\Transaction::rollBack()|rollBack()]] method is called to roll back
the changes made by the queries prior to that failed query in the transaction. throw $e will then re-throw the
exception as if we had not caught it, so the normal error handling process will take care of it.

Note: in the above code we have two catch-blocks for compatibility
with PHP 5.x and PHP 7.x. \Exception implements the \Throwable interface [http://php.net/manual/en/class.throwable.php]
since PHP 7.0, so you can skip the part with \Exception if your app uses only PHP 7.0 and higher.

Specifying Isolation Levels

Yii also supports setting isolation levels [http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels] for your transactions. By default, when starting a new transaction,
it will use the default isolation level set by your database system. You can override the default isolation level as follows,

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {

}, $isolationLevel);

// or alternatively

$transaction = Yii::$app->db->beginTransaction($isolationLevel);

Yii provides four constants for the most common isolation levels:

	[[\yii\db\Transaction::READ_UNCOMMITTED]] - the weakest level, Dirty reads, non-repeatable reads and phantoms may occur.

	[[\yii\db\Transaction::READ_COMMITTED]] - avoid dirty reads.

	[[\yii\db\Transaction::REPEATABLE_READ]] - avoid dirty reads and non-repeatable reads.

	[[\yii\db\Transaction::SERIALIZABLE]] - the strongest level, avoids all of the above named problems.

Besides using the above constants to specify isolation levels, you may also use strings with a valid syntax supported
by the DBMS that you are using. For example, in PostgreSQL, you may use SERIALIZABLE READ ONLY DEFERRABLE.

Note that some DBMS allow setting the isolation level only for the whole connection. Any subsequent transactions
will get the same isolation level even if you do not specify any. When using this feature
you may need to set the isolation level for all transactions explicitly to avoid conflicting settings.
At the time of this writing, only MSSQL and SQLite are affected by this limitation.

Note: SQLite only supports two isolation levels, so you can only use READ UNCOMMITTED and SERIALIZABLE.
Usage of other levels will result in an exception being thrown.

Note: PostgreSQL does not allow setting the isolation level before the transaction starts so you can not
specify the isolation level directly when starting the transaction.
You have to call [[yii\db\Transaction::setIsolationLevel()]] in this case after the transaction has started.

Nesting Transactions

If your DBMS supports Savepoint, you may nest multiple transactions like the following:

Yii::$app->db->transaction(function ($db) {
 // outer transaction

 $db->transaction(function ($db) {
 // inner transaction
 });
});

Or alternatively,

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {
 $db->createCommand($sql1)->execute();

 $innerTransaction = $db->beginTransaction();
 try {
 $db->createCommand($sql2)->execute();
 $innerTransaction->commit();
 } catch (\Exception $e) {
 $innerTransaction->rollBack();
 throw $e;
 } catch (\Throwable $e) {
 $innerTransaction->rollBack();
 throw $e;
 }

 $outerTransaction->commit();
} catch (\Exception $e) {
 $outerTransaction->rollBack();
 throw $e;
} catch (\Throwable $e) {
 $outerTransaction->rollBack();
 throw $e;
}

Replication and Read-Write Splitting

Many DBMS support database replication [http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication]
to get better database availability and faster server response time. With database replication, data are replicated
from the so-called master servers to slave servers. All writes and updates must take place on the master servers,
while reads may also take place on the slave servers.

To take advantage of database replication and achieve read-write splitting, you can configure a [[yii\db\Connection]]
component like the following:

[
 'class' => 'yii\db\Connection',

 // configuration for the master
 'dsn' => 'dsn for master server',
 'username' => 'master',
 'password' => '',

 // common configuration for slaves
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of slave configurations
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

The above configuration specifies a setup with a single master and multiple slaves. One of the slaves will
be connected and used to perform read queries, while the master will be used to perform write queries.
Such read-write splitting is accomplished automatically with this configuration. For example,

// create a Connection instance using the above configuration
Yii::$app->db = Yii::createObject($config);

// query against one of the slaves
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// query against the master
Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

Info: Queries performed by calling [[yii\db\Command::execute()]] are considered as write queries, while
all other queries done through one of the “query” methods of [[yii\db\Command]] are read queries.
You can get the currently active slave connection via Yii::$app->db->slave.

The Connection component supports load balancing and failover between slaves.
When performing a read query for the first time, the Connection component will randomly pick a slave and
try connecting to it. If the slave is found “dead”, it will try another one. If none of the slaves is available,
it will connect to the master. By configuring a [[yii\db\Connection::serverStatusCache|server status cache]],
a “dead” server can be remembered so that it will not be tried again during a
[[yii\db\Connection::serverRetryInterval|certain period of time]].

Info: In the above configuration, a connection timeout of 10 seconds is specified for every slave.
This means if a slave cannot be reached in 10 seconds, it is considered as “dead”. You can adjust this parameter
based on your actual environment.

You can also configure multiple masters with multiple slaves. For example,

[
 'class' => 'yii\db\Connection',

 // common configuration for masters
 'masterConfig' => [
 'username' => 'master',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of master configurations
 'masters' => [
 ['dsn' => 'dsn for master server 1'],
 ['dsn' => 'dsn for master server 2'],
],

 // common configuration for slaves
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of slave configurations
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

The above configuration specifies two masters and four slaves. The Connection component also supports
load balancing and failover between masters just as it does between slaves. A difference is that when none
of the masters are available an exception will be thrown.

Note: When you use the [[yii\db\Connection::masters|masters]] property to configure one or multiple
masters, all other properties for specifying a database connection (e.g. dsn, username, password)
with the Connection object itself will be ignored.

By default, transactions use the master connection. And within a transaction, all DB operations will use
the master connection. For example,

$db = Yii::$app->db;
// the transaction is started on the master connection
$transaction = $db->beginTransaction();

try {
 // both queries are performed against the master
 $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
 $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

If you want to start a transaction with the slave connection, you should explicitly do so, like the following:

$transaction = Yii::$app->db->slave->beginTransaction();

Sometimes, you may want to force using the master connection to perform a read query. This can be achieved
with the useMaster() method:

$rows = Yii::$app->db->useMaster(function ($db) {
 return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});

You may also directly set Yii::$app->db->enableSlaves to be false to direct all queries to the master connection.

Working with Database Schema

Yii DAO provides a whole set of methods to let you manipulate the database schema, such as creating new tables,
dropping a column from a table, etc. These methods are listed as follows:

	[[yii\db\Command::createTable()|createTable()]]: creating a table

	[[yii\db\Command::renameTable()|renameTable()]]: renaming a table

	[[yii\db\Command::dropTable()|dropTable()]]: removing a table

	[[yii\db\Command::truncateTable()|truncateTable()]]: removing all rows in a table

	[[yii\db\Command::addColumn()|addColumn()]]: adding a column

	[[yii\db\Command::renameColumn()|renameColumn()]]: renaming a column

	[[yii\db\Command::dropColumn()|dropColumn()]]: removing a column

	[[yii\db\Command::alterColumn()|alterColumn()]]: altering a column

	[[yii\db\Command::addPrimaryKey()|addPrimaryKey()]]: adding a primary key

	[[yii\db\Command::dropPrimaryKey()|dropPrimaryKey()]]: removing a primary key

	[[yii\db\Command::addForeignKey()|addForeignKey()]]: adding a foreign key

	[[yii\db\Command::dropForeignKey()|dropForeignKey()]]: removing a foreign key

	[[yii\db\Command::createIndex()|createIndex()]]: creating an index

	[[yii\db\Command::dropIndex()|dropIndex()]]: removing an index

These methods can be used like the following:

// CREATE TABLE
Yii::$app->db->createCommand()->createTable('post', [
 'id' => 'pk',
 'title' => 'string',
 'text' => 'text',
]);

The above array describes the name and types of the columns to be created. For the column types, Yii provides
a set of abstract data types, that allow you to define a database agnostic schema. These are converted to
DBMS specific type definitions dependent on the database, the table is created in.
Please refer to the API documentation of the [[yii\db\Command::createTable()|createTable()]]-method for more information.

Besides changing the database schema, you can also retrieve the definition information about a table through
the [[yii\db\Connection::getTableSchema()|getTableSchema()]] method of a DB connection. For example,

$table = Yii::$app->db->getTableSchema('post');

The method returns a [[yii\db\TableSchema]] object which contains the information about the table’s columns,
primary keys, foreign keys, etc. All these information are mainly utilized by query builder
and active record to help you write database-agnostic code.

 Filters

Filters

Filters are objects that run before and/or after controller actions. For example,
an access control filter may run before actions to ensure that they are allowed to be accessed by particular end users;
a content compression filter may run after actions to compress the response content before sending them out to end users.

A filter may consist of a pre-filter (filtering logic applied before actions) and/or a post-filter (logic applied
after actions).

Using Filters

Filters are essentially a special kind of behaviors. Therefore, using filters is the same
as using behaviors. You can declare filters in a controller class
by overriding its [[yii\base\Controller::behaviors()|behaviors()]] method like the following:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index', 'view'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

By default, filters declared in a controller class will be applied to all actions in that controller. You can,
however, explicitly specify which actions the filter should be applied to by configuring the
[[yii\base\ActionFilter::only|only]] property. In the above example, the HttpCache filter only applies to the
index and view actions. You can also configure the [[yii\base\ActionFilter::except|except]] property to blacklist
some actions from being filtered.

Besides controllers, you can also declare filters in a module or application.
When you do so, the filters will be applied to all controller actions belonging to that module or application,
unless you configure the filters’ [[yii\base\ActionFilter::only|only]] and [[yii\base\ActionFilter::except|except]]
properties like described above.

Note: When declaring filters in modules or applications, you should use routes
instead of action IDs in the [[yii\base\ActionFilter::only|only]] and [[yii\base\ActionFilter::except|except]] properties.
This is because action IDs alone cannot fully specify actions within the scope of a module or application.

When multiple filters are configured for a single action, they are applied according to the rules described below:

	Pre-filtering
	Apply filters declared in the application in the order they are listed in behaviors().

	Apply filters declared in the module in the order they are listed in behaviors().

	Apply filters declared in the controller in the order they are listed in behaviors().

	If any of the filters cancel the action execution, the filters (both pre-filters and post-filters) after it will
not be applied.

	Running the action if it passes the pre-filtering.

	Post-filtering
	Apply filters declared in the controller in the reverse order they are listed in behaviors().

	Apply filters declared in the module in the reverse order they are listed in behaviors().

	Apply filters declared in the application in the reverse order they are listed in behaviors().

Creating Filters

To create a new action filter, extend from [[yii\base\ActionFilter]] and override the
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] and/or [[yii\base\ActionFilter::afterAction()|afterAction()]]
methods. The former will be executed before an action runs while the latter after an action runs.
The return value of [[yii\base\ActionFilter::beforeAction()|beforeAction()]] determines whether an action should
be executed or not. If it is false, the filters after this one will be skipped and the action will not be executed.

The following example shows a filter that logs the action execution time:

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
 private $_startTime;

 public function beforeAction($action)
 {
 $this->_startTime = microtime(true);
 return parent::beforeAction($action);
 }

 public function afterAction($action, $result)
 {
 $time = microtime(true) - $this->_startTime;
 Yii::trace("Action '{$action->uniqueId}' spent $time second.");
 return parent::afterAction($action, $result);
 }
}

Core Filters

Yii provides a set of commonly used filters, found primarily under the yii\filters namespace. In the following,
we will briefly introduce these filters.

[[yii\filters\AccessControl|AccessControl]]

AccessControl provides simple access control based on a set of [[yii\filters\AccessControl::rules|rules]].
In particular, before an action is executed, AccessControl will examine the listed rules and find the first one
that matches the current context variables (such as user IP address, user login status, etc.) The matching
rule will dictate whether to allow or deny the execution of the requested action. If no rule matches, the access
will be denied.

The following example shows how to allow authenticated users to access the create and update actions
while denying all other users from accessing these two actions.

use yii\filters\AccessControl;

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['create', 'update'],
 'rules' => [
 // allow authenticated users
 [
 'allow' => true,
 'roles' => ['@'],
],
 // everything else is denied by default
],
],
];
}

For more details about access control in general, please refer to the Authorization section.

Authentication Method Filters

Authentication method filters are used to authenticate a user using various methods, such as
HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication], OAuth 2 [http://oauth.net/2/].
These filter classes are all under the yii\filters\auth namespace.

The following example shows how you can use [[yii\filters\auth\HttpBasicAuth]] to authenticate a user using
an access token based on HTTP Basic Auth method. Note that in order for this to work, your
[[yii\web\User::identityClass|user identity class]] must implement the [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]
method.

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 return [
 'basicAuth' => [
 'class' => HttpBasicAuth::className(),
],
];
}

Authentication method filters are commonly used in implementing RESTful APIs. For more details, please refer to the
RESTful Authentication section.

[[yii\filters\ContentNegotiator|ContentNegotiator]]

ContentNegotiator supports response format negotiation and application language negotiation. It will try to
determine the response format and/or language by examining GET parameters and Accept HTTP header.

In the following example, ContentNegotiator is configured to support JSON and XML response formats, and
English (United States) and German languages.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
 return [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
];
}

Response formats and languages often need to be determined much earlier during
the application lifecycle. For this reason, ContentNegotiator
is designed in a way such that it can also be used as a bootstrapping component
besides being used as a filter. For example, you may configure it in the application configuration
like the following:

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
 'bootstrap' => [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
],
];

Info: In case the preferred content type and language cannot be determined from a request, the first format and
language listed in [[formats]] and [[languages]] will be used.

[[yii\filters\HttpCache|HttpCache]]

HttpCache implements client-side caching by utilizing the Last-Modified and Etag HTTP headers.
For example,

use yii\filters\HttpCache;

public function behaviors()
{
 return [
 [
 'class' => HttpCache::className(),
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

Please refer to the HTTP Caching section for more details about using HttpCache.

[[yii\filters\PageCache|PageCache]]

PageCache implements server-side caching of whole pages. In the following example, PageCache is applied
to the index action to cache the whole page for maximum 60 seconds or until the count of entries in the post
table changes. It also stores different versions of the page depending on the chosen application language.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
 return [
 'pageCache' => [
 'class' => PageCache::className(),
 'only' => ['index'],
 'duration' => 60,
 'dependency' => [
 'class' => DbDependency::className(),
 'sql' => 'SELECT COUNT(*) FROM post',
],
 'variations' => [
 \Yii::$app->language,
]
],
];
}

Please refer to the Page Caching section for more details about using PageCache.

[[yii\filters\RateLimiter|RateLimiter]]

RateLimiter implements a rate limiting algorithm based on the leaky bucket algorithm [http://en.wikipedia.org/wiki/Leaky_bucket].
It is primarily used in implementing RESTful APIs. Please refer to the Rate Limiting section
for details about using this filter.

[[yii\filters\VerbFilter|VerbFilter]]

VerbFilter checks if the HTTP request methods are allowed by the requested actions. If not allowed, it will
throw an HTTP 405 exception. In the following example, VerbFilter is declared to specify a typical set of allowed
request methods for CRUD actions.

use yii\filters\VerbFilter;

public function behaviors()
{
 return [
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
 'view' => ['get'],
 'create' => ['get', 'post'],
 'update' => ['get', 'put', 'post'],
 'delete' => ['post', 'delete'],
],
],
];
}

[[yii\filters\Cors|Cors]]

Cross-origin resource sharing CORS [https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS] is a mechanism that allows many resources (e.g. fonts, JavaScript, etc.)
on a Web page to be requested from another domain outside the domain the resource originated from.
In particular, JavaScript’s AJAX calls can use the XMLHttpRequest mechanism. Such “cross-domain” requests would
otherwise be forbidden by Web browsers, per the same origin security policy.
CORS defines a way in which the browser and the server can interact to determine whether or not to allow the cross-origin request.

The [[yii\filters\Cors|Cors filter]] should be defined before Authentication / Authorization filters to make sure the CORS headers
will always be sent.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
],
], parent::behaviors());
}

Also check the section on REST Controllers if you want to add the CORS filter to an
[[yii\rest\ActiveController]] class in your API.

The Cors filtering could be tuned using the [[yii\filters\Cors::$cors|$cors]] property.

	cors['Origin']: array used to define allowed origins. Can be ['*'] (everyone) or ['http://www.myserver.net', 'http://www.myotherserver.com']. Default to ['*'].

	cors['Access-Control-Request-Method']: array of allowed verbs like ['GET', 'OPTIONS', 'HEAD']. Default to ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'].

	cors['Access-Control-Request-Headers']: array of allowed headers. Can be ['*'] all headers or specific ones ['X-Request-With']. Default to ['*'].

	cors['Access-Control-Allow-Credentials']: define if current request can be made using credentials. Can be true, false or null (not set). Default to null.

	cors['Access-Control-Max-Age']: define lifetime of pre-flight request. Default to 86400.

For example, allowing CORS for origin : http://www.myserver.net with method GET, HEAD and OPTIONS :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
],
], parent::behaviors());
}

You may tune the CORS headers by overriding default parameters on a per action basis.
For example adding the Access-Control-Allow-Credentials for the login action could be done like this :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
 'actions' => [
 'login' => [
 'Access-Control-Allow-Credentials' => true,
]
]
],
], parent::behaviors());
}

 Authentication

Authentication

Unlike Web applications, RESTful APIs are usually stateless, which means sessions or cookies should not
be used. Therefore, each request should come with some sort of authentication credentials because
the user authentication status may not be maintained by sessions or cookies. A common practice is
to send a secret access token with each request to authenticate the user. Since an access token
can be used to uniquely identify and authenticate a user, API requests should always be sent
via HTTPS to prevent man-in-the-middle (MitM) attacks.

There are different ways to send an access token:

	HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication]: the access token
is sent as the username. This should only be used when an access token can be safely stored
on the API consumer side. For example, the API consumer is a program running on a server.

	Query parameter: the access token is sent as a query parameter in the API URL, e.g.,
https://example.com/users?access-token=xxxxxxxx. Because most Web servers will keep query
parameters in server logs, this approach should be mainly used to serve JSONP requests which
cannot use HTTP headers to send access tokens.

	OAuth 2 [http://oauth.net/2/]: the access token is obtained by the consumer from an authorization
server and sent to the API server via HTTP Bearer Tokens [http://tools.ietf.org/html/rfc6750],
according to the OAuth2 protocol.

Yii supports all of the above authentication methods. You can also easily create new authentication methods.

To enable authentication for your APIs, do the following steps:

	Configure the user application component:
	Set the [[yii\web\User::enableSession|enableSession]] property to be false.

	Set the [[yii\web\User::loginUrl|loginUrl]] property to be null to show a HTTP 403 error instead of redirecting to the login page.

	Specify which authentication methods you plan to use by configuring the authenticator behavior
in your REST controller classes.

	Implement [[yii\web\IdentityInterface::findIdentityByAccessToken()]] in your [[yii\web\User::identityClass|user identity class]].

Step 1 is not required but is recommended for RESTful APIs which should be stateless. When [[yii\web\User::enableSession|enableSession]]
is false, the user authentication status will NOT be persisted across requests using sessions. Instead, authentication
will be performed for every request, which is accomplished by Step 2 and 3.

Tip: You may configure [[yii\web\User::enableSession|enableSession]] of the user application component
in application configurations if you are developing RESTful APIs in terms of an application. If you develop
RESTful APIs as a module, you may put the following line in the module’s init() method, like the following:

public function init()
{
 parent::init();
 \Yii::$app->user->enableSession = false;
}

For example, to use HTTP Basic Auth, you may configure the authenticator behavior as follows,

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

If you want to support all three authentication methods explained above, you can use CompositeAuth like the following,

use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\HttpBearerAuth;
use yii\filters\auth\QueryParamAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 HttpBasicAuth::className(),
 HttpBearerAuth::className(),
 QueryParamAuth::className(),
],
];
 return $behaviors;
}

Each element in authMethods should be an auth method class name or a configuration array.

Implementation of findIdentityByAccessToken() is application specific. For example, in simple scenarios
when each user can only have one access token, you may store the access token in an access_token column
in the user table. The method can then be readily implemented in the User class as follows,

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }
}

After authentication is enabled as described above, for every API request, the requested controller
will try to authenticate the user in its beforeAction() step.

If authentication succeeds, the controller will perform other checks (such as rate limiting, authorization)
and then run the action. The authenticated user identity information can be retrieved via Yii::$app->user->identity.

If authentication fails, a response with HTTP status 401 will be sent back together with other appropriate headers
(such as a WWW-Authenticate header for HTTP Basic Auth).

Authorization

After a user is authenticated, you probably want to check if he or she has the permission to perform the requested
action for the requested resource. This process is called authorization which is covered in detail in
the Authorization section.

If your controllers extend from [[yii\rest\ActiveController]], you may override
the [[yii\rest\ActiveController::checkAccess()|checkAccess()]] method to perform authorization check. The method
will be called by the built-in actions provided by [[yii\rest\ActiveController]].

 Overview

Overview

Each time when a Yii application handles a request, it undergoes a similar workflow.

	A user makes a request to the entry script web/index.php.

	The entry script loads the application configuration and creates
an application instance to handle the request.

	The application resolves the requested route with the help of
the request application component.

	The application creates a controller instance to handle the request.

	The controller creates an action instance and performs the filters for the action.

	If any filter fails, the action is cancelled.

	If all filters pass, the action is executed.

	The action loads a data model, possibly from a database.

	The action renders a view, providing it with the data model.

	The rendered result is returned to the response application component.

	The response component sends the rendered result to the user’s browser.

The following diagram shows how an application handles a request.

[image: Request Lifecycle]

In this section, we will describe in detail how some of these steps work.

 Assets

Assets

An asset in Yii is a file that may be referenced in a Web page. It can be a CSS file, a JavaScript file, an image
or video file, etc. Assets are located in Web-accessible directories and are directly served by Web servers.

It is often preferable to manage assets programmatically. For example, when you use the [[yii\jui\DatePicker]] widget
in a page, it will automatically include the required CSS and JavaScript files, instead of asking you to manually
find these files and include them. And when you upgrade the widget to a new version, it will automatically use
the new version of the asset files. In this tutorial, we will describe the powerful asset management capability
provided in Yii.

Asset Bundles

Yii manages assets in the unit of asset bundle. An asset bundle is simply a collection of assets located
in a directory. When you register an asset bundle in a view, it will include the CSS and
JavaScript files in the bundle in the rendered Web page.

Defining Asset Bundles

Asset bundles are specified as PHP classes extending from [[yii\web\AssetBundle]]. The name of a bundle is simply
its corresponding fully qualified PHP class name (without the leading backslash). An asset bundle class should
be autoloadable. It usually specifies where the assets are located, what CSS and
JavaScript files the bundle contains, and how the bundle depends on other bundles.

The following code defines the main asset bundle used by the basic project template:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.css',
];
 public $js = [
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

The above AppAsset class specifies that the asset files are located under the @webroot directory which
corresponds to the URL @web; the bundle contains a single CSS file css/site.css and no JavaScript file;
the bundle depends on two other bundles: [[yii\web\YiiAsset]] and [[yii\bootstrap\BootstrapAsset]]. More detailed
explanation about the properties of [[yii\web\AssetBundle]] can be found in the following:

	[[yii\web\AssetBundle::sourcePath|sourcePath]]: specifies the root directory that contains the asset files in
this bundle. This property should be set if the root directory is not Web accessible. Otherwise, you should
set the [[yii\web\AssetBundle::basePath|basePath]] property and [[yii\web\AssetBundle::baseUrl|baseUrl]], instead.
Path aliases can be used here.

	[[yii\web\AssetBundle::basePath|basePath]]: specifies a Web-accessible directory that contains the asset files in
this bundle. When you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property,
the asset manager will publish the assets in this bundle to a Web-accessible directory
and overwrite this property accordingly. You should set this property if your asset files are already in
a Web-accessible directory and do not need asset publishing. Path aliases can be used here.

	[[yii\web\AssetBundle::baseUrl|baseUrl]]: specifies the URL corresponding to the directory
[[yii\web\AssetBundle::basePath|basePath]]. Like [[yii\web\AssetBundle::basePath|basePath]],
if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property, the asset manager
will publish the assets and overwrite this property accordingly. Path aliases can be used here.

	[[yii\web\AssetBundle::js|js]]: an array listing the JavaScript files contained in this bundle. Note that only
forward slash “/” should be used as directory separators. Each JavaScript file can be specified in one of the
following two formats:
	a relative path representing a local JavaScript file (e.g. js/main.js). The actual path of the file
can be determined by prepending [[yii\web\AssetManager::basePath]] to the relative path, and the actual URL
of the file can be determined by prepending [[yii\web\AssetManager::baseUrl]] to the relative path.

	an absolute URL representing an external JavaScript file. For example,
http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js or
//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.

	[[yii\web\AssetBundle::css|css]]: an array listing the CSS files contained in this bundle. The format of this array
is the same as that of [[yii\web\AssetBundle::js|js]].

	[[yii\web\AssetBundle::depends|depends]]: an array listing the names of the asset bundles that this bundle depends on
(to be explained shortly).

	[[yii\web\AssetBundle::jsOptions|jsOptions]]: specifies the options that will be passed to the
[[yii\web\View::registerJsFile()]] method when it is called to register every JavaScript file in this bundle.

	[[yii\web\AssetBundle::cssOptions|cssOptions]]: specifies the options that will be passed to the
[[yii\web\View::registerCssFile()]] method when it is called to register every CSS file in this bundle.

	[[yii\web\AssetBundle::publishOptions|publishOptions]]: specifies the options that will be passed to the
[[yii\web\AssetManager::publish()]] method when it is called to publish source asset files to a Web directory.
This is only used if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property.

Asset Locations

Assets, based on their location, can be classified as:

	source assets: the asset files are located together with PHP source code which cannot be directly accessed via Web.
In order to use source assets in a page, they should be copied to a Web directory and turned into the so-called
published assets. This process is called asset publishing which will be described in detail shortly.

	published assets: the asset files are located in a Web directory and can thus be directly accessed via Web.

	external assets: the asset files are located on a Web server that is different from the one hosting your Web
application.

When defining an asset bundle class, if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property,
it means any assets listed using relative paths will be considered as source assets. If you do not specify this property,
it means those assets are published assets (you should therefore specify [[yii\web\AssetBundle::basePath|basePath]] and
[[yii\web\AssetBundle::baseUrl|baseUrl]] to let Yii know where they are located).

It is recommended that you place assets belonging to an application in a Web directory to avoid the unnecessary asset
publishing process. This is why AppAsset in the prior example specifies [[yii\web\AssetBundle::basePath|basePath]]
instead of [[yii\web\AssetBundle::sourcePath|sourcePath]].

For extensions, because their assets are located together with their source code
in directories that are not Web accessible, you have to specify the [[yii\web\AssetBundle::sourcePath|sourcePath]]
property when defining asset bundle classes for them.

Note: Do not use @webroot/assets as the [[yii\web\AssetBundle::sourcePath|source path]].
This directory is used by default by the [[yii\web\AssetManager|asset manager]] to save the asset files
published from their source location. Any content in this directory is considered temporarily and may be subject
to removal.

Asset Dependencies

When you include multiple CSS or JavaScript files in a Web page, they have to follow a certain order to avoid
overriding issues. For example, if you are using a jQuery UI widget in a Web page, you have to make sure
the jQuery JavaScript file is included before the jQuery UI JavaScript file. We call such ordering the dependencies
among assets.

Asset dependencies are mainly specified through the [[yii\web\AssetBundle::depends]] property.
In the AppAsset example, the asset bundle depends on two other asset bundles: [[yii\web\YiiAsset]] and
[[yii\bootstrap\BootstrapAsset]], which means the CSS and JavaScript files in AppAsset will be included after
those files in the two dependent bundles.

Asset dependencies are transitive. This means if bundle A depends on B which depends on C, A will depend on C, too.

Asset Options

You can specify the [[yii\web\AssetBundle::cssOptions|cssOptions]] and [[yii\web\AssetBundle::jsOptions|jsOptions]]
properties to customize the way that CSS and JavaScript files are included in a page. The values of these properties
will be passed to the [[yii\web\View::registerCssFile()]] and [[yii\web\View::registerJsFile()]] methods, respectively, when
they are called by the view to include CSS and JavaScript files.

Note: The options you set in a bundle class apply to every CSS/JavaScript file in the bundle. If you want to
use different options for different files, you should create separate asset bundles, and use one set of options
in each bundle.

For example, to conditionally include a CSS file for browsers that are IE9 or below, you can use the following option:

public $cssOptions = ['condition' => 'lte IE9'];

This will cause a CSS file in the bundle to be included using the following HTML tags:

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->

To wrap the generated CSS link tags within <noscript>, you can configure cssOptions as follows,

public $cssOptions = ['noscript' => true];

To include a JavaScript file in the head section of a page (by default, JavaScript files are included at the end
of the body section), use the following option:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];

By default, when an asset bundle is being published, all contents in the directory specified by [[yii\web\AssetBundle::sourcePath]]
will be published. You can customize this behavior by configuring the [[yii\web\AssetBundle::publishOptions|publishOptions]]
property. For example, to publish only one or a few subdirectories of [[yii\web\AssetBundle::sourcePath]],
you can do the following in the asset bundle class:

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle
{
 public $sourcePath = '@bower/font-awesome';
 public $css = [
 'css/font-awesome.min.css',
];
 public $publishOptions = [
 'only' => [
 'fonts/',
 'css/',
]
];
}

The above example defines an asset bundle for the “fontawesome” package [http://fontawesome.io/]. By specifying
the only publishing option, only the fonts and css subdirectories will be published.

Bower and NPM Assets

Most JavaScript/CSS packages are managed by Bower [http://bower.io/] and/or NPM [https://www.npmjs.org/].
If your application or extension is using such a package, it is recommended that you follow these steps to manage
the assets in the library:

	Modify the composer.json file of your application or extension and list the package in the require entry.
You should use bower-asset/PackageName (for Bower packages) or npm-asset/PackageName (for NPM packages)
to refer to the library.

	Create an asset bundle class and list the JavaScript/CSS files that you plan to use in your application or extension.
You should specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property as @bower/PackageName or @npm/PackageName.
This is because Composer will install the Bower or NPM package in the directory corresponding to this alias.

Note: Some packages may put all their distributed files in a subdirectory. If this is the case, you should specify
the subdirectory as the value of [[yii\web\AssetBundle::sourcePath|sourcePath]]. For example, [[yii\web\JqueryAsset]]
uses @bower/jquery/dist instead of @bower/jquery.

Using Asset Bundles

To use an asset bundle, register it with a view by calling the [[yii\web\AssetBundle::register()]]
method. For example, in a view template you can register an asset bundle like the following:

use app\assets\AppAsset;
AppAsset::register($this); // $this represents the view object

Info: The [[yii\web\AssetBundle::register()]] method returns an asset bundle object containing the information
about the published assets, such as [[yii\web\AssetBundle::basePath|basePath]] or [[yii\web\AssetBundle::baseUrl|baseUrl]].

If you are registering an asset bundle in other places, you should provide the needed view object. For example,
to register an asset bundle in a widget class, you can get the view object by $this->view.

When an asset bundle is registered with a view, behind the scenes Yii will register all its dependent asset bundles.
And if an asset bundle is located in a directory inaccessible through the Web, it will be published to a Web directory.
Later, when the view renders a page, it will generate <link> and <script> tags for the CSS and JavaScript files
listed in the registered bundles. The order of these tags is determined by the dependencies among
the registered bundles and the order of the assets listed in the [[yii\web\AssetBundle::css]] and [[yii\web\AssetBundle::js]]
properties.

Dynamic Asset Bundles

Being a regular PHP class asset bundle can bear some extra logic related to it and may adjust its internal parameters dynamically.
For example: you may use som sophisticated JavaScript library, which provides some internationalization packed in separated
source files: each per each supported language. Thus you will need to add particular ‘.js’ file to your page in order to
make library translation work. This can be achieved overriding [[yii\web\AssetBundle::init()]] method:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle
{
 public $sourcePath = '/path/to/sophisticated/src';
 public $js = [
 'sophisticated.js' // file, which is always used
];

 public function init()
 {
 parent::init();
 $this->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added
 }
}

Particular asset bundle can also be adjusted via its instance returned by [[yii\web\AssetBundle::register()]].
For example:

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added

Note: although dynamic adjustment of the asset bundles is supported, it is a bad practice, which may lead to
unexpected side effects, and should be avoided if possible.

Customizing Asset Bundles

Yii manages asset bundles through an application component named assetManager which is implemented by [[yii\web\AssetManager]].
By configuring the [[yii\web\AssetManager::bundles]] property, it is possible to customize the behavior of an asset bundle.
For example, the default [[yii\web\JqueryAsset]] asset bundle uses the jquery.js file from the installed
jquery Bower package. To improve the availability and performance, you may want to use a version hosted by Google.
This can be achieved by configuring assetManager in the application configuration like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => [
 'sourcePath' => null, // do not publish the bundle
 'js' => [
 '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
]
],
],
],
],
];

You can configure multiple asset bundles similarly through [[yii\web\AssetManager::bundles]]. The array keys
should be the class names (without the leading backslash) of the asset bundles, and the array values should
be the corresponding configuration arrays.

Tip: You can conditionally choose which assets to use in an asset bundle. The following example shows how
to use jquery.js in the development environment and jquery.min.js otherwise:

'yii\web\JqueryAsset' => [
 'js' => [
 YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
]
],

You can disable one or multiple asset bundles by associating false with the names of the asset bundles
that you want to disable. When you register a disabled asset bundle with a view, none of its dependent bundles
will be registered, and the view also will not include any of the assets in the bundle in the page it renders.
For example, to disable [[yii\web\JqueryAsset]], you can use the following configuration:

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => false,
],
],
],
];

You can also disable all asset bundles by setting [[yii\web\AssetManager::bundles]] as false.

Keep in mind that customization made via [[yii\web\AssetManager::bundles]] is applied at the creation of the asset bundle, e.g.
at object constructor stage. Thus any adjustments made to the bundle object after that will override the mapping setup at [[yii\web\AssetManager::bundles]] level.
In particular: adjustments made inside [[yii\web\AssetBundle::init()]]
method or over the registered bundle object will take precedence over AssetManager configuration.
Here are the examples, where mapping set via [[yii\web\AssetManager::bundles]] makes no effect:

// Program source code:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class LanguageAssetBundle extends AssetBundle
{
 // ...

 public function init()
 {
 parent::init();
 $this->baseUrl = '@web/i18n/' . Yii::$app->language; // can NOT be handled by `AssetManager`!
 }
}
// ...

$bundle = \app\assets\LargeFileAssetBundle::register(Yii::$app->view);
$bundle->baseUrl = YII_DEBUG ? '@web/large-files': '@web/large-files/minified'; // can NOT be handled by `AssetManager`!

// Application config :

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'app\assets\LanguageAssetBundle' => [
 'baseUrl' => 'http://some.cdn.com/files/i18n/en' // makes NO effect!
],
 'app\assets\LargeFileAssetBundle' => [
 'baseUrl' => 'http://some.cdn.com/files/large-files' // makes NO effect!
],
],
],
],
];

Asset Mapping

Sometimes you may want to “fix” incorrect/incompatible asset file paths used in multiple asset bundles. For example,
bundle A uses jquery.min.js version 1.11.1, and bundle B uses jquery.js version 2.1.1. While you can
fix the problem by customizing each bundle, an easier way is to use the asset map feature to map incorrect assets
to the desired ones. To do so, configure the [[yii\web\AssetManager::assetMap]] property like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'assetMap' => [
 'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
],
],
],
];

The keys of [[yii\web\AssetManager::assetMap|assetMap]] are the asset names that you want to fix, and the values
are the desired asset paths. When you register an asset bundle with a view, each relative asset file in its
[[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] arrays will be examined against this map.
If any of the keys are found to be the last part of an asset file (which is prefixed with [[yii\web\AssetBundle::sourcePath]]
if available), the corresponding value will replace the asset and be registered with the view.
For example, the asset file my/path/to/jquery.js matches the key jquery.js.

Note: Only assets specified using relative paths are subject to asset mapping. The target asset paths
should be either absolute URLs or paths relative to [[yii\web\AssetManager::basePath]].

Asset Publishing

As aforementioned, if an asset bundle is located in a directory that is not Web accessible, its assets will be copied
to a Web directory when the bundle is being registered with a view. This process is called asset publishing, and is done
automatically by the [[yii\web\AssetManager|asset manager]].

By default, assets are published to the directory @webroot/assets which corresponds to the URL @web/assets.
You may customize this location by configuring the [[yii\web\AssetManager::basePath|basePath]] and
[[yii\web\AssetManager::baseUrl|baseUrl]] properties.

Instead of publishing assets by file copying, you may consider using symbolic links, if your OS and Web server allow.
This feature can be enabled by setting [[yii\web\AssetManager::linkAssets|linkAssets]] to be true.

return [
 // ...
 'components' => [
 'assetManager' => [
 'linkAssets' => true,
],
],
];

With the above configuration, the asset manager will create a symbolic link to the source path of an asset bundle
when it is being published. This is faster than file copying and can also ensure that the published assets are
always up-to-date.

Cache Busting

For Web application running in production mode, it is a common practice to enable HTTP caching for assets and other
static resources. A drawback of this practice is that whenever you modify an asset and deploy it to production, a user
client may still use the old version due to the HTTP caching. To overcome this drawback, you may use the cache busting
feature, which was introduced in version 2.0.3, by configuring [[yii\web\AssetManager]] like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'appendTimestamp' => true,
],
],
];

By doing so, the URL of every published asset will be appended with its last modification timestamp. For example,
the URL to yii.js may look like /assets/5515a87c/yii.js?v=1423448645", where the parameter v represents the
last modification timestamp of the yii.js file. Now if you modify an asset, its URL will be changed, too, which causes
the client to fetch the latest version of the asset.

Commonly Used Asset Bundles

The core Yii code has defined many asset bundles. Among them, the following bundles are commonly used and may
be referenced in your application or extension code.

	[[yii\web\YiiAsset]]: It mainly includes the yii.js file which implements a mechanism of organizing JavaScript code
in modules. It also provides special support for data-method and data-confirm attributes and other useful features.
More information about yii.js can be found in the Client Scripts Section.

	[[yii\web\JqueryAsset]]: It includes the jquery.js file from the jQuery Bower package.

	[[yii\bootstrap\BootstrapAsset]]: It includes the CSS file from the Twitter Bootstrap framework.

	[[yii\bootstrap\BootstrapPluginAsset]]: It includes the JavaScript file from the Twitter Bootstrap framework for
supporting Bootstrap JavaScript plugins.

	[[yii\jui\JuiAsset]]: It includes the CSS and JavaScript files from the jQuery UI library.

If your code depends on jQuery, jQuery UI or Bootstrap, you should use these predefined asset bundles rather than
creating your own versions. If the default setting of these bundles do not satisfy your needs, you may customize them
as described in the Customizing Asset Bundle subsection.

Asset Conversion

Instead of directly writing CSS and/or JavaScript code, developers often write them in some extended syntax and
use special tools to convert it into CSS/JavaScript. For example, for CSS code you may use LESS [http://lesscss.org/]
or SCSS [http://sass-lang.com/]; and for JavaScript you may use TypeScript [http://www.typescriptlang.org/].

You can list the asset files in extended syntax in the [[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] properties of an asset bundle. For example,

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.less',
];
 public $js = [
 'js/site.ts',
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

When you register such an asset bundle with a view, the [[yii\web\AssetManager|asset manager]] will automatically
run the pre-processor tools to convert assets in recognized extended syntax into CSS/JavaScript. When the view
finally renders a page, it will include the CSS/JavaScript files in the page, instead of the original assets
in extended syntax.

Yii uses the file name extensions to identify which extended syntax an asset is in. By default it recognizes
the following syntax and file name extensions:

	LESS [http://lesscss.org/]: .less

	SCSS [http://sass-lang.com/]: .scss

	Stylus [http://learnboost.github.io/stylus/]: .styl

	CoffeeScript [http://coffeescript.org/]: .coffee

	TypeScript [http://www.typescriptlang.org/]: .ts

Yii relies on the installed pre-processor tools to convert assets. For example, to use LESS [http://lesscss.org/]
you should install the lessc pre-processor command.

You can customize the pre-processor commands and the supported extended syntax by configuring
[[yii\web\AssetManager::converter]] like the following:

return [
 'components' => [
 'assetManager' => [
 'converter' => [
 'class' => 'yii\web\AssetConverter',
 'commands' => [
 'less' => ['css', 'lessc {from} {to} --no-color'],
 'ts' => ['js', 'tsc --out {to} {from}'],
],
],
],
],
];

In the above, we specify the supported extended syntax via the [[yii\web\AssetConverter::commands]] property.
The array keys are the file extension names (without leading dot), and the array values are the resulting
asset file extension names and the commands for performing the asset conversion. The tokens {from} and {to}
in the commands will be replaced with the source asset file paths and the target asset file paths.

Info: There are other ways of working with assets in extended syntax, besides the one described above.
For example, you can use build tools such as grunt [http://gruntjs.com/] to monitor and automatically
convert assets in extended syntax. In this case, you should list the resulting CSS/JavaScript files in
asset bundles rather than the original files.

Combining and Compressing Assets

A Web page can include many CSS and/or JavaScript files. To reduce the number of HTTP requests and the overall
download size of these files, a common practice is to combine and compress multiple CSS/JavaScript files into
one or very few files, and then include these compressed files instead of the original ones in the Web pages.

Info: Combining and compressing assets are usually needed when an application is in production mode.
In development mode, using the original CSS/JavaScript files is often more convenient for debugging purposes.

In the following, we introduce an approach to combine and compress asset files without the need to modify
your existing application code.

	Find all the asset bundles in your application that you plan to combine and compress.

	Divide these bundles into one or a few groups. Note that each bundle can only belong to a single group.

	Combine/compress the CSS files in each group into a single file. Do this similarly for the JavaScript files.

	Define a new asset bundle for each group:
	Set the [[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] properties to be
the combined CSS and JavaScript files, respectively.

	Customize the asset bundles in each group by setting their [[yii\web\AssetBundle::css|css]] and
[[yii\web\AssetBundle::js|js]] properties to be empty, and setting their [[yii\web\AssetBundle::depends|depends]]
property to be the new asset bundle created for the group.

Using this approach, when you register an asset bundle in a view, it causes the automatic registration of
the new asset bundle for the group that the original bundle belongs to. And as a result, the combined/compressed
asset files are included in the page, instead of the original ones.

An Example

Let’s use an example to further explain the above approach.

Assume your application has two pages, X and Y. Page X uses asset bundles A, B and C, while Page Y uses asset bundles B, C and D.

You have two ways to divide these asset bundles. One is to use a single group to include all asset bundles, the
other is to put A in Group X, D in Group Y, and (B, C) in Group S. Which one is better? It depends. The first way
has the advantage that both pages share the same combined CSS and JavaScript files, which makes HTTP caching
more effective. On the other hand, because the single group contains all bundles, the size of the combined CSS and
JavaScript files will be bigger and thus increase the initial file transmission time. For simplicity in this example,
we will use the first way, i.e., use a single group to contain all bundles.

Info: Dividing asset bundles into groups is not trivial task. It usually requires analysis about the real world
traffic data of various assets on different pages. At the beginning, you may start with a single group for simplicity.

Use existing tools (e.g. Closure Compiler [https://developers.google.com/closure/compiler/],
YUI Compressor [https://github.com/yui/yuicompressor/]) to combine and compress CSS and JavaScript files in
all the bundles. Note that the files should be combined in the order that satisfies the dependencies among the bundles.
For example, if Bundle A depends on B which depends on both C and D, then you should list the asset files starting
from C and D, followed by B and finally A.

After combining and compressing, we get one CSS file and one JavaScript file. Assume they are named as
all-xyz.css and all-xyz.js, where xyz stands for a timestamp or a hash that is used to make the file name unique
to avoid HTTP caching problems.

We are at the last step now. Configure the [[yii\web\AssetManager|asset manager]] as follows in the application
configuration:

return [
 'components' => [
 'assetManager' => [
 'bundles' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'css' => ['all-xyz.css'],
 'js' => ['all-xyz.js'],
],
 'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
],
],
],
];

As explained in the Customizing Asset Bundles subsection, the above configuration
changes the default behavior of each bundle. In particular, Bundle A, B, C and D no longer have any asset files.
They now all depend on the all bundle which contains the combined all-xyz.css and all-xyz.js files.
Consequently, for Page X, instead of including the original source files from Bundle A, B and C, only these
two combined files will be included; the same thing happens to Page Y.

There is one final trick to make the above approach work more smoothly. Instead of directly modifying the
application configuration file, you may put the bundle customization array in a separate file and conditionally
include this file in the application configuration. For example,

return [
 'components' => [
 'assetManager' => [
 'bundles' => require(__DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php')),
],
],
];

That is, the asset bundle configuration array is saved in assets-prod.php for production mode, and
assets-dev.php for non-production mode.

Note: this asset combining mechanism is based on the ability of [[yii\web\AssetManager::bundles]] to override the properties
of the registered asset bundles. However, as it already has been said above, this ability does not cover asset bundle
adjustments, which are performed at [[yii\web\AssetBundle::init()]] method or after bundle is registered. You should
avoid usage of such dynamic bundles during the asset combining.

Using the asset Command

Yii provides a console command named asset to automate the approach that we just described.

To use this command, you should first create a configuration file to describe what asset bundles should
be combined and how they should be grouped. You can use the asset/template sub-command to generate
a template first and then modify it to fit for your needs.

yii asset/template assets.php

The command generates a file named assets.php in the current directory. The content of this file looks like the following:

<?php
/**
 * Configuration file for the "yii asset" console command.
 * Note that in the console environment, some path aliases like '@webroot' and '@web' may not exist.
 * Please define these missing path aliases.
 */
return [
 // Adjust command/callback for JavaScript files compressing:
 'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
 // Adjust command/callback for CSS files compressing:
 'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
 // Whether to delete asset source after compression:
 'deleteSource' => false,
 // The list of asset bundles to compress:
 'bundles' => [
 // 'yii\web\YiiAsset',
 // 'yii\web\JqueryAsset',
],
 // Asset bundle for compression output:
 'targets' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
],
],
 // Asset manager configuration:
 'assetManager' => [
],
];

You should modify this file and specify which bundles you plan to combine in the bundles option. In the targets
option you should specify how the bundles should be divided into groups. You can specify one or multiple groups,
as aforementioned.

Note: Because the alias @webroot and @web are not available in the console application, you should
explicitly define them in the configuration.

JavaScript files are combined, compressed and written to js/all-{hash}.js where {hash} is replaced with the hash of
the resulting file.

The jsCompressor and cssCompressor options specify the console commands or PHP callbacks for performing
JavaScript and CSS combining/compressing. By default, Yii uses Closure Compiler [https://developers.google.com/closure/compiler/]
for combining JavaScript files and YUI Compressor [https://github.com/yui/yuicompressor/] for combining CSS files.
You should install those tools manually or adjust these options to use your favorite tools.

With the configuration file, you can run the asset command to combine and compress the asset files
and then generate a new asset bundle configuration file assets-prod.php:

yii asset assets.php config/assets-prod.php

The generated configuration file can be included in the application configuration, like described in
the last subsection.

Note: in case you customize asset bundles for your application via [[yii\web\AssetManager::bundles]] or
[[yii\web\AssetManager::assetMap]] and want this customization to be applied for the compression source files,
you should include these options to the assetManager section inside asset command configuration file.

Note: while specifying the compression source, you should avoid the use of asset bundles whose parameters may be
adjusted dynamically (e.g. at init() method or after registration), since they may work incorrectly after compression.

Info: Using the asset command is not the only option to automate the asset combining and compressing process.
You can use the excellent task runner tool grunt [http://gruntjs.com/] to achieve the same goal.

Grouping Asset Bundles

In the last subsection, we have explained how to combine all asset bundles into a single one in order to minimize
the HTTP requests for asset files referenced in an application. This is not always desirable in practice. For example,
imagine your application has a “front end” as well as a “back end”, each of which uses a different set of JavaScript
and CSS files. In this case, combining all asset bundles from both ends into a single one does not make sense,
because the asset bundles for the “front end” are not used by the “back end” and it would be a waste of network
bandwidth to send the “back end” assets when a “front end” page is requested.

To solve the above problem, you can divide asset bundles into groups and combine asset bundles for each group.
The following configuration shows how you can group asset bundles:

return [
 ...
 // Specify output bundles with groups:
 'targets' => [
 'allShared' => [
 'js' => 'js/all-shared-{hash}.js',
 'css' => 'css/all-shared-{hash}.css',
 'depends' => [
 // Include all assets shared between 'backend' and 'frontend'
 'yii\web\YiiAsset',
 'app\assets\SharedAsset',
],
],
 'allBackEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [
 // Include only 'backend' assets:
 'app\assets\AdminAsset'
],
],
 'allFrontEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [], // Include all remaining assets
],
],
 ...
];

As you can see, the asset bundles are divided into three groups: allShared, allBackEnd and allFrontEnd.
They each depends on an appropriate set of asset bundles. For example, allBackEnd depends on app\assets\AdminAsset.
When running asset command with this configuration, it will combine asset bundles according to the above specification.

Info: You may leave the depends configuration empty for one of the target bundle. By doing so, that particular
asset bundle will depend on all of the remaining asset bundles that other target bundles do not depend on.

 Data widgets

Data widgets

Yii provides a set of widgets that can be used to display data.
While the DetailView widget can be used to display data for a single record,
ListView and GridView can be used to display a list or table of data records
providing features like pagination, sorting and filtering.

DetailView [bookmark: detail-view]

The [[yii\widgets\DetailView|DetailView]] widget displays the details of a single data [[yii\widgets\DetailView::$model|model]].

It is best used for displaying a model in a regular format (e.g. each model attribute is displayed as a row in a table).
The model can be either an instance or subclass of [[\yii\base\Model]] such as an active record or an associative array.

DetailView uses the [[yii\widgets\DetailView::$attributes|$attributes]] property to determine which model attributes should be displayed and how they
should be formatted. See the formatter section for available formatting options.

A typical usage of DetailView is as follows:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 'title', // title attribute (in plain text)
 'description:html', // description attribute formatted as HTML
 [// the owner name of the model
 'label' => 'Owner',
 'value' => $model->owner->name,
 'contentOptions' => ['class' => 'bg-red'], // HTML attributes to customize value tag
 'captionOptions' => ['tooltip' => 'Tooltip'], // HTML attributes to customize label tag
],
 'created_at:datetime', // creation date formatted as datetime
],
]);

Remember that unlike [[yii\widgets\GridView|GridView]] which processes a set of models,
[[yii\widgets\DetailView|DetailView]] processes just one. So most of the time there is no need for using closure since
$model is the only one model for display and available in view as a variable.

However some cases can make using of closure useful. For example when visible is specified and you want to prevent
value calculations in case it evaluates to false:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 [
 'attribute' => 'owner',
 'value' => function ($model) {
 return $model->owner->name;
 },
 'visible' => \Yii::$app->user->can('posts.owner.view'),
],
],
]);

ListView [bookmark: list-view]

The [[yii\widgets\ListView|ListView]] widget is used to display data from a data provider.
Each data model is rendered using the specified [[yii\widgets\ListView::$itemView|view file]].
Since it provides features such as pagination, sorting and filtering out of the box, it is handy both to display
information to end user and to create data managing UI.

A typical usage is as follows:

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);
echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
]);

The _post view file could contain the following:

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="post">
 <h2><?= Html::encode($model->title) ?></h2>

 <?= HtmlPurifier::process($model->text) ?>
</div>

In the view file above, the current data model is available as $model. Additionally the following variables are available:

	$key: mixed, the key value associated with the data item.

	$index: integer, the zero-based index of the data item in the items array returned by the data provider.

	$widget: ListView, this widget instance.

If you need to pass additional data to each view, you can use the [[yii\widgets\ListView::$viewParams|$viewParams]] property
to pass key value pairs like the following:

echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
 'viewParams' => [
 'fullView' => true,
 'context' => 'main-page',
 // ...
],
]);

These are then also available as variables in the view.

GridView [bookmark: grid-view]

Data grid or [[yii\grid\GridView|GridView]] is one of the most powerful Yii widgets. It is extremely useful if you need to quickly build the admin
section of the system. It takes data from a data provider and renders each row using a set of [[yii\grid\GridView::columns|columns]]
presenting data in the form of a table.

Each row of the table represents the data of a single data item, and a column usually represents an attribute of
the item (some columns may correspond to complex expressions of attributes or static text).

The minimal code needed to use GridView is as follows:

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);
echo GridView::widget([
 'dataProvider' => $dataProvider,
]);

The above code first creates a data provider and then uses GridView to display every attribute in every row taken from
the data provider. The displayed table is equipped with sorting and pagination functionality out of the box.

Grid columns

The columns of the grid table are configured in terms of [[yii\grid\Column]] classes, which are
configured in the [[yii\grid\GridView::columns|columns]] property of GridView configuration.
Depending on column type and settings these are able to present data differently.
The default class is [[yii\grid\DataColumn]], which represents a model attribute and can be sorted and filtered by.

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 // Simple columns defined by the data contained in $dataProvider.
 // Data from the model's column will be used.
 'id',
 'username',
 // More complex one.
 [
 'class' => 'yii\grid\DataColumn', // can be omitted, as it is the default
 'value' => function ($data) {
 return $data->name; // $data['name'] for array data, e.g. using SqlDataProvider.
 },
],
],
]);

Note that if the [[yii\grid\GridView::columns|columns]] part of the configuration isn’t specified,
Yii tries to show all possible columns of the data provider’s model.

Column classes

Grid columns could be customized by using different column classes:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 [
 'class' => 'yii\grid\SerialColumn', // <-- here
 // you may configure additional properties here
],

In addition to column classes provided by Yii that we’ll review below, you can create your own column classes.

Each column class extends from [[yii\grid\Column]] so that there are some common options you can set while configuring
grid columns.

	[[yii\grid\Column::header|header]] allows to set content for header row.

	[[yii\grid\Column::footer|footer]] allows to set content for footer row.

	[[yii\grid\Column::visible|visible]] defines if the column should be visible.

	[[yii\grid\Column::content|content]] allows you to pass a valid PHP callback that will return data for a row. The format is the following:

function ($model, $key, $index, $column) {
 return 'a string';
}

You may specify various container HTML options by passing arrays to:

	[[yii\grid\Column::headerOptions|headerOptions]]

	[[yii\grid\Column::footerOptions|footerOptions]]

	[[yii\grid\Column::filterOptions|filterOptions]]

	[[yii\grid\Column::contentOptions|contentOptions]]

Data column

[[yii\grid\DataColumn|Data column]] is used for displaying and sorting data. It is the default column type so the specifying class could be omitted when
using it.

The main setting of the data column is its [[yii\grid\DataColumn::format|format]] property. Its values
correspond to methods in the formatter application component that is [[\yii\i18n\Formatter|Formatter]] by default:

echo GridView::widget([
 'columns' => [
 [
 'attribute' => 'name',
 'format' => 'text'
],
 [
 'attribute' => 'birthday',
 'format' => ['date', 'php:Y-m-d']
],
],
]);

In the above, text corresponds to [[\yii\i18n\Formatter::asText()]]. The value of the column is passed as the first
argument. In the second column definition, date corresponds to [[\yii\i18n\Formatter::asDate()]]. The value of the
column is, again, passed as the first argument while ‘php:Y-m-d’ is used as the second argument value.

For a list of available formatters see the section about Data Formatting.

For configuring data columns there is also a shortcut format which is described in the
API documentation for [[yii\grid\GridView::columns|columns]].

Action column

[[yii\grid\ActionColumn|Action column]] displays action buttons such as update or delete for each row.

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 [
 'class' => 'yii\grid\ActionColumn',
 // you may configure additional properties here
],

Available properties you can configure are:

	[[yii\grid\ActionColumn::controller|controller]] is the ID of the controller that should handle the actions. If not set, it will use the currently active
controller.

	[[yii\grid\ActionColumn::template|template]] defines the template used for composing each cell in the action column. Tokens enclosed within curly brackets are
treated as controller action IDs (also called button names in the context of action column). They will be replaced
by the corresponding button rendering callbacks specified in [[yii\grid\ActionColumn::$buttons|buttons]]. For example, the token {view} will be
replaced by the result of the callback buttons['view']. If a callback cannot be found, the token will be replaced
with an empty string. The default tokens are {view} {update} {delete}.

	[[yii\grid\ActionColumn::buttons|buttons]] is an array of button rendering callbacks. The array keys are the button names (without curly brackets),
and the values are the corresponding button rendering callbacks. The callbacks should use the following signature:

function ($url, $model, $key) {
 // return the button HTML code
}

In the code above, $url is the URL that the column creates for the button, $model is the model object being
rendered for the current row, and $key is the key of the model in the data provider array.

	[[yii\grid\ActionColumn::urlCreator|urlCreator]] is a callback that creates a button URL using the specified model information. The signature of
the callback should be the same as that of [[yii\grid\ActionColumn::createUrl()]]. If this property is not set,
button URLs will be created using [[yii\grid\ActionColumn::createUrl()]].

	[[yii\grid\ActionColumn::visibleButtons|visibleButtons]] is an array of visibility conditions for each button.
The array keys are the button names (without curly brackets), and the values are the boolean true/false or the
anonymous function. When the button name is not specified in this array it will be shown by default.
The callbacks must use the following signature:

function ($model, $key, $index) {
 return $model->status === 'editable';
}

Or you can pass a boolean value:

[
 'update' => \Yii::$app->user->can('update')
]

Checkbox column

[[yii\grid\CheckboxColumn|Checkbox column]] displays a column of checkboxes.

To add a CheckboxColumn to the GridView, add it to the [[yii\grid\GridView::$columns|columns]] configuration as follows:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 // ...
 [
 'class' => 'yii\grid\CheckboxColumn',
 // you may configure additional properties here
],
],

Users may click on the checkboxes to select rows of the grid. The selected rows may be obtained by calling the following
JavaScript code:

var keys = $('#grid').yiiGridView('getSelectedRows');
// keys is an array consisting of the keys associated with the selected rows

Serial column

[[yii\grid\SerialColumn|Serial column]] renders row numbers starting with 1 and going forward.

Usage is as simple as the following:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'], // <-- here
 // ...

Sorting data

Note: This section is under development.

	https://github.com/yiisoft/yii2/issues/1576

Filtering data

For filtering data, the GridView needs a model that represents the search criteria which is
usually taken from the filter fields in the GridView table.
A common practice when using active records is to create a search Model class
that provides needed functionality (it can be generated for you by Gii). This class defines the validation
rules to show filter controls on the GridView table and to provide a search() method that will return the data
provider with an adjusted query that processes the search criteria.

To add the search capability for the Post model, we can create a PostSearch model like the following example:

<?php

namespace app\models;

use Yii;
use yii\base\Model;
use yii\data\ActiveDataProvider;

class PostSearch extends Post
{
 public function rules()
 {
 // only fields in rules() are searchable
 return [
 [['id'], 'integer'],
 [['title', 'creation_date'], 'safe'],
];
 }

 public function scenarios()
 {
 // bypass scenarios() implementation in the parent class
 return Model::scenarios();
 }

 public function search($params)
 {
 $query = Post::find();

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
]);

 // load the search form data and validate
 if (!($this->load($params) && $this->validate())) {
 return $dataProvider;
 }

 // adjust the query by adding the filters
 $query->andFilterWhere(['id' => $this->id]);
 $query->andFilterWhere(['like', 'title', $this->title])
 ->andFilterWhere(['like', 'creation_date', $this->creation_date]);

 return $dataProvider;
 }
}

Tip: See Query Builder and especially Filter Conditions
to learn how to build filtering query.

You can use this function in the controller to get the dataProvider for the GridView:

$searchModel = new PostSearch();
$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [
 'dataProvider' => $dataProvider,
 'searchModel' => $searchModel,
]);

And in the view you then assign the $dataProvider and $searchModel to the GridView:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 // ...
],
]);

Separate filter form

Most of the time using GridView header filters is enough, but in case you need a separate filter form,
you can easily add it as well. You can create partial view _search.php with the following contents:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\PostSearch */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="post-search">
 <?php $form = ActiveForm::begin([
 'action' => ['index'],
 'method' => 'get',
]); ?>

 <?= $form->field($model, 'title') ?>

 <?= $form->field($model, 'creation_date') ?>

 <div class="form-group">
 <?= Html::submitButton('Search', ['class' => 'btn btn-primary']) ?>
 <?= Html::submitButton('Reset', ['class' => 'btn btn-default']) ?>
 </div>

 <?php ActiveForm::end(); ?>
</div>

and include it in index.php view like so:

<?= $this->render('_search', ['model' => $searchModel]) ?>

Note: if you use Gii to generate CRUD code, the separate filter form (_search.php) is generated by default,
but is commented in index.php view. Uncomment it and it’s ready to use!

Separate filter form is useful when you need to filter by fields, that are not displayed in GridView
or for special filtering conditions, like date range. For filtering by date range we can add non DB attributes
createdFrom and createdTo to the search model:

class PostSearch extends Post
{
 /**
 * @var string
 */
 public $createdFrom;

 /**
 * @var string
 */
 public $createdTo;
}

Extend query conditions in the search() method like so:

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])
 ->andFilterWhere(['<=', 'creation_date', $this->createdTo]);

And add the representative fields to the filter form:

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>

Working with model relations

When displaying active records in a GridView you might encounter the case where you display values of related
columns such as the post author’s name instead of just his id.
You do this by defining the attribute name in [[yii\grid\GridView::$columns]] as author.name when the Post model
has a relation named author and the author model has an attribute name.
The GridView will then display the name of the author but sorting and filtering are not enabled by default.
You have to adjust the PostSearch model that has been introduced in the last section to add this functionality.

To enable sorting on a related column you have to join the related table and add the sorting rule
to the Sort component of the data provider:

$query = Post::find();
$dataProvider = new ActiveDataProvider([
 'query' => $query,
]);

// join with relation `author` that is a relation to the table `users`
// and set the table alias to be `author`
$query->joinWith(['author' => function($query) { $query->from(['author' => 'users']); }]);
// since version 2.0.7, the above line can be simplified to $query->joinWith('author AS author');
// enable sorting for the related column
$dataProvider->sort->attributes['author.name'] = [
 'asc' => ['author.name' => SORT_ASC],
 'desc' => ['author.name' => SORT_DESC],
];

// ...

Filtering also needs the joinWith call as above. You also need to define the searchable column in attributes and rules like this:

public function attributes()
{
 // add related fields to searchable attributes
 return array_merge(parent::attributes(), ['author.name']);
}

public function rules()
{
 return [
 [['id'], 'integer'],
 [['title', 'creation_date', 'author.name'], 'safe'],
];
}

In search() you then just add another filter condition with:

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.name')]);

Info: In the above we use the same string for the relation name and the table alias; however, when your alias and relation name
differ, you have to pay attention to where you use the alias and where you use the relation name.
A simple rule for this is to use the alias in every place that is used to build the database query and the
relation name in all other definitions such as attributes() and rules() etc.

For example, if you use the alias au for the author relation table, the joinWith statement looks like the following:

$query->joinWith(['author au']);

It is also possible to just call $query->joinWith(['author']); when the alias is defined in the relation definition.

The alias has to be used in the filter condition but the attribute name stays the same:

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('author.name')]);

The same is true for the sorting definition:

$dataProvider->sort->attributes['author.name'] = [
 'asc' => ['au.name' => SORT_ASC],
 'desc' => ['au.name' => SORT_DESC],
];

Also, when specifying the [[yii\data\Sort::defaultOrder|defaultOrder]] for sorting, you need to use the relation name
instead of the alias:

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];

Info: For more information on joinWith and the queries performed in the background, check the
active record docs on joining with relations.

Using SQL views for filtering, sorting and displaying data

There is also another approach that can be faster and more useful - SQL views. For example, if we need to show the gridview
with users and their profiles, we can do so in this way:

CREATE OR REPLACE VIEW vw_user_info AS
 SELECT user.*, user_profile.lastname, user_profile.firstname
 FROM user, user_profile
 WHERE user.id = user_profile.user_id

Then you need to create the ActiveRecord that will be representing this view:

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord
{

 /**
 * @inheritdoc
 */
 public static function tableName()
 {
 return 'vw_user_info';
 }

 public static function primaryKey()
 {
 return ['id'];
 }

 /**
 * @inheritdoc
 */
 public function rules()
 {
 return [
 // define here your rules
];
 }

 /**
 * @inheritdoc
 */
 public static function attributeLabels()
 {
 return [
 // define here your attribute labels
];
 }

}

After that you can use this UserView active record with search models, without additional specification of sorting and filtering attributes.
All attributes will be working out of the box. Note that this approach has several pros and cons:

	you don’t need to specify different sorting and filtering conditions. Everything works out of the box;

	it can be much faster because of the data size, count of sql queries performed (for each relation you will not need any additional query);

	since this is just a simple mapping UI on the sql view it lacks some domain logic that is in your entities, so if you have some methods like isActive,
isDeleted or others that will influence the UI, you will need to duplicate them in this class too.

Multiple GridViews on one page

You can use more than one GridView on a single page but some additional configuration is needed so that
they do not interfere with each other.
When using multiple instances of GridView you have to configure different parameter names for
the generated sort and pagination links so that each GridView has its own individual sorting and pagination.
You do so by setting the [[yii\data\Sort::sortParam|sortParam]] and [[yii\data\Pagination::pageParam|pageParam]]
of the dataProvider’s [[yii\data\BaseDataProvider::$sort|sort]] and [[yii\data\BaseDataProvider::$pagination|pagination]]
instances.

Assume we want to list the Post and User models for which we have already prepared two data providers
in $userProvider and $postProvider:

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';
$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';
$postProvider->sort->sortParam = 'post-sort';

echo '<h1>Users</h1>';
echo GridView::widget([
 'dataProvider' => $userProvider,
]);

echo '<h1>Posts</h1>';
echo GridView::widget([
 'dataProvider' => $postProvider,
]);

Using GridView with Pjax

The [[yii\widgets\Pjax|Pjax]] widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the
[[yii\grid\GridView|GridView]] content when using filters.

use yii\widgets\Pjax;
use yii\grid\GridView;

Pjax::begin([
 // PJax options
]);
 Gridview::widget([
 // GridView options
]);
Pjax::end();

Pjax also works for the links inside the [[yii\widgets\Pjax|Pjax]] widget and
for the links specified by [[yii\widgets\Pjax::$linkSelector|Pjax::$linkSelector]].
But this might be a problem for the links of an [[yii\grid\ActionColumn|ActionColumn]].
To prevent this, add the HTML attribute data-pjax="0" to the links when you edit
the [[yii\grid\ActionColumn::$buttons|ActionColumn::$buttons]] property.

GridView/ListView with Pjax in Gii

Since 2.0.5, the CRUD generator of Gii has an option called
$enablePjax that can be used via either web interface or command line.

yii gii/crud --controllerClass="backend\\controllers\PostController" \
 --modelClass="common\\models\\Post" \
 --enablePjax=1

Which generates a [[yii\widgets\Pjax|Pjax]] widget wrapping the
[[yii\grid\GridView|GridView]] or [[yii\widgets\ListView|ListView]] widgets.

Further reading

	Rendering Data in Yii 2 with GridView and ListView [http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/] by Arno Slatius.

 Widgets

Widgets

Widgets are reusable building blocks used in views to create complex and configurable user
interface elements in an object-oriented fashion. For example, a date picker widget may generate a fancy date picker
that allows users to pick a date as their input. All you need to do is just to insert the code in a view
like the following:

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>

There are a good number of widgets bundled with Yii, such as [[yii\widgets\ActiveForm|active form]],
[[yii\widgets\Menu|menu]], jQuery UI widgets, Twitter Bootstrap widgets.
In the following, we will introduce the basic knowledge about widgets. Please refer to the class API documentation
if you want to learn about the usage of a particular widget.

Using Widgets

Widgets are primarily used in views. You can call the [[yii\base\Widget::widget()]] method
to use a widget in a view. The method takes a configuration array for initializing
the widget and returns the rendering result of the widget. For example, the following code inserts a date picker
widget which is configured to use the Russian language and keep the input in the from_date attribute of $model.

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget([
 'model' => $model,
 'attribute' => 'from_date',
 'language' => 'ru',
 'dateFormat' => 'php:Y-m-d',
]) ?>

Some widgets can take a block of content which should be enclosed between the invocation of
[[yii\base\Widget::begin()]] and [[yii\base\Widget::end()]]. For example, the following code uses the
[[yii\widgets\ActiveForm]] widget to generate a login form. The widget will generate the opening and closing
<form> tags at the place where begin() and end() are called, respectively. Anything in between will be
rendered as is.

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>

<?php ActiveForm::end(); ?>

Note that unlike [[yii\base\Widget::widget()]] which returns the rendering result of a widget, the method
[[yii\base\Widget::begin()]] returns an instance of the widget which you can use to build the widget content.

Note: Some widgets will use output buffering [http://php.net/manual/en/book.outcontrol.php] to adjust the enclosed
content when [[yii\base\Widget::end()]] is called. For this reason calling [[yii\base\Widget::begin()]] and
[[yii\base\Widget::end()]] is expected to happen in the same view file.
Not following this rule may result in unexpected output.

Configuring global defaults

Global defaults for a widget type could be configured via DI container:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

See “Practical Usage” section in Dependency Injection Container guide for
details.

Creating Widgets

To create a widget, extend from [[yii\base\Widget]] and override the [[yii\base\Widget::init()]] and/or
[[yii\base\Widget::run()]] methods. Usually, the init() method should contain the code that normalizes the widget
properties, while the run() method should contain the code that generates the rendering result of the widget.
The rendering result may be directly “echoed” or returned as a string by run().

In the following example, HelloWidget HTML-encodes and displays the content assigned to its message property.
If the property is not set, it will display “Hello World” by default.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public $message;

 public function init()
 {
 parent::init();
 if ($this->message === null) {
 $this->message = 'Hello World';
 }
 }

 public function run()
 {
 return Html::encode($this->message);
 }
}

To use this widget, simply insert the following code in a view:

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'Good morning']) ?>

Below is a variant of HelloWidget which takes the content enclosed within the begin() and end() calls,
HTML-encodes it and then displays it.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public function init()
 {
 parent::init();
 ob_start();
 }

 public function run()
 {
 $content = ob_get_clean();
 return Html::encode($content);
 }
}

As you can see, PHP’s output buffer is started in init() so that any output between the calls of init() and run()
can be captured, processed and returned in run().

Info: When you call [[yii\base\Widget::begin()]], a new instance of the widget will be created and the init() method
will be called at the end of the widget constructor. When you call [[yii\base\Widget::end()]], the run() method
will be called whose return result will be echoed by end().

The following code shows how to use this new variant of HelloWidget:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

 content that may contain <tag>'s

<?php HelloWidget::end(); ?>

Sometimes, a widget may need to render a big chunk of content. While you can embed the content within the run()
method, a better approach is to put it in a view and call [[yii\base\Widget::render()]] to
render it. For example,

public function run()
{
 return $this->render('hello');
}

By default, views for a widget should be stored in files in the WidgetPath/views directory, where WidgetPath
stands for the directory containing the widget class file. Therefore, the above example will render the view file
@app/components/views/hello.php, assuming the widget class is located under @app/components. You may override
the [[yii\base\Widget::getViewPath()]] method to customize the directory containing the widget view files.

Best Practices

Widgets are an object-oriented way of reusing view code.

When creating widgets, you should still follow the MVC pattern. In general, you should keep logic in widget
classes and keep presentation in views.

Widgets should be designed to be self-contained. That is, when using a widget, you should be able to just drop
it in a view without doing anything else. This could be tricky if a widget requires external resources, such as
CSS, JavaScript, images, etc. Fortunately, Yii provides the support for asset bundles,
which can be utilized to solve the problem.

When a widget contains view code only, it is very similar to a view. In fact, in this case,
their only difference is that a widget is a redistributable class, while a view is just a plain PHP script
that you would prefer to keep within your application.

 Getting Data for Multiple Models

Getting Data for Multiple Models

When dealing with some complex data, it is possible that you may need to use multiple different models to collect
the user input. For example, assuming the user login information is stored in the user table while the user profile
information is stored in the profile table, you may want to collect the input data about a user through a User model
and a Profile model. With the Yii model and form support, you can solve this problem in a way that is not much
different from handling a single model.

In the following, we will show how you can create a form that would allow you to collect data for both User and Profile
models.

First, the controller action for collecting the user and profile data can be written as follows,

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
 public function actionUpdate($id)
 {
 $user = User::findOne($id);
 if (!$user) {
 throw new NotFoundHttpException("The user was not found.");
 }

 $profile = Profile::findOne($user->profile_id);

 if (!$profile) {
 throw new NotFoundHttpException("The user has no profile.");
 }

 $user->scenario = 'update';
 $profile->scenario = 'update';

 if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
 $isValid = $user->validate();
 $isValid = $profile->validate() && $isValid;
 if ($isValid) {
 $user->save(false);
 $profile->save(false);
 return $this->redirect(['user/view', 'id' => $id]);
 }
 }

 return $this->render('update', [
 'user' => $user,
 'profile' => $profile,
]);
 }
}

In the update action, we first load the $user and $profile models to be updated from the database. We then call
[[yii\base\Model::load()]] to populate these two models with the user input. If loading is successful, we will validate
the two models and then save them —

 please note that we use save(false) to skip over validations inside the models
as the user input data have already been validated. If loading is not successful, we will render the update view which
has the following content:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'user-update-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($user, 'username') ?>

 ...other input fields...

 <?= $form->field($profile, 'website') ?>

 <?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>

As you can see, in the update view you would render input fields using two models $user and $profile.

 Quick Start

Quick Start

Yii provides a whole set of tools to simplify the task of implementing RESTful Web Service APIs.
In particular, Yii supports the following features about RESTful APIs:

	Quick prototyping with support for common APIs for Active Record;

	Response format negotiation (supporting JSON and XML by default);

	Customizable object serialization with support for selectable output fields;

	Proper formatting of collection data and validation errors;

	Support for HATEOAS [http://en.wikipedia.org/wiki/HATEOAS];

	Efficient routing with proper HTTP verb check;

	Built-in support for the OPTIONS and HEAD verbs;

	Authentication and authorization;

	Data caching and HTTP caching;

	Rate limiting;

In the following, we use an example to illustrate how you can build a set of RESTful APIs with some minimal coding effort.

Assume you want to expose the user data via RESTful APIs. The user data are stored in the user DB table,
and you have already created the active record class app\models\User to access the user data.

Creating a Controller

First, create a controller class app\controllers\UserController as follows:

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
}

The controller class extends from [[yii\rest\ActiveController]], which implements a common set of RESTful actions.
By specifying [[yii\rest\ActiveController::modelClass|modelClass]]
as app\models\User, the controller knows which model can be used for fetching and manipulating data.

Configuring URL Rules

Then, modify the configuration of the urlManager component in your application configuration:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

The above configuration mainly adds a URL rule for the user controller so that the user data
can be accessed and manipulated with pretty URLs and meaningful HTTP verbs.

Note: Yii will automatically pluralize controller names for use in endpoints (see Trying it Out section below).
You can configure this using the [[yii\rest\UrlRule::$pluralize]] property.

Enabling JSON Input

To let the API accept input data in JSON format, configure the [[yii\web\Request::$parsers|parsers]] property of
the request application component to use the [[yii\web\JsonParser]] for JSON input:

'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]

Info: The above configuration is optional. Without the above configuration, the API would only recognize
application/x-www-form-urlencoded and multipart/form-data input formats.

Trying it Out

With the above minimal amount of effort, you have already finished your task of creating the RESTful APIs
for accessing the user data. The APIs you have created include:

	GET /users: list all users page by page;

	HEAD /users: show the overview information of user listing;

	POST /users: create a new user;

	GET /users/123: return the details of the user 123;

	HEAD /users/123: show the overview information of user 123;

	PATCH /users/123 and PUT /users/123: update the user 123;

	DELETE /users/123: delete the user 123;

	OPTIONS /users: show the supported verbs regarding endpoint /users;

	OPTIONS /users/123: show the supported verbs regarding endpoint /users/123.

You may access your APIs with the curl command like the following,

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Try changing the acceptable content type to be application/xml, and you will see the result
is returned in XML format:

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <item>
 <id>1</id>
 ...
 </item>
 <item>
 <id>2</id>
 ...
 </item>
 ...
</response>

The following command will create a new user by sending a POST request with the user data in JSON format:

$ curl -i -H "Accept:application/json" -H "Content-Type:application/json" -XPOST "http://localhost/users" -d '{"username": "example", "email": "user@example.com"}'

HTTP/1.1 201 Created
...
Location: http://localhost/users/1
Content-Length: 99
Content-Type: application/json; charset=UTF-8

{"id":1,"username":"example","email":"user@example.com","created_at":1414674789,"updated_at":1414674789}

Tip: You may also access your APIs via Web browser by entering the URL http://localhost/users.
However, you may need some browser plugins to send specific request headers.

As you can see, in the response headers, there is information about the total count, page count, etc.
There are also links that allow you to navigate to other pages of data. For example, http://localhost/users?page=2
would give you the next page of the user data.

Using the fields and expand parameters, you may also specify which fields should be included in the result.
For example, the URL http://localhost/users?fields=id,email will only return the id and email fields.

Info: You may have noticed that the result of http://localhost/users includes some sensitive fields,
such as password_hash, auth_key. You certainly do not want these to appear in your API result.
You can and should filter out these fields as described in the Resources section.

Summary

Using the Yii RESTful API framework, you implement an API endpoint in terms of a controller action, and you use
a controller to organize the actions that implement the endpoints for a single type of resource.

Resources are represented as data models which extend from the [[yii\base\Model]] class.
If you are working with databases (relational or NoSQL), it is recommended you use [[yii\db\ActiveRecord|ActiveRecord]]
to represent resources.

You may use [[yii\rest\UrlRule]] to simplify the routing to your API endpoints.

While not required, it is recommended that you develop your RESTful APIs as a separate application, different from
your Web front end and back end for easier maintenance.

 Authentication

Authentication

Authentication is the process of verifying the identity of a user. It usually uses an identifier
(e.g. a username or an email address) and a secret token (e.g. a password or an access token) to judge
if the user is the one whom he claims as. Authentication is the basis of the login feature.

Yii provides an authentication framework which wires up various components to support login. To use this framework,
you mainly need to do the following work:

	Configure the [[yii\web\User|user]] application component;

	Create a class that implements the [[yii\web\IdentityInterface]] interface.

Configuring [[yii\web\User]]

The [[yii\web\User|user]] application component manages the user authentication status. It requires you to
specify an [[yii\web\User::identityClass|identity class]] which contains the actual authentication logic.
In the following application configuration, the [[yii\web\User::identityClass|identity class]] for
[[yii\web\User|user]] is configured to be app\models\User whose implementation is explained in
the next subsection:

return [
 'components' => [
 'user' => [
 'identityClass' => 'app\models\User',
],
],
];

Implementing [[yii\web\IdentityInterface]]

The [[yii\web\User::identityClass|identity class]] must implement the [[yii\web\IdentityInterface]] which contains
the following methods:

	[[yii\web\IdentityInterface::findIdentity()|findIdentity()]]: it looks for an instance of the identity
class using the specified user ID. This method is used when you need to maintain the login status via session.

	[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]: it looks for
an instance of the identity class using the specified access token. This method is used when you need
to authenticate a user by a single secret token (e.g. in a stateless RESTful application).

	[[yii\web\IdentityInterface::getId()|getId()]]: it returns the ID of the user represented by this identity instance.

	[[yii\web\IdentityInterface::getAuthKey()|getAuthKey()]]: it returns a key used to verify cookie-based login.
The key is stored in the login cookie and will be later compared with the server-side version to make
sure the login cookie is valid.

	[[yii\web\IdentityInterface::validateAuthKey()|validateAuthKey()]]: it implements the logic for verifying
the cookie-based login key.

If a particular method is not needed, you may implement it with an empty body. For example, if your application
is a pure stateless RESTful application, you would only need to implement [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]
and [[yii\web\IdentityInterface::getId()|getId()]] while leaving all other methods with an empty body.

In the following example, an [[yii\web\User::identityClass|identity class]] is implemented as
an Active Record class associated with the user database table.

<?php

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function tableName()
 {
 return 'user';
 }

 /**
 * Finds an identity by the given ID.
 *
 * @param string|int $id the ID to be looked for
 * @return IdentityInterface|null the identity object that matches the given ID.
 */
 public static function findIdentity($id)
 {
 return static::findOne($id);
 }

 /**
 * Finds an identity by the given token.
 *
 * @param string $token the token to be looked for
 * @return IdentityInterface|null the identity object that matches the given token.
 */
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }

 /**
 * @return int|string current user ID
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * @return string current user auth key
 */
 public function getAuthKey()
 {
 return $this->auth_key;
 }

 /**
 * @param string $authKey
 * @return bool if auth key is valid for current user
 */
 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }
}

As explained previously, you only need to implement getAuthKey() and validateAuthKey() if your application
uses cookie-based login feature. In this case, you may use the following code to generate an auth key for each
user and store it in the user table:

class User extends ActiveRecord implements IdentityInterface
{

 public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key = \Yii::$app->security->generateRandomString();
 }
 return true;
 }
 return false;
 }
}

Note: Do not confuse the User identity class with [[yii\web\User]]. The former is the class implementing
the authentication logic. It is often implemented as an Active Record class associated
with some persistent storage for storing the user credential information. The latter is an application component
class responsible for managing the user authentication state.

Using [[yii\web\User]]

You mainly use [[yii\web\User]] in terms of the user application component.

You can detect the identity of the current user using the expression Yii::$app->user->identity. It returns
an instance of the [[yii\web\User::identityClass|identity class]] representing the currently logged-in user,
or null if the current user is not authenticated (meaning a guest). The following code shows how to retrieve
other authentication-related information from [[yii\web\User]]:

// the current user identity. `null` if the user is not authenticated.
$identity = Yii::$app->user->identity;

// the ID of the current user. `null` if the user not authenticated.
$id = Yii::$app->user->id;

// whether the current user is a guest (not authenticated)
$isGuest = Yii::$app->user->isGuest;

To login a user, you may use the following code:

// find a user identity with the specified username.
// note that you may want to check the password if needed
$identity = User::findOne(['username' => $username]);

// logs in the user
Yii::$app->user->login($identity);

The [[yii\web\User::login()]] method sets the identity of the current user to the [[yii\web\User]]. If session is
[[yii\web\User::enableSession|enabled]], it will keep the identity in the session so that the user
authentication status is maintained throughout the whole session. If cookie-based login (i.e. “remember me” login)
is [[yii\web\User::enableAutoLogin|enabled]], it will also save the identity in a cookie so that
the user authentication status can be recovered from the cookie as long as the cookie remains valid.

In order to enable cookie-based login, you need to configure [[yii\web\User::enableAutoLogin]] to be
true in the application configuration. You also need to provide a duration time parameter when calling
the [[yii\web\User::login()]] method.

To logout a user, simply call

Yii::$app->user->logout();

Note that logging out a user is only meaningful when session is enabled. The method will clean up
the user authentication status from both memory and session. And by default, it will also destroy all
user session data. If you want to keep the session data, you should call Yii::$app->user->logout(false), instead.

Authentication Events

The [[yii\web\User]] class raises a few events during the login and logout processes.

	[[yii\web\User::EVENT_BEFORE_LOGIN|EVENT_BEFORE_LOGIN]]: raised at the beginning of [[yii\web\User::login()]].
If the event handler sets the [[yii\web\UserEvent::isValid|isValid]] property of the event object to be false,
the login process will be cancelled.

	[[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]]: raised after a successful login.

	[[yii\web\User::EVENT_BEFORE_LOGOUT|EVENT_BEFORE_LOGOUT]]: raised at the beginning of [[yii\web\User::logout()]].
If the event handler sets the [[yii\web\UserEvent::isValid|isValid]] property of the event object to be false,
the logout process will be cancelled.

	[[yii\web\User::EVENT_AFTER_LOGOUT|EVENT_AFTER_LOGOUT]]: raised after a successful logout.

You may respond to these events to implement features such as login audit, online user statistics. For example,
in the handler for [[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]], you may record the login time and IP
address in the user table.

 HTTP Caching

HTTP Caching

Besides server-side caching that we have described in the previous sections, Web applications may
also exploit client-side caching to save the time for generating and transmitting the same page content.

To use client-side caching, you may configure [[yii\filters\HttpCache]] as a filter for controller
actions whose rendering result may be cached on the client-side. [[yii\filters\HttpCache|HttpCache]]
only works for GET and HEAD requests. It can handle three kinds of cache-related HTTP headers for these requests:

	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]

Last-Modified Header

The Last-Modified header uses a timestamp to indicate if the page has been modified since the client caches it.

You may configure the [[yii\filters\HttpCache::lastModified]] property to enable sending
the Last-Modified header. The property should be a PHP callable returning a UNIX timestamp about
the page modification time. The signature of the PHP callable should be as follows,

/**
 * @param Action $action the action object that is being handled currently
 * @param array $params the value of the "params" property
 * @return int a UNIX timestamp representing the page modification time
 */
function ($action, $params)

The following is an example of making use of the Last-Modified header:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('post')->max('updated_at');
 },
],
];
}

The above code states that HTTP caching should be enabled for the index action only. It should
generate a Last-Modified HTTP header based on the last update time of posts. When a browser visits
the index page for the first time, the page will be generated on the server and sent to the browser;
If the browser visits the same page again and there is no post being modified during the period,
the server will not re-generate the page, and the browser will use the cached version on the client-side.
As a result, server-side rendering and page content transmission are both skipped.

ETag Header

The “Entity Tag” (or ETag for short) header use a hash to represent the content of a page. If the page
is changed, the hash will be changed as well. By comparing the hash kept on the client-side with the hash
generated on the server-side, the cache may determine whether the page has been changed and should be re-transmitted.

You may configure the [[yii\filters\HttpCache::etagSeed]] property to enable sending the ETag header.
The property should be a PHP callable returning a seed for generating the ETag hash. The signature of the PHP callable
should be as follows,

/**
 * @param Action $action the action object that is being handled currently
 * @param array $params the value of the "params" property
 * @return string a string used as the seed for generating an ETag hash
 */
function ($action, $params)

The following is an example of making use of the ETag header:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['view'],
 'etagSeed' => function ($action, $params) {
 $post = $this->findModel(\Yii::$app->request->get('id'));
 return serialize([$post->title, $post->content]);
 },
],
];
}

The above code states that HTTP caching should be enabled for the view action only. It should
generate an ETag HTTP header based on the title and content of the requested post. When a browser visits
the view page for the first time, the page will be generated on the server and sent to the browser;
If the browser visits the same page again and there is no change to the title and content of the post,
the server will not re-generate the page, and the browser will use the cached version on the client-side.
As a result, server-side rendering and page content transmission are both skipped.

ETags allow more complex and/or more precise caching strategies than Last-Modified headers.
For instance, an ETag can be invalidated if the site has switched to another theme.

Expensive ETag generation may defeat the purpose of using HttpCache and introduce unnecessary overhead,
since they need to be re-evaluated on every request. Try to find a simple expression that invalidates
the cache if the page content has been modified.

Note: In compliance to RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4],
HttpCache will send out both ETag and Last-Modified headers if they are both configured.
And if the client sends both of the If-None-Match header and the If-Modified-Since header, only the former
will be respected.

Cache-Control Header

The Cache-Control header specifies the general caching policy for pages. You may send it by configuring
the [[yii\filters\HttpCache::cacheControlHeader]] property with the header value. By default, the following
header will be sent:

Cache-Control: public, max-age=3600

Session Cache Limiter

When a page uses session, PHP will automatically send some cache-related HTTP headers as specified in
the session.cache_limiter PHP INI setting. These headers may interfere or disable the caching
that you want from HttpCache. To prevent this problem, by default HttpCache will disable sending
these headers automatically. If you want to change this behavior, you should configure the
[[yii\filters\HttpCache::sessionCacheLimiter]] property. The property can take a string value, including
public, private, private_no_expire, and nocache. Please refer to the PHP manual about
session_cache_limiter() [http://www.php.net/manual/en/function.session-cache-limiter.php]
for explanations about these values.

SEO Implications

Search engine bots tend to respect cache headers. Since some crawlers have a limit on how many pages
per domain they process within a certain time span, introducing caching headers may help indexing your
site as they reduce the number of pages that need to be processed.

 Applications

Applications

Applications are objects that govern the overall structure and lifecycle of Yii application systems.
Each Yii application system contains a single application object which is created in
the entry script and is globally accessible through the expression \Yii::$app.

Info: Depending on the context, when we say “an application”, it can mean either an application
object or an application system.

There are two types of applications: [[yii\web\Application|Web applications]] and
[[yii\console\Application|console applications]]. As the names indicate, the former mainly handles
Web requests, while the latter handles console command requests.

Application Configurations

When an entry script creates an application, it will load
a configuration and apply it to the application, as follows:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// load application configuration
$config = require(__DIR__ . '/../config/web.php');

// instantiate and configure the application
(new yii\web\Application($config))->run();

Like normal configurations, application configurations specify how
to initialize properties of application objects. Because application configurations are often
very complex, they usually are kept in configuration files,
like the web.php file in the above example.

Application Properties

There are many important application properties that you should configure in application configurations.
These properties typically describe the environment that applications are running in.
For example, applications need to know how to load controllers,
where to store temporary files, etc. In the following, we will summarize these properties.

Required Properties

In any application, you should at least configure two properties: [[yii\base\Application::id|id]]
and [[yii\base\Application::basePath|basePath]].

[[yii\base\Application::id|id]]

The [[yii\base\Application::id|id]] property specifies a unique ID that differentiates an application
from others. It is mainly used programmatically. Although not a requirement, for best interoperability
it is recommended that you use only alphanumeric characters when specifying an application ID.

[[yii\base\Application::basePath|basePath]]

The [[yii\base\Application::basePath|basePath]] property specifies the root directory of an application.
It is the directory that contains all protected source code of an application system. Under this directory,
you normally will see sub-directories such as models, views, and controllers, which contain source code
corresponding to the MVC pattern.

You may configure the [[yii\base\Application::basePath|basePath]] property using a directory path
or a path alias. In both forms, the corresponding directory must exist, or an exception
will be thrown. The path will be normalized by calling the realpath() function.

The [[yii\base\Application::basePath|basePath]] property is often used to derive other important
paths (e.g. the runtime path). For this reason, a path alias named @app is predefined to represent this
path. Derived paths may then be formed using this alias (e.g. @app/runtime to refer to the runtime directory).

Important Properties

The properties described in this subsection often need to be configured because they differ across
different applications.

[[yii\base\Application::aliases|aliases]]

This property allows you to define a set of aliases in terms of an array.
The array keys are alias names, and the array values are the corresponding path definitions.
For example:

[
 'aliases' => [
 '@name1' => 'path/to/path1',
 '@name2' => 'path/to/path2',
],
]

This property is provided so that you can define aliases in terms of application configurations instead of
by calling the [[Yii::setAlias()]] method.

[[yii\base\Application::bootstrap|bootstrap]]

This is a very useful property. It allows you to specify an array of components that should
be run during the application [[yii\base\Application::bootstrap()|bootstrapping process]].
For example, if you want a module to customize the URL rules,
you may list its ID as an element in this property.

Each component listed in this property may be specified in one of the following formats:

	an application component ID as specified via components,

	a module ID as specified via modules,

	a class name,

	a configuration array,

	an anonymous function that creates and returns a component.

For example:

[
 'bootstrap' => [
 // an application component ID or module ID
 'demo',

 // a class name
 'app\components\Profiler',

 // a configuration array
 [
 'class' => 'app\components\Profiler',
 'level' => 3,
],

 // an anonymous function
 function () {
 return new app\components\Profiler();
 }
],
]

Info: If a module ID is the same as an application component ID, the application component will be used during
the bootstrapping process. If you want to use the module instead, you may specify it using an anonymous function
like the following:

[
 function () {
 return Yii::$app->getModule('user');
 },
]

During the bootstrapping process, each component will be instantiated. If the component class
implements [[yii\base\BootstrapInterface]], its [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method
will also be called.

Another practical example is in the application configuration for the Basic Project Template,
where the debug and gii modules are configured as bootstrapping components when the application is running
in the development environment:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Note: Putting too many components in bootstrap will degrade the performance of your application because
for each request, the same set of components need to be run. So use bootstrapping components judiciously.

[[yii\web\Application::catchAll|catchAll]]

This property is supported by [[yii\web\Application|Web applications]] only. It specifies
a controller action which should handle all user requests. This is mainly
used when the application is in maintenance mode and needs to handle all incoming requests via a single action.

The configuration is an array whose first element specifies the route of the action.
The rest of the array elements (key-value pairs) specify the parameters to be bound to the action. For example:

[
 'catchAll' => [
 'offline/notice',
 'param1' => 'value1',
 'param2' => 'value2',
],
]

Info: Debug panel on development environment will not work when this property is enabled.

[[yii\base\Application::components|components]]

This is the single most important property. It allows you to register a list of named components
called application components that you can use in other places. For example:

[
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
],
]

Each application component is specified as a key-value pair in the array. The key represents the component ID,
while the value represents the component class name or configuration.

You can register any component with an application, and the component can later be accessed globally
using the expression \Yii::$app->componentID.

Please read the Application Components section for details.

[[yii\base\Application::controllerMap|controllerMap]]

This property allows you to map a controller ID to an arbitrary controller class. By default, Yii maps
controller IDs to controller classes based on a convention (e.g. the ID post would be mapped
to app\controllers\PostController). By configuring this property, you can break the convention for
specific controllers. In the following example, account will be mapped to
app\controllers\UserController, while article will be mapped to app\controllers\PostController.

[
 'controllerMap' => [
 'account' => 'app\controllers\UserController',
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

The array keys of this property represent the controller IDs, while the array values represent the corresponding
controller class names or configurations.

[[yii\base\Application::controllerNamespace|controllerNamespace]]

This property specifies the default namespace under which controller classes should be located. It defaults to
app\controllers. If a controller ID is post, by convention the corresponding controller class name (without
namespace) would be PostController, and the fully qualified class name would be app\controllers\PostController.

Controller classes may also be located under sub-directories of the directory corresponding to this namespace.
For example, given a controller ID admin/post, the corresponding fully qualified controller class would
be app\controllers\admin\PostController.

It is important that the fully qualified controller classes should be autoloadable
and the actual namespace of your controller classes match the value of this property. Otherwise,
you will receive a “Page Not Found” error when accessing the application.

In case you want to break the convention as described above, you may configure the controllerMap
property.

[[yii\base\Application::language|language]]

This property specifies the language in which the application should display content to end users.
The default value of this property is en, meaning English. You should configure this property
if your application needs to support multiple languages.

The value of this property determines various internationalization aspects,
including message translation, date formatting, number formatting, etc. For example, the [[yii\jui\DatePicker]] widget
will use this property value by default to determine in which language the calendar should be displayed and how
the date should be formatted.

It is recommended that you specify a language in terms of an IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag].
For example, en stands for English, while en-US stands for English (United States).

More details about this property can be found in the Internationalization section.

[[yii\base\Application::modules|modules]]

This property specifies the modules that the application contains.

The property takes an array of module classes or configurations with the array keys
being the module IDs. For example:

[
 'modules' => [
 // a "booking" module specified with the module class
 'booking' => 'app\modules\booking\BookingModule',

 // a "comment" module specified with a configuration array
 'comment' => [
 'class' => 'app\modules\comment\CommentModule',
 'db' => 'db',
],
],
]

Please refer to the Modules section for more details.

[[yii\base\Application::name|name]]

This property specifies the application name that may be displayed to end users. Unlike the
[[yii\base\Application::id|id]] property, which should take a unique value, the value of this property is mainly for
display purposes; it does not need to be unique.

You do not always need to configure this property if none of your code is using it.

[[yii\base\Application::params|params]]

This property specifies an array of globally accessible application parameters. Instead of using hardcoded
numbers and strings everywhere in your code, it is a good practice to define them as application parameters
in a single place and use the parameters in places where needed. For example, you may define the thumbnail
image size as a parameter like the following:

[
 'params' => [
 'thumbnail.size' => [128, 128],
],
]

Then in your code where you need to use the size value, you can simply use code like the following:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];

Later if you decide to change the thumbnail size, you only need to modify it in the application configuration;
you don’t need to touch any dependent code.

[[yii\base\Application::sourceLanguage|sourceLanguage]]

This property specifies the language that the application code is written in. The default value is 'en-US',
meaning English (United States). You should configure this property if the text content in your code is not in English.

Like the language property, you should configure this property in terms of
an IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag]. For example, en stands for English,
while en-US stands for English (United States).

More details about this property can be found in the Internationalization section.

[[yii\base\Application::timeZone|timeZone]]

This property is provided as an alternative way of setting the default time zone of the PHP runtime.
By configuring this property, you are essentially calling the PHP function
date_default_timezone_set() [http://php.net/manual/en/function.date-default-timezone-set.php]. For example:

[
 'timeZone' => 'America/Los_Angeles',
]

[[yii\base\Application::version|version]]

This property specifies the version of the application. It defaults to '1.0'. You do not need to configure
this property if none of your code is using it.

Useful Properties

The properties described in this subsection are not commonly configured because their default values
derive from common conventions. However, you may still configure them in case you want to break the conventions.

[[yii\base\Application::charset|charset]]

This property specifies the charset that the application uses. The default value is 'UTF-8', which should
be kept as-is for most applications unless you are working with a legacy system that uses a lot of non-Unicode data.

[[yii\base\Application::defaultRoute|defaultRoute]]

This property specifies the route that an application should use when a request
does not specify one. The route may consist of a child module ID, a controller ID, and/or an action ID.
For example, help, post/create, or admin/post/create. If an action ID is not given, this property will take
the default value specified in [[yii\base\Controller::defaultAction]].

For [[yii\web\Application|Web applications]], the default value of this property is 'site', which means
the SiteController controller and its default action should be used. As a result, if you access
the application without specifying a route, it will show the result of app\controllers\SiteController::actionIndex().

For [[yii\console\Application|console applications]], the default value is 'help', which means the core command
[[yii\console\controllers\HelpController::actionIndex()]] should be used. As a result, if you run the command yii
without providing any arguments, it will display the help information.

[[yii\base\Application::extensions|extensions]]

This property specifies the list of extensions that are installed and used by the application.
By default, it will take the array returned by the file @vendor/yiisoft/extensions.php. The extensions.php file
is generated and maintained automatically when you use Composer [https://getcomposer.org] to install extensions.
So in most cases, you do not need to configure this property.

In the special case when you want to maintain extensions manually, you may configure this property as follows:

[
 'extensions' => [
 [
 'name' => 'extension name',
 'version' => 'version number',
 'bootstrap' => 'BootstrapClassName', // optional, may also be a configuration array
 'alias' => [// optional
 '@alias1' => 'to/path1',
 '@alias2' => 'to/path2',
],
],

 // ... more extensions like the above ...

],
]

As you can see, the property takes an array of extension specifications. Each extension is specified with an array
consisting of name and version elements. If an extension needs to run during the bootstrap
process, a bootstrap element may be specified with a bootstrapping class name or a configuration
array. An extension may also define a few aliases.

[[yii\base\Application::layout|layout]]

This property specifies the name of the default layout that should be used when rendering a view.
The default value is 'main', meaning the layout file main.php under the layout path should be used.
If both of the layout path and the view path are taking the default values,
the default layout file can be represented as the path alias @app/views/layouts/main.php.

You may configure this property to be false if you want to disable layout by default, although this is very rare.

[[yii\base\Application::layoutPath|layoutPath]]

This property specifies the path where layout files should be looked for. The default value is
the layouts sub-directory under the view path. If the view path is taking
its default value, the default layout path can be represented as the path alias @app/views/layouts.

You may configure it as a directory or a path alias.

[[yii\base\Application::runtimePath|runtimePath]]

This property specifies the path where temporary files, such as log files and cache files, can be generated.
The default value is the directory represented by the alias @app/runtime.

You may configure it as a directory or a path alias. Note that the runtime path must
be writable by the process running the application. And the path should be protected from being accessed
by end users, because the temporary files under it may contain sensitive information.

To simplify access to this path, Yii has predefined a path alias named @runtime for it.

[[yii\base\Application::viewPath|viewPath]]

This property specifies the root directory where view files are located. The default value is the directory
represented by the alias @app/views. You may configure it as a directory or a path alias.

[[yii\base\Application::vendorPath|vendorPath]]

This property specifies the vendor directory managed by Composer [https://getcomposer.org]. It contains
all third party libraries used by your application, including the Yii framework. The default value is
the directory represented by the alias @app/vendor.

You may configure this property as a directory or a path alias. When you modify
this property, make sure you also adjust the Composer configuration accordingly.

To simplify access to this path, Yii has predefined a path alias named @vendor for it.

[[yii\console\Application::enableCoreCommands|enableCoreCommands]]

This property is supported by [[yii\console\Application|console applications]] only. It specifies
whether the core commands included in the Yii release should be enabled. The default value is true.

Application Events

An application triggers several events during the lifecycle of handling a request. You may attach event
handlers to these events in application configurations as follows:

[
 'on beforeRequest' => function ($event) {
 // ...
 },
]

The use of the on eventName syntax is described in the Configurations
section.

Alternatively, you may attach event handlers during the bootstrapping process
after the application instance is created. For example:

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
 // ...
});

[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]]

This event is triggered before an application handles a request. The actual event name is beforeRequest.

When this event is triggered, the application instance has been configured and initialized. So it is a good place
to insert your custom code via the event mechanism to intercept the request handling process. For example,
in the event handler, you may dynamically set the [[yii\base\Application::language]] property based on some parameters.

[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]]

This event is triggered after an application finishes handling a request but before sending the response.
The actual event name is afterRequest.

When this event is triggered, the request handling is completed and you may take this chance to do some postprocessing
of the request or customize the response.

Note that the [[yii\web\Response|response]] component also triggers some events while it is sending out
response content to end users. Those events are triggered after this event.

[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]]

This event is triggered before running every controller action.
The actual event name is beforeAction.

The event parameter is an instance of [[yii\base\ActionEvent]]. An event handler may set
the [[yii\base\ActionEvent::isValid]] property to be false to stop running the action.
For example:

[
 'on beforeAction' => function ($event) {
 if (some condition) {
 $event->isValid = false;
 } else {
 }
 },
]

Note that the same beforeAction event is also triggered by modules
and controllers. Application objects are the first ones
triggering this event, followed by modules (if any), and finally controllers. If an event handler
sets [[yii\base\ActionEvent::isValid]] to be false, all of the subsequent events will NOT be triggered.

[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]]

This event is triggered after running every controller action.
The actual event name is afterAction.

The event parameter is an instance of [[yii\base\ActionEvent]]. Through
the [[yii\base\ActionEvent::result]] property, an event handler may access or modify the action result.
For example:

[
 'on afterAction' => function ($event) {
 if (some condition) {
 // modify $event->result
 } else {
 }
 },
]

Note that the same afterAction event is also triggered by modules
and controllers. These objects trigger this event in the reverse order
as for that of beforeAction. That is, controllers are the first objects triggering this event,
followed by modules (if any), and finally applications.

Application Lifecycle

[image: Application Lifecycle]

When an entry script is being executed to handle a request,
an application will undergo the following lifecycle:

	The entry script loads the application configuration as an array.

	The entry script creates a new instance of the application:

	[[yii\base\Application::preInit()|preInit()]] is called, which configures some high priority
application properties, such as [[yii\base\Application::basePath|basePath]].

	Register the [[yii\base\Application::errorHandler|error handler]].

	Configure application properties.

	[[yii\base\Application::init()|init()]] is called which further calls
[[yii\base\Application::bootstrap()|bootstrap()]] to run bootstrapping components.

	The entry script calls [[yii\base\Application::run()]] to run the application:

	Trigger the [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] event.

	Handle the request: resolve the request into a route and the associated parameters;
create the module, controller, and action objects as specified by the route; and run the action.

	Trigger the [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]] event.

	Send response to the end user.

	The entry script receives the exit status from the application and completes the request processing.

 Resources

Resources

RESTful APIs are all about accessing and manipulating resources. You may view resources as
models in the MVC paradigm.

While there is no restriction in how to represent a resource, in Yii you usually would represent resources
in terms of objects of [[yii\base\Model]] or its child classes (e.g. [[yii\db\ActiveRecord]]), for the
following reasons:

	[[yii\base\Model]] implements the [[yii\base\Arrayable]] interface, which allows you to
customize how you want to expose resource data through RESTful APIs.

	[[yii\base\Model]] supports input validation, which is useful if your RESTful APIs
need to support data input.

	[[yii\db\ActiveRecord]] provides powerful DB data access and manipulation support, which makes it
a perfect fit if your resource data is stored in databases.

In this section, we will mainly describe how a resource class extending from [[yii\base\Model]] (or its child classes)
can specify what data may be returned via RESTful APIs. If the resource class does not extend from [[yii\base\Model]],
then all its public member variables will be returned.

Fields

When including a resource in a RESTful API response, the resource needs to be serialized into a string.
Yii breaks this process into two steps. First, the resource is converted into an array by [[yii\rest\Serializer]].
Second, the array is serialized into a string in a requested format (e.g. JSON, XML) by
[[yii\web\ResponseFormatterInterface|response formatters]]. The first step is what you should mainly focus when
developing a resource class.

By overriding [[yii\base\Model::fields()|fields()]] and/or [[yii\base\Model::extraFields()|extraFields()]],
you may specify what data, called fields, in the resource can be put into its array representation.
The difference between these two methods is that the former specifies the default set of fields which should
be included in the array representation, while the latter specifies additional fields which may be included
in the array if an end user requests for them via the expand query parameter. For example,

// returns all fields as declared in fields()
http://localhost/users

// only returns field id and email, provided they are declared in fields()
http://localhost/users?fields=id,email

// returns all fields in fields() and field profile if it is in extraFields()
http://localhost/users?expand=profile

// only returns field id, email and profile, provided they are in fields() and extraFields()
http://localhost/users?fields=id,email&expand=profile

Overriding fields()

By default, [[yii\base\Model::fields()]] returns all model attributes as fields, while
[[yii\db\ActiveRecord::fields()]] only returns the attributes which have been populated from DB.

You can override fields() to add, remove, rename or redefine fields. The return value of fields()
should be an array. The array keys are the field names, and the array values are the corresponding
field definitions which can be either property/attribute names or anonymous functions returning the
corresponding field values. In the special case when a field name is the same as its defining attribute
name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the changes
// in your DB table or model attributes do not cause your field changes (to keep API backward compatibility).
public function fields()
{
 return [
 // field name is the same as the attribute name
 'id',
 // field name is "email", the corresponding attribute name is "email_address"
 'email' => 'email_address',
 // field name is "name", its value is defined by a PHP callback
 'name' => function ($model) {
 return $model->first_name . ' ' . $model->last_name;
 },
];
}

// filter out some fields, best used when you want to inherit the parent implementation
// and blacklist some sensitive fields.
public function fields()
{
 $fields = parent::fields();

 // remove fields that contain sensitive information
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: Because by default all attributes of a model will be included in the API result, you should
examine your data to make sure they do not contain sensitive information. If there is such information,
you should override fields() to filter them out. In the above example, we choose
to filter out auth_key, password_hash and password_reset_token.

Overriding extraFields()

By default, [[yii\base\Model::extraFields()]] returns an empty array, while [[yii\db\ActiveRecord::extraFields()]]
returns the names of the relations that have been populated from DB.

The return data format of extraFields() is the same as that of fields(). Usually, extraFields()
is mainly used to specify fields whose values are objects. For example, given the following field
declaration,

public function fields()
{
 return ['id', 'email'];
}

public function extraFields()
{
 return ['profile'];
}

the request with http://localhost/users?fields=id,email&expand=profile may return the following JSON data:

[
 {
 "id": 100,
 "email": "100@example.com",
 "profile": {
 "id": 100,
 "age": 30,
 }
 },
 ...
]

Links

HATEOAS [http://en.wikipedia.org/wiki/HATEOAS], an abbreviation for Hypermedia as the Engine of Application State,
promotes that RESTful APIs should return information that allows clients to discover actions supported for the returned
resources. The key of HATEOAS is to return a set of hyperlinks with relation information when resource data are served
by the APIs.

Your resource classes may support HATEOAS by implementing the [[yii\web\Linkable]] interface. The interface
contains a single method [[yii\web\Linkable::getLinks()|getLinks()]] which should return a list of [[yii\web\Link|links]].
Typically, you should return at least the self link representing the URL to the resource object itself. For example,

use yii\base\Model;
use yii\web\Link; // represents a link object as defined in JSON Hypermedia API Language.
use yii\web\Linkable;
use yii\helpers\Url;

class UserResource extends Model implements Linkable
{
 public $id;
 public $email;

 //...

 public function fields()
 {
 return ['id', 'email'];
 }

 public function extraFields()
 {
 return ['profile'];
 }

 public function getLinks()
 {
 return [
 Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true),
 'edit' => Url::to(['user/view', 'id' => $this->id], true),
 'profile' => Url::to(['user/profile/view', 'id' => $this->id], true),
 'index' => Url::to(['users'], true),
];
 }
}

When a UserResource object is returned in a response, it will contain a _links element representing the links related
to the user, for example,

{
 "id": 100,
 "email": "user@example.com",
 // ...
 "_links" => {
 "self": {
 "href": "https://example.com/users/100"
 },
 "edit": {
 "href": "https://example.com/users/100"
 },
 "profile": {
 "href": "https://example.com/users/profile/100"
 },
 "index": {
 "href": "https://example.com/users"
 }
 }
}

Collections

Resource objects can be grouped into collections. Each collection contains a list of resource objects
of the same type.

While collections can be represented as arrays, it is usually more desirable to represent them
as data providers. This is because data providers support sorting and pagination
of resources, which is a commonly needed feature for RESTful APIs returning collections. For example,
the following action returns a data provider about the post resources:

namespace app\controllers;

use yii\rest\Controller;
use yii\data\ActiveDataProvider;
use app\models\Post;

class PostController extends Controller
{
 public function actionIndex()
 {
 return new ActiveDataProvider([
 'query' => Post::find(),
]);
 }
}

When a data provider is being sent in a RESTful API response, [[yii\rest\Serializer]] will take out the current
page of resources and serialize them as an array of resource objects. Additionally, [[yii\rest\Serializer]]
will also include the pagination information by the following HTTP headers:

	X-Pagination-Total-Count: The total number of resources;

	X-Pagination-Page-Count: The number of pages;

	X-Pagination-Current-Page: The current page (1-based);

	X-Pagination-Per-Page: The number of resources in each page;

	Link: A set of navigational links allowing client to traverse the resources page by page.

An example may be found in the Quick Start section.

 Overview

Overview

Yii applications are organized according to the model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller]
architectural pattern. Models represent data, business logic and rules; views
are output representation of models; and controllers take input and convert
it to commands for models and views.

Besides MVC, Yii applications also have the following entities:

	entry scripts: they are PHP scripts that are directly accessible by end users.
They are responsible for starting a request handling cycle.

	applications: they are globally accessible objects that manage application components
and coordinate them to fulfill requests.

	application components: they are objects registered with applications and
provide various services for fulfilling requests.

	modules: they are self-contained packages that contain complete MVC by themselves.
An application can be organized in terms of multiple modules.

	filters: they represent code that need to be invoked before and after the actual
handling of each request by controllers.

	widgets: they are objects that can be embedded in views. They
may contain controller logic and can be reused in different views.

The following diagram shows the static structure of an application:

[image: Static Structure of Application]

 Running Applications

Running Applications

After installing Yii, you have a working Yii application that can be accessed via
the URL http://hostname/basic/web/index.php or http://hostname/index.php, depending
upon your configuration. This section will introduce the application’s built-in functionality,
how the code is organized, and how the application handles requests in general.

Info: For simplicity, throughout this “Getting Started” tutorial, it’s assumed that you have set basic/web
as the document root of your Web server, and configured the URL for accessing
your application to be http://hostname/index.php or something similar.
For your needs, please adjust the URLs in our descriptions accordingly.

Note that unlike framework itself, after project template is installed it’s all yours. You’re free to add or delete
code and overall modify it as you need.

Functionality

The basic application installed contains four pages:

	the homepage, displayed when you access the URL http://hostname/index.php,

	the “About” page,

	the “Contact” page, which displays a contact form that allows end users to contact you via email,

	and the “Login” page, which displays a login form that can be used to authenticate end users. Try logging in
with “admin/admin”, and you will find the “Login” main menu item will change to “Logout”.

These pages share a common header and footer. The header contains a main menu bar to allow navigation
among different pages.

You should also see a toolbar at the bottom of the browser window.
This is a useful debugger tool [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] provided by Yii to record and display a lot of debugging information, such as log messages, response statuses, the database queries run, and so on.

Additionally to the web application, there is a console script called yii, which is located in the applications base directory.
This script can be used to run background and maintenance tasks for the application, which are described
in the Console Application Section.

Application Structure

The most important directories and files in your application are (assuming the application’s root directory is basic):

basic/ application base path
 composer.json used by Composer, describes package information
 config/ contains application and other configurations
 console.php the console application configuration
 web.php the Web application configuration
 commands/ contains console command classes
 controllers/ contains controller classes
 models/ contains model classes
 runtime/ contains files generated by Yii during runtime, such as logs and cache files
 vendor/ contains the installed Composer packages, including the Yii framework itself
 views/ contains view files
 web/ application Web root, contains Web accessible files
 assets/ contains published asset files (javascript and css) by Yii
 index.php the entry (or bootstrap) script for the application
 yii the Yii console command execution script

In general, the files in the application can be divided into two types: those under basic/web and those
under other directories. The former can be directly accessed via HTTP (i.e., in a browser), while the latter can not and should not be.

Yii implements the model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller] architectural pattern,
which is reflected in the above directory organization. The models directory contains all model classes,
the views directory contains all view scripts, and the controllers directory contains
all controller classes.

The following diagram shows the static structure of an application.

[image: Static Structure of Application]

Each application has an entry script web/index.php which is the only Web accessible PHP script in the application.
The entry script takes an incoming request and creates an application instance to handle it.
The application resolves the request with the help of its components,
and dispatches the request to the MVC elements. Widgets are used in the views
to help build complex and dynamic user interface elements.

Request Lifecycle

The following diagram shows how an application handles a request.

[image: Request Lifecycle]

	A user makes a request to the entry script web/index.php.

	The entry script loads the application configuration and creates
an application instance to handle the request.

	The application resolves the requested route with the help of
the request application component.

	The application creates a controller instance to handle the request.

	The controller creates an action instance and performs the filters for the action.

	If any filter fails, the action is cancelled.

	If all filters pass, the action is executed.

	The action loads a data model, possibly from a database.

	The action renders a view, providing it with the data model.

	The rendered result is returned to the response application component.

	The response component sends the rendered result to the user’s browser.

 Core Validators

Core Validators

Yii provides a set of commonly used core validators, found primarily under the yii\validators namespace.
Instead of using lengthy validator class names, you may use aliases to specify the use of these core
validators. For example, you can use the alias required to refer to the [[yii\validators\RequiredValidator]] class:

public function rules()
{
 return [
 [['email', 'password'], 'required'],
];
}

The [[yii\validators\Validator::builtInValidators]] property declares all supported validator aliases.

In the following, we will describe the main usage and properties of every core validator.

[[yii\validators\BooleanValidator|boolean]]

[
 // checks if "selected" is either 0 or 1, regardless of data type
 ['selected', 'boolean'],

 // checks if "deleted" is of boolean type, either true or false
 ['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, 'strict' => true],
]

This validator checks if the input value is a boolean.

	trueValue: the value representing true. Defaults to '1'.

	falseValue: the value representing false. Defaults to '0'.

	strict: whether the type of the input value should match that of trueValue and falseValue. Defaults to false.

Note: Because data input submitted via HTML forms are all strings, you normally should leave the
[[yii\validators\BooleanValidator::strict|strict]] property as false.

[[yii\captcha\CaptchaValidator|captcha]]

[
 ['verificationCode', 'captcha'],
]

This validator is usually used together with [[yii\captcha\CaptchaAction]] and [[yii\captcha\Captcha]]
to make sure an input is the same as the verification code displayed by [[yii\captcha\Captcha|CAPTCHA]] widget.

	caseSensitive: whether the comparison of the verification code is case sensitive. Defaults to false.

	captchaAction: the route corresponding to the
[[yii\captcha\CaptchaAction|CAPTCHA action]] that renders the CAPTCHA image. Defaults to 'site/captcha'.

	skipOnEmpty: whether the validation can be skipped if the input is empty. Defaults to false,
which means the input is required.

[[yii\validators\CompareValidator|compare]]

[
 // validates if the value of "password" attribute equals to that of "password_repeat"
 ['password', 'compare'],

 // same as above but with explicitly specifying the attribute to compare with
 ['password', 'compare', 'compareAttribute' => 'password_repeat'],

 // validates if age is greater than or equal to 30
 ['age', 'compare', 'compareValue' => 30, 'operator' => '>=', 'type' => 'number'],
]

This validator compares the specified input value with another one and make sure if their relationship
is as specified by the operator property.

	compareAttribute: the name of the attribute whose value should be compared with. When the validator
is being used to validate an attribute, the default value of this property would be the name of
the attribute suffixed with _repeat. For example, if the attribute being validated is password,
then this property will default to password_repeat.

	compareValue: a constant value that the input value should be compared with. When both
of this property and compareAttribute are specified, this property will take precedence.

	operator: the comparison operator. Defaults to ==, meaning checking if the input value is equal
to that of compareAttribute or compareValue. The following operators are supported:
	==: check if two values are equal. The comparison is done is non-strict mode.

	===: check if two values are equal. The comparison is done is strict mode.

	!=: check if two values are NOT equal. The comparison is done is non-strict mode.

	!==: check if two values are NOT equal. The comparison is done is strict mode.

	>: check if value being validated is greater than the value being compared with.

	>=: check if value being validated is greater than or equal to the value being compared with.

	<: check if value being validated is less than the value being compared with.

	<=: check if value being validated is less than or equal to the value being compared with.

	type: The default comparison type is ‘[[yii\validators\CompareValidator::TYPE_STRING|string]]‘, which means the values are
compared byte by byte. When comparing numbers, make sure to set the [[yii\validators\CompareValidator::$type|$type]]
to ‘[[yii\validators\CompareValidator::TYPE_NUMBER|number]]‘ to enable numeric comparison.

Comparing date values

The compare validator can only be used to compare strings and numbers. If you need to compare values
like dates you have two options. For comparing a date against a fixed value, you can simply use the
[[yii\validators\DateValidator|date]] validator and specify its
[[yii\validators\DateValidator::$min|$min]] or [[yii\validators\DateValidator::$max|$max]] property.
If you need to compare two dates entered in the form, e.g. a fromDate and a toDate field,
you can use a combination of compare and date validator like the following:

['fromDate', 'date', 'timestampAttribute' => 'fromDate'],
['toDate', 'date', 'timestampAttribute' => 'toDate'],
['fromDate', 'compare', 'compareAttribute' => 'toDate', 'operator' => '<', 'enableClientValidation' => false],

As validators are executed in the order they are specified this will first validate that the values entered in
fromDate and toDate are valid date values and if so, they will be converted into a machine readable format.
Afterwards these two values are compared with the compare validator.
Client validation is not enabled as this will only work on the server-side because the date validator currently does not
provide client validation, so [[yii\validators\CompareValidator::$enableClientValidation|$enableClientValidation]]
is set to false on the compare validator too.

[[yii\validators\DateValidator|date]]

The [[yii\validators\DateValidator|date]] validator comes with three different
shortcuts:

[
 [['from_date', 'to_date'], 'date'],
 [['from_datetime', 'to_datetime'], 'datetime'],
 [['some_time'], 'time'],
]

This validator checks if the input value is a date, time or datetime in a proper format.
Optionally, it can convert the input value into a UNIX timestamp or other machine readable format and store it in an attribute
specified via [[yii\validators\DateValidator::timestampAttribute|timestampAttribute]].

	format: the date/time format that the value being validated should be in.
This can be a date time pattern as described in the ICU manual [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax].
Alternatively this can be a string prefixed with php: representing a format that can be recognized by the PHP
Datetime class. Please refer to http://php.net/manual/en/datetime.createfromformat.php on supported formats.
If this is not set, it will take the value of Yii::$app->formatter->dateFormat.
See the [[yii\validators\DateValidator::$format|API documentation]] for more details.

	timestampAttribute: the name of the attribute to which this validator may assign the UNIX timestamp
converted from the input date/time. This can be the same attribute as the one being validated. If this is the case,
the original value will be overwritten with the timestamp value after validation.
See “Handling date input with the DatePicker” [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/topics-date-picker.md] for a usage example.

Since version 2.0.4, a format and timezone can be specified for this attribute using
[[yii\validators\DateValidator::$timestampAttributeFormat|$timestampAttributeFormat]] and
[[yii\validators\DateValidator::$timestampAttributeTimeZone|$timestampAttributeTimeZone]].

Note, that when using timestampAttribute, the input value will be converted to a unix timestamp, which by definition is in UTC, so
a conversion from the [[yii\validators\DateValidator::timeZone|input time zone]] to UTC will be performed.

	Since version 2.0.4 it is also possible to specify a [[yii\validators\DateValidator::$min|minimum]] or
[[yii\validators\DateValidator::$max|maximum]] timestamp.

In case the input is optional you may also want to add a default value filter in addition to the date validator
to ensure empty input is stored as null. Otherwise you may end up with dates like 0000-00-00 in your database
or 1970-01-01 in the input field of a date picker.

[
 [['from_date', 'to_date'], 'default', 'value' => null],
 [['from_date', 'to_date'], 'date'],
],

[[yii\validators\DefaultValueValidator|default]]

[
 // set "age" to be null if it is empty
 ['age', 'default', 'value' => null],

 // set "country" to be "USA" if it is empty
 ['country', 'default', 'value' => 'USA'],

 // assign "from" and "to" with a date 3 days and 6 days from today, if they are empty
 [['from', 'to'], 'default', 'value' => function ($model, $attribute) {
 return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6 days'));
 }],
]

This validator does not validate data. Instead, it assigns a default value to the attributes being validated
if the attributes are empty.

	value: the default value or a PHP callable that returns the default value which will be assigned to
the attributes being validated if they are empty. The signature of the PHP callable should be as follows,

function foo($model, $attribute) {
 // ... compute $value ...
 return $value;
}

Info: How to determine if a value is empty or not is a separate topic covered
in the Empty Values section. Default value from database
schema could be loaded via loadDefaultValues() method of the model.

[[yii\validators\NumberValidator|double]]

[
 // checks if "salary" is a double number
 ['salary', 'double'],
]

This validator checks if the input value is a double number. It is equivalent to the number validator.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\EachValidator|each]]

Info: This validator has been available since version 2.0.4.

[
 // checks if every category ID is an integer
 ['categoryIDs', 'each', 'rule' => ['integer']],
]

This validator only works with an array attribute. It validates if every element of the array can be successfully
validated by a specified validation rule. In the above example, the categoryIDs attribute must take an array value
and each array element will be validated by the integer validation rule.

	rule: an array specifying a validation rule. The first element in the array specifies the class name or
the alias of the validator. The rest of the name-value pairs in the array are used to configure the validator object.

	allowMessageFromRule: whether to use the error message returned by the embedded validation rule. Defaults to true.
If false, it will use message as the error message.

Note: If the attribute value is not an array, it is considered validation fails and the message will be returned
as the error message.

[[yii\validators\EmailValidator|email]]

[
 // checks if "email" is a valid email address
 ['email', 'email'],
]

This validator checks if the input value is a valid email address.

	allowName: whether to allow name in the email address (e.g. John Smith <john.smith@example.com>). Defaults to false.

	checkDNS, whether to check whether the email’s domain exists and has either an A or MX record.
Be aware that this check may fail due to temporary DNS problems, even if the email address is actually valid.
Defaults to false.

	enableIDN, whether the validation process should take into account IDN (internationalized domain names).
Defaults to false. Note that in order to use IDN validation you have to install and enable the intl PHP extension,
or an exception would be thrown.

[[yii\validators\ExistValidator|exist]]

[
 // a1 needs to exist in the column represented by the "a1" attribute
 ['a1', 'exist'],

 // a1 needs to exist, but its value will use a2 to check for the existence
 ['a1', 'exist', 'targetAttribute' => 'a2'],

 // a1 and a2 need to exist together, and they both will receive error message
 [['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

 // a1 and a2 need to exist together, only a1 will receive error message
 ['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

 // a1 needs to exist by checking the existence of both a2 and a3 (using a1 value)
 ['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

 // a1 needs to exist. If a1 is an array, then every element of it must exist.
 ['a1', 'exist', 'allowArray' => true],
]

This validator checks if the input value can be found in a table column represented by
an Active Record attribute. You can use targetAttribute to specify the
Active Record attribute and targetClass the corresponding Active Record
class. If you do not specify them, they will take the values of the attribute and the model class being validated.

You can use this validator to validate against a single column or multiple columns (i.e., the combination of
multiple attribute values should exist).

	targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the model currently being validated will be used.

	targetAttribute: the name of the attribute in targetClass that should be used to validate the existence
of the input value. If not set, it will use the name of the attribute currently being validated.
You may use an array to validate the existence of multiple columns at the same time. The array values
are the attributes that will be used to validate the existence, while the array keys are the attributes
whose values are to be validated. If the key and the value are the same, you can just specify the value.

	filter: additional filter to be applied to the DB query used to check the existence of the input value.
This can be a string or an array representing the additional query condition (refer to [[yii\db\Query::where()]]
on the format of query condition), or an anonymous function with the signature function ($query), where $query
is the [[yii\db\Query|Query]] object that you can modify in the function.

	allowArray: whether to allow the input value to be an array. Defaults to false. If this property is true
and the input is an array, then every element of the array must exist in the target column. Note that
this property cannot be set true if you are validating against multiple columns by setting targetAttribute as an array.

[[yii\validators\FileValidator|file]]

[
 // checks if "primaryImage" is an uploaded image file in PNG, JPG or GIF format.
 // the file size must be less than 1MB
 ['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize' => 1024*1024],
]

This validator checks if the input is a valid uploaded file.

	extensions: a list of file name extensions that are allowed to be uploaded. This can be either
an array or a string consisting of file extension names separated by space or comma (e.g. “gif, jpg”).
Extension names are case-insensitive. Defaults to null, meaning all file name
extensions are allowed.

	mimeTypes: a list of file MIME types that are allowed to be uploaded. This can be either an array
or a string consisting of file MIME types separated by space or comma (e.g. “image/jpeg, image/png”).
The wildcard mask with the special character * can be used to match groups of mime types.
For example image/* will pass all mime types, that begin with image/ (e.g. image/jpeg, image/png).
Mime type names are case-insensitive. Defaults to null, meaning all MIME types are allowed.
For more details, please refer to common media types [http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types].

	minSize: the minimum number of bytes required for the uploaded file. Defaults to null, meaning no lower limit.

	maxSize: the maximum number of bytes allowed for the uploaded file. Defaults to null, meaning no upper limit.

	maxFiles: the maximum number of files that the given attribute can hold. Defaults to 1, meaning
the input must be a single uploaded file. If it is greater than 1, then the input must be an array
consisting of at most maxFiles number of uploaded files.

	checkExtensionByMimeType: whether to check the file extension by the file’s MIME type. If the extension produced by
MIME type check differs from the uploaded file extension, the file will be considered as invalid. Defaults to true,
meaning perform such check.

FileValidator is used together with [[yii\web\UploadedFile]]. Please refer to the Uploading Files
section for complete coverage about uploading files and performing validation about the uploaded files.

[[yii\validators\FilterValidator|filter]]

[
 // trim "username" and "email" inputs
 [['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' => true],

 // normalize "phone" input
 ['phone', 'filter', 'filter' => function ($value) {
 // normalize phone input here
 return $value;
 }],
]

This validator does not validate data. Instead, it applies a filter on the input value and assigns it
back to the attribute being validated.

	filter: a PHP callback that defines a filter. This can be a global function name, an anonymous function, etc.
The function signature must be function ($value) { return $newValue; }. This property must be set.

	skipOnArray: whether to skip the filter if the input value is an array. Defaults to false.
Note that if the filter cannot handle array input, you should set this property to be true. Otherwise some
PHP error might occur.

Tip: If you want to trim input values, you may directly use the trim validator.

Tip: There are many PHP functions that have the signature expected for the filter callback.
For example to apply type casting (using e.g. intval [http://php.net/manual/en/function.intval.php],
boolval [http://php.net/manual/en/function.boolval.php], ...) to ensure a specific type for an attribute,
you can simply specify the function names of the filter without the need to wrap them in a closure:

['property', 'filter', 'filter' => 'boolval'],
['property', 'filter', 'filter' => 'intval'],

[[yii\validators\ImageValidator|image]]

[
 // checks if "primaryImage" is a valid image with proper size
 ['primaryImage', 'image', 'extensions' => 'png, jpg',
 'minWidth' => 100, 'maxWidth' => 1000,
 'minHeight' => 100, 'maxHeight' => 1000,
],
]

This validator checks if the input value represents a valid image file. It extends from the file validator
and thus inherits all its properties. Besides, it supports the following additional properties specific for image
validation purpose:

	minWidth: the minimum width of the image. Defaults to null, meaning no lower limit.

	maxWidth: the maximum width of the image. Defaults to null, meaning no upper limit.

	minHeight: the minimum height of the image. Defaults to null, meaning no lower limit.

	maxHeight: the maximum height of the image. Defaults to null, meaning no upper limit.

[[yii\validators\IpValidator|ip]]

[
 // checks if "ip_address" is a valid IPv4 or IPv6 address
 ['ip_address', 'ip'],

 // checks if "ip_address" is a valid IPv6 address or subnet,
 // value will be expanded to full IPv6 notation.
 ['ip_address', 'ip', 'ipv4' => false, 'subnet' => null, 'expandIPv6' => true],

 // checks if "ip_address" is a valid IPv4 or IPv6 address,
 // allows negation character `!` at the beginning
 ['ip_address', 'ip', 'negation' => true],
]

The validator checks if the attribute value is a valid IPv4/IPv6 address or subnet.
It also may change attribute’s value if normalization or IPv6 expansion is enabled.

The validator has such configuration options:

	ipv4: whether the validating value can be an IPv4 address. Defaults to true.

	ipv6: whether the validating value can be an IPv6 address. Defaults to true.

	subnet: whether the address can be an IP with CIDR subnet, like 192.168.10.0/24

	true - the subnet is required, addresses without CIDR will be rejected

	false - the address can not have the CIDR

	null - the CIDR is optional

Defaults to false.

	normalize: whether to add the CIDR prefix with the smallest length (32 for IPv4 and 128 for IPv6) to an
address without it. Works only when subnet is not false. For example:

	10.0.1.5 will normalized to 10.0.1.5/32

	2008:db0::1 will be normalized to 2008:db0::1/128

Defaults to false.

	negation: whether the validation address can have a negation character ! at the beginning. Defaults to false.

	expandIPv6: whether to expand an IPv6 address to the full notation format.
For example, 2008:db0::1 will be expanded to 2008:0db0:0000:0000:0000:0000:0000:0001. Defaults to false.

	ranges: array of IPv4 or IPv6 ranges that are allowed or forbidden.

When the array is empty, or the option is not set, all the IP addresses are allowed.
Otherwise, the rules are checked sequentially until the first match is found.
IP address is forbidden, when it has not matched any of the rules.

For example:

[
 'client_ip', 'ip', 'ranges' => [
 '192.168.10.128'
 '!192.168.10.0/24',
 'any' // allows any other IP addresses
]
]

In this example, access is allowed for all the IPv4 and IPv6 addresses excluding 192.168.10.0/24 subnet.
IPv4 address 192.168.10.128 is also allowed, because it is listed before the restriction.

	networks: array of network aliases, that can be used in ranges. Format of array:

	key - alias name

	value - array of strings. String can be a range, IP address or another alias. String can be
negated with ! (independent of negation option).

The following aliases are defined by default:

	*: any

	any: 0.0.0.0/0, ::/0

	private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fd00::/8

	multicast: 224.0.0.0/4, ff00::/8

	linklocal: 169.254.0.0/16, fe80::/10

	localhost: 127.0.0.0/8', ::1

	documentation: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 2001:db8::/32

	system: multicast, linklocal, localhost, documentation

Info: This validator has been available since version 2.0.7.

[[yii\validators\RangeValidator|in]]

[
 // checks if "level" is 1, 2 or 3
 ['level', 'in', 'range' => [1, 2, 3]],
]

This validator checks if the input value can be found among the given list of values.

	range: a list of given values within which the input value should be looked for.

	strict: whether the comparison between the input value and the given values should be strict
(both the type and value must be the same). Defaults to false.

	not: whether the validation result should be inverted. Defaults to false. When this property is set true,
the validator checks if the input value is NOT among the given list of values.

	allowArray: whether to allow the input value to be an array. When this is true and the input value is an array,
every element in the array must be found in the given list of values, or the validation would fail.

[[yii\validators\NumberValidator|integer]]

[
 // checks if "age" is an integer
 ['age', 'integer'],
]

This validator checks if the input value is an integer.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\RegularExpressionValidator|match]]

[
 // checks if "username" starts with a letter and contains only word characters
 ['username', 'match', 'pattern' => '/^[a-z]\w*$/i']
]

This validator checks if the input value matches the specified regular expression.

	pattern: the regular expression that the input value should match. This property must be set,
or an exception will be thrown.

	not: whether to invert the validation result. Defaults to false, meaning the validation succeeds
only if the input value matches the pattern. If this is set true, the validation is considered
successful only if the input value does NOT match the pattern.

[[yii\validators\NumberValidator|number]]

[
 // checks if "salary" is a number
 ['salary', 'number'],
]

This validator checks if the input value is a number. It is equivalent to the double validator.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\RequiredValidator|required]]

[
 // checks if both "username" and "password" are not empty
 [['username', 'password'], 'required'],
]

This validator checks if the input value is provided and not empty.

	requiredValue: the desired value that the input should be. If not set, it means the input should not be empty.

	strict: whether to check data types when validating a value. Defaults to false.
When requiredValue is not set, if this property is true, the validator will check if the input value is
not strictly null; If this property is false, the validator will use a loose rule to determine a value is empty or not.
When requiredValue is set, the comparison between the input and requiredValue will also check data types
if this property is true.

Info: How to determine if a value is empty or not is a separate topic covered
in the Empty Values section.

[[yii\validators\SafeValidator|safe]]

[
 // marks "description" to be a safe attribute
 ['description', 'safe'],
]

This validator does not perform data validation. Instead, it is used to mark an attribute to be
a safe attribute.

[[yii\validators\StringValidator|string]]

[
 // checks if "username" is a string whose length is between 4 and 24
 ['username', 'string', 'length' => [4, 24]],
]

This validator checks if the input value is a valid string with certain length.

	length: specifies the length limit of the input string being validated. This can be specified
in one of the following forms:
	an integer: the exact length that the string should be of;

	an array of one element: the minimum length of the input string (e.g. [8]). This will overwrite min.

	an array of two elements: the minimum and maximum lengths of the input string (e.g. [8, 128]).
This will overwrite both min and max.

	min: the minimum length of the input string. If not set, it means no minimum length limit.

	max: the maximum length of the input string. If not set, it means no maximum length limit.

	encoding: the encoding of the input string to be validated. If not set, it will use the application’s
[[yii\base\Application::charset|charset]] value which defaults to UTF-8.

[[yii\validators\FilterValidator|trim]]

[
 // trims the white spaces surrounding "username" and "email"
 [['username', 'email'], 'trim'],
]

This validator does not perform data validation. Instead, it will trim the surrounding white spaces around
the input value. Note that if the input value is an array, it will be ignored by this validator.

[[yii\validators\UniqueValidator|unique]]

[
 // a1 needs to be unique in the column represented by the "a1" attribute
 ['a1', 'unique'],

 // a1 needs to be unique, but column a2 will be used to check the uniqueness of the a1 value
 ['a1', 'unique', 'targetAttribute' => 'a2'],

 // a1 and a2 need to be unique together, and they both will receive error message
 [['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 and a2 need to be unique together, only a1 will receive error message
 ['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 needs to be unique by checking the uniqueness of both a2 and a3 (using a1 value)
 ['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],
]

This validator checks if the input value is unique in a table column. It only works
with Active Record model attributes. It supports validation against
either a single column or multiple columns.

	targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the model currently being validated will be used.

	targetAttribute: the name of the attribute in targetClass that should be used to validate the uniqueness
of the input value. If not set, it will use the name of the attribute currently being validated.
You may use an array to validate the uniqueness of multiple columns at the same time. The array values
are the attributes that will be used to validate the uniqueness, while the array keys are the attributes
whose values are to be validated. If the key and the value are the same, you can just specify the value.

	filter: additional filter to be applied to the DB query used to check the uniqueness of the input value.
This can be a string or an array representing the additional query condition (refer to [[yii\db\Query::where()]]
on the format of query condition), or an anonymous function with the signature function ($query), where $query
is the [[yii\db\Query|Query]] object that you can modify in the function.

[[yii\validators\UrlValidator|url]]

[
 // checks if "website" is a valid URL. Prepend "http://" to the "website" attribute
 // if it does not have a URI scheme
 ['website', 'url', 'defaultScheme' => 'http'],
]

This validator checks if the input value is a valid URL.

	validSchemes: an array specifying the URI schemes that should be considered valid. Defaults to ['http', 'https'],
meaning both http and https URLs are considered to be valid.

	defaultScheme: the default URI scheme to be prepended to the input if it does not have the scheme part.
Defaults to null, meaning do not modify the input value.

	enableIDN: whether the validator should take into account IDN (internationalized domain names).
Defaults to false. Note that in order to use IDN validation you have to install and enable the intl PHP
extension, otherwise an exception would be thrown.

Note: The validator checks that URL scheme and host part is correct. It does NOT check the remaining parts of a URL
and is NOT designed to protect against XSS or any other attacks. See Security best practices
article to learn more about threats prevention when developing applications.

 Routing and URL Creation

Routing and URL Creation

When a Yii application starts processing a requested URL, the first step it takes is to parse the URL
into a route. The route is then used to instantiate the corresponding
controller action to handle the request. This whole process is called routing.

The reverse process of routing is called URL creation, which creates a URL from a given route
and the associated query parameters. When the created URL is later requested, the routing process can resolve it
back into the original route and query parameters.

The central piece responsible for routing and URL creation is the [[yii\web\UrlManager|URL manager]],
which is registered as the urlManager application component. The [[yii\web\UrlManager|URL manager]]
provides the [[yii\web\UrlManager::parseRequest()|parseRequest()]] method to parse an incoming request into
a route and the associated query parameters and the [[yii\web\UrlManager::createUrl()|createUrl()]] method to
create a URL from a given route and its associated query parameters.

By configuring the urlManager component in the application configuration, you can let your application
recognize arbitrary URL formats without modifying your existing application code. For example, you can
use the following code to create a URL for the post/view action:

use yii\helpers\Url;

// Url::to() calls UrlManager::createUrl() to create a URL
$url = Url::to(['post/view', 'id' => 100]);

Depending on the urlManager configuration, the created URL may look like one of the following (or other format).
And if the created URL is requested later, it will still be parsed back into the original route and query parameter value.

/index.php?r=post%2Fview&id=100
/index.php/post/100
/posts/100

URL Formats

The [[yii\web\UrlManager|URL manager]] supports two URL formats:

	the default URL format;

	the pretty URL format.

The default URL format uses a [[yii\web\UrlManager::$routeParam|query parameter]] named r to represent the route and normal query parameters
to represent the query parameters associated with the route. For example, the URL /index.php?r=post/view&id=100 represents
the route post/view and the id query parameter 100. The default URL format does not require any configuration of
the [[yii\web\UrlManager|URL manager]] and works in any Web server setup.

The pretty URL format uses the extra path following the entry script name to represent the route and the associated
query parameters. For example, the extra path in the URL /index.php/post/100 is /post/100 which may represent
the route post/view and the id query parameter 100 with a proper [[yii\web\UrlManager::rules|URL rule]]. To use
the pretty URL format, you will need to design a set of [[yii\web\UrlManager::rules|URL rules]] according to the actual
requirement about how the URLs should look like.

You may switch between the two URL formats by toggling the [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]]
property of the [[yii\web\UrlManager|URL manager]] without changing any other application code.

Routing

Routing involves two steps:

	the incoming request is parsed into a route and the associated query parameters;

	a controller action corresponding to the parsed route
is created to handle the request.

When using the default URL format, parsing a request into a route is as simple as getting the value of a GET
query parameter named r.

When using the pretty URL format, the [[yii\web\UrlManager|URL manager]] will examine the registered
[[yii\web\UrlManager::rules|URL rules]] to find matching one that can resolve the request into a route.
If such a rule cannot be found, a [[yii\web\NotFoundHttpException]] exception will be thrown.

Once the request is parsed into a route, it is time to create the controller action identified by the route.
The route is broken down into multiple parts by the slashes in it. For example, site/index will be
broken into site and index. Each part is an ID which may refer to a module, a controller or an action.
Starting from the first part in the route, the application takes the following steps to create modules (if any),
controller and action:

	Set the application as the current module.

	Check if the [[yii\base\Module::controllerMap|controller map]] of the current module contains the current ID.
If so, a controller object will be created according to the controller configuration found in the map,
and Step 5 will be taken to handle the rest part of the route.

	Check if the ID refers to a module listed in the [[yii\base\Module::modules|modules]] property of
the current module. If so, a module is created according to the configuration found in the module list,
and Step 2 will be taken to handle the next part of the route under the context of the newly created module.

	Treat the ID as a controller ID and create a controller object. Do the next step with the rest part of
the route.

	The controller looks for the current ID in its [[yii\base\Controller::actions()|action map]]. If found,
it creates an action according to the configuration found in the map. Otherwise, the controller will
attempt to create an inline action which is defined by an action method corresponding to the current action ID.

Among the above steps, if any error occurs, a [[yii\web\NotFoundHttpException]] will be thrown, indicating
the failure of the routing process.

Default Route

When a request is parsed into an empty route, the so-called default route will be used, instead. By default,
the default route is site/index, which refers to the index action of the site controller. You may
customize it by configuring the [[yii\web\Application::defaultRoute|defaultRoute]] property of the application
in the application configuration like the following:

[
 // ...
 'defaultRoute' => 'main/index',
];

Similar to the default route of the application, there is also a default route for modules, so for example if there
is a user module and the request is parsed into the route user the module’s [[yii\base\Module::defaultRoute|defaultRoute]]
is used to determine the controller. By default the controller name is default. If no action is specified in [[yii\base\Module::defaultRoute|defaultRoute]],
the [[yii\base\Controller::defaultAction|defaultAction]] property of the controller is used to determine the action.
In this example, the full route would be user/default/index.

catchAll Route

Sometimes, you may want to put your Web application in maintenance mode temporarily and display the same
informational page for all requests. There are many ways to accomplish this goal. But one of the simplest
ways is to configure the [[yii\web\Application::catchAll]] property like the following in the application configuration:

[
 // ...
 'catchAll' => ['site/offline'],
];

With the above configuration, the site/offline action will be used to handle all incoming requests.

The catchAll property should take an array whose first element specifies a route, and
the rest of the elements (name-value pairs) specify the parameters to be bound to the action.

Info: The debug toolbar [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] in development environment
will not work when this property is enabled.

Creating URLs

Yii provides a helper method [[yii\helpers\Url::to()]] to create various kinds of URLs from given routes and
their associated query parameters. For example,

use yii\helpers\Url;

// creates a URL to a route: /index.php?r=post%2Findex
echo Url::to(['post/index']);

// creates a URL to a route with parameters: /index.php?r=post%2Fview&id=100
echo Url::to(['post/view', 'id' => 100]);

// creates an anchored URL: /index.php?r=post%2Fview&id=100#content
echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// creates an absolute URL: http://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], true);

// creates an absolute URL using the https scheme: https://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], 'https');

Note that in the above example, we assume the default URL format is being used. If the pretty URL format is enabled,
the created URLs will be different, according to the [[yii\web\UrlManager::rules|URL rules]] in use.

The route passed to the [[yii\helpers\Url::to()]] method is context sensitive. It can be either a relative route
or an absolute route which will be normalized according to the following rules:

	If the route is an empty string, the currently requested [[yii\web\Controller::route|route]] will be used;

	If the route contains no slashes at all, it is considered to be an action ID of the current controller
and will be prepended with the [[\yii\web\Controller::uniqueId|uniqueId]] value of the current controller;

	If the route has no leading slash, it is considered to be a route relative to the current module and
will be prepended with the [[\yii\base\Module::uniqueId|uniqueId]] value of the current module.

Starting from version 2.0.2, you may specify a route in terms of an alias. If this is the case,
the alias will first be converted into the actual route which will then be turned into an absolute route according
to the above rules.

For example, assume the current module is admin and the current controller is post,

use yii\helpers\Url;

// currently requested route: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['']);

// a relative route with action ID only: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['index']);

// a relative route: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['post/index']);

// an absolute route: /index.php?r=post%2Findex
echo Url::to(['/post/index']);

// using an alias "@posts", which is defined as "/post/index": /index.php?r=post%2Findex
echo Url::to(['@posts']);

The [[yii\helpers\Url::to()]] method is implemented by calling the [[yii\web\UrlManager::createUrl()|createUrl()]]
and [[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]] methods of the [[yii\web\UrlManager|URL manager]].
In the next few subsections, we will explain how to configure the [[yii\web\UrlManager|URL manager]] to customize
the format of the created URLs.

The [[yii\helpers\Url::to()]] method also supports creating URLs that are not related with particular routes.
Instead of passing an array as its first parameter, you should pass a string in this case. For example,

use yii\helpers\Url;

// currently requested URL: /index.php?r=admin%2Fpost%2Findex
echo Url::to();

// an aliased URL: http://example.com
Yii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// an absolute URL: http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);

Besides the to() method, the [[yii\helpers\Url]] helper class also provides several other convenient URL creation
methods. For example,

use yii\helpers\Url;

// home page URL: /index.php?r=site%2Findex
echo Url::home();

// the base URL, useful if the application is deployed in a sub-folder of the Web root
echo Url::base();

// the canonical URL of the currently requested URL
// see https://en.wikipedia.org/wiki/Canonical_link_element
echo Url::canonical();

// remember the currently requested URL and retrieve it back in later requests
Url::remember();
echo Url::previous();

Using Pretty URLs

To use pretty URLs, configure the urlManager component in the application configuration like the following:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => false,
 'rules' => [
 // ...
],
],
],
]

The [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] property is mandatory as it toggles the pretty URL format.
The rest of the properties are optional. However, their configuration shown above is most commonly used.

	[[yii\web\UrlManager::showScriptName|showScriptName]]: this property determines whether the entry script
should be included in the created URLs. For example, instead of creating a URL /index.php/post/100,
by setting this property to be false, a URL /post/100 will be generated.

	[[yii\web\UrlManager::enableStrictParsing|enableStrictParsing]]: this property determines whether to enable
strict request parsing. If strict parsing is enabled, the incoming requested URL must match at least one of
the [[yii\web\UrlManager::rules|rules]] in order to be treated as a valid request, otherwise a [[yii\web\NotFoundHttpException]]
will be thrown. If strict parsing is disabled, when none of the [[yii\web\UrlManager::rules|rules]] matches
the requested URL, the path info part of the URL will be treated as the requested route.

	[[yii\web\UrlManager::rules|rules]]: this property contains a list of rules specifying how to parse and create
URLs. It is the main property that you should work with in order to create URLs whose format satisfies your
particular application requirement.

Note: In order to hide the entry script name in the created URLs, besides setting
[[yii\web\UrlManager::showScriptName|showScriptName]] to be false, you may also need to configure your Web server
so that it can correctly identify which PHP script should be executed when a requested URL does not explicitly
specify one. If you are using Apache or nginx Web server, you may refer to the recommended configuration as described in the
Installation section.

URL Rules

A URL rule is a class implementing the [[yii\web\UrlRuleInterface]], usually [[yii\web\UrlRule]]. Each URL rule consists of a pattern used
for matching the path info part of URLs, a route, and a few query parameters. A URL rule can be used to parse a request
if its pattern matches the requested URL. A URL rule can be used to create a URL if its route and query parameter
names match those that are given.

When the pretty URL format is enabled, the [[yii\web\UrlManager|URL manager]] uses the URL rules declared in its
[[yii\web\UrlManager::rules|rules]] property to parse incoming requests and create URLs. In particular,
to parse an incoming request, the [[yii\web\UrlManager|URL manager]] examines the rules in the order they are
declared and looks for the first rule that matches the requested URL. The matching rule is then used to
parse the URL into a route and its associated parameters. Similarly, to create a URL, the [[yii\web\UrlManager|URL manager]]
looks for the first rule that matches the given route and parameters and uses that to create a URL.

You can configure [[yii\web\UrlManager::rules]] as an array with keys being the [[yii\web\UrlRule::$pattern|patterns]] and values the corresponding
[[yii\web\UrlRule::$route|routes]]. Each pattern-route pair constructs a URL rule. For example, the following [[yii\web\UrlManager::rules|rules]]
configuration declares two URL rules. The first rule matches a URL posts and maps it into the route post/index.
The second rule matches a URL matching the regular expression post/(\d+) and maps it into the route post/view and
defines a query parameter named id.

'rules' => [
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Info: The pattern in a rule is used to match the path info part of a URL. For example, the path info of
/index.php/post/100?source=ad is post/100 (the leading and ending slashes are ignored) which matches
the pattern post/(\d+).

Besides declaring URL rules as pattern-route pairs, you may also declare them as configuration arrays. Each configuration
array is used to configure a single URL rule object. This is often needed when you want to configure other
properties of a URL rule. For example,

'rules' => [
 // ...other url rules...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

By default if you do not specify the class option for a rule configuration, it will take the default
class [[yii\web\UrlRule]], which is the default value defined in
[[yii\web\UrlManager::$ruleConfig]].

Named Parameters

A URL rule can be associated with named query parameters which are specified in the pattern in the format
of <ParamName:RegExp>, where ParamName specifies the parameter name and RegExp is an optional regular
expression used to match parameter values. If RegExp is not specified, it means the parameter value should be
a string without any slash.

Note: You can only use regular expressions inside of parameters. The rest of a pattern is considered plain text.

When a rule is used to parse a URL, it will fill the associated parameters with values matching the corresponding
parts of the URL, and these parameters will be made available in $_GET later by the request application component.
When the rule is used to create a URL, it will take the values of the provided parameters and insert them at the
places where the parameters are declared.

Let’s use some examples to illustrate how named parameters work. Assume we have declared the following three URL rules:

'rules' => [
 'posts/<year:\d{4}>/<category>' => 'post/index',
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

When the rules are used to parse URLs:

	/index.php/posts is parsed into the route post/index using the second rule;

	/index.php/posts/2014/php is parsed into the route post/index, the year parameter whose value is 2014
and the category parameter whose value is php using the first rule;

	/index.php/post/100 is parsed into the route post/view and the id parameter whose value is 100 using
the third rule;

	/index.php/posts/php will cause a [[yii\web\NotFoundHttpException]] when [[yii\web\UrlManager::enableStrictParsing]]
is true, because it matches none of the patterns. If [[yii\web\UrlManager::enableStrictParsing]] is false (the
default value), the path info part posts/php will be returned as the route. This will either execute the corresponding action if it exists or throw a [[yii\web\NotFoundHttpException]] otherwise.

And when the rules are used to create URLs:

	Url::to(['post/index']) creates /index.php/posts using the second rule;

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) creates /index.php/posts/2014/php using the first rule;

	Url::to(['post/view', 'id' => 100]) creates /index.php/post/100 using the third rule;

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) creates /index.php/post/100?source=ad using the third rule.
Because the source parameter is not specified in the rule, it is appended as a query parameter in the created URL.

	Url::to(['post/index', 'category' => 'php']) creates /index.php/post/index?category=php using none of the rules.
Note that since none of the rules applies, the URL is created by simply appending the route as the path info
and all parameters as the query string part.

Parameterizing Routes

You can embed parameter names in the route of a URL rule. This allows a URL rule to be used for matching multiple
routes. For example, the following rules embed controller and action parameters in the routes.

'rules' => [
 '<controller:(post|comment)>/create' => '<controller>/create',
 '<controller:(post|comment)>/<id:\d+>/<action:(update|delete)>' => '<controller>/<action>',
 '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
 '<controller:(post|comment)>s' => '<controller>/index',
]

To parse a URL /index.php/comment/100/update, the second rule will apply, which sets the controller parameter to
be comment and action parameter to be update. The route <controller>/<action> is thus resolved as comment/update.

Similarly, to create a URL for the route comment/index, the last rule will apply, which creates a URL /index.php/comments.

Info: By parameterizing routes, it is possible to greatly reduce the number of URL rules, which can significantly
improve the performance of [[yii\web\UrlManager|URL manager]].

Default Parameter Values

By default, all parameters declared in a rule are required. If a requested URL does not contain a particular parameter,
or if a URL is being created without a particular parameter, the rule will not apply. To make some of the parameters
optional, you can configure the [[yii\web\UrlRule::defaults|defaults]] property of a rule. Parameters listed in this
property are optional and will take the specified values when they are not provided.

In the following rule declaration, the page and tag parameters are both optional and will take the value of 1 and
empty string, respectively, when they are not provided.

'rules' => [
 // ...other rules...
 [
 'pattern' => 'posts/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1, 'tag' => ''],
],
]

The above rule can be used to parse or create any of the following URLs:

	/index.php/posts: page is 1, tag is ‘’.

	/index.php/posts/2: page is 2, tag is ‘’.

	/index.php/posts/2/news: page is 2, tag is 'news'.

	/index.php/posts/news: page is 1, tag is 'news'.

Without using optional parameters, you would have to create 4 rules to achieve the same result.

Note: If [[yii\web\UrlRule::$pattern|pattern]] contains only optional parameters and slashes, first parameter could be omitted
only if all other parameters are omitted.

Rules with Server Names

It is possible to include Web server names in the patterns of URL rules. This is mainly useful when your application
should behave differently for different Web server names. For example, the following rules will parse the URL
http://admin.example.com/login into the route admin/user/login and http://www.example.com/login into site/login.

'rules' => [
 'http://admin.example.com/login' => 'admin/user/login',
 'http://www.example.com/login' => 'site/login',
]

You can also embed parameters in the server names to extract dynamic information from them. For example, the following rule
will parse the URL http://en.example.com/posts into the route post/index and the parameter language=en.

'rules' => [
 'http://<language:\w+>.example.com/posts' => 'post/index',
]

Since version 2.0.11, you may also use protocol relative patterns that work for both, http and https.
The syntax is the same as above but skipping the http: part, e.g.: '//www.example.com/login' => 'site/login'.

Note: Rules with server names should not include the subfolder of the entry script in their patterns. For example, if the applications entry script is at http://www.example.com/sandbox/blog/index.php, then you should use the pattern
http://www.example.com/posts instead of http://www.example.com/sandbox/blog/posts. This will allow your application
to be deployed under any directory without the need to change your url rules. Yii will automatically detect the base url of the application.

URL Suffixes

You may want to add suffixes to the URLs for various purposes. For example, you may add .html to the URLs so that they
look like URLs for static HTML pages; you may also add .json to the URLs to indicate the expected content type
of the response. You can achieve this goal by configuring the [[yii\web\UrlManager::suffix]] property like
the following in the application configuration:

[
 // ...
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
],
],
],
]

The above configuration will allow the [[yii\web\UrlManager|URL manager]] to recognize requested URLs and also create
URLs with .html as their suffix.

Tip: You may set / as the URL suffix so that the URLs all end with a slash.

Note: When you configure a URL suffix, if a requested URL does not have the suffix, it will be considered as
an unrecognized URL. This is a recommended practice for SEO (search engine optimization) to avoid duplicate content on different URLs.

Sometimes you may want to use different suffixes for different URLs. This can be achieved by configuring the
[[yii\web\UrlRule::suffix|suffix]] property of individual URL rules. When a URL rule has this property set, it will
override the suffix setting at the [[yii\web\UrlManager|URL manager]] level. For example, the following configuration
contains a customized URL rule which uses .json as its suffix instead of the global .html suffix.

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
],
],
],
]

HTTP Methods

When implementing RESTful APIs, it is commonly needed that the same URL be parsed into different routes according to
the HTTP methods being used. This can be easily achieved by prefixing the supported HTTP methods to the patterns of
the rules. If a rule supports multiple HTTP methods, separate the method names with commas. For example, the following
rules have the same pattern post/<id:\d+> with different HTTP method support. A request for PUT post/100 will
be parsed into post/update, while a request for GET post/100 will be parsed into post/view.

'rules' => [
 'PUT,POST post/<id:\d+>' => 'post/update',
 'DELETE post/<id:\d+>' => 'post/delete',
 'post/<id:\d+>' => 'post/view',
]

Note: If a URL rule contains HTTP method(s) in its pattern, the rule will only be used for parsing purpose unless GET is among the specified verbs.
It will be skipped when the [[yii\web\UrlManager|URL manager]] is called to create URLs.

Tip: To simplify the routing of RESTful APIs, Yii provides a special URL rule class [[yii\rest\UrlRule]]
which is very efficient and supports some fancy features such as automatic pluralization of controller IDs.
For more details, please refer to the Routing section in the RESTful APIs chapter.

Adding Rules Dynamically

URL rules can be dynamically added to the [[yii\web\UrlManager|URL manager]]. This is often needed by redistributable
modules which want to manage their own URL rules. In order for the dynamically added rules
to take effect during the routing process, you should add them during the bootstrapping
stage of the application. For modules, this means they should implement [[yii\base\BootstrapInterface]] and add the rules in the
[[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method like the following:

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // rule declarations here
], false);
}

Note that you should also list these modules in [[yii\web\Application::bootstrap]] so that they can participate the
bootstrapping process.

Creating Rule Classes

Despite the fact that the default [[yii\web\UrlRule]] class is flexible enough for the majority of projects, there
are situations when you have to create your own rule classes. For example, in a car dealer Web site, you may want
to support the URL format like /Manufacturer/Model, where both Manufacturer and Model must match some data
stored in a database table. The default rule class will not work here because it relies on statically declared patterns.

We can create the following URL rule class to solve this problem.

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class CarUrlRule extends Object implements UrlRuleInterface
{
 public function createUrl($manager, $route, $params)
 {
 if ($route === 'car/index') {
 if (isset($params['manufacturer'], $params['model'])) {
 return $params['manufacturer'] . '/' . $params['model'];
 } elseif (isset($params['manufacturer'])) {
 return $params['manufacturer'];
 }
 }
 return false; // this rule does not apply
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
 // check $matches[1] and $matches[3] to see
 // if they match a manufacturer and a model in the database.
 // If so, set $params['manufacturer'] and/or $params['model']
 // and return ['car/index', $params]
 }
 return false; // this rule does not apply
 }
}

And use the new rule class in the [[yii\web\UrlManager::rules]] configuration:

'rules' => [
 // ...other rules...
 [
 'class' => 'app\components\CarUrlRule',
 // ...configure other properties...
],
]

URL normalization

Since version 2.0.10 [[yii\web\UrlManager|UrlManager]] can be configured to use [[yii\web\UrlNormalizer|UrlNormalizer]] for dealing
with variations of the same URL, for example with and without a trailing slash. Because technically http://example.com/path
and http://example.com/path/ are different URLs, serving the same content for both of them can degrade SEO ranking.
By default normalizer collapses consecutive slashes, adds or removes trailing slashes depending on whether the
suffix has a trailing slash or not, and redirects to the normalized version of the URL using permanent redirection [https://en.wikipedia.org/wiki/HTTP_301].
The normalizer can be configured globally for the URL manager or individually for each rule - by default each rule will use the normalizer
from URL manager. You can set [[yii\web\UrlRule::$normalizer|UrlRule::$normalizer]] to false to disable normalization
for particular URL rule.

The following shows an example configuration for the [[yii\web\UrlNormalizer|UrlNormalizer]]:

'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'normalizer' => [
 'class' => 'yii\web\UrlNormalizer',
 // use temporary redirection instead of permanent for debugging
 'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,
],
 'rules' => [
 // ...other rules...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '/',
 'normalizer' => false, // disable normalizer for this rule
],
 [
 'pattern' => 'tags',
 'route' => 'tag/index',
 'normalizer' => [
 // do not collapse consecutive slashes for this rule
 'collapseSlashes' => false,
],
],
],
]

Note: by default [[yii\web\UrlManager::$normalizer|UrlManager::$normalizer]] is disabled. You need to explicitly
configure it in order to enable URL normalization.

Performance Considerations

When developing a complex Web application, it is important to optimize URL rules so that it takes less time to parse
requests and create URLs.

By using parameterized routes, you may reduce the number of URL rules, which can significantly improve performance.

When parsing or creating URLs, [[yii\web\UrlManager|URL manager]] examines URL rules in the order they are declared.
Therefore, you may consider adjusting the order of the URL rules so that more specific and/or more commonly used rules are placed before less used ones.

If some URL rules share the same prefix in their patterns or routes, you may consider using [[yii\web\GroupUrlRule]]
so that they can be more efficiently examined by [[yii\web\UrlManager|URL manager]] as a group. This is often the case
when your application is composed by modules, each having its own set of URL rules with module ID as their common prefixes.

 Caching

Caching

Caching is a cheap and effective way to improve the performance of a Web application. By storing relatively
static data in cache and serving it from cache when requested, the application saves the time that would be
required to generate the data from scratch every time.

Caching can occur at different levels and places in a Web application. On the server-side, at the lower level,
cache may be used to store basic data, such as a list of most recent article information fetched from database;
and at the higher level, cache may be used to store fragments or whole of Web pages, such as the rendering result
of the most recent articles. On the client-side, HTTP caching may be used to keep most recently visited page content in
the browser cache.

Yii supports all these caching mechanisms:

	Data caching

	Fragment caching

	Page caching

	HTTP caching

 Sessions and Cookies

Sessions and Cookies

Sessions and cookies allow data to be persisted across multiple user requests. In plain PHP you may access them
through the global variables $_SESSION and $_COOKIE, respectively. Yii encapsulates sessions and cookies as objects
and thus allows you to access them in an object-oriented fashion with additional useful enhancements.

Sessions

Like requests and responses, you can get access to sessions via
the session application component which is an instance of [[yii\web\Session]],
by default.

Opening and Closing Sessions

To open and close a session, you can do the following:

$session = Yii::$app->session;

// check if a session is already open
if ($session->isActive) ...

// open a session
$session->open();

// close a session
$session->close();

// destroys all data registered to a session.
$session->destroy();

You can call [[yii\web\Session::open()|open()]] and [[yii\web\Session::close()|close()]] multiple times
without causing errors; internally the methods will first check if the session is already open.

Accessing Session Data

To access the data stored in session, you can do the following:

$session = Yii::$app->session;

// get a session variable. The following usages are equivalent:
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// set a session variable. The following usages are equivalent:
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// remove a session variable. The following usages are equivalent:
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// check if a session variable exists. The following usages are equivalent:
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// traverse all session variables. The following usages are equivalent:
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...

Info: When you access session data through the session component, a session will be automatically opened
if it has not been done so before. This is different from accessing session data through $_SESSION, which requires
an explicit call of session_start().

When working with session data that are arrays, the session component has a limitation which prevents you from
directly modifying an array element. For example,

$session = Yii::$app->session;

// the following code will NOT work
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// the following code works:
$session['captcha'] = [
 'number' => 5,
 'lifetime' => 3600,
];

// the following code also works:
echo $session['captcha']['lifetime'];

You can use one of the following workarounds to solve this problem:

$session = Yii::$app->session;

// directly use $_SESSION (make sure Yii::$app->session->open() has been called)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// get the whole array first, modify it and then save it back
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// use ArrayObject instead of array
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// store array data by keys with a common prefix
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;

For better performance and code readability, we recommend the last workaround. That is, instead of storing
an array as a single session variable, you store each array element as a session variable which shares the same
key prefix with other array elements.

Custom Session Storage

The default [[yii\web\Session]] class stores session data as files on the server. Yii also provides the following
session classes implementing different session storage:

	[[yii\web\DbSession]]: stores session data in a database table.

	[[yii\web\CacheSession]]: stores session data in a cache with the help of a configured cache component.

	[[yii\redis\Session]]: stores session data using redis [http://redis.io/] as the storage medium.

	[[yii\mongodb\Session]]: stores session data in a MongoDB [http://www.mongodb.org/].

All these session classes support the same set of API methods. As a result, you can switch to a different
session storage class without the need to modify your application code that uses sessions.

Note: If you want to access session data via $_SESSION while using custom session storage, you must make
sure that the session has already been started by [[yii\web\Session::open()]]. This is because custom session storage
handlers are registered within this method.

To learn how to configure and use these component classes, please refer to their API documentation. Below is
an example showing how to configure [[yii\web\DbSession]] in the application configuration to use a database table
for session storage:

return [
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',
 // 'db' => 'mydb', // the application component ID of the DB connection. Defaults to 'db'.
 // 'sessionTable' => 'my_session', // session table name. Defaults to 'session'.
],
],
];

You also need to create the following database table to store session data:

CREATE TABLE session
(
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

where ‘BLOB’ refers to the BLOB-type of your preferred DBMS. Below are the BLOB types that can be used for some popular DBMS:

	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB

Note: According to the php.ini setting of session.hash_function, you may need to adjust
the length of the id column. For example, if session.hash_function=sha256, you should use a
length 64 instead of 40.

Flash Data

Flash data is a special kind of session data which, once set in one request, will only be available during
the next request and will be automatically deleted afterwards. Flash data is most commonly used to implement
messages that should only be displayed to end users once, such as a confirmation message displayed after
a user successfully submits a form.

You can set and access flash data through the session application component. For example,

$session = Yii::$app->session;

// Request #1
// set a flash message named as "postDeleted"
$session->setFlash('postDeleted', 'You have successfully deleted your post.');

// Request #2
// display the flash message named "postDeleted"
echo $session->getFlash('postDeleted');

// Request #3
// $result will be false since the flash message was automatically deleted
$result = $session->hasFlash('postDeleted');

Like regular session data, you can store arbitrary data as flash data.

When you call [[yii\web\Session::setFlash()]], it will overwrite any existing flash data that has the same name.
To append new flash data to an existing message of the same name, you may call [[yii\web\Session::addFlash()]] instead.
For example:

$session = Yii::$app->session;

// Request #1
// add a few flash messages under the name of "alerts"
$session->addFlash('alerts', 'You have successfully deleted your post.');
$session->addFlash('alerts', 'You have successfully added a new friend.');
$session->addFlash('alerts', 'You are promoted.');

// Request #2
// $alerts is an array of the flash messages under the name of "alerts"
$alerts = $session->getFlash('alerts');

Note: Try not to use [[yii\web\Session::setFlash()]] together with [[yii\web\Session::addFlash()]] for flash data
of the same name. This is because the latter method will automatically turn the flash data into an array so that it
can append new flash data of the same name. As a result, when you call [[yii\web\Session::getFlash()]], you may
find sometimes you are getting an array while sometimes you are getting a string, depending on the order of
the invocation of these two methods.

Tip: For displaying Flash messages you can use [[yii\bootstrap\Alert|bootstrap Alert]] widget in the following way:

echo Alert::widget([
 'options' => ['class' => 'alert-info'],
 'body' => Yii::$app->session->getFlash('postDeleted'),
]);

Cookies

Yii represents each cookie as an object of [[yii\web\Cookie]]. Both [[yii\web\Request]] and [[yii\web\Response]]
maintain a collection of cookies via the property named cookies. The cookie collection in the former represents
the cookies submitted in a request, while the cookie collection in the latter represents the cookies that are to
be sent to the user.

The part of the application dealing with request and response directly is controller. Therefore, cookies should be
read and sent in controller.

Reading Cookies

You can get the cookies in the current request using the following code:

// get the cookie collection (yii\web\CookieCollection) from the "request" component
$cookies = Yii::$app->request->cookies;

// get the "language" cookie value. If the cookie does not exist, return "en" as the default value.
$language = $cookies->getValue('language', 'en');

// an alternative way of getting the "language" cookie value
if (($cookie = $cookies->get('language')) !== null) {
 $language = $cookie->value;
}

// you may also use $cookies like an array
if (isset($cookies['language'])) {
 $language = $cookies['language']->value;
}

// check if there is a "language" cookie
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

Sending Cookies

You can send cookies to end users using the following code:

// get the cookie collection (yii\web\CookieCollection) from the "response" component
$cookies = Yii::$app->response->cookies;

// add a new cookie to the response to be sent
$cookies->add(new \yii\web\Cookie([
 'name' => 'language',
 'value' => 'zh-CN',
]));

// remove a cookie
$cookies->remove('language');
// equivalent to the following
unset($cookies['language']);

Besides the [[yii\web\Cookie::name|name]], [[yii\web\Cookie::value|value]] properties shown in the above
examples, the [[yii\web\Cookie]] class also defines other properties to fully represent all available cookie
information, such as [[yii\web\Cookie::domain|domain]], [[yii\web\Cookie::expire|expire]]. You may configure these
properties as needed to prepare a cookie and then add it to the response’s cookie collection.

Note: For better security, the default value of [[yii\web\Cookie::httpOnly]] is set to true. This helps mitigate
the risk of a client-side script accessing the protected cookie (if the browser supports it). You may read
the httpOnly wiki article [https://www.owasp.org/index.php/HttpOnly] for more details.

Cookie Validation

When you are reading and sending cookies through the request and response components as shown in the last
two subsections, you enjoy the added security of cookie validation which protects cookies from being modified
on the client-side. This is achieved by signing each cookie with a hash string, which allows the application to
tell if a cookie has been modified on the client-side. If so, the cookie will NOT be accessible through the
[[yii\web\Request::cookies|cookie collection]] of the request component.

Note: Cookie validation only protects cookie values from being modified. If a cookie fails the validation,
you may still access it through $_COOKIE. This is because third-party libraries may manipulate cookies
in their own way, which does not involve cookie validation.

Cookie validation is enabled by default. You can disable it by setting the [[yii\web\Request::enableCookieValidation]]
property to be false, although we strongly recommend you do not do so.

Note: Cookies that are directly read/sent via $_COOKIE and setcookie() will NOT be validated.

When using cookie validation, you must specify a [[yii\web\Request::cookieValidationKey]] that will be used to generate
the aforementioned hash strings. You can do so by configuring the request component in the application configuration:

return [
 'components' => [
 'request' => [
 'cookieValidationKey' => 'fill in a secret key here',
],
],
];

Info: [[yii\web\Request::cookieValidationKey|cookieValidationKey]] is critical to your application’s security.
It should only be known to people you trust. Do not store it in the version control system.

 What is Yii

What is Yii

Yii is a high performance, component-based PHP framework for rapidly developing modern Web applications.
The name Yii (pronounced Yee or [ji:]) means “simple and evolutionary” in Chinese. It can also
be thought of as an acronym for Yes It Is!

What is Yii Best for?

Yii is a generic Web programming framework, meaning that it can be used for developing all kinds
of Web applications using PHP. Because of its component-based architecture and sophisticated caching
support, it is especially suitable for developing large-scale applications such as portals, forums, content
management systems (CMS), e-commerce projects, RESTful Web services, and so on.

How does Yii Compare with Other Frameworks?

If you’re already familiar with another framework, you may appreciate knowing how Yii compares:

	Like most PHP frameworks, Yii implements the MVC (Model-View-Controller) architectural pattern and promotes code
organization based on that pattern.

	Yii takes the philosophy that code should be written in a simple yet elegant way. Yii will never try to
over-design things mainly for the purpose of strictly following some design pattern.

	Yii is a full-stack framework providing many proven and ready-to-use features: query builders
and ActiveRecord for both relational and NoSQL databases; RESTful API development support; multi-tier
caching support; and more.

	Yii is extremely extensible. You can customize or replace nearly every piece of the core’s code. You can also
take advantage of Yii’s solid extension architecture to use or develop redistributable extensions.

	High performance is always a primary goal of Yii.

Yii is not a one-man show, it is backed up by a strong core developer team [http://www.yiiframework.com/team/], as well as a large community
of professionals constantly contributing to Yii’s development. The Yii developer team
keeps a close eye on the latest Web development trends and on the best practices and features
found in other frameworks and projects. The most relevant best practices and features found elsewhere are regularly incorporated into the core framework and exposed
via simple and elegant interfaces.

Yii Versions

Yii currently has two major versions available: 1.1 and 2.0. Version 1.1 is the old generation and is now in maintenance mode. Version 2.0 is a complete rewrite of Yii, adopting the latest
technologies and protocols, including Composer, PSR, namespaces, traits, and so forth. Version 2.0 represents the current
generation of the framework and will receive the main development efforts over the next few years.
This guide is mainly about version 2.0.

Requirements and Prerequisites

Yii 2.0 requires PHP 5.4.0 or above and runs best with the latest version of PHP 7. You can find more detailed
requirements for individual features by running the requirement checker included in every Yii release.

Using Yii requires basic knowledge of object-oriented programming (OOP), as Yii is a pure OOP-based framework.
Yii 2.0 also makes use of the latest features of PHP, such as namespaces [http://www.php.net/manual/en/language.namespaces.php]
and traits [http://www.php.net/manual/en/language.oop5.traits.php]. Understanding these concepts will help
you more easily pick up Yii 2.0.

 Saying Hello

Saying Hello

This section describes how to create a new “Hello” page in your application.
To achieve this goal, you will create an action and
a view:

	The application will dispatch the page request to the action

	and the action will in turn render the view that shows the word “Hello” to the end user.

Through this tutorial, you will learn three things:

	how to create an action to respond to requests,

	how to create a view to compose the response’s content, and

	how an application dispatches requests to actions.

Creating an Action

For the “Hello” task, you will create a say action that reads
a message parameter from the request and displays that message back to the user. If the request
does not provide a message parameter, the action will display the default “Hello” message.

Info: Actions are the objects that end users can directly refer to for
execution. Actions are grouped by controllers. The execution result of
an action is the response that an end user will receive.

Actions must be declared in controllers. For simplicity, you may
declare the say action in the existing SiteController. This controller is defined
in the class file controllers/SiteController.php. Here is the start of the new action:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...existing code...

 public function actionSay($message = 'Hello')
 {
 return $this->render('say', ['message' => $message]);
 }
}

In the above code, the say action is defined as a method named actionSay in the SiteController class.
Yii uses the prefix action to differentiate action methods from non-action methods in a controller class.
The name after the action prefix maps to the action’s ID.

When it comes to naming your actions, you should understand how Yii treats action IDs. Action IDs are always
referenced in lower case. If an action ID requires multiple words, they will be concatenated by dashes
(e.g., create-comment). Action method names are mapped to action IDs by removing any dashes from the IDs,
capitalizing the first letter in each word, and prefixing the resulting string with action. For example,
the action ID create-comment corresponds to the action method name actionCreateComment.

The action method in our example takes a parameter $message, whose value defaults to "Hello" (in exactly
the same way you set a default value for any function or method argument in PHP). When the application
receives a request and determines that the say action is responsible for handling said request, the application will
populate this parameter with the same named parameter found in the request. In other words, if the request includes
a message parameter with a value of "Goodbye", the $message variable within the action will be assigned that value.

Within the action method, [[yii\web\Controller::render()|render()]] is called to render
a view file named say. The message parameter is also passed to the view
so that it can be used there. The rendering result is returned by the action method. That result will be received
by the application and displayed to the end user in the browser (as part of a complete HTML page).

Creating a View

Views are scripts you write to generate a response’s content.
For the “Hello” task, you will create a say view that prints the message parameter received from the action method:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

The say view should be saved in the file views/site/say.php. When the method [[yii\web\Controller::render()|render()]]
is called in an action, it will look for a PHP file named as views/ControllerID/ViewName.php.

Note that in the above code, the message parameter is [[yii\helpers\Html::encode()|HTML-encoded]]
before being printed. This is necessary as the parameter comes from an end user, making it vulnerable to
cross-site scripting (XSS) attacks [http://en.wikipedia.org/wiki/Cross-site_scripting] by embedding
malicious JavaScript code in the parameter.

Naturally, you may put more content in the say view. The content can consist of HTML tags, plain text, and even PHP statements.
In fact, the say view is just a PHP script that is executed by the [[yii\web\Controller::render()|render()]] method.
The content printed by the view script will be returned to the application as the response’s result. The application will in turn output this result to the end user.

Trying it Out

After creating the action and the view, you may access the new page by accessing the following URL:

http://hostname/index.php?r=site%2Fsay&message=Hello+World

[image: Hello World]

This URL will result in a page displaying “Hello World”. The page shares the same header and footer as the other application pages.

If you omit the message parameter in the URL, you would see the page display just “Hello”. This is because message is passed as a parameter to the actionSay() method, and when it is omitted,
the default value of "Hello" will be used instead.

Info: The new page shares the same header and footer as other pages because the [[yii\web\Controller::render()|render()]]
method will automatically embed the result of the say view in a so-called layout which in this
case is located at views/layouts/main.php.

The r parameter in the above URL requires more explanation. It stands for route, an application wide unique ID
that refers to an action. The route’s format is ControllerID/ActionID. When the application receives
a request, it will check this parameter, using the ControllerID part to determine which controller
class should be instantiated to handle the request. Then, the controller will use the ActionID part
to determine which action should be instantiated to do the real work. In this example case, the route site/say
will be resolved to the SiteController controller class and the say action. As a result,
the SiteController::actionSay() method will be called to handle the request.

Info: Like actions, controllers also have IDs that uniquely identify them in an application.
Controller IDs use the same naming rules as action IDs. Controller class names are derived from
controller IDs by removing dashes from the IDs, capitalizing the first letter in each word,
and suffixing the resulting string with the word Controller. For example, the controller ID post-comment corresponds
to the controller class name PostCommentController.

Summary

In this section, you have touched the controller and view parts of the MVC architectural pattern.
You created an action as part of a controller to handle a specific request. And you also created a view
to compose the response’s content. In this simple example, no model was involved as the only data used was the message parameter.

You have also learned about routes in Yii, which act as the bridge between user requests and controller actions.

In the next section, you will learn how to create a model, and add a new page containing an HTML form.

 Uploading Files

Uploading Files

Uploading files in Yii is usually done with the help of [[yii\web\UploadedFile]] which encapsulates each uploaded
file as an UploadedFile object. Combined with [[yii\widgets\ActiveForm]] and models,
you can easily implement a secure file uploading mechanism.

Creating Models

Like working with plain text inputs, to upload a single file you would create a model class and use an attribute
of the model to keep the uploaded file instance. You should also declare a validation rule to validate the file upload.
For example,

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile
 */
 public $imageFile;

 public function rules()
 {
 return [
 [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
 return true;
 } else {
 return false;
 }
 }
}

In the code above, the imageFile attribute is used to keep the uploaded file instance. It is associated with
a file validation rule which uses [[yii\validators\FileValidator]] to ensure a file with extension name png or jpg
is uploaded. The upload() method will perform the validation and save the uploaded file on the server.

The file validator allows you to check file extensions, size, MIME type, etc. Please refer to
the Core Validators section for more details.

Tip: If you are uploading an image, you may consider using the image validator instead. The image validator is
implemented via [[yii\validators\ImageValidator]] which verifies if an attribute has received a valid image
that can be then either saved or processed using the Imagine Extension [https://github.com/yiisoft/yii2-imagine].

Rendering File Input

Next, create a file input in a view:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFile')->fileInput() ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

It is important to remember that you add the enctype option to the form so that the file can be properly uploaded.
The fileInput() call will render a <input type="file"> tag which will allow users to select a file to upload.

Tip: since version 2.0.8, [[yii\widgets\ActiveField::fileInput|fileInput]] adds enctype option to the form
automatically when file input field is used.

Wiring Up

Now in a controller action, write the code to wire up the model and the view to implement file uploading:

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

In the above code, when the form is submitted, the [[yii\web\UploadedFile::getInstance()]] method is called
to represent the uploaded file as an UploadedFile instance. We then rely on the model validation to make sure
the uploaded file is valid and save the file on the server.

Uploading Multiple Files

You can also upload multiple files at once, with some adjustments to the code listed in the previous subsections.

First you should adjust the model class by adding the maxFiles option in the file validation rule to limit
the maximum number of files allowed to upload. Setting maxFiles to 0 means there is no limit on the number of files
that can be uploaded simultaneously. The maximum number of files allowed to be uploaded simultaneously is also limited
with PHP directive max_file_uploads [http://php.net/manual/en/ini.core.php#ini.max-file-uploads],
which defaults to 20. The upload() method should also be updated to save the uploaded files one by one.

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile[]
 */
 public $imageFiles;

 public function rules()
 {
 return [
 [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 foreach ($this->imageFiles as $file) {
 $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
 }
 return true;
 } else {
 return false;
 }
 }
}

In the view file, you should add the multiple option to the fileInput() call so that the file upload field
can receive multiple files:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

And finally in the controller action, you should call UploadedFile::getInstances() instead of
UploadedFile::getInstance() to assign an array of UploadedFile instances to UploadForm::imageFiles.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

 Unit Tests

Unit Tests

Note: This section is under development.

A unit test verifies that a single unit of code is working as expected. In object-oriented programming, the most basic
code unit is a class. A unit test thus mainly needs to verify that each of the class interface methods works properly.
That is, given different input parameters, the test verifies the method returns expected results.
Unit tests are usually developed by people who write the classes being tested.

Unit testing in Yii is built on top of PHPUnit and, optionally, Codeception so it’s recommended to go through their docs:

	PHPUnit docs starting from chapter 2 [http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html].

	Codeception Unit Tests [http://codeception.com/docs/05-UnitTests].

Running basic and advanced template tests

If you’ve started with advanced template, please refer to “testing” guide [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
for more details about running tests.

If you’ve started with basic template, check its README “testing” section [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].

Framework unit tests

If you want to run unit tests for Yii framework itself follow
“Getting started with Yii 2 development [https://github.com/yiisoft/yii2/blob/master/docs/internals/getting-started.md]”.

 Security best practices

Security best practices

Below we’ll review common security principles and describe how to avoid threats when developing applications using Yii.
Most of these priciples are not unique to Yii alone but apply to website or software development in general,
so we you will also find links for further reading on the general ideas behind these.

Basic principles

There are two main principles when it comes to security no matter which application is being developed:

	Filter input.

	Escape output.

Filter input

Filter input means that input should never be considered safe and you should always check if the value you’ve got is
actually among allowed ones. For example, if we know that sorting could be done by three fields title, created_at and status
and the field could be supplied via user input, it’s better to check the value we’ve got right where we’re receiving it.
In terms of basic PHP that would look like the following:

$sortBy = $_GET['sort'];
if (!in_array($sortBy, ['title', 'created_at', 'status'])) {
 throw new Exception('Invalid sort value.');
}

In Yii, most probably you’ll use form validation to do alike checks.

Further reading on the topic:

	https://www.owasp.org/index.php/Data_Validation

	https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

Escape output

Escape output means that depending on context where we’re using data it should be escaped i.e. in context of HTML you
should escape <, > and alike special characters. In context of JavaScript or SQL it will be different set of characters.
Since it’s error-prone to escape everything manually Yii provides various tools to perform escaping for different
contexts.

Further reading on the topic:

	https://www.owasp.org/index.php/Command_Injection

	https://www.owasp.org/index.php/Code_Injection

	https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Avoiding SQL injections

SQL injection happens when query text is formed by concatenating unescaped strings such as the following:

$username = $_GET['username'];
$sql = "SELECT * FROM user WHERE username = '$username'";

Instead of supplying correct username attacker could give your applications something like '; DROP TABLE user; --.
Resulting SQL will be the following:

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'

This is valid query that will search for users with empty username and then will drop user table most probably
resulting in broken website and data loss (you’ve set up regular backups, right?).

In Yii most of database querying happens via Active Record which properly uses PDO prepared
statements internally. In case of prepared statements it’s not possible to manipulate query as was demonstrated above.

Still, sometimes you need raw queries or query builder. In this case you should use
safe ways of passing data. If data is used for column values it’s preferred to use prepared statements:

// query builder
$userIDs = (new Query())
 ->select('id')
 ->from('user')
 ->where('status=:status', [':status' => $status])
 ->all();

// DAO
$userIDs = $connection
 ->createCommand('SELECT id FROM user where status=:status')
 ->bindValues([':status' => $status])
 ->queryColumn();

If data is used to specify column names or table names the best thing to do is to allow only predefined set of values:

function actionList($orderBy = null)
{
 if (!in_array($orderBy, ['name', 'status'])) {
 throw new BadRequestHttpException('Only name and status are allowed to order by.')
 }

 // ...
}

In case it’s not possible, table and column names should be escaped. Yii has special syntax for such escaping
which allows doing it the same way for all databases it supports:

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";
$rowCount = $connection->createCommand($sql)->queryScalar();

You can get details about the syntax in Quoting Table and Column Names.

Further reading on the topic:

	https://www.owasp.org/index.php/SQL_Injection

Avoiding XSS

XSS or cross-site scripting happens when output isn’t escaped properly when outputting HTML to the browser. For example,
if user can enter his name and instead of Alexander he enters <script>alert('Hello!');</script>, every page that
outputs user name without escaping it will execute JavaScript alert('Hello!'); resulting in alert box popping up
in a browser. Depending on website instead of innocent alert such script could send messages using your name or even
perform bank transactions.

Avoiding XSS is quite easy in Yii. There are generally two cases:

	You want data to be outputted as plain text.

	You want data to be outputted as HTML.

If all you need is plain text then escaping is as easy as the following:

<?= \yii\helpers\Html::encode($username) ?>

If it should be HTML we could get some help from HtmlPurifier:

<?= \yii\helpers\HtmlPurifier::process($description) ?>

Note that HtmlPurifier processing is quite heavy so consider adding caching.

Further reading on the topic:

	https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Avoiding CSRF

CSRF is an abbreviation for cross-site request forgery. The idea is that many applications assume that requests coming
from a user browser are made by the user himself. It could be false.

For example, an.example.com website has /logout URL that, when accessed using a simple GET, logs user out. As long
as it’s requested by the user itself everything is OK but one day bad guys are somehow posting
 on a forum user visits frequently. Browser doesn’t make any difference between
requesting an image or requesting a page so when user opens a page with such img tag, the browser will send the GET request to that URL, and the user will be logged out from an.example.com.

That’s the basic idea. One can say that logging user out is nothing serious, but bad guys can do much more, using this idea. Imagine that some website has an URL http://an.example.com/purse/transfer?to=anotherUser&amount=2000. Accessing it using GET request, causes transfer of $2000 from authorized user account to user anotherUser. We know, that browser will always send GET request to load an image, so we can modify code to accept only POST requests on that URL. Unfortunately, this will not save us, because an attacker can put some JavaScript code instead of tag, which allows to send POST requests on that URL.

In order to avoid CSRF you should always:

	Follow HTTP specification i.e. GET should not change application state.

	Keep Yii CSRF protection enabled.

Sometimes you need to disable CSRF validation per controller and/or action. It could be achieved by setting its property:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $enableCsrfValidation = false;

 public function actionIndex()
 {
 // CSRF validation will not be applied to this and other actions
 }

}

To disable CSRF validation per custom actions you can do:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function beforeAction($action)
 {
 // ...set `$this->enableCsrfValidation` here based on some conditions...
 // call parent method that will check CSRF if such property is `true`.
 return parent::beforeAction($action);
 }
}

Disabling CSRF validation in standalone actions must be done in init()
method. Do not place this code into beforeRun() method because it won’t have effect.

<?php

namespace app\components;

use yii\base\Action;

class ContactAction extends Action
{
 public function init()
 {
 parent::init();
 $this->controller->enableCsrfValidation = false;
 }

 public function run()
 {
 $model = new ContactForm();
 $request = Yii::$app->request;
 if ($request->referrer === 'yiipowered.com'
 && $model->load($request->post())
 && $model->validate()
) {
 $model->sendEmail();
 }
 }
}

Warning: Disabling CSRF will allow any site to send POST requests to your site. It is important to implement extra validation such as checking an IP address or a secret token in this case.

Further reading on the topic:

	https://www.owasp.org/index.php/CSRF

Avoiding file exposure

By default server webroot is meant to be pointed to web directory where index.php is. In case of shared hosting
environments it could be impossible to achieve so we’ll end up with all the code, configs and logs in server webroot.

If it’s the case don’t forget to deny access to everything except web. If it can’t be done consider hosting your
application elsewhere.

Avoiding debug info and tools in production

In debug mode Yii shows quite verbose errors which are certainly helpful for development. The thing is that these
verbose errors are handy for attacker as well since these could reveal database structure, configuration values and
parts of your code. Never run production applications with YII_DEBUG set to true in your index.php.

You should never enable Gii or the Debug toolbar in production. It could be used to get information about database structure, code and to
simply rewrite code with what’s generated by Gii.

Debug toolbar should be avoided at production unless really necessary. It exposes all the application and config
details possible. If you absolutely need it check twice that access is properly restricted to your IP only.

Further reading on the topic:

	https://www.owasp.org/index.php/Exception_Handling

	https://www.owasp.org/index.php/Top_10_2007-Information_Leakage

Using secure connection over TLS

Yii provides features that rely on cookies and/or PHP sessions. These can be vulnerable in case your connection is
compromised. The risk is reduced if the app uses secure connection via TLS (often referred to as SSL [https://en.wikipedia.org/wiki/Transport_Layer_Security]).

Please refer to your webserver documentation for instructions on how to configure it. You may also check example configs
provided by the H5BP project:

	Nginx [https://github.com/h5bp/server-configs-nginx]

	Apache [https://github.com/h5bp/server-configs-apache].

	IIS [https://github.com/h5bp/server-configs-iis].

	Lighttpd [https://github.com/h5bp/server-configs-lighttpd].

Secure Server configuration

The purpose of this section is to highlight risks that need to be considered when creating a
server configuration for serving a Yii based website. Besides the points covered here there may
be other security related configuration options to be considered, so do not consider this section to
be complete.

Avoiding Host-header attacks

Classes like [[yii\web\UrlManager]] and [[yii\helpers\Url]] may use the [[yii\web\Request::getHostInfo()|currently requested host name]]
for generating links.
If the webserver is configured to serve the same site independent of the value of the Host header, this information may not be reliable
and may be faked by the user sending the HTTP request [https://www.acunetix.com/vulnerabilities/web/host-header-attack].
In such situations you should either fix your webserver configuration to serve the site only for specified host names
or explicitly set or filter the value by setting the [[yii\web\Request::setHostInfo()|hostInfo]] property of the request application component.

For more information about the server configuration, please refer to the documentation of your webserver:

	Apache 2: http://httpd.apache.org/docs/trunk/vhosts/examples.html#defaultallports

	Nginx: https://www.nginx.com/resources/wiki/start/topics/examples/server_blocks/

If you don’t have access to the server configuration, you can setup [[yii\filters\HostControl]] filter at
application level in order to protect against such kind of attack:

// Web Application configuration file
return [
 'as hostControl' => [
 'class' => 'yii\filters\HostControl',
 'allowedHosts' => [
 'example.com',
 '*.example.com',
],
 'fallbackHostInfo' => 'https://example.com',
],
 // ...
];

Note: you should always prefer web server configuration for ‘host header attack’ protection instead of the filter usage.
[[yii\filters\HostControl]] should be used only if server configuration setup is unavailable.

 Handling Errors

Handling Errors

Yii includes a built-in [[yii\web\ErrorHandler|error handler]] which makes error handling a much more pleasant
experience than before. In particular, the Yii error handler does the following to improve error handling:

	All non-fatal PHP errors (e.g. warnings, notices) are converted into catchable exceptions.

	Exceptions and fatal PHP errors are displayed with detailed call stack information and source code lines
in debug mode.

	Supports using a dedicated controller action to display errors.

	Supports different error response formats.

The [[yii\web\ErrorHandler|error handler]] is enabled by default. You may disable it by defining the constant
YII_ENABLE_ERROR_HANDLER to be false in the entry script of your application.

Using Error Handler

The [[yii\web\ErrorHandler|error handler]] is registered as an application component named errorHandler.
You may configure it in the application configuration like the following:

return [
 'components' => [
 'errorHandler' => [
 'maxSourceLines' => 20,
],
],
];

With the above configuration, the number of source code lines to be displayed in exception pages will be up to 20.

As aforementioned, the error handler turns all non-fatal PHP errors into catchable exceptions. This means you can
use the following code to deal with PHP errors:

use Yii;
use yii\base\ErrorException;

try {
 10/0;
} catch (ErrorException $e) {
 Yii::warning("Division by zero.");
}

// execution continues...

If you want to show an error page telling the user that his request is invalid or unexpected, you may simply
throw an [[yii\web\HttpException|HTTP exception]], such as [[yii\web\NotFoundHttpException]]. The error handler
will correctly set the HTTP status code of the response and use an appropriate error view to display the error
message.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

Customizing Error Display

The [[yii\web\ErrorHandler|error handler]] adjusts the error display according to the value of the constant YII_DEBUG.
When YII_DEBUG is true (meaning in debug mode), the error handler will display exceptions with detailed call
stack information and source code lines to help easier debugging. And when YII_DEBUG is false, only the error
message will be displayed to prevent revealing sensitive information about the application.

Info: If an exception is a descendant of [[yii\base\UserException]], no call stack will be displayed regardless
the value of YII_DEBUG. This is because such exceptions are considered to be caused by user mistakes and the
developers do not need to fix anything.

By default, the [[yii\web\ErrorHandler|error handler]] displays errors using two views:

	@yii/views/errorHandler/error.php: used when errors should be displayed WITHOUT call stack information.
When YII_DEBUG is false, this is the only error view to be displayed.

	@yii/views/errorHandler/exception.php: used when errors should be displayed WITH call stack information.

You can configure the [[yii\web\ErrorHandler::errorView|errorView]] and [[yii\web\ErrorHandler::exceptionView|exceptionView]]
properties of the error handler to use your own views to customize the error display.

Using Error Actions

A better way of customizing the error display is to use dedicated error actions.
To do so, first configure the [[yii\web\ErrorHandler::errorAction|errorAction]] property of the errorHandler
component like the following:

return [
 'components' => [
 'errorHandler' => [
 'errorAction' => 'site/error',
],
]
];

The [[yii\web\ErrorHandler::errorAction|errorAction]] property takes a route
to an action. The above configuration states that when an error needs to be displayed without call stack information,
the site/error action should be executed.

You can create the site/error action as follows,

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
];
 }
}

The above code defines the error action using the [[yii\web\ErrorAction]] class which renders an error
using a view named error.

Besides using [[yii\web\ErrorAction]], you may also define the error action using an action method like the following,

public function actionError()
{
 $exception = Yii::$app->errorHandler->exception;
 if ($exception !== null) {
 return $this->render('error', ['exception' => $exception]);
 }
}

You should now create a view file located at views/site/error.php. In this view file, you can access
the following variables if the error action is defined as [[yii\web\ErrorAction]]:

	name: the name of the error;

	message: the error message;

	exception: the exception object through which you can retrieve more useful information, such as HTTP status code,
error code, error call stack, etc.

Info: If you are using the basic project template or the advanced project template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md],
the error action and the error view are already defined for you.

Note: If you need to redirect in an error handler, do it the following way:

Yii::$app->getResponse()->redirect($url)->send();
return;

Customizing Error Response Format

The error handler displays errors according to the format setting of the response.
If the [[yii\web\Response::format|response format]] is html, it will use the error or exception view
to display errors, as described in the last subsection. For other response formats, the error handler will
assign the array representation of the exception to the [[yii\web\Response::data]] property which will then
be converted to different formats accordingly. For example, if the response format is json, you may see
the following response:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

You may customize the error response format by responding to the beforeSend event of the response component
in the application configuration:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

The above code will reformat the error response like the following:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

 Working with Forms

Working with Forms

This section describes how to create a new page with a form for getting data from users.
The page will display a form with a name input field and an email input field.
After getting those two pieces of information from the user, the page will echo the entered values back for confirmation.

To achieve this goal, besides creating an action and
two views, you will also create a model.

Through this tutorial, you will learn how to:

	create a model to represent the data entered by a user through a form,

	declare rules to validate the data entered,

	build an HTML form in a view.

Creating a Model

The data to be requested from the user will be represented by an EntryForm model class as shown below and
saved in the file models/EntryForm.php. Please refer to the Class Autoloading
section for more details about the class file naming convention.

<?php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

The class extends from [[yii\base\Model]], a base class provided by Yii, commonly used to
represent form data.

Info: [[yii\base\Model]] is used as a parent for model classes not associated with database tables.
[[yii\db\ActiveRecord]] is normally the parent for model classes that do correspond to database tables.

The EntryForm class contains two public members, name and email, which are used to store
the data entered by the user. It also contains a method named rules(), which returns a set
of rules for validating the data. The validation rules declared above state that

	both the name and email values are required

	the email data must be a syntactically valid email address

If you have an EntryForm object populated with the data entered by a user, you may call
its [[yii\base\Model::validate()|validate()]] to trigger the data validation routines. A data validation
failure will set the [[yii\base\Model::hasErrors|hasErrors]] property to true, and you may learn what validation
errors occurred through [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
 // Good!
} else {
 // Failure!
 // Use $model->getErrors()
}

Creating an Action

Next, you’ll need to create an entry action in the site controller that will use the new model. The process
of creating and using actions was explained in the Saying Hello section.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...existing code...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // valid data received in $model

 // do something meaningful here about $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // either the page is initially displayed or there is some validation error
 return $this->render('entry', ['model' => $model]);
 }
 }
}

The action first creates an EntryForm object. It then tries to populate the model
with the data from $_POST, provided in Yii by [[yii\web\Request::post()]].
If the model is successfully populated (i.e., if the user has submitted the HTML form), the action will call
[[yii\base\Model::validate()|validate()]] to make sure the values entered are valid.

Info: The expression Yii::$app represents the application instance,
which is a globally accessible singleton. It is also a service locator that
provides components such as request, response, db, etc. to support specific functionality.
In the above code, the request component of the application instance is used to access the $_POST data.

If everything is fine, the action will render a view named entry-confirm to confirm the successful submission
of the data to the user. If no data is submitted or the data contains errors, the entry view will
be rendered, wherein the HTML form will be shown, along with any validation error messages.

Note: In this very simple example we just render the confirmation page upon valid data submission. In practice,
you should consider using [[yii\web\Controller::refresh()|refresh()]] or [[yii\web\Controller::redirect()|redirect()]]
to avoid form resubmission problems [http://en.wikipedia.org/wiki/Post/Redirect/Get].

Creating Views

Finally, create two view files named entry-confirm and entry. These will be rendered by the entry action,
as just described.

The entry-confirm view simply displays the name and email data. It should be stored in the file views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>You have entered the following information:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

The entry view displays an HTML form. It should be stored in the file views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

The view uses a powerful widget called [[yii\widgets\ActiveForm|ActiveForm]] to
build the HTML form. The begin() and end() methods of the widget render the opening and closing
form tags, respectively. Between the two method calls, input fields are created by the
[[yii\widgets\ActiveForm::field()|field()]] method. The first input field is for the “name” data,
and the second for the “email” data. After the input fields, the [[yii\helpers\Html::submitButton()]] method
is called to generate a submit button.

Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=site%2Fentry

You will see a page displaying a form with two input fields. In front of each input field, a label indicates what data is to be entered. If you click the submit button without
entering anything, or if you do not provide a valid email address, you will see an error message displayed next to each problematic input field.

[image: Form with Validation Errors]

After entering a valid name and email address and clicking the submit button, you will see a new page
displaying the data that you just entered.

[image: Confirmation of Data Entry]

Magic Explained

You may wonder how the HTML form works behind the scene, because it seems almost magical that it can
display a label for each input field and show error messages if you do not enter the data correctly
without reloading the page.

Yes, the data validation is initially done on the client-side using JavaScript, and secondarily performed on the server-side via PHP.
[[yii\widgets\ActiveForm]] is smart enough to extract the validation rules that you have declared in EntryForm,
turn them into executable JavaScript code, and use the JavaScript to perform data validation. In case you have disabled
JavaScript on your browser, the validation will still be performed on the server-side, as shown in
the actionEntry() method. This ensures data validity in all circumstances.

Warning: Client-side validation is a convenience that provides for a better user experience. Server-side validation
is always required, whether or not client-side validation is in place.

The labels for input fields are generated by the field() method, using the property names from the model.
For example, the label Name will be generated for the name property.

You may customize a label within a view using
the following code:

<?= $form->field($model, 'name')->label('Your Name') ?>
<?= $form->field($model, 'email')->label('Your Email') ?>

Info: Yii provides many such widgets to help you quickly build complex and dynamic views.
As you will learn later, writing a new widget is also extremely easy. You may want to turn much of your
view code into reusable widgets to simplify view development in future.

Summary

In this section of the guide, you have touched every part in the MVC architectural pattern. You have learned how
to create a model class to represent the user data and validate said data.

You have also learned how to get data from users and how to display data back in the browser. This is a task that
could take you a lot of time when developing an application, but Yii provides powerful widgets
to make this task very easy.

In the next section, you will learn how to work with databases, which are needed in nearly every application.

 Làm việc với CSDL

Làm việc với CSDL

Phần này sẽ hướng dẫn làm thế nào để tạo mới trang có chức năng hiển thị dữ liệu các thành phố (country) và được lấy
từ bảng country nằm trong cơ sở dữ liệu. Để thực hành tốt bài hướng dẫn, bạn cần cấu hình các kết nối tới CSDL,
tạo class Active Record, taọ một action,
và tạo mới view.

Tóm tắt những nội dung chính:

	Cấu hình kết nối tới CSDL

	Đinh nghĩa lớp Active Record

	Sử dụng lớp Active Record để truy vấn dữ liệu

	Hiển thị và phân trang dữ liệu trên view

Lưu ý để thực hiện được bài hướng dẫn này, bạn cần có kiến thức về CSDL.
Riêng ở phần này, bạn cần có kiến thức về tạo mới CSDL, và làm thế nào để thực thi các câu lệnh SQL sử dụng công cụ ở phía client.

Chuẩn bị

Đầu tiên, bạn cần tạo mới CSDL tên là yii2basic, từ bây giờ bạn sẽ dùng CSDL này để lấy dữ liệu.
Yii hỗ trợ nhiều CSDL trong ứng dụng, bạn có thể dùng những CSDL như SQLite, MySQL, PostgreSQL, MSSQL hoặc Oracle. Để cho đơn giản,
MySQL sẽ được dùng trong bài hướng dẫn này.

Tiếp đến, tạo mới bảng vào CSDL tên là country , đồng thời chèn thêm dữ liệu. You may run the following SQL statements to do so:

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

Đến đây, bạn có CSDL là yii2basic, có chứa bảng country có 3 cột và 10 trường dữ liệu.

Cấu hình kết nối tới CSDL

Trước tiên, hãy chắc chắn rằng bạn đã cài 2 gói PHP PDO [http://www.php.net/manual/en/book.pdo.php] và
PDO driver dành cho các CSDL mà đang sử dụng(ví dụ pdo_mysql cho MySQL). Đối với các CSDL quan hệ thì những gói này
cần phải có.

Sau khi những yêu cầu trên được cài đặt, mở file config/db.php và thay đổi các tham số chính xác tới CSDL. Mặc định,
file sẽ có những đoạn code sau:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

File config/db.php là file điển hình dành cho cấu hình ứng dụng configuration. Các tham số được mô tả trong file
cần thiết để tạo mới và khởi tạo các thể hiện [[yii\db\Connection]] và thực hiện các câu lệnh truy vấn

Các thông tin cấu hình về CSDL ở trên được truy cập qua ứng dụng qua câu lệnh Yii::$app->db.

Lưu ý: File config/db.php sẽ chứa các thông tin chính trong việc cấu hình ứng dụng config/web.php,
Những thông tin làm thế nào để ứng dụng cần được khởi tạo.
Bạn có thể tham khảo thêm trong phần cấu hình ứng dụng .

Tạo mới class Active Record

Để thể hiện và thao tác với bảng dữ liệu country, ta tạo mới classActive Record-
tên là Country, và lưu vào file models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

Lớp Country được kế thừa từ [[yii\db\ActiveRecord]]. Bạn không cần viết bất kỳ đoạn mã nào vào phần này! Chỉ với đoạn mã trên,
Yii sẽ biết được tên bảng từ tên của lớp tương ứng.

Info: Nếu tên lớp không trùng với tên trong bảng dữ liệu, bạn có thể
ghi đè phương thức [[yii\db\ActiveRecord::tableName()]] để miêu tả rõ ràng về tên bảng dữ liệu.

Dùng lớp Country, bạn sẽ dễ dàng hơn trong việc thao tác với bảng country, ví dụ:

use app\models\Country;

// lấy danh sách tử bảng country và sắp xếp theo thuộc tính "name"
$countries = Country::find()->orderBy('name')->all();

// lấy dữ liệu có khóa là "US"
$country = Country::findOne('US');

// in kết quả "United States"
echo $country->name;

// thay đổi tên country thành "U.S.A." và lưu vào csdl
$country->name = 'U.S.A.';
$country->save();

Lưu ý: Active Record khá là mạnh cho việc truy cập csdl theo hướng lập trình hướng đối tượng.
Bạn có thể xem thêm ở mục Active Record. Cách khác, bạn có thể thao tác với csdl ở mức độ đơn giản hơn bằng việc truy cập qua đối tượng Data Access Objects.

Tạo hành động (action)

Để hiển thị dữ liệu country tới người dùng, bạn cần tạo mới hành động. Thay vì đặt các hành động ở site
controller, giống như đã làm ở phần trước, thì tạo controller mới có ý nghĩa hơn
đặc biệt liên quan tới dữ liệu về coutry. Tên controller là CountryController, và tạo mới
hành động index ở trong đó, bạn có thể tham khảo ở phần dưới.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Lưu nội dung đoạn mã trên vào file controllers/CountryController.php.

Hành động index sẽ gọi các phương thức Country::find(). Đây là phương thức nằm ở Active Record nhằm xây dựng câu lệnh truy vấn và lấy tất cả dữ liệu trong bảng country.
Để hạn chế số lượng dữ liệu mỗi khi gửi yêu cầu, đối tượng [[yii\data\Pagination]] sẽ phân trang dữ liệu.
Mục đích khi dùng đối tượng Pagination là:

	Thiết lập điều kiện offset và limit cho câu lệnh mỗi khi lấy liệu ra (mỗi lần chỉ hiển thị 5 kết quả).

	Dữ liệu được nhúng vào view để hiển thị số trang và bao gồm danh sách các button, sẽ được giải thích ở phần sau.

Xem những dòng cuối, hành động index sẽ đổ ra view có tên là index, đồng thời gửi dữ liệu về country và thông tin về phân trang.

Tạo View

Trong thư mục views, bước một tạo thư mục con là country. Thư mực này được dùng để giữ những view được đổ ra
từ controller country. Trong thư mục views/country, tạo mới file tên là index.php
và chứa đoạn mã sau:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->name} ({$country->code})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

View trên có 2 phần liên quan tới hiển thị dữ liệu về country. Phần đầu tiên, cung cấp danh sách country và in ra dưới dạng danh sách .
Phần tiếp, một widget [[yii\widgets\LinkPager]] được sinh ra và dùng các thông tin truyển từ action xuống để phân trang.
Đối tượng LinkPager là một widget có chức năng hiển thị danh sách các button. Mỗi khi click vào mỗi button này sẻ cập nhật lại dữ liệu country
ở mỗi trang tương ứng.

Xem demo

Truy cập vào Url sau và xem kết quả:

http://hostname/index.php?r=country/index

[image: Danh sách Country]

Hãy xem, bạn sẽ thấy một trang hiển thị 4 country. Phần dưới danh sách các country, bạn sẽ thấy các nút phân trang.
Nếu bạn click vào button “2”, bạn sẽ thấy 5 country khác trong CSDL: trang thứ 2 trong CSDL country.
Bạn để ý rằng URL trong trình duyệt cũng thay đổi.

http://hostname/index.php?r=country/index&page=2

Trong luồng xử lý này, đối tượng [[yii\data\Pagination|Pagination]] sẽ cung cấp tất cả những hàm cần thiết cho việc phân trang:

	Khởi tạo, đối tượng [[yii\data\Pagination|Pagination]] hiển thị ở trang đầu tiên , điều này được thực hiện câu lệnh truy vấn SELECT từ country
với mệnh đề LIMIT 5 OFFSET 0. Như kết quả trên, 5 country đầu tiên sẽ lấy ra và hiển thị.

	Widget [[yii\widgets\LinkPager|LinkPager]] sẽ tạo các buttons cùng với các URL(liên kết)
được tạo bởi phương thức [[yii\data\Pagination::createUrl()|Pagination]]. Các URL sẽ chứa tham số page, page sẽtương ứng với số trang khác nhau trong CSDL country.

	Nếu bạn click vào button “2”, route country/index được gọi và đồng thời route sẽ được gắn và giữ.
Đối tượng [[yii\data\Pagination|Pagination]] đọc số trang từ tham số page từ Url và thiết lập trang trang hiện tại là 2.
Việc truy vấn dữ liệu country tương tự như mệnh đề LIMIT 5 OFFSET 5 và trả về tiếp 5 country để hiển thị

Tổng kết

Bài hướng dẫn này, giúp bạn tìm hiểu và làm việc với CSDL. Bạn cũng được tìm hiều đối tượng [[yii\data\Pagination]] và [[yii\widgets\LinkPager]]. giúp cho việc
lấy và hiển thì dữ liệu trên trang.

Trong phần tới, bạn sẽ được tìm hiểu về công cụ generate code khá mạnh, được gọi là Gii,
giúp bạn nhanh chóng thực hiện một số tính năng tương tự, những hoạt động thao tác với các bảng trong CSDL như Tạo-Xem-Cập nhật-Xóa (CRUD)
. Trong thực tế, những mã nguồn được viết có thể tự động generate trong Yii sử dụng công cụ Gii.

 Sử dụng Gii để sinh code

Sử dụng Gii để sinh code

Trong phần này sẽ hướng dẫn sử dụng Gii để tự động sinh code, những mã nguồn tương tự với Web site
. Sử dụng Gii để tự động tạo mã nguồn thật đơn giản, bạn chỉ việc nhập thông tin đúng theo các hướng dẫn hiển thị trên các trang Web Gii và mã
nguỗn sẽ được sinh tự động.

Nội dung chính trong phần này:

	Nhúng Gii vào ứng dụng

	Dùng Gii để sinh Active Record

	Dùng Gii để sinh các mã nguồn CRUD cho các bảng CSDL

	Thay đổi các đoạn mã được sinh ra bởi Gii

Bắt đầu với Gii

Yii cung cấp Gii như một module. Bạn có thể nhúng Gii
bằng việc cấu hình các thuộc tính của ứng dụng ở phần [[yii\base\Application::modules|modules]] . Tùy thuộc vào ứng dụng của bạn, bạn có thể nhìn thấy được những đoạn mã sau được cung cấp trong file cấu hình config/web.php:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

Phần cấu hình trên được đề cập ở mục Môi trường phát triển,
ứng dụng bao gồm module tên là gii, nằm ở lớp [[yii\gii\Module]].

Nếu bạn xem qua file entry script web/index.php trong ứng dụng của bạn, bạn sẽ thấy dòng sau,
Điều này chủ yếu thiết lập tham số YII_ENV_DEV có giá trị true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Dựa vào dòng này, ứng dụng sẽ được thiết lập ở chế độ phát triển, và sẵn sàng nhúng Gii vào ứng dụng, ở mỗi cấu hình trên.
Bây giờ bạn có thể truy cập Gii qua đường dẫn:

http://hostname/index.php?r=gii

Lưu ý: Nếu bạn muốn truy cập Gii không chỉ từ localhost mà còn từ các máy khác, mặc định các truy cập sẽ bị từ chối
để đảm bảo sự an toàn hơn. Bạn có thể cấu hình Gii bằng việc thêm địa chỉ IP được phép gọi như sau,

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // thêm những địa chỉ ip
],

[image: Gii]

Sinh các lớp Active Record

Để dùng gii cho việc sinh các lớp Active Record, chọn “Model Generator” (bằng việc click vào link trên trang chính của Gii). Và điền các thông tin vào form như sau:

	Tên bảng: country

	Tên lớp: Country

[image: Sinh Model]

Tiếp đến, nhấn vào nút “Preview”. Bạn sẽ thấy class models/Country.php ở danh sách các class được tạo ra. Bạn phải chọn vào tên class để xem nội dung.

Khi sử dụng Gii, nếu bạn đã tạo file tương tự và cần được ghi đè lên,nhấp vào nút diff bên cạnh tên tập tin để thấy sự khác biệt giữa các mã được tạo ra và các phiên bản hiện tại.

[image: Model Generator Preview]

Khi bạn muốn ghi đè vào file đã có, kiểm tra tiếp ở ô “overwrite” và click vào nút “Generate”. Nếu bạn tạo mới file, bạn chỉ việc click vào nút “Generate”.

Tiếp theo, bạn sẽ thấy
một trang xác nhận cho thấy các mã đã được tạo thành công. Nếu đã tồn tại file, bạn cũng sẽ thấy một thông báo rằng nó đã được ghi đè bằng các mã mới được tạo ra.

Sinh các mã nguồn CRUD

CRUD là chuẩn cho việc Tạo mới (Create), Xem (Read), Cập nhật (Update), và Xóa (Delete), representing the four common tasks taken with data on most Web sites. To create CRUD functionality using Gii, select the “CRUD Generator” (bằng việc nhấn vào). Ví dụ với bảng “country”, điền các thông tin vào form như sau:

	Lớp Model: app\models\Country

	Lớp Search Model: app\models\CountrySearch

	Lớp Controller: app\controllers\CountryController

[image: CRUD Generator]

Tiếp đến, chọn vào nút “Preview”. Bạn sẽ thấy một danh sách các tập tin được tạo ra, như hình dưới.

[image: Xem CRUD Generator]

Nếu bạn đã tạo các file controllers/CountryController.php và
views/country/index.php trước đó (trong phần hướng dẫn về CSDL), kiểm tra nút “overwrite” để thay thế file đó. (Các phiên bản trước không hỗ trợ để sinh CRUD.)

Xem kết quả

Xem kết quả, dùng trình duyệt truy cập vào đường dẫn sau:

http://hostname/index.php?r=country/index

Bạn sẽ thấy dữ liệu bảng được hiển thị chứa các thông tin trong CSDL country. Bạn có thể sắp xếp các bảng,
hoặc lọc nội dụng bằng việc nhập các điều kiện cần lọc ở phần đầu bảng.

Mỗi dữ liệu country được hiển thị trên bảng, bạn có thể chọn để xem chi tiết, cập nhật, hoặc xóa.
Bạn cũng có thể “tạo mới Country”, click vào button ở phần trên cùng của bảng.

[image: Bảng Countries]

[image: Cập nhật Country]

Danh sách các file sau được sinh bởi Gii, bạn có thể dùng trong ứng dụng, hoặc chỉnh sửa chúng:

	Controller: controllers/CountryController.php

	Models: models/Country.php and models/CountrySearch.php

	Views: views/country/*.php

Thông tin: Công cụ Gii được xây dụng lên với việc phát triển ứng dụng nhanh và dễ mở rộng. Sử dụng nó một cách thích hợp
rất có thể đẩy nhanh tốc độ phát triển ứng dụng của bạn. Biết thêm thông tin, xem thêm ở phần Gii.

Tổng kết

Ở phần này, bạn đã học được cách sử dụng Gii để tạo ra mã thực hiện hoàn chỉnh
chức năng CRUD cho nội dung được lưu trữ trong một bảng cơ sở dữ liệu.

 Cài đặt Yii

Cài đặt Yii

Bạn có thể cài đặt Yii theo hai cách, dùng trình quản lý gói Composer [http://getcomposer.org/] hoặc tải toàn bộ mã nguồn Yii về.
Cách thứ nhất thường được khuyến khích dùng hơn, vì nó cho phép bạn cài đặt thêm các Gói mở rộng (extensions) hoặc cập nhật Yii đơn giản chỉ mới một dòng lệnh.

Mặc định, sau khi cài đặt Yii sẽ cung cấp cho bạn một số tính năng cơ bản, như đăng nhập (login), form liên hệ (contact form), vv.
Những tính năng trên đều được khuyến khích và sử dụng rộng rãi, vì thế, nó có thể hữu ích cho các dự án của bạn.

Trong bài hướng dẫn này và các phần tiếp theo, chúng ta sẽ tìm hiều cách cài ứng dụng Yii với tên Basic Application Template và
làm thế nào để triển khai các tính năng mới trên mẫu ứng dụng này. Yii đồng thời cũng cung cấp mẫu ứng dụng tên là Advanced Application Template
Template này hướng đến những đội dự án cần phát triển ứng dụng có nhiều tầng (multiple tiers).

Lưu ý: Basic Application Template thích hợp đến 90% cho việc phát triển web. Nó khác
với Advanced Application Template trong cách tổ chức mã nguồn. Nếu bạn là người mới tìm hiều về Yii, chúng tôi khuyến khích
bạn bắt đầu với Basic Application Template , ứng dụng này đơn giản và ít chức năng. Thích hợp hơn cho việc tìm hiểu về Yii.

Cài đặt qua trinh quản lý gói Composer

Nếu bạn chưa cài Composer, bạn có thể cài đặt theo đường link sau
getcomposer.org [https://getcomposer.org/download/]. Đối với hệ điều hành Linux và Mac OS X, bạn có thể chạy các lệnh sau đây:

curl -s http://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

Còn trên HĐH Windows, bạn có thể tải về và chạy Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Nếu bạn có bất kỳ thắc mắc hoặc muốn biết thêm và nghiên cứu chuyên sâu về Composer, vui lòng tham khảo Tài liệu Composer [https://getcomposer.org/doc/]

Nếu bạn đã cài Composer rồi, hãy chắc chắn rằng bạn đang sử dụng phiên bản mới nhất. Bạn có thể cập nhật Composer bằng cách thực hiện lệnh
composer self-update.

Sau khi cài đặt Composer, bạn có thể cài đặt Yii bằng cách chạy lệnh sau ở thư mục Web mà ứng dụng cần chạy:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

Câu lệnh đầu tiên sẽ cài đặt composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/]
và cho phép Composer có thể quản lý những package dependencies của bower và npm. Câu lệnh này chỉ cần chạy một lần.
Câu lệnh thứ hai sẽ cài đặt phiên bản Yii có tên là basic. Bạn có thể chọn một tên thư mục khác nếu bạn muốn.

Chú ý: Trong quá trình cài đặt Composer có thể yêu cầu thông tin đăng nhập từ tài khoản Github của bạn. điều này là bình thường bởi vì Composer
cần đầy đủ thông tin API rate-limit để lấy các thông tin gói phụ thuộc từ Github. Để biết thêm chi tiết,
xin vui lòng tham khảo Composer documentation [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens].

Thủ thuật: Nếu bạn muốn cài đặt phiên bản phát triển mới nhất của Yii, bạn có thể sử dụng lệnh sau để thay thế,
điều này chỉ cần thêm stability option [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Chú ý. phiên bản phát triển của Yii(dev version) không nên sử dụng cho mô trường ứng dụng bởi vì nó có thể phá vỡ các hoạt động trong code.

Cài đặt từ tập tin lưu trữ

Việc cài đặt Yii từ một tập tin lưu trữ bao gồm ba bước:

	Tải gói cài đặt từ yiiframework.com [http://www.yiiframework.com/download/].

	Giải nén file tải về vào một thư mục Web của ứng dụng cần chạy.

	Sửa đồi file config/web.php bởi nhập thông tin secret key cookieValidationKey ở mục cấu hình
(này được thực hiện tự động nếu bạn đang cài đặt Yii sử dụng Composer):

// !!! chèn một secret key trong phần sau (nếu rỗng) - Việc này là cần thiết để xác thực cookie trong ứng dụng
'cookieValidationKey' => 'Nhập secret key tuỳ chọn vào đây',

Các thiết lập cài đặt khác

Yii giới thiệu hai phương pháp cài đặt ở trên, những phương pháp này sẽ tạo ứng dụng Web.
.Đối với các dự án nhỏ hoặc cho việc học để sử dụng, đây là một điểm khởi đầu tốt.

Nhưng cũng có những phương pháp cài đặt khác:

	Nếu bạn chỉ muốn cài đặt các khung cốt lõi và muốn xây dựng toàn bộ một ứng dụng từ đầu,
bạn có thể làm theo hướng dẫn như đã hướng dẫn ở bài viết Building Application from Scratch.

	Nếu bạn muốn bắt đầu với một ứng dụng phức tạp hơn, phù hợp hơn với môi trường phát triển trong team bạn,
bạn có thể xem xét việc cài đặt mẫu ứng dụng Advanced Application Template.

Kết quả cài đặt

Sau khi cài đặt, bạn có thể sử dụng trình duyệt để truy cập ứng dụng Yii được cài đặt với URL dưới đây:

http://localhost/basic/web/index.php

URL này giả sử bạn đã cài đặt Yii trong một thư mục có tên basic, trực tiếp dưới thư mục gốc tài liệu máy chủ Web của bạn,
và rằng các máy chủ Web đang chạy trên máy tính cục bộ của bạn (localhost). Bạn có thể cần phải điều chỉnh nó trong môi trường cài đặt.

[image: Successful Installation of Yii]

Bạn sẽ có thể thấy trang hiển thị “Congratulations!” ở trình duyệt của ban. Còn không, xin vui lòng kiểm tra xem PHP đáp ứng cài đặt của bạn
Các yêu cầu Yii. Bạn có thể kiểm tra xem các yêu cầu tối thiểu được đáp ứng bằng một trong những phương pháp sau đây:

	Sử dụng trình duyệt để truy cập vào URL http://localhost/basic/requirements.php

	Chay câu lệnh như sau:

cd basic
php requirements.php

Bạn nên cấu hình cài đặt PHP của bạn để nó đáp ứng các yêu cầu tối thiểu của Yii. Diều quan trọng nhất, bạn nên có PHP 5.4 hoặc hơn. Bạn cũng nên cài đặt
các gói PDO PHP Extension [http://www.php.net/manual/en/pdo.installation.php] và một trình điều khiển cơ sở dữ liệu tương ứng
(như là pdo_mysql cho CSDL MySQL), nếu ứng dụng của bạn cần thao tác với CSLD.

Cấu hình máy chủ Web

Lưu ý: Lưu ý: Nếu bạn chỉ là chạy thử ứng dụng Yii thay vì được triển khai(deploying) trong một môi trường sản xuất,
bạn có thể bỏ qua phần này.

Các ứng dụng được cài đặt theo phương pháp trên, được chạy trong Windows, Max OS X, Linux hoặc máy chủ Apache HTTP [http://httpd.apache.org/]
hoặc Nginx HTTP server [http://nginx.org/] và PHP phiên bản 5.4 hoặc cao hơn đều có thể được chạy trực tiếp. Yii 2.0 cũng tương thích với HHVM,
do HHVM [http://hhvm.com/]của Facebook và PHP tiêu chuẩn trên các khía cạnh trong một vài nơi một với trường hợp hơi khác nhau,
khi sử dụng HHVM đòi hỏi ít thay đổi.

Trong môi trường máy chủ sản xuất, bạn có thể cấu hình máy chủ để ứng dụng có thể truy cập thông qua URL http://www.example.com/index.php
thay vì http://www.example.com/basic/web/index.php. Cấu hình này đòi hỏi các thư mục gốc tài liệu của máy chủ Web vào thư mục basic/web. Bạn cũng có thể ẩn index.php trên URL,
chi tiết trên URL phân tích và tạo ra một chương trình chiếu, bạn sẽ tìm hiểu làm thế nào để cấu hình Apache hoặc Nginx máy chủ để đạt được những mục tiêu này.

Lưu ý: Thiết lập basic/web như thư mục gốc, bạn có thể ngăn chặn người dùng truy cập vào các dữ liệu cá nhân và các thông tin nhạy cảm được lưu trữ
ở các thư mục con nằm trong basic/web. Từ chối truy cập vào các thư mục khác là một cải tiến bảo mật.

Lưu ý: Bạn nên điều chính cấu trúc ứng dụng của bạn để bảo mật tốt hơn, điều này cần thiếu nếu khi ứng dụng của ban chạy trên những hosting miễn phí, ở môi trường mà bạn
không có quyền thay đổi các thiết lập ở server Web. Tham khảo thêm ở phần sau để biết thêm chi tiết Shared Hosting Environment.

Các khuyến nghị khi cấu hình máy chủ Apache

Sử dụng các cấu hình sau đây trong file httpd.conf của Apache hoặc trong một cấu hình máy chủ ảo. Lưu ý rằng bạn nên
thay thế đường dẫn đường dẫn thực tế path/to/basic/web cho basic/web.

Thiết lập document root tới đường dẫn "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

Các khuyến nghị khi cấu hình Nginx

Để sử dụng Nginx [http://wiki.nginx.org/], bạn cần phải cài đặt FPM SAPI [http://php.net/install.fpm].
Bạn có thể cấu hình Nginx như sau, thay thế đường dẫn path/to/basic/web với đường dẫn thực tế ở
basic/web và mysite.local thay thế bằng tên máy chủ thực tế để cung cấp dịch vụ.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.local;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php?$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root/$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~ /\.(ht|svn|git) {
 deny all;
 }
}

Khi sử dụng cấu hình này, bạn cũng nên thiết lập cgi.fix_pathinfo=0 ở file php.ini
để tránh nhiều hệ thống không cần thiết stat() khi gọi hệ thống.

Cũng lưu ý rằng khi bạn chạy một máy chủ HTTPS, bạn cần phải thêm dòng fastcgi_param HTTPS on; vào file cấu hình
để Yii có thể hiểu ra những kết nối là an toàn.

 Looking Ahead

Looking Ahead

Nếu bạn đã đọc và thực hành các bài viết trong chuyên mục “Getting Started”, thì bạn có thể xây dựng ứng dụng Yii hoàn chỉnh. Trong những phần trước, bạn đã được tìm hiều để thực hiện một số chức năng cơ bản
, như lấy thông tin từ user qua form, thu thập thông tin từ CSDL, và hiển thị dữ liệu cùng với phân trang
. Bạn cũng được tìm hiểu sử dụng Gii đểsinh code tự động. Sử dụng Gii thật đơn giản chỉ việc điển các thông tin vào các form và gii sẽ sinh code tự động, và giảm tải số lượng lơn
các chức năng tương tự.

Trong phần này sẽ tổng hợp những tài nguyên về tìm hiểu Yii framework.

	Tài liệu tham khảo
	Giới thiệu tổng quan [http://www.yiiframework.com/doc-2.0/guide-README.html]:
Như tiêu đề, các hướng dẫn sẽ cung cấp tổng quan về sử dụng Yii và cách thức Yii hoạt động
. Đây là các hướng dẫn quan trọng để bắt đầu với Yii, vì vậy bạn cần tìm hiểu trước khi đi sâu và viết code về Yii.

	Thông tin chi tiết Class [http://www.yiiframework.com/doc-2.0/index.html]:
Phần này sẽ mô tả và cách dùng các class được cung cấp bởi Yii. Phần này là quan trọng khi bạn viết code và muốn hiểu về cách dùng từng phần trong lớp, phương thức,
các thuộc tính. Tham khảo cách dùng các lớp sẽ giúp bạn hiểu sâu về từng phần trong framework.

	Các bài hướng dẫn khác [http://www.yiiframework.com/wiki/?tag=yii2]:
Các bài hướng dẫn được viết bởi những người có kinh nghiệm về lập trình Yii. Hầu hết trong số đó, được viết theo những kinh nghiệm lập trình lâu năm.
, và đưa ra các giải pháp về từng phần, vấn đề khi lập trình Yii. Các bài viết có thể không chi tiết và dễ hiểu như phần giới thiệu, tuy nhiên các bài viết có
những chủ đề rộng hơn và thường có những ví dụ và giải pháp với các vấn đề lập trình.

	Sách [http://www.yiiframework.com/doc/]

	Extensions [http://www.yiiframework.com/extensions/]:
Yii tự hào có một thư viện của hàng ngàn các phần mở rộng với sự đóng góp lớn của cộng động, bạn có thể dễ dàng tích hợp vào các ứng dụng của bạn, do đó làm cho phát triển ứng dụng của bạn nhanh hơn và dễ dàng hơn.

	Cộng dồng
	Diễn đàn: http://www.yiiframework.com/forum/

	IRC chat: The #yii channel on the freenode network (irc://irc.freenode.net/yii)

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

 The Definitive Guide to Yii 2.0

The Definitive Guide to Yii 2.0

Các hướng dẫn được phát hành theo Các điều khoản về tài liệu Yii [http://www.yiiframework.com/doc/terms/].

Tất cả bản quyền đã được bảo hộ (All Rights Reserved).

2014 (c) Yii Software LLC.

Giới thiệu

	Về Yii

	Hướng dẫn nâng cấp lên từ phiên bản 1.1

Bắt đầu

	Cài đặt Yii

	Thực hiện chạy ứng dụng

	Viết chương trình đầu tiên

	Làm việc với Forms

	Làm việc với Databases

	Sử dụng Gii để sinh mã tự động

	Nâng cao

Kiến trúc ứng dụng (Application Structure)

	Tổng quan về kiến trúc ứng dụng

	Mục Scripts

	Ứng dụng (Applications)

	Các thành phần bên trong ứng dụng

	Controllers

	Models

	Views

	Modules

	Bộ lọc (Filters)

	Widgets

	Assets

	Phần mở rộng (Extensions)

Xử lý yêu cầu (Handling Requests)

	Tổng quan

	Khởi động

	Định tuyến (Routing) và khởi tạo đường dẫn (URL Creation)

	Yêu cầu (Requests)

	Kết quả (Responses)

	Sessions và Cookies

	Xử lý lỗi (Handling Error)

	Logging

Các khái niệm chính

	Thành phần (Components)

	Thuộc tính (Properties)

	Sự kiện (Events)

	Hành vi (Behaviors)

	Cấu hình (Configurations)

	Bí danh (Aliases)

	Lớp tự động nạp (Autoloading)

	Service Locator

	Dependency Injection Container

Làm việc với Databases

	Data Access Objects: Kết nối cơ sở dữ liệu, truy vấn cơ bản, giao dịch và phương thức hoạt động

	Query Builder: Sử dụng một truy vấn đơn giản, các lớp cơ sở dữ liệu trừu tượng

	Active Record: The Active Record ORM, truy vấn và thao tác với dữ liệu, định nghĩa các mối quan hệ giữa các bảng

	Migrations: Cung cấp cho đội dự án một công cụ dễ dàng trong việc quản lý những schema CSDL trong ứng dụng

	TBD Sphinx

	TBD Redis

	TBD MongoDB

	TBD ElasticSearch

Nhận dữ liệu từ user

	Tạo mới Forms

	Kiểm tra dữ liệu đầu vào (Validating Input)

	File Upload

	Thu thập dữ liệu từ danh sách đầu vào (Đang phát triển)

	Lấy dữ liệu cho nhiều Models (Chưa giải quyết)

Hiển thị dữ liệu

	Định dạng dữ liệu (Data Formatting)

	Phân trang (Pagination)

	Sắp xếp (Sorting)

	Cung cấp dữ liệu ra (Data Providers)

	Dữ liệu Widgets

	làm việc với Client Scripts

	Giao diện (Theming)

Bảo mật (Security)

	Xác thực (Authentication)

	Quyền (Authorization)

	Các thao tác xử lý với Passwords (Đang phát triển)

	Auth Clients

	Best Practices

Bộ nhớ Cache

	Tổng quan

	Cache dữ liệu

	Fragment Caching

	Page Caching

	HTTP Caching

RESTful Web Services

	Bắt đầu

	Tài nguyên (Resources)

	Bộ điều khiển (Controllers)

	Routing

	Định dạng thông điệp gửi đi (Response Formatting)

	Xác thực (Authentication)

	Rate Limiting

	Phiên bản (Version)

	Error Handling

Công cụ phát triển (Development Tools)

	Thanh công cụ gỡ lỗi và sửa lỗi (Debug Toolbar và Debugger)

	Sử dụng Gii để tạo code

	TBD Tạo tài liệu về API

Testing

	Tổng quan

	Thiết lập môi trường

	Unit Tests

	Kiểm tra chức năng (Functional Tests)

	Acceptance Tests

	Fixtures

Chủ đề năng cao

	Advanced Application Template

	Building Application from Scratch

	Giao diện dòng lệnh (Console Commands)

	Core Validators

	Quốc tế hóa (Internationalization)

	Thư (Mailing)

	Tối ưu hiệu năng ứng dụng (Performance Tuning)

	Shared Hosting Environment

	Template Engines

	Tích hợp mã nguồn của bên thứ ba (Working with Third-Party Code)

Widgets

	GridView: TBD liên kết tới trang demo

	ListView: TBD liên kết tới trang demo

	DetailView: TBD liên kết tới trang demo

	ActiveForm: TBD liên kết tới trang demo

	Pjax: TBD liên kết tới trang demo

	Menu: TBD liên kết tới trang demo

	LinkPager: TBD liên kết tới trang demo

	LinkSorter: TBD liên kết tới trang demo

	Bootstrap Widgets

	jQuery UI Widgets

Helpers

	Tổng quan

	ArrayHelper

	Html

	Url

 Tổng quan về kiến trúc ứng dụng

Tổng quan về kiến trúc ứng dụng

Các ứng dụng Yii được tổ chức dựa theo mẫu thiết kế model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller]
. Models chứa nghiệp vụ logic, truy xuất database và định nghĩa các quy tắc xác thực dữ liệu; views
đảm nhận việc hiển thị thôn tin của model; và controllers có nhiệm vụ điều hướng các yêu cầu và chuyển các tương tác giữa
models và views.

Ngoài mô hình MVC, ứng dụng Yii có những phần phần sau đây:

	entry scripts: là file đầu tiên chứa các mã nguồn để tiếp nhận các request của người dùng.
Thành phần này có trách nhiệm bắt đầu về chu trình xử lý các yêu cầu trong ứng dụng.

	ứng dụng: là đối tượng có phạm vi truy cập toàn cục giúp quản lý các thành phần trong ứng dụng
và điều hướng chúng để thực hiện các yêu cầu.

	thành phần: là đối tượng được đăng ký với ứng dụng
và cung cấp những dịch vụ cho các yêu cầu xử lý .

	modules: là những gói có chứa mô hình MVC hoàn chỉnh.
Một ứng dụng có thể được tổ chức dưới dạng nhiều module.

	filters: chứa những mã nguồn cần được gọi trước và sau việc xử lý của từng yêu cầu của bộ điều khiển
handling of each request by controllers.

	widgets: các đối tượng được nhúng vào views. Các widget có thể chứa các nghiệp vụ logic
và có thể tái sử dụng ở những view khác.

Mô hình sau mô tả cấu trúc ứng dụng ở dạng tĩnh:

[image: Static Structure of Application]

 Chạy ứng dụng

Chạy ứng dụng

Sau khi cài đặt Yii, ứng dụng Yii của bạn đã được chạy, tùy thuộc vào cấu hình bạn có thể truy cập qua URL http://hostname/basic/web/index.php
hoặc http://hostname/index.php. Bài hướng dẫn này sẽ mô tả chức năng của ứng dụng và cách tổ chức code trong ứng dụng,
và làm thế nào để xử lý các yêu cầu của ứng dụng.

Lưu ý: Để đơn giản, xuyên suốt các bài hướng dẫn “Getting Started” này, giả sử rằng chúng ta đã thiết lập basic/web
như thư mục gốc trong máy chủ Web, và cấu hình URL dể truy cập vào ứng dụng của ban thành
http://hostname/index.php hoặc điều tương tự. Tùy theo yêu cầu của bạn, bạn hãy điều chình
URLs sao cho phù hợp với ứng dụng.

Chức năng

Mẫu ứng dụng Basic Application bao gồm 4 trang cơ bản:

	Trang chủ (homepage), được hiển thị khi bạn truy cập vào URL http://hostname/index.php,

	Trang “About”,

	Trang “Contact”, trang hiển thị form contact cho phép user liên hệ với bạn qua email,

	Trang “Login”, trang hiển thị form login cho phép bạn có thể xác thực user. Hãy thử đăng nhập với
thông tin “admin/admin”, và bạn sẽ thấy tên “Login” ở menu chính thay đổi thành “Logout”.

Những trang trên đều có cùng phần header và footer. Phần header chứa main menu bar cho phép điều hướng giữa các trang.

Ở dưới cùng của trình duyệt, bạn có thể thấy một thanh công cụ. Đây là một công cụ gỡ lỗi debugger tool rất hữu ích
được cung cấp bởi Yii, bạn có thể ghi lại và hiển thị một lượng lớn các thông tin gỡ lỗi,
chẳng hạn như thông tin đăng nhập, tình trạng phản ứng, các câu lệnh truy vấn cơ sở dữ liệu, và như vậy.

Ngoài ra, các ứng dụng web có các script từ dòng lệnh (console) tên là yii, được nằm ở ứng dụng cơ sở.
Những script này có thể dùng chạy nền và bảo trì chức năng ứng dụng, thông tin mô tả thêm Console Application Section.

Cấu trúc ứng dụng (Application Structure)

Những thư mục và tập tin quan trọng nhất của ứng dụng (giả sử thư mục gốc của ứng dụng tên là basic):

basic/ Thư mục gốc ứng dụng
 composer.json Tập tin cấu hình Composer, mô tả thông tin gói
 config/ Chứa các cấu hình ứng dụng và cấu hình khác
 console.php thông tin cấu hình ứng dụng giao diện console
 web.php thông tin cấu hình ứng dụng Web
 commands/ chứa các lớp lệnh console
 controllers/ Chứa các lớp điều khiển (controller)
 models/ Chứa các lớp model
 runtime/ chứa các file được sinh ra bởi Yii trong quá trình chạy, chẳng hạn như đăng nhập và file của bộ nhớ cache
 vendor/ chứa các gói cài đặt Composer Package, bao gồm cả Yii framework
 views/ chứa các file về view
 web/ Thư mục gốc ứng dụng Web, chứa các file truy cập Web
 assets/ chứa tập tin tài nguyên Yii (javascript và css)
 index.php tập tin thực thi ứng dụng (hoặc bootstrap)
 yii Giao diện điều khiển lệnh script (Yii console)

Nói chung, những tập tin trong ứng dụng có thể chia thành hai loại: tập tin nằm trong thư mục basic/web và những tập
tin nằm ở thư mục khác. Trước dây có thể truy cập trực tiếp qua HTTP (chẳng hạn như một trình duyệt), tuy nhiên sau này không thể truy cập và không nên có.

Yii thực thi theo mẫu thiết kế model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller],
Điều này được phản ánh trong cấu trúc đường dẫn ở trên. Thư mục models chứa tất cả lớp dữ liệu (model),
còn thư mục views sẽ chứa tất cả view scripts, và thư mục controllers chứa tất cả
lớp điều khiển (controller classes).

Biểu đồ sau đây cho thấy cấu trúc tĩnh của một ứng dụng:

[image: Static Structure of Application]

Mỗi ứng dụng sẽ có một mục đầu vào (Entry Script) web/index.php như vậy việc truy cập vào ứng dụng Web chỉ được phép truy cập qua mục này.
Entry script tiếp nhận các request và tạo mới ứng dụng (application) để xử lý.
Các ứng dụng giải quyết các request cùng với các thành phần (components),
và gửi các request tới các phần tử trong mô hình MVC. Các Widgets sẽ được sử dụng ở views
để đơn giản hơn việc xây dựng các giao diện phức tạp.

Chu trình xứ lý yêu cầu

Biểu đồ dưới đây cho thấy làm thế nào một ứng dụng để xử lý các yêu cầu:

[image: Request Lifecycle]

	User tạo yêu cầu (request) tới mục script web/index.php.

	Entry script tải các cấu hình (configuration) ứng dụng và tạo mới
ứng dụng để khởi tạo để xử lý yêu cầu.

	Ứng dụng lấy thông tin route được yêu cầu cùng với những thành phần (component)
cần xử lý các request.

	Ứng dụng tạo mới controller khởi tạo để xử lý yêu cầu.

	Bộ điều khiển (controller) tạo mới các action (hành động) khởi tạo và thực hiện các bộ lọc cho các hành động.

	Nếu bất kỳ bộ lọc nào bị lỗi, action sẽ bị hủy.

	Nếu bất kỳ bộ đạt, action sẽ được thực thi.

	Action sẽ tải dữ liệu từ data model, có thể từ CSDL.

	Action sẽ tạo mới View, đồng thời cung cấp dữ liệu cho nó .

	Kết quả việc tạo mới view sẽ trả vê một thành phần ứng dụng response .

	Thành phần response gửi kết quả đến trình duyệt của người dùng và hiển thị kết quả.

 Yii là gì

Yii là gì

Yii là một PHP Framework mã nguồn mở và hoàn toàn miễn phí, có hiệu năng xử lý cao, phát triển tốt nhất trên các ứng dụng Web 2.0, sử dụng tối đa các thành phần (component-based PHP framework) để tăng tốc độ viết ứng dụng.
Tên Yii (được phát âm là Yee hoặc [ji:]) ở Trung Quốc có nghĩa là “thật đơn giản và luôn phát triển”. Nghĩa thứ hai có thể đọc ngắn gọn là Yes It Is!

Yii thích hợp nhất để làm gì?

Yii, nói chung, là một framework phát triển ứng dụng Web nên có thể dùng để viết mọi loại ứng dụng Web
và sử dụng ngôn ngữ lập trình PHP. Yii rất nhẹ và được trang bị giải pháp cache tối ưu nên đặc biệt
hữu dụng cho ứng dụng web có dung lượng dữ liệu trên đường truyền lớn như web portal, forum, CMS, e-commerce,
các dự án thương mại điện tử và các dịch vụ Web RESTful..

So sánh Yii Với các Frameworks khác?

Nếu bạn có kinh nghiệm làm việc với các framework khác, bạn sẽ rất vui mừng khi thấy những nỗ lực của Yii:

	Giống như những PHP frameworks khác, Yii sử dụng mô hình MVC (Model-View-Controller) tổ chức code một cách hợp lý và có hệ thống.

	Yii tạo ra code đơn giản và thanh lịch, đây là triết lý trong chương trình. Yii sẽ không bao giờ
cố gắng tạo ra những mấu thiết kế quá an toàn và ít có sự thay đổi.

	Yii là framework hoàn chỉnh, cung cấp nhiều tính năng và được xác minh như: query builders, thao tác dữ liệu với
ActiveRecord được dùng cho CSDL quan hệ và NoSQL; hỗ trợ phát triển RESTful API; sự hỗ trợ đa bộ nhớ cache; và nhiều hơn.

	Yii rất dễ mở rộng. Bạn có thể tùy chình hoặc thay thế bất kỳ một trong những bộ code chuẩn. Bạn cũng có thể
tận dụng lợi thế của kiến trúc mở rộng chuẩn Yii để sử dụng hoặc phát triển mở rộng phân phối..

	Hiệu suất cao luôn luôn là một trong những mục tiêu chính của Yii.

Yii không chỉ được phát triển từ một người, nó được hỗ trợ bởi đội ngũ phát triển cốt lõi mạnh mẽ [http://www.yiiframework.com/about/], cũng như một cộng đồng lớn, trong đó các chuyên gia liên tục
đóng góp cho sự phát triển của Yii. Nhóm nghiên cứu phát triển Yii giữ một mắt đóng trên các xu hướng phát triển Web mới nhất và trên thực hành tốt nhất và
các tính năng được tìm thấy trong các khuôn khổ và các dự án khác. Các thực hành tốt nhất và các tính năng được tìm thấy ở những nơi khác có liên quan nhất thường xuyên
được đưa vào khuôn khổ lõi và tiếp xúc thông qua giao diện đơn giản và thanh lịch.

Các phiên bản Yii

Yii Hiện nay có hai phiên bản chính: 1.1 và 2.0. Phiên bản 1.1 là phiên bản cũ và bây giờ là trong chế độ bảo trì. Tiếp đến, phiên bản 2.0 là phiên bản đuọc viết lại hoàn toàn Yii, sử dụng các
công nghệ mới và giao thức mới, bao gồm trình quản lý gói Composer, các tiêu chuẩn code PHP PSR, namespaces, traits, và như vậy. Phiên bản 2.0 đại diện cho sự hình thành của framework
và sẽ nhận được những nỗ lực phát triển chính trong vài năm tới.
Hướng dẫn này chủ yếu là về phiên bản 2.0.

Yêu cầu hệ thống và các điều kiện cần thiết

Yii 2.0 đòi hỏi phiên bản PHP 5.4.0 hoặc cao hơn. Bạn có thể chạy bất kỳ gói Yii đi kèm với các yêu cầu hệ thống.
kiểm tra xem những gì các đặc điểm cụ thể của từng cấu hình PHP.

Để tìm hiểu Yii, bạn cần có kiến thức cơ bản về lập trình hướng đối tượng (OOP), vì Yii là một framework hướng đối tượng
thuần túy. Yii 2.0 cũng sử dụng các tính năng PHP mới nhất, chẳng hạn như namespaces [http://www.php.net/manual/en/language.namespaces.php] và traits [http://www.php.net/manual/en/language.oop5.traits.php].
Hiểu được những khái niệm này sẽ giúp bạn nhanh chóng nắm bắt Yii 2.0.

 Bắt đầu ứng dụng với lời chào Hello

Bắt đầu ứng dụng với lời chào Hello

Phần này sẽ mô tả làm thế nào để tạo ra một trang Web mới trong ứng dụng của bạn cùng với lời chào “Hello”.
Để đạt được mục tiêu này. bạn sẽ cần tạo mới một action và
một view:

	Ứng dụng sẽ gửi đi các request từ trang Web để tới các action

	và action sẽ tạo mới View để hiển thị lời chào “Hello” tới user.

Thông qua bài hướng dẫn này, bạn sẽ nắm vững ba điều:

	Làm thế nào để tạo ra một action để đáp ứng các requests,

	Làm thế nào để tạo ra view để xây dựng nội dung các thông điệp, và

	Cách ứng dụng gửi đi các request tới các actions.

Tạo Action

Với nhiệm vụ tạo ra thông điệp “Hello”, bạn sẽ tạo một action say, action này
sẽ lấy các tham số message từ request và hiển thị thông điệp trở lại user. Nếu request không cung cấp tham số message,
action sẽ mặc định hiển thị thông điệp “Hello”.

Lưu ý: Hành động (Actions) là người dùng cuối có thể truy cập các đối tượng và thực hiện trực tiếp.
Các Actions được nằm trong bộ điều khiển (controllers).
Các kết quả của một action là người sử dụng cuối cùng nhận được các thông điệp.

Các Actions cần phải được khai báo ở controllers. Để cho đơn giản, bạn có thể khai báo
action say ở controller SiteController. Controller này được khai báo ở trong
lớp controllers/SiteController.php. Action mới cần tạo nằm ở đoạn code sau:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...existing code...

 public function actionSay($message = 'Hello')
 {
 return $this->render('say', ['message' => $message]);
 }
}

Trong đoạn code trên, action say đinh nghĩa phương thức có tên là actionSay nằm trong lớp SiteController.
Yii sử dụng tiền tố action để phân biệt các phương thức thuộc action từ các phương thức không phải là action trong một lớp điều khiển.
Tên nằm sau action là tiền tố ánh xạ tới các action’s ID.

Để hiểu được quy tắc đặt tên cho actions, Bạn nên hiểu cách hoạt động Yii xử lý với các action IDs. Mỗi Action IDs luôn luôn là những ký tự
thường. Nếu action ID đòi hỏi nhiều từ, chúng ta sẽ nối những từ đó bằng dấu gạch ngang (ví dụ, create-comment). Tên phương thức của action
sẽ được ánh xa tới action IDs bởi loại bỏ bất kỳ dấu gạch ngang từ IDs, dấu gạch ngang được thêm vào từ chữ cái in hoa đầu tiên trong mỗi từ, và từ đứng trước action. Ví dụ,
với action ID create-comment tương ứng tới action có phương thức tên là actionCreateComment.

Trong ví dụ này, phương thức của action nhận tham số $message, mặc đinh giá trị là "Hello" (Như việc bạn có thể thiết
lập các giá trị mặc định cho bất kỳ tham số cho các hàm hoặc phương thức trong PHP). Mỗi khi ứng dụng
nhận request và xác đinh là action chịu trách nhiệm cho xử lý các yêu cầu là action say , ứng dung
sẽ lưu trữ tham số này cùng với tên tham số được tìm thấy trong request. Nói cách khác, nếu request bao gồm
tham số message theo cùng với giá trị "Goodbye", biến $message tương ứng trong action sẽ được gán giá trị.

Phương thức [[yii\web\Controller::render()|render()]] nằm trong mỗi action được gọi để trả về một view
có tên là say. Tham số message luôn luôn được gửi qua view để xem nó có được dùng hay không. Kết quả việc render được
thực hiện trong mỗi action. Ứng dụng sẽ nhận kết quả này và hiển thị tới user trên trình duyệt (như là một trang HTML đầy đủ).

Tạo mới View

Views đảm nhận việc hiển thị thông tin và tương tác với người dùng. Để thực hiện yêu câu hiển thị
lời chào “Hello”, bạn cần phải tạo một view say có chức năng hiển thị tham số message, tham số này được nhận từ action gửi đến:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

Bạn cần lưu trữ view say nằm ở đường dẫn views/site/say.php. Mỗi khi phương thức [[yii\web\Controller::render()|render()]]
được gọi ở action, nó sẽ tìm kiếm tập tin PHP nằm ở đường dẫn views/ControllerID/ViewName.php.

Lưu ý rằng, đoạn code trên, biến message đã được phương thức [[yii\helpers\Html::encode()|HTML-encoded]]
mã hóa trước khi được in ra. Việc mã hóa là cần thiết khi gửi các tham số tới user, các tham số này có thể bị tấn công qua
XSS (cross-site scripting) [http://en.wikipedia.org/wiki/Cross-site_scripting] đây là kỹ thuật tấn công bằng cách chèn chèn các
thẻ HTML hoặc đoạn mã JavaScript độc hại.

Tất nhiên, bạn có thể thêm các nội dung ở view say.Nội dung bao gồm các thẻ HTML, dữ liệu văn bản, và cũng có thể là các câu lệnh PHP.
Trên thực tế, view say chỉ là các đoạn mã PHP được thực thi bởi phương thức [[yii\web\Controller::render()|render()]].
Nội dung được gửi ra từ view sẽ được gửi tới ứng dụng (application) như những phản hồi kết quả.
Sau đó ứng dụng sẽ gửi kết quả tới user.

Trying it Out

Sau khi đã tạo action và view, bạn có thể truy cập vào trang bởi việc truy cập vào URL sau:

http://hostname/index.php?r=site/say&message=Hello+World

[image: Hello World]

URL này sẽ trả về một trang và hiển thị lời chào “Hello World”. Trang này có cùng phần header và footer như những trang khác trong ứng dụng.

Nếu bạn không nhập tham số message vào URL, bạn chỉ xem thấy mỗi dòng “Hello” được hiển thị. Bởi vì tham số message được thông qua phương thức actionSay(), và mỗi khi tham số này không được nhập,
thì giá trị mặc đinh "Hello" sẽ được thay thế.

Lưu ý: Trang này có cùng phần header và footer như những trang khác là bởi vì phương thức [[yii\web\Controller::render()|render()]]
sẽ tự động nhúng nội dung của view say vào một layout layout này nằm ở views/layouts/main.php.

Tham số r ở trên URL sẽ được giải thích thêm. Nó là chuẩn cho bộ định tuyến route, mỗi ứng dụng sẽ cung cấp ID
tương ứng với từng action. Với các đinh dạng router ControllerID/ActionID. Khi ứng dụng nhận request, ứng dụng sẽ kiểm tra các tham số
theo cùng request đó, sử dụng ControllerID để xác định lớp điều khiển để xử các request. Sau đó, bộ điều khiển sẽ
xác dịnh ActionID cần được khởi tạo để xử lý công việc. Trong ví dụ này, route site/say
sẽ gán (ám chỉ tới) bộ điều khiển SiteController và action say. Điều này sẽ có kết quả là, phương thức SiteController::actionSay() sẽ được gọi để xử lý các request.

Lưu ý: Giống như actions, ứng dụng sử dụng các định danh ID để nhận diện các controller. Các Controller ID
có quy tắc đặt tên giống với các action IDs. Tên của controller được chuyển đổi từ các controller IDs
bằng việc loại bỏ dấu gạch ngang từ đinh danh ID, tận dụng các chữ cái đầu tiên trong mỗi từ,
và từ đứng trước Controller. Ví dụ, bộ điều khiển controller ID có tên là post-comment sẽ tương ứng
với controller là PostCommentController.

Tổng kết

Qua phần này, bạn đã thao tác với phần controller và view nằm trong mẫu thiết kế MVC.
Bạn đã tạo một action thuộc phần của controller để xử lý các request . Và bạn cũng đã tạo được view cho việc
hoàn thành nội dung trong thông điệp trả về . Trong ví dụ đơn giản này, không có model được sử dụng để thao tác dữ liệu mà chỉ sử dụng tham số message.

Bạn cũng đã học được router trong Yii, cái mà có vai trò quan trọng trong việc thiết lập kết nối giữa user và các controller actions.

Trong phần tiếp , bạn sẽ tìm hiểu cách tạo một model, và thêm mới các trang có chứa HTML form.

 Làm việc với Forms

Làm việc với Forms

Ở phần này sẽ hướng dẫn làm thế nào để tạo mới trang Web cho phép ứng dụng lấy các thông tin về user từ form.
Trang này sẽ có chức năng hiển thị form cho user cùng với các input như name (tên người dùng) và email.
Sau khi nhận hai thông tin về user, trang web sẽ hiển thị thông tin tới user.

Để làm được trang web này, bên cạnh tạo ra action và
hai giao diện views, bạn cần phải tạo ra đối tượng model để xử lý các nghiệp vụ logic truy xuất CSDL.

Trong phần này, bạn sẽ được tìm hiểu về:

	Tạo đối tượng model nhận thông tin từ user được nhập từ form

	Khai báo rules để xách minh dữ liệu nhập vào

	Xây dựng form HTML ở view

Tạo Model

Dữ liệu của user cần xử lý sẽ đại diện bởi lớp model EntryForm sau đây và
được lưu ở file models/EntryForm.php. Tham khảo thêm về phần Class Autoloading
để biết thêm chi tiết về quy tắc đặt tên cho các lớp.

<?php

namespace app\models;

use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

Lớp trên được kế thừa từ lớp [[yii\base\Model]], lớp này được Yii cung cấp , thường được dùng cho việc xử lý dữ liệu từ form.

Lưu ý: [[yii\base\Model]] là lớp cơ sở cho việc tương tác với các lớp dữ liệu và nó không liên quan tới các bảng trong CSDL.
[[yii\db\ActiveRecord]] là lớp thường được dùng với CSDL mỗi lớp này sẽ tương xứng với các bảng trong CSDL.

Lớp EntryForm chứa hai biến ở phạm vi toàn cục (public), name và email, Các biến này sẽ được dùng để lưu trữ dữ liệu
khi người dùng nhập và gửi lên. Lớp này đồng thời chứa phương thức là rules(), phương thức này trả về tập quy tắc để xác thực
dữ liệu. Các quy tắc chứng thực được khai báo ở phần trên với ý nghĩa rằng.

	cả hai giá trị name và email cần phải có

	giá trị email phải đúng cú pháp là địa chỉ email

Nếu đã có đối tượng EntryForm cùng với dữ liệu user đã nhập, bạn có thể sử dụng phương thức
[[yii\base\Model::validate()|validate()]] để xác thực dữ liệu mỗi khi user gửi lên. Việc xác thực dữ liệu sai sẽ
thiết lập thuộc tính [[yii\base\Model::hasErrors|hasErrors]] thành “true”, và bạn có thể xem thông tin về việc xác thực lỗi
từ phương thức [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
 // Xác thực thành công!
} else {
 // Xác thực lỗi!
 // Use $model->getErrors()
}

Tạo Action

Tiếp theo, trong controller site bạn sẽ tạo action là entry action này cần dùng tới model. Quy trình và cách tạo mới action
đã được hướng dẫn ở mục Saying Hello.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...existing code...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // valid data received in $model

 // do something meaningful here about $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // either the page is initially displayed or there is some validation error
 return $this->render('entry', ['model' => $model]);
 }
 }
}

Action này sẽ tạo đối tượng EntryForm. Sau khi được khởi tạo, nó sẽ lấy các thông tin thông qua biến
$_POST, biến này được Yii cung cấp [[yii\web\Request::post()]].
Nếu dữ liệu gửi đến cho model thành công(chẳng hạn., khi user gửi thông tin từ HTML form), action sẽ gọi phương thức
[[yii\base\Model::validate()|validate()]] để chắc chắn rằng những giá trị được nhập vào là hợp lý.

Thông tin thêm: Thành phần Yii::$app được mô tả ở mục application,
Thành phần này là một mẫu thiết kế singleton cho phép truy cập ở toàn cục. Được hoạt động như một service locator that
để cung cấp các thành phần như request, response, db, vv. nhằm để hỗ trợ thêm các chức năng đặc biệt.
Ở đoạn code trên, component request được khởi tạo bỏi ứng dụng dùng để truy cập dữ liệu từ $_POST.

Nếu không có lỗi gì, action sẽ trả về (render) view tên là entry-confirm để xác nhận dữ liệu được gửi lên.
. Nếu dữ liệu trống hoặc gặp lỗi, dữ liệu sẽ được gửi về view entry, chứa form HTML, cùng với các thông điệp ở việc xác thực bị lỗi.

Lưu ý: ở bài hướng dẫn này, chúng ta chỉ xác nhận trang khi có dũ liệu hợp lệ. Bài thực hành này,
bạn cần lưu ý việc sử dụng các phương thức [[yii\web\Controller::refresh()|refresh()]] hoặc [[yii\web\Controller::redirect()|redirect()]]
nhằm để tránh form resubmission problems [http://en.wikipedia.org/wiki/Post/Redirect/Get].

Tạo Views

Cuối cùng, chúng ta tạo mới 2 tập tin view có tên là entry-confirm và entry. Những view này sẽ được trả về như được mô tả ở trên từ action entry.

View entry-confirm đơn giản chỉ hiển thị dữ liệu cho 2 thuộc tính name và email . View này được lưu trữ ở tập tin views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>Bạn đã nhập với những thông tin như sau:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

View entry sẽ hiển thị một form chứa các mã HTML. View này được lưu trữ ở tập tin views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

Những widget gọi là [[yii\widgets\ActiveForm|ActiveForm]] to
thường được dùng để xây dựng các Form. Các phương thức begin() và end() dùng để mở và đóng các tag tương ứng
. Giữa hai phương thức này, phương thức [[yii\widgets\ActiveForm::field()|field()]] sẽ tạo mới các input của form . Input đầu tiên sẽ dùng cho trường dữ liệu “name”,
và input thức hai sẽ dược dùng cho trường “email”. Sau cùng của các input, phương thức [[yii\helpers\Html::submitButton()]]
sẽ được gọi và tạo ra nút submit dùng để gửi dữ liệu.

Thử xem kết quả

Truy cập vào URL sau để xem kết quả:

http://hostname/index.php?r=site/entry

Bạn sẽ thấy trang Web cùng với việc hiển thị form chứa 2 trường để nhập dữ liệu . Trước mỗi trường nhập liệu, có nhãn được chỉ định những dữ liệu nhập vào .
Nếu bạn không nhập dữ liệu gì vào và nhấn nút submit, hoặc nếu bạn cung cấp địa chỉ email sai, bạn sẽ thấy thông điệp thông báo lỗi ở mỗi trường nhập liệu.

[image: Form with Validation Errors]

Sau khi nhập đúng các trường name và địa chỉ email đồng thời click vào nút submit, bạn sẽ thấy trang web mới
cùng với dữ liệu bạn vừa nhập .

[image: Confirmation of Data Entry]

Thông tin thêm

Chúng ta sẽ thắc mắc rằng làm sao các form HTMl được xây dựng lên, bởi vì nó dường như là những thủ thuật có thể
hiển thị các nhãn (label) cho từng trường input và hiển thị thông báo lỗi nếu bạn không nhập dữ liệu chính xác mà không cần
tải lại trang.

Đúng vậy, việc xác nhận dữ liệu được thực hiện ở máy client sử dụng JavaScript, và tiếp đế được thực hiện ở máy chủ PHP.
Đối tượng [[yii\widgets\ActiveForm]] rất hữu dụng cho việc xác nhận những quy tắc (rules) mà bạn đã khai báo ở model EntryForm,
và biến chúng thành những đoạn mã javaScript thực thi, và sử dụng javaScript để xác thực. Trường hợp bạn đã vô hiệu hóa
javaScript trên trình duyệt, việc xác thực sẽ thực hiện ở phía server, nằm ở phương thức
actionEntry(). Điều này đảm bảo tính hợp lệ dữ liệu trong mọi trường hợp.

Cảnh báo: Việc xác thực ở phía client thường cung cấp cho sự trải nghiệm của người dùng tốt hơn. Xác thực phía server
thì luôn luôn được thực thi, có thể có hoặc không việc xác thực ở phía client.

Các nhãn (label) cho các input được tạo ra bởi phương thức field(), sử dụng tên của thuộc tính nằm trong model.
Chẳng hạn, tên nhãn Name sẽ được tạo bởi thuộc tính name.

Bạn có thể sửa tên nhãn ở đoạn code sau:

<?= $form->field($model, 'name')->label('Tên của bạn Name') ?>
<?= $form->field($model, 'email')->label('Địa chỉ Email') ?>
```n

> Thông tin thêm: Yii giúp bạn xây dụng nhanh chóng đối với các view phức tạp bằng việc cung cấp các widget.
  Bạn sẽ được học ở phần sau, cách đơn giản nhất để viết một widget. Bạn nên chuyển những code ở view của bạn
  sang dạng widget để đơn giản hơn sự phát triển ứng dụng và tái sử dụng nó.


Tóm lược <span id="summary"></span>
-------

Trong phần hướng dẫn này, bạn đã làm việc với tất cả các thành phần trong mô hình MVC. Bạn đã học cách tạo mới model và xác thực dữ liệu.

Bạn đã tìm hiểu cách lấy dữ liệu từ user và hiển thị dữ liệu ra trình duyệt. Chức năng này có thể dành nhiều thời gian khi
xây dựng ứng dụng, tuy nhiên Yii hỗ trợ các chức năng thật đơn giản bằng việc cung cấp những widget.

Trong phần tiếp theo, bạn sẽ tìm hiều làm thể nào để làm việc với CSDL, điều cần thiết với những ứng dụng.













          

      

      

    

  

  
    
    
    クラスのオートローディング
    
    

    
 
  
  

    
      
          
            
  
クラスのオートローディング

Yiiは、必要となるすべてのクラスファイルを特定してインクルードするにあたり、 クラスのオートローディングメカニズム [http://www.php.net/manual/ja/language.oop5.autoload.php]
を頼りにします。Yii は、PSR-4 標準 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md] に準拠した、高性能なクラスのオートローダーを提供しています。
このオートローダーは、あなたが Yii.php ファイルをインクルードするときにインストールされます。


Note: 説明を簡単にするため、このセクションではクラスのオートローディングについてのみお話しします。しかし、
ここに記述されている内容は、同様に、インタフェースとトレイトのオートロードにも適用されることに注意してください。



Yii オートローダーの使用 

Yii のクラスオートローダーを使用するには、自分のクラスを作成して名前を付けるとき、次の2つの単純なルールに従わなければなりません:


	各クラスは 名前空間 [http://php.net/manual/ja/language.namespaces.php] の下になければなりません (例 foo\bar\MyClass)

	各クラスは次のアルゴリズムで決定される個別のファイルに保存されなければなりません:



// $className は先頭にバックスラッシュを持たない完全修飾クラス名
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');





たとえば、クラス名と名前空間が foo\bar\MyClass であれば、対応するクラスファイルのパスの エイリアス は、
@foo/bar/MyClass.php になります。このエイリアスがファイルパスとして解決できるようにするためには、@foo または @foo/bar
のどちらかが、 ルートエイリアス でなければなりません。

ベーシックプロジェクトテンプレート を使用している場合、最上位の名前空間 app の下にクラスを置くことができ、
そうすると、新しいエイリアスを定義しなくても、Yii によってそれらをオートロードできるようになります。これは @app
が 事前定義されたエイリアス であるためで、app\components\MyClass のようなクラス名を
今説明したアルゴリズムに従って、クラスファイル AppBasePath/components/MyClass.php であると解決することが出来ます。

アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] では、各層がそれ自身のルートエイリアスを持っています。たとえば、
フロントエンド層はルートエイリアス @frontend を持ち、バックエンド層のルートエイリアスは @backend です。その結果、名前空間 frontend の下に
フロントエンドクラスを置き、バックエンドクラスを backend の下に置けます。これで、これらのクラスは Yii のオートローダーによって
オートロードできるようになります。




クラスマップ 

Yii のクラスオートローダーは、 クラスマップ 機能をサポートしており、クラス名を対応するクラスファイルのパスにマップできます。
オートローダーがクラスをロードしているとき、クラスがマップに見つかるかどうかを最初にチェックします。もしあれば、対応する
ファイルのパスは、それ以上チェックされることなく、直接インクルードされます。これでクラスのオートローディングを非常に高速化できます。
実際に、すべての Yii のコアクラスは、この方法でオートロードされています。

次の方法で、 Yii::$classMap に格納されるクラスマップにクラスを追加できます:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';





クラスファイルのパスを指定するのに、 エイリアス を使うことができます。クラスが使用される前にマップが準備できるように、
ブートストラップ プロセス内でクラスマップを設定する必要があります。




他のオートローダーの使用 

Yii はパッケージ依存関係マネージャとして Composer を包含しているので、Composer のオートローダーもインストールすることをお勧めします。
あなたが独自のオートローダーを持つサードパーティライブラリを使用している場合、それらもインストールする必要があります。

Yii オートローダーを他のオートローダーと一緒に使うときは、他のすべてのオートローダーがインストールされた 後で 、 Yii.php
ファイルをインクルードする必要があります。これで Yii のオートローダーが、任意クラスのオートローディング要求に応答する最初のものになります。
たとえば、次のコードは ベーシックプロジェクトテンプレート の エントリスクリプト から抜粋したものです。
最初の行は、Composer のオートローダーをインストールしており、二行目は Yii のオートローダーをインストールしています。

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');





あなたは Yii のオートローダーを使わず、Composer のオートローダーだけを単独で使用することもできます。しかし、そうすることによって、
あなたのクラスのオートローディングのパフォーマンスは低下し、クラスをオートロード可能にするために Composer が設定したルールに従わなければならなくなります。


Info: Yiiのオートローダーを使用したくない場合は、 Yii.php ファイルのあなた独自のバージョンを作成し、
それを エントリスクリプト でインクルードする必要があります。





エクステンションクラスのオートロード 

Yii のオートローダーは、 エクステンション クラスのオートロードが可能です。唯一の要件は、
エクステンションがその composer.json ファイルに正しく autoload セクションを指定していることです。
autoload 指定方法の詳細については Composer のドキュメント [https://getcomposer.org/doc/04-schema.md#autoload] 参照してください。

Yii のオートローダーを使用しない場合でも、まだ Composer のオートローダーがエクステンションクラスをオートロードすることが可能です。







          

      

      

    

  

  
    
    
    サービスロケータ
    
    

    
 
  
  

    
      
          
            
  
サービスロケータ

サービスロケータは、アプリケーションが必要とする可能性のある各種のサービス (またはコンポーネント) を提供する方法を知っているオブジェクトです。
サービスロケータ内では、各コンポーネントは単一のインスタンスとして存在し、ID によって一意に識別されます。
あなたは、この ID を使用してサービスロケータからコンポーネントを取得できます。

Yii では、サービスロケータは単純に [[yii\di\ServiceLocator]] のインスタンス、または子クラスのインスタンスです。

Yii の中で最も一般的に使用されるサービスロケータは、\Yii::$app を通じてアクセスできる アプリケーション オブジェクトです。これが提供するサービスは、 アプリケーションコンポーネント と呼ばれる request 、
response、 urlManager などのコンポーネントです。あなたはサービスロケータによって提供される機能を通じて、
簡単に、これらのコンポーネントを構成、あるいは独自の実装に置き換え、といったことができます。

アプリケーションオブジェクトの他に、各モジュールオブジェクトもまたサービスロケータです。

サービスロケータを使用する最初のステップは、コンポーネントを登録することです。コンポーネントは、 [[yii\di\ServiceLocator::set()]]
を通じて登録することができます。次のコードは、コンポーネントを登録するさまざまな方法を示しています。

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// コンポーネントの作成に使われるクラス名を使用して "cache" を登録
$locator->set('cache', 'yii\caching\ApcCache');

// コンポーネントの作成に使われる構成情報配列を使用して "db" を登録
$locator->set('db', [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=localhost;dbname=demo',
    'username' => 'root',
    'password' => '',
]);

// コンポーネントを構築する匿名関数を使って "search" を登録
$locator->set('search', function () {
    return new app\components\SolrService;
});

// コンポーネントを使って "pageCache" を登録
$locator->set('pageCache', new FileCache);





いったんコンポーネントが登録されたら、次の 2 つの方法のいずれかで、その ID を使ってそれにアクセスすることができます:

$cache = $locator->get('cache');
// または代りに
$cache = $locator->cache;





上記のように、 [[yii\di\ServiceLocator]] を使うと、コンポーネント ID を使用して、プロパティのようにコンポーネントにアクセスすることができます。
あなたが最初にコンポーネントにアクセスしたとき、 [[yii\di\ServiceLocator]] はコンポーネントの登録情報を使用してコンポーネントの新しいインスタンスを作成し、
それを返します。後でそのコンポーネントが再度アクセスされた場合、サービスロケータは同じインスタンスを返します。

[[yii\di\ServiceLocator::has()]] を使って、コンポーネント ID がすでに登録されているかをチェックできます。
無効な ID で [[yii\di\ServiceLocator::get()]] を呼び出した場合、例外がスローされます。

サービスロケータは多くの場合、 構成情報 で作成されるため、
[[yii\di\ServiceLocator::setComponents()|components]] という名前の書き込み可能プロパティが提供されています。
これで一度に複数のコンポーネントを設定して登録することができます。
次のコードは、サービスロケータ (例えば アプリケーション) を db、cache、search コンポーネントとともに構成するための構成情報配列を示しています。

return [
    // ...
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=demo',
            'username' => 'root',
            'password' => '',
        ],
        'cache' => 'yii\caching\ApcCache',
        'search' => function () {
            $solr = new app\components\SolrService('127.0.0.1');
            // ... その他の初期化 ...
            return $solr;
        },
    ],
];





上記において、search コンポーネントを構成する別の方法があります。
SolrService のインスタンスを構築する PHP コールバックを直接に書く代りに、下記のように、そういうコールバックを返すスタティックなクラスメソッドを使うことが出来ます。

class SolrServiceBuilder
{
    public static function build($ip)
    {
        return function () use ($ip) {
            $solr = new app\components\SolrService($ip);
            // ... その他の初期化 ...
            return $solr;
        };
    }
}

return [
    // ...
    'components' => [
        // ...
        'search' => SolrServiceBuilder::build('127.0.0.1'),
    ],
];





この方法は、Yii に属さないサードパーティのライブラリをカプセル化する Yii コンポーネントをリリースしようとする場合に、特に推奨される代替手法です。
上で示されているようなスタティックなメソッドを使ってサードパーティのオブジェクトを構築する複雑なロジックを表現します。
そうすれば、あなたのコンポーネントのユーザは、コンポーネントを構成するスタティックなメソッドを呼ぶ必要があるだけになります。





          

      

      

    

  

  
    
    
    テンプレートエンジンを使う
    
    

    
 
  
  

    
      
          
            
  
テンプレートエンジンを使う

デフォルトでは、Yii は PHP をテンプレート言語として使いますが、Twig [http://twig.sensiolabs.org/] や Smarty [http://www.smarty.net/] などの他のレンダリングエンジンをサポートするように Yii を構成することが出来ます。

view コンポーネントがビューのレンダリングに責任を持っています。
このコンポーネントのビヘイビアを構成することによって、カスタムテンプレートエンジンを追加することが出来ます。

[
    'components' => [
        'view' => [
            'class' => 'yii\web\View',
            'renderers' => [
                'tpl' => [
                    'class' => 'yii\smarty\ViewRenderer',
                    //'cachePath' => '@runtime/Smarty/cache',
                ],
                'twig' => [
                    'class' => 'yii\twig\ViewRenderer',
                    'cachePath' => '@runtime/Twig/cache',
                    // twig のオプションの配列
                    'options' => [
                        'auto_reload' => true,
                    ],
                    'globals' => ['html' => '\yii\helpers\Html'],
                    'uses' => ['yii\bootstrap'],
                ],
                // ...
            ],
        ],
    ],
]





上記のコードにおいては、Smarty と Twig の両者がビューファイルによって使用可能なものとして構成されています。
しかし、これらのエクステンションをプロジェクトで使うためには、composer.json ファイルも修正して、これらのエクステンションを含める必要があります。

"yiisoft/yii2-smarty": "~2.0.0",
"yiisoft/yii2-twig": "~2.0.0",





上のコードを composer.json の require セクションに追加します。
変更をファイルに保存した後、コマンドラインで composer update --prefer-dist を実行することによってエクステンションをインストールすることが出来ます。

具体的にテンプレートエンジンを使用する方法については、それぞれのドキュメントで詳細を参照してください。


	Twig ガイド [https://github.com/yiisoft/yii2-twig/tree/master/docs/guide-ja]

	Smarty ガイド [https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide-ja]







          

      

      

    

  

  
    
    
    データプロバイダ
    
    

    
 
  
  

    
      
          
            
  
データプロバイダ

ページネーション と 並べ替え の節において、エンドユーザが特定のページのデータを選んで表示し、いずれかのカラムによってデータを並べ替えることが出来るようにする方法を説明しました。
データのページネーションと並べ替えは非常によくあるタスクですから、Yii はこれをカプセル化した一連の データプロバイダ を提供しています。

データプロバイダは [[yii\data\DataProviderInterface]] を実装するクラスであり、主として、ページ分割され並べ替えられたデータの取得をサポートするものです。
通常は、データウィジェット と共に使用して、エンドユーザが対話的にデータのページネーションと並べ替えをすることが出来るようにします。

Yii のリリースには次のデータプロバイダのクラスが含まれています。


	[[yii\data\ActiveDataProvider]]: [[yii\db\Query]] または [[yii\db\ActiveQuery]] を使ってデータベースからデータを取得して、配列または アクティブレコード インスタンスの形式でデータを返します。

	[[yii\data\SqlDataProvider]]: SQL 文を実行して、データベースのデータを配列として返します。

	



これら全てのデータプロバイダの使用方法は、次の共通のパターンを持っています。

// ページネーションと並べ替えのプロパティを構成してデータプロバイダを作成する
$provider = new XyzDataProvider([
    'pagination' => [...],
    'sort' => [...],
]);

// ページ分割されて並べ替えられたデータを取得する
$models = $provider->getModels();

// 現在のページにあるデータアイテムの数を取得する
$count = $provider->getCount();

// 全ページ分のデータアイテムの総数を取得する
$totalCount = $provider->getTotalCount();





データプロバイダのページネーションと並べ替えの振る舞いを指定するためには、その [[yii\data\BaseDataProvider::pagination|pagination]] と [[yii\data\BaseDataProvider::sort|sort]] のプロパティを構成します。
二つのプロパティは、それぞれ、[[yii\data\Pagination]] と [[yii\data\Sort]] の構成情報に対応します。
これらを false に設定して、ページネーションや並べ替えの機能を無効にすることも出来ます。

データウィジェット、例えば [[yii\grid\GridView]] は、dataProvider という名前のプロパティを持っており、これにデータプロバイダのインスタンスを受け取らせて、それが提供するデータを表示させることが出来ます。
例えば、

echo yii\grid\GridView::widget([
    'dataProvider' => $dataProvider,
]);





これらのデータプロバイダの主たる相異点は、データソースがどのように指定されるかという点にあります。
次に続く項において、各データプロバイダの詳細な使用方法を説明します。


アクティブデータプロバイダ 

[[yii\data\ActiveDataProvider]] を使用するためには、その [[yii\data\ActiveDataProvider::query|query]] プロパティを構成しなければなりません。
これは、[[yii\db\Query]] または [[yii\db\ActiveQuery]] のオブジェクトを取ることが出来ます。
前者であれば、返されるデータは配列になります。
後者であれば、返されるデータは配列または アクティブレコード インスタンスとすることが出来ます。
例えば、

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'defaultOrder' => [
            'created_at' => SORT_DESC,
            'title' => SORT_ASC, 
        ]
    ],
]);

// Post オブジェクトの配列を返す
$posts = $provider->getModels();





上記の例における $query が次のコードによって作成される場合は、提供されるデータは生の配列になります。

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]); 






Note: クエリが既に orderBy 句を指定しているものである場合、(sort の構成を通して) エンドユーザによって与えられる並べ替えの指定は、既存の orderBy 句に追加されます。
一方、limit と offset の句が存在している場合は、(pagenation の構成を通して) エンドユーザによって指定されるページネーションのリクエストによって上書きされます。


デフォルトでは、[[yii\data\ActiveDataProvider]] はデータベース接続として db アプリケーションコンポーネントを使用します。
[[yii\data\ActiveDataProvider::db]] プロパティを構成すれば、別のデータベース接続を使用することが出来ます。




SQL データプロバイダ 

[[yii\data\SqlDataProvider]] は、生の SQL 文を使用して、必要なデータを取得します。
このデータプロバイダは、[[yii\data\SqlDataProvider::sort|sort]] と [[yii\data\SqlDataProvider::pagination|pagination]] の指定に基づいて、SQL 文の ORDER BY と OFFSET/LIMIT の句を修正し、指定された順序に並べ替えられたデータを要求されたページの分だけ取得します。

[[yii\data\SqlDataProvider]] を使用するためには、[[yii\data\SqlDataProvider::sql|sql]] プロパティだけでなく、[[yii\data\SqlDataProvider::totalCount|totalCount]] プロパティを指定しなければなりません。
例えば、

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
    SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
    'sql' => 'SELECT * FROM post WHERE status=:status',
    'params' => [':status' => 1],
    'totalCount' => $count,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => [
            'title',
            'view_count',
            'created_at',
        ],
    ],
]);

// データ行の配列を返す
$models = $provider->getModels();






Info: [[yii\data\SqlDataProvider::totalCount|totalCount]] プロパティは、データにページネーションを適用しなければならない場合にだけ要求されます。
これは、[[yii\data\SqlDataProvider::sql|sql]] によって指定される SQL 文は、現在要求されているページのデータだけを返すように、データプロバイダによって修正されてしまうからです。
データプロバイダは、総ページ数を正しく計算するためには、データアイテムの総数を知る必要があります。





配列データプロバイダ 

[yii\data\ArrayDataProvider] は、一つの大きな配列を扱う場合に最も適しています。
このデータプロバイダによって、一つまたは複数のカラムで並べ替えた配列データの 1 ページ分を返すことが出来ます。
[yii\data\ArrayDataProvider] を使用するためには、全体の大きな配列として [[yii\data\ArrayDataProvider::allModels|allModels]] プロパティを指定しなければなりません。
この大きな配列の要素は、連想配列 (例えば DAO のクエリ結果) またはオブジェクト (例えば アクティブレコード インスタンス) とすることが出来ます。
例えば、

use yii\data\ArrayDataProvider;

$data = [
    ['id' => 1, 'name' => 'name 1', ...],
    ['id' => 2, 'name' => 'name 2', ...],
    ...
    ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
    'allModels' => $data,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => ['id', 'name'],
    ],
]);

// 現在リクエストされているページの行を返す
$rows = $provider->getModels();






Note: アクティブデータプロバイダ および SQL データプロバイダ と比較すると、配列データプロバイダは効率の面では劣ります。
何故なら、全ての データをメモリにロードしなければならないからです。





データのキーを扱う 

データプロバイダによって返されたデータアイテムを使用する場合、各データアイテムを一意のキーで特定しなければならないことがよくあります。
例えば、データアイテムが顧客情報を表す場合、顧客 ID を各顧客データのキーとして使用したいでしょう。
データプロバイダは、[[yii\data\DataProviderInterface::getModels()]] によって返されたデータアイテムに対応するそのようなキーのリストを返すことが出来ます。
例えば、

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
]);

// Post オブジェクトの配列を返す
$posts = $provider->getModels();

// $post に対応するプライマリキーの値を返す
$ids = $provider->getKeys();





上記の例では、[[yii\data\ActiveDataProvider]] に対して [[yii\db\ActiveQuery]] オブジェクトを供給していますから、キーとしてプライマリキーの値を返すのが理にかなっています。
キーの値の計算方法を明示的に指定するために、[[yii\data\ActiveDataProvider::key]] にカラム名を設定したり、キーの値を計算するコーラブルを設定したりすることも出来ます。
例えば、

// "slug" カラムをキーの値として使用する
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => 'slug',
]);

// md5(id) の結果をキーの値として使用する
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => function ($model) {
        return md5($model->id);
    }
]);








カスタムデータプロバイダを作成する 

あなた自身のカスタムデータプロバイダクラスを作成するためには、[[yii\data\DataProviderInterface]] を実装しなければなりません。
[[yii\data\BaseDataProvider]] を拡張するのが比較的簡単な方法です。
そうすれば、データプロバイダのコアのロジックに集中することが出来ます。
具体的に言えば、実装する必要があるのは、主として次のメソッドです。


	

	

	



下記は、CSV ファイルを効率的に読み出すデータプロバイダのサンプルです。

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
    /**
     * @var string 読み出す CSV ファイルの名前
     */
    public $filename;
    
    /**
     * @var string|callable キーカラムの名前またはそれを返すコーラブル
     */
    public $key;
    
    /**
     * @var SplFileObject
     */
    protected $fileObject; // ファイルの特定の行までシークするのに SplFileObject が非常に便利
    
 
    /**
     * @inheritdoc
     */
    public function init()
    {
        parent::init();
        
        // ファイルを開く
        $this->fileObject = new SplFileObject($this->filename);
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareModels()
    {
        $models = [];
        $pagination = $this->getPagination();
 
        if ($pagination === false) {
            // ページネーションが無い場合、全ての行を読む
            while (!$this->fileObject->eof()) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        } else {
            // ページネーションがある場合、一つのページだけを読む
            $pagination->totalCount = $this->getTotalCount();
            $this->fileObject->seek($pagination->getOffset());
            $limit = $pagination->getLimit();
 
            for ($count = 0; $count < $limit; ++$count) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        }
 
        return $models;
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareKeys($models)
    {
        if ($this->key !== null) {
            $keys = [];
 
            foreach ($models as $model) {
                if (is_string($this->key)) {
                    $keys[] = $model[$this->key];
                } else {
                    $keys[] = call_user_func($this->key, $model);
                }
            }
 
            return $keys;
        } else {
            return array_keys($models);
        }
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareTotalCount()
    {
        $count = 0;
 
        while (!$this->fileObject->eof()) {
            $this->fileObject->next();
            ++$count;
        }
 
        return $count;
    }
}











          

      

      

    

  

  
    
    
    セキュリティ
    
    

    
 
  
  

    
      
          
            
  
セキュリティ

十分なセキュリティは、すべてのアプリケーションの健全さと成功のために欠くことが出来ないものです。
不幸なことに、理解が不足しているためか、実装の難易度が高すぎるためか、セキュリティのことになると手を抜く開発者がたくさんいます。
Yii によって駆動されるあなたのアプリケーションを可能な限り安全にするために、Yii はいくつかの優秀な使いやすいセキュリティ機能を内蔵しています。


	認証

	権限付与

	パスワードを扱う

	暗号化

	ビューのセキュリティ

	認証クライアント [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide-ja/README.md]

	ベストプラクティス







          

      

      

    

  

  
    
    
    メール送信
    
    

    
 
  
  

    
      
          
            
  
メール送信


Note: この節はまだ執筆中です。


Yii は電子メールの作成と送信をサポートしています。
ただし、フレームワークのコアが提供するのは、コンテント作成の機能と基本的なインタフェイスだけです。
実際のメール送信メカニズムはエクステンションによって提供されなければなりません。
と言うのは、メール送信はプロジェクトが異なるごとに異なる実装が必要とされるでしょうし、通常、外部のサービスやライブラリに依存するものだからです。

ごく一般的な場合であれば、yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer] 公式エクステンションを使用することが出来ます。


構成

メールコンポーネントの構成は、あなたが選んだエクステンションに依存します。
一般的には、アプリケーションの構成情報は次のようなものになる筈です。

return [
    //....
    'components' => [
        'mailer' => [
            'class' => 'yii\swiftmailer\Mailer',
        ],
    ],
];








基本的な使用方法

いったん mailer コンポーネントを構成すれば、次のコードを使って電子メールのメッセージを送信することが出来るようになります。

Yii::$app->mailer->compose()
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('メッセージの題')
    ->setTextBody('プレーンテキストのコンテント')
    ->setHtmlBody('<b>HTML のコンテント</b>')
    ->send();





上の例では、compose() メソッドでメールメッセージのインスタンスを作成し、それに値を投入して送信しています。
必要であれば、このプロセスにもっと複雑なロジックを置くことも可能です。

$message = Yii::$app->mailer->compose();
if (Yii::$app->user->isGuest) {
    $message->setFrom('from@domain.com');
} else {
    $message->setFrom(Yii::$app->user->identity->email);
}
$message->setTo(Yii::$app->params['adminEmail'])
    ->setSubject('メッセージの題')
    ->setTextBody('プレーンテキストのコンテント')
    ->send();






Note: すべての mailer エクステンションは、二つの主要なクラス、すなわち、Mailer と Message のセットとして提供されます。
Mailer は常に Message のクラス名と仕様を知っています。
Message オブジェクトのインスタンスを直接に作成しようとしてはいけません。常に compose() メソッドを使って作成してください。


いくつかのメッセージを一度に送信することも出来ます。

$messages = [];
foreach ($users as $user) {
    $messages[] = Yii::$app->mailer->compose()
        // ...
        ->setTo($user->email);
}
Yii::$app->mailer->sendMultiple($messages);





メールエクステンションの中には、単一のネットワークメッセージを使うなどして、この手法の恩恵を享受することが出来るものもいくつかあるでしょう。




メールのコンテントを作成する

Yii は実際のメールメッセージを特別なビューファイルによって作成することを許容しています。
デフォルトでは、それらのファイルは @app/mail というパスに配置されなければなりません。

以下はメールビューファイルの内容の例です。

<?php
use yii\helpers\Html;
use yii\helpers\Url;

/* @var $this \yii\web\View ビューコンポーネントのインスタンス */
/* @var $message \yii\mail\BaseMessage 新しく作成されたメールメッセージのインスタンス */

?>
<h2>ワンクリックで私たちのサイトのホームページを訪問することが出来ます</h2>
<?= Html::a('ホームページへ', Url::home('http')) ?>





ビューファイルによってメッセージを作成するためには、単に compose() メソッドにビューの名前を渡すだけで十分です。

Yii::$app->mailer->compose('home-link') // ここでビューのレンダリング結果がメッセージのボディになります
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('メッセージの題')
    ->send();





ビューファイルの中で利用できる追加のビューパラメータを compose() メソッドに渡すことができます。

Yii::$app->mailer->compose('greetings', [
    'user' => Yii::$app->user->identity,
    'advertisement' => $adContent,
]);





HTML と平文テキストのメッセージコンテントに違うビューを指定することが出来ます。

Yii::$app->mailer->compose([
    'html' => 'contact-html',
    'text' => 'contact-text',
]);





ビュー名をスカラーの文字列として渡した場合は、そのレンダリング結果は HTML ボディとして使われます。
そして、平文テキストのボディは HTML のボディから全ての HTML 要素を削除することによって作成されます。

ビューのレンダリング結果はレイアウトで包むことが出来ます。
レイアウトは、[[yii\mail\BaseMailer::htmlLayout]] と [[yii\mail\BaseMailer::textLayout]] を使ってセットアップすることが可能です。
レイアウトは、通常のウェブアプリケーションのレイアウトと同じように働きます。
レイアウトは、メールの CSS スタイルや、その他の共有されるコンテントをセットアップするために使うことが出来ます。

<?php
use yii\helpers\Html;

/* @var $this \yii\web\View ビューコンポーネントのインスタンス */
/* @var $message \yii\mail\MessageInterface 作成されるメッセージ */
/* @var $content string メインビューのレンダリング結果 */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::$app->charset ?>" />
    <style type="text/css">
        .heading {...}
        .list {...}
        .footer {...}
    </style>
    <?php $this->head() ?>
</head>
<body>
    <?php $this->beginBody() ?>
    <?= $content ?>
    <div class="footer">よろしくお願いします。<?= Yii::$app->name ?> チーム</div>
    <?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>








ファイルの添付

attach() メソッド、attachContent() メソッドを使って、メッセージにファイルを添付することが出来ます。

$message = Yii::$app->mailer->compose();

// ローカルファイルシステムからファイルを添付する
$message->attach('/path/to/source/file.pdf');

// 添付ファイルをその場で生成する
$message->attachContent('添付される内容', ['fileName' => 'attach.txt', 'contentType' => 'text/plain']);








画像の埋め込み

embed() メソッドを使って、メッセージのコンテントに画像を埋め込むことが出来ます。
このメソッドは添付ファイルの ID を返しますので、それを img タグで使わなければなりません。
このメソッドはビューファイルによってメッセージのコンテントを作成するときに簡単に使うことが出来ます。

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/image.jpg'])
    // ...
    ->send();





そして、ビューファイルの中では、次のコードを使うことが出来ます。

<img src="<?= $message->embed($imageFileName); ?>">








テストとデバッグ

開発者は、実際にどのようなメールがアプリケーションによって送信されたか、その内容はどのようなものであったか、等をチェックしなければならないことが多くあります。
Yii は、そのようなチェックが出来ることを yii\mail\BaseMailer::useFileTransport によって保証しています。
このオプションを有効にすると、メールのメッセージデータが、通常のように送信される代りに、ローカルファイルに強制的に保存されます。
ファイルは、yii\mail\BaseMailer::fileTransportPath、デフォルトでは @runtime/mail の下に保存されます。


Note: メッセージをファイルに保存するか、実際の受信者に送信するか、どちらかを選ぶことが出来ますが、両方を同時に実行することは出来ません。


メールメッセージのファイルは通常のテキストエディタで開くことが出来ますので、実際のメッセージヘッダやコンテントなどを閲覧することが出来ます。
このメカニズムは、アプリケーションのデバッグやユニットテストを実行する際に、真価を発揮するでしょう。


Note: メールメッセーのファイルの内容は \yii\mail\MessageInterface::toString() によって作成されますので、あなたのアプリケーションで使用している実際のメールエクステンションに依存したものになります。





あなた自身のメールソリューションを作成する

あなた自身のカスタムメールソリューションを作成するためには、二つのクラスを作成する必要があります。
すなわち、一つは Mailer であり、もう一つは Message です。
yii\mail\BaseMailer と yii\mail\BaseMessage をあなたのソリューションの基底クラスとして使うことが出来ます。
これらのクラスが、このガイドで説明された基本的なロジックを既に持っています。
しかし、それを使用することは強制されていません。
yii\mail\MailerInterface と yii\mail\MessageInterface のインタフェイスを実装すれば十分です。
そして、あなたのソリューションをビルドするために、全ての抽象メソッドを実装しなければなりません。







          

      

      

    

  

  
    
    
    パフォーマンスチューニング
    
    

    
 
  
  

    
      
          
            
  
パフォーマンスチューニング

あなたのウェブアプリケーションのパフォーマンスに影響を及ぼす要因は数多くあります。
環境の要因もありますし、あなたのコードに関係する要因もあります。
また、Yii そのものに関係する要因もあります。
この節では要因のほとんどを列挙して、どのようにそれらを修正すればあなたのアプリケーションのパフォーマンスを向上させることが出来るかを説明します。


PHP 環境を最適化する 

PHP 環境を正しく構成することは非常に重要です。
最大のパフォーマンスを得るためには、


	最新の安定した PHP バージョンを使うこと。
使用する PHP のメジャーリリースを上げると、顕著なパフォーマンスの改善がもたらされることがあります。

	Opcache [http://php.net/opcache] (PHP 5.5 以降) または APC [http://php.net/apc] (PHP 5.4) を使って、バイトコードキャッシュを有効にすること。
バイトコードキャッシュによって、リクエストが入ってくるたびに PHP スクリプトを解析してインクルードする時間の浪費を避けることが出来ます。

	realpath() キャッシュをチューニングする [https://github.com/samdark/realpath_cache_tuner].






デバッグモードを無効にする 

本番環境でアプリケーションを実行するときには、デバッグモードを無効にしなければなりません。
Yii は、YII_DEBUG という名前の定数の値を使って、デバッグモードを有効にすべきか否かを示します。
デバッグモードが有効になっているときは、Yii はデバッグ情報の生成と記録のために時間を余計に費やします。

エントリスクリプト の冒頭に次のコード行を置くことによってデバッグモードを無効にすることが出来ます。

defined('YII_DEBUG') or define('YII_DEBUG', false);






Info: YII_DEBUG のデフォルト値は false です。
従って、アプリケーションコードの他のどこかでこのデフォルト値を変更していないと確信できるなら、単に上記の行を削除してデバッグモードを無効にしても構いません。





キャッシュのテクニックを使う 

さまざまなキャッシュのテクニックを使うと、あなたのアプリケーションのパフォーマンスを目に見えて改善することが出来ます。
たとえば、あなたのアプリケーションが Markdown 形式のテキスト入力をユーザに許可している場合、解析済みの Markdown のコンテントをキャッシュすることを考慮してください。
そうすれば、リクエストごとに毎回同じ Markdown テキストの解析を繰り返すことを回避できるでしょう。
Yii によって提供されているキャッシュのサポートについて学ぶためには キャッシュ の節を参照してください。




スキーマキャッシュを有効にする 

スキーマキャッシュは、アクティブレコード を使おうとする場合には、いつでも有効にすべき特別なキャッシュ機能です。
ご存じのように、アクティブレコードは、賢いことに、あなたがわざわざ記述しなくても、DB テーブルに関するスキーマ情報 (カラムの名前、カラムのタイプ、外部キー制約など) を自動的に検出します。
アクティブレコードはこの情報を取得するために追加の SQL クエリを実行しています。
スキーマキャッシュを有効にすると、取得されたスキーマ情報はキャッシュに保存されて将来のクエリで再利用されるようになります。

スキーマキャッシュを有効にするためには、アプリケーションの構成情報 の中で、cache アプリケーションコンポーネント にスキーマ情報を保存するように構成し、[[yii\db\Connection::enableSchemaCache]] を true に設定します。

return [
    // ...
    'components' => [
        // ...
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=mydatabase',
            'username' => 'root',
            'password' => '',
            'enableSchemaCache' => true,

            // スキーマキャッシュの持続時間
            'schemaCacheDuration' => 3600,

            // スキーマ情報を保存するのし使用されるキャッシュコンポーネントの名前
            'schemaCache' => 'cache',
        ],
    ],
];








アセットを結合して最小化する 

複雑なウェブページでは、多数の CSS や JavaScript のアセットファイルをインクルードすることがよくあります。
HTTP リクエストの回数、および、これらのアセットの全体としてのダウンロードサイズを削減するために、アセットを単一のファイルに結合して、それを圧縮することを考慮すべきです。
これによって、ページのロードにかかる時間とサーバの負荷を大きく削減することが出来ます。
詳細については、アセット の節を参照してください。




セッションのストレージを最適化する 

デフォルトでは、セッションのデータはファイルに保存されます。
これは、session_write_close() が呼ばれる (Yii では Yii::$app->session->close() によって呼び出されます) か、あるいはリクエストの処理が終了して、セッションが閉じられる時点まで、ファイルが開かれるのをロックするという実装になっています。
セッションファイルがロックされている間は、同じセッションを使用しようとする全てのリクエストはブロックされ、最初のリクエストがセッションファイルを解放するのを待たなければなりません。
開発時はこれでも構いません。おそらく、小さなプロジェクトでも、これで大丈夫でしょう。
しかし、大量のリクエストを並列処理するとなると、データベースのような、もっと洗練されたストレージを使う方が良いでしょう。
Yii はさまざまなセッションストレージのサポートを内蔵しています。
これらのストレージは、アプリケーションの構成情報 の中で session コンポーネントを次のように構成することによって使用することが出来ます。

return [
    // ...
    'components' => [
        'session' => [
            'class' => 'yii\web\DbSession',

            // デフォルトの 'db' 以外の DB コンポーネントを使用したい場合は
            // 以下を設定する
            // 'db' => 'mydb',

            // デフォルトの session テーブルをオーバーライドするためには
            // 以下を設定する
            // 'sessionTable' => 'my_session',
        ],
    ],
];





上記の構成は、セッションデータの保存にデータベーステーブルを使用するものです。
デフォルトでは、db アプリケーションコンポーネントをデータベース接続として使用し、セッションデータを session テーブルに保存します。
ただし、前もって session テーブルを次のように作っておく必要があります。

CREATE TABLE session (
    id CHAR(40) NOT NULL PRIMARY KEY,
    expire INTEGER,
    data BLOB
)





[[yii\web\CacheSession]] を使って、セッションをキャッシュに保存することも出来ます。
理論上、サポートされている キャッシュストレージ のどれでも使うことが出来ます。
ただし、キャッシュストレージの中には、容量の上限に達したときにキャッシュされたデータをフラッシュするものがあることに注意してください。
この理由により、主として容量の上限が無い種類のキャッシュストレージを使用すべきです。

あなたのサーバに Redis [http://redis.io/] がある場合は、[[yii\redis\Session]] によって redis をセッションストレージとして使用することを強く推奨します。




データベースを最適化する 

DB クエリの実行とデータベースからのデータ取得がウェブアプリケーションのパフォーマンスの主たるボトルネックになることがよくあります。
データキャッシュ の使用によってパフォーマンスの劣化を緩和することは出来ますが、問題を完全に解決することは出来ません。
データベースが膨大なデータを抱えている場合、キャッシュされたデータが無効化されたときに最新のデータを取得するためのコストは、データベースとクエリが適切に設計されていないと、法外なものになり得ます。

DB クエリのパフォーマンスを向上させるための一般的なテクニックは、フィルタの対象になるテーブルカラムにインデックスを作成することです。
例えば、username によってユーザのレコードを検索する必要があるなら、username に対してインデックスを作成するべきです。
ただし、インデックスを付けると SELECT クエリを非常に速くすることが出来る代りに、INSERT、UPDATE、または DELTE のクエリが遅くなることに注意してください。

最後にもう一つ大事なことですが、SELECT クエリで LIMIT を使ってください。
こうすることで、大量のデータが返されて、PHP のために確保されたメモリを使い尽くすということがなくなります。




プレーンな配列を使う 

アクティブレコード は非常に使い勝手のよいものですが、データベースから大量のデータを取得する必要がある場合は、プレーンな配列を使うほどには効率的ではありません。
そういう場合は、アクティブレコードを使ってデータを取得する際に asArray() を呼んで、取得したデータがかさばるアクティブレコードのオブジェクトではなく配列として表現されるようにすることを考慮するのが良いでしょう。
例えば、

class PostController extends Controller
{
    public function actionIndex()
    {
        $posts = Post::find()->limit(100)->asArray()->all();
        
        return $this->render('index', ['posts' => $posts]);
    }
}





上記において、$posts は、テーブル行の配列としてデータを代入されることになります。
各行はプレーンな配列になります。
$i 番目の行の title カラムにアクセスするためには、$posts[$i]['title'] という式を使うことが出来ます。

クエリを構築するのに DAO を使って、データをプレーンな配列に取得することも出来ます。




Composer オートローダを最適化する 

Composer のオートローダは、ほとんどのサードパーティのクラスファイルをインクルードするのに使われますので、次のコマンドを実行して Composer のオートローダを最適化することを考慮すべきです。

composer dumpautoload -o








オフラインでデータを処理する 

リクエストが何らかのリソース集約的な操作を必要とするものである場合は、そういう操作が終るまでユーザを待たせずに、オフラインモードで操作を実行する方策を考えるべきです。

オフラインでデータを処理するための方法が二つあります。
すなわち、プルとプッシュです。

プルの方法では、リクエストが何らかの複雑な操作を必要とするたびに、タスクを作成してデータベースなどの持続的ストレージに保存します。
そうしておいて、別の独立したプロセス (例えばクロンジョブ) を使い、タスクを引き出して処理します。
この方法は、実装は容易ですが、いくつかの欠点があります。
例えば、タスクのプロセスはストレージから定期的にタスクを引き出さなければなりません。
引き出す間隔が長すぎると、タスクの処理に大きな遅延が生じます。しかし、間隔が短すぎると、オーバーヘッドが大きくなります。

プッシュの方法では、タスクを管理するのにメッセージキュー (例えば、RabbitMQ、ActiveMQ、Amazon SQS など) を使用します。
新しいタスクがキューに入れられるたびに、タスクを処理するプロセスが起動されたり通知を受けたりして、タスク処理がトリガされます。




パフォーマンスプロファイリング 

あなたは、あなたのコードをプロファイルして、パフォーマンスのボトルネックを発見し、それに応じた適切な手段を講じるべきです。
次のプロファイリングツールが役に立つでしょう。


	Yii のデバッグツールバーとデバッガ [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide-ja/README.md]

	Blackfire [https://blackfire.io/]

	XHProf [http://www.php.net/manual/ja/book.xhprof.php]

	XDebug プロファイラ [http://xdebug.org/docs/profiler]






Prepare application for scaling

何をやっても助けにならないときは、あなたのアプリケーションをスケーラブルにすることを試みましょう。良い導入記事が Configuring a Yii 2 Application for an Autoscaling Stack (Yii 2 アプリケーションを自動スケール環境のために構成する) [https://github.com/samdark/yii2-cookbook/blob/master/book/scaling.md] の中で提供されています。更に詳しく知りたい場合は Web apps performance and scaling (ウェブアプリのパフォーマンスとスケーリング) [http://thehighload.com/] を参照して下さい。







          

      

      

    

  

  
    
    
    入力を検証する
    
    

    
 
  
  

    
      
          
            
  
入力を検証する

経験則として言えることは、エンドユーザから受信したデータは決して信用せず、利用する前に検証しなければならない、ということです。

モデル にユーザの入力が投入されたら、モデルの [[yii\base\Model::validate()]] メソッドを呼んで入力を検証することが出来ます。
このメソッドは検証が成功したか否かを示す真偽値を返します。
検証が失敗した場合は、[[yii\base\Model::errors]] プロパティからエラーメッセージを取得することが出来ます。
例えば、

$model = new \app\models\ContactForm();

// モデルの属性にユーザ入力を投入する
$model->load(\Yii::$app->request->post());
// これは次と等価
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
    // 全ての入力が有効
} else {
    // 検証が失敗。$errors はエラーメッセージを含む配列
    $errors = $model->errors;
}






規則を宣言する 

validate() を現実に動作させるためには、検証する予定の属性に対して検証規則を宣言しなければなりません。
規則は [[yii\base\Model::rules()]] メソッドをオーバーライドすることで宣言します。
次の例は、ContactForm モデルに対して検証規則を宣言する方法を示すものです。

public function rules()
{
    return [
        // 名前、メールアドレス、主題、本文が必須項目
        [['name', 'email', 'subject', 'body'], 'required'],

        // email 属性は有効なメールアドレスでなければならない
        ['email', 'email'],
    ];
}





[[yii\base\Model::rules()|rules()]] メソッドは規則の配列を返すべきものですが、その配列の各要素は次の形式の配列でなければなりません。

[
    // 必須。この規則によって検証されるべき属性を指定する。
    // 属性が一つだけの場合は、配列の中に入れずに、属性の名前を直接に書いてもよい。
    ['属性1', '属性2', ...],

    // 必須。この規則のタイプを指定する。
    // クラス名、バリデータのエイリアス、または、バリデーションメソッドの名前。
    'バリデータ',

    // オプション。この規則が適用されるべき一つまたは複数のシナリオを指定する。
    // 指定しない場合は、この規則が全てのシナリオに適用されることを意味する。
    // "except" オプションを構成して、列挙したシナリオを除く全てのシナリオに
    // この規則が適用されるべきことを指定してもよい。
    'on' => ['シナリオ1', 'シナリオ2', ...],

    // オプション。バリデータオブジェクトに対する追加の構成情報を指定する。
    'プロパティ1' => '値1', 'プロパティ2' => '値2', ...
]





各規則について、最低限、規則がどの属性に適用されるか、そして、規則がどのタイプであるかを指定しなければなりません。
規則のタイプは、次に挙げる形式のどれか一つを選ぶことが出来ます。


	コアバリデータのエイリアス。例えば、required、in、date、等々。
コアバリデータの完全なリストは コアバリデータ を参照してください。

	モデルクラス内のバリデーションメソッドの名前、または無名関数。詳細は、インラインバリデータ の項を参照してください。

	完全修飾のバリデータクラス名。詳細は スタンドアロンバリデータ の項を参照してください。



一つの規則は、一つまたは複数の属性を検証するために使用することが出来ます。
そして、一つの属性は、一つまたは複数の規則によって検証され得ます。
on オプションを指定することで、規則を特定の シナリオ においてのみ適用することが出来ます。
on オプションを指定しない場合は、規則が全てのシナリオに適用されることになります。

validate() メソッドが呼ばれると、次のステップを踏んで検証が実行されます。


	現在の [[yii\base\Model::scenario|シナリオ]] を使って [[yii\base\Model::scenarios()]] から属性のリストを取得し、どの属性が検証されるべきかを決定します。
検証されるべき属性が アクティブな属性 と呼ばれます。

	現在の [[yii\base\Model::scenario|シナリオ]] を使って [[yii\base\Model::rules()]] から規則のリストを取得し、どの検証規則が使用されるべきかを決定します。
使用されるべき規則が アクティブな規則 と呼ばれます。

	全てのアクティブな規則を一つずつ使って、その規則に関連付けられた全てのアクティブな属性を一つずつ検証します。
検証規則はリストに挙げられている順に評価されます。



属性は、上記の検証のステップに従って、scenarios() でアクティブな属性であると宣言されており、かつ、rules() で宣言された一つまたは複数のアクティブな規則と関連付けられている場合に、また、その場合に限って、検証されます。


Note: 規則に名前を付けると便利です。すなわち、

public function rules()
{
    return [
        // ...
        'password' => [['password'], 'string', 'max' => 60],
    ];
}





これを子のモデルで使うことが出来ます。

public function rules()
{
    $rules = parent::rules();
    unset($rules['password']);
    return $rules;
}









エラーメッセージをカスタマイズする 

たいていのバリデータはデフォルトのエラーメッセージを持っていて、属性の検証が失敗した場合にそれを検証の対象であるモデルに追加します。
例えば、[[yii\validators\RequiredValidator|required]] バリデータは、このバリデータを使って username 属性を検証したとき、規則に合致しない場合は「ユーザ名は空ではいけません。」というエラーメッセージをモデルに追加します。

規則のエラーメッセージは、次に示すように、規則を宣言するときに message プロパティを指定することによってカスタマイズすることが出来ます。

public function rules()
{
    return [
        ['username', 'required', 'message' => 'ユーザ名を選んでください。'],
    ];
}





バリデータの中には、検証を失敗させたさまざまな原因をより詳しく説明するための追加のエラーメッセージをサポートしているものがあります。
例えば、[[yii\validators\NumberValidator|number]] バリデータは、検証される値が大きすぎたり小さすぎたりしたときに、検証の失敗を説明するために、それぞれ、[[yii\validators\NumberValidator::tooBig|tooBig]] および [[yii\validators\NumberValidator::tooSmall|tooSmall]] のメッセージをサポートしています。
これらのエラーメッセージも、バリデータの他のプロパティと同様、検証規則の中で構成することが出来ます。




検証のイベント 

[[yii\base\Model::validate()]] は、呼び出されると、検証のプロセスをカスタマイズするためにオーバーライドできる二つのメソッドを呼び出します。


	[[yii\base\Model::beforeValidate()]]: デフォルトの実装は [[yii\base\Model::EVENT_BEFORE_VALIDATE]] イベントをトリガするものです。
このメソッドをオーバーライドするか、または、イベントに反応して、検証が実行される前に、何らかの前処理 (例えば入力されたデータの正規化) をすることが出来ます。
このメソッドは、検証を続行すべきか否かを示す真偽値を返さなくてはなりません。

	[[yii\base\Model::afterValidate()]]: デフォルトの実装は [[yii\base\Model::EVENT_AFTER_VALIDATE]] イベントをトリガするものです。
このメソッドをオーバーライドするか、または、イベントに反応して、検証が完了した後に、何らかの後処理をすることが出来ます。






条件付きの検証 

特定の条件が満たされる場合に限って属性を検証したい場合、例えば、ある属性の検証が他の属性の値に依存する場合には、[[yii\validators\Validator::when|when]] プロパティを使って、そのような条件を定義することが出来ます。
例えば、

    ['state', 'required', 'when' => function($model) {
        return $model->country == 'USA';
    }],





[[yii\validators\Validator::when|when]] プロパティは、次のシグニチャを持つ PHP コーラブルを値として取ります。

/**
 * @param Model $model 検証されるモデル
 * @param string $attribute 検証される属性
 * @return bool 規則が適用されるか否か
 */
function ($model, $attribute)





クライアント側でも条件付きの検証をサポートする必要がある場合は、[[yii\validators\Validator::whenClient|whenClient]] プロパティを構成しなければなりません。
このプロパティは、規則を適用すべきか否かを返す JavaScript 関数を表す文字列を値として取ります。
例えば、

    ['state', 'required', 'when' => function ($model) {
        return $model->country == 'USA';
    }, 'whenClient' => "function (attribute, value) {
        return $('#country').val() == 'USA';
    }"]








データのフィルタリング 

ユーザ入力をフィルタまたは前処理する必要があることがよくあります。
例えば、username の入力値の前後にある空白を除去したいというような場合です。
この目的を達するために検証規則を使うことが出来ます。

次の例では、入力値の前後にある空白を除去して、空の入力値を null に変換することを、trim および default のコアバリデータで行っています。

return [
    [['username', 'email'], 'trim'],
    [['username', 'email'], 'default'],
];





もっと汎用的な filter バリデータを使って、もっと複雑なデータフィルタリングをすることも出来ます。

お分かりのように、これらの検証規則は実際には入力を検証しません。そうではなくて、検証される属性の値を処理して書き戻すのです。




空の入力値を扱う 

HTML フォームから入力データが送信されたとき、入力値が空である場合には何らかのデフォルト値を割り当てなければならないことがよくあります。
default バリデータを使ってそうすることが出来ます。
例えば、

return [
    // 空の時は "username" と "email" を null にする
    [['username', 'email'], 'default'],

    // 空の時は "level" を 1 にする
    ['level', 'default', 'value' => 1],
];





デフォルトでは、入力値が空であると見なされるのは、それが、空文字列であるか、空配列であるか、null であるときです。
空を検知するこのデフォルトのロジックは、[[yii\validators\Validator::isEmpty]] プロパティを PHP コーラブルで構成することによって、カスタマイズすることが出来ます。
例えば、

return [
    ['agree', 'required', 'isEmpty' => function ($value) {
        return empty($value);
    }],
];






Note: たいていのバリデータは、[[yii\validators\Validator::skipOnEmpty]] プロパティがデフォルト値 true を取っている場合は、空の入力値を処理しません。
そのようなバリデータは、関連付けられた属性が空の入力値を受け取ったときは、検証の過程ではスキップされるだけになります。
コアバリデータ の中では、captcha、default、filter、required、そして trim だけが空の入力値を処理します。







その場限りの検証 

時として、何らかのモデルに結び付けられていない値に対する その場限りの検証 を実行しなければならない場合があります。

実行する必要がある検証が一種類 (例えば、メールアドレスの検証) だけである場合は、使いたいバリデータの [[yii\validators\Validator::validate()|validate()]] メソッドを次のように呼び出すことが出来ます。

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
    echo 'メールアドレスは有効。';
} else {
    echo $error;
}






Note: 全てのバリデータがこの種の検証をサポートしている訳ではありません。
その一例が unique コアバリデータであり、これはモデルとともに使用されることだけを前提にして設計されています。


いくつかの値に対して複数の検証を実行する必要がある場合は、属性と規則の両方をその場で宣言することが出来る [[yii\base\DynamicModel]] を使うことが出来ます。
これは、次のような使い方をします。

public function actionSearch($name, $email)
{
    $model = DynamicModel::validateData(compact('name', 'email'), [
        [['name', 'email'], 'string', 'max' => 128],
        ['email', 'email'],
    ]);

    if ($model->hasErrors()) {
        // 検証が失敗
    } else {
        // 検証が成功
    }
}





[[yii\base\DynamicModel::validateData()]] メソッドは DynamicModel のインスタンスを作成し、与えられた値 (この例では name と email) を使って属性を定義し、そして、与えられた規則で [[yii\base\Model::validate()]] を呼び出します。

別の選択肢として、次のように、もっと「クラシック」な構文を使って、その場限りのデータ検証を実行することも出来ます。

public function actionSearch($name, $email)
{
    $model = new DynamicModel(compact('name', 'email'));
    $model->addRule(['name', 'email'], 'string', ['max' => 128])
        ->addRule('email', 'email')
        ->validate();

    if ($model->hasErrors()) {
        // 検証が失敗
    } else {
        // 検証が成功
    }
}





検証を実行した後は、通常のモデルで行うのと同様に、検証が成功したか否かを [[yii\base\DynamicModel::hasErrors()|hasErrors()]] メソッドを呼んでチェックして、[[yii\base\DynamicModel::errors|errors]] プロパティから検証エラーを取得することが出来ます。
また、このモデルのインスタンスによって定義された動的な属性に対しても、例えば $model->name や $model->email のようにして、アクセスすることが出来ます。




バリデータを作成する 

Yii のリリースに含まれている コアバリデータ を使う以外に、あなた自身のバリデータを作成することも出来ます。
インラインバリデータとスタンドアロンバリデータを作ることが出来ます。


インラインバリデータ 

インラインバリデータは、モデルのメソッドまたは無名関数として定義されるバリデータです。
メソッド/関数 のシグニチャは、

/**
 * @param string $attribute 現在検証されている属性
 * @param mixed $params 規則に与えられる "params" の値
 * @param \yii\validators\InlineValidator 関係する InlineValidator のインスタンス。
 * このパラメータは、バージョン 2.0.11 以降で利用可能。
 */
function ($attribute, $params, $validator)





属性が検証に失敗した場合は、メソッド/関数 は [[yii\base\Model::addError()]] を呼んでエラーメッセージをモデルに保存し、後で読み出してエンドユーザに表示することが出来るようにしなければなりません。

下記にいくつかの例を示します。

use yii\base\Model;

class MyForm extends Model
{
    public $country;
    public $token;

    public function rules()
    {
        return [
            // モデルメソッド validateCountry() として定義されるインラインバリデータ
            ['country', 'validateCountry'],

            // 無名関数として定義されるインラインバリデータ
            ['token', function ($attribute, $params, $validator) {
                if (!ctype_alnum($this->$attribute)) {
                    $this->addError($attribute, 'トークンは英数字で構成しなければなりません。');
                }
            }],
        ];
    }

    public function validateCountry($attribute, $params, $validator)
    {
        if (!in_array($this->$attribute, ['USA', 'Web'])) {
            $this->addError($attribute, '国は "USA" または "Web" でなければなりません。');
        }
    }
}






Note: バージョン 2.0.11 以降では、代わりに、[[yii\validators\InlineValidator::addError()]] を使ってエラーメッセージを追加することが出来ます。
そうすれば、エラーメッセージはそのまま [[yii\i18n\I18N::format()]] を使ってフォーマットされます。
属性のラベルと値を参照するためには、それぞれ、{attribute} と {value} を使ってください(手作業で取得する必要はありません)。

$validator->addError($this, $attribute, 'The value "{value}" is not acceptable for {attribute}.');









Note: デフォルトでは、インラインバリデータは、関連付けられている属性が空の入力値を受け取ったり、既に何らかの検証規則に失敗したりしている場合には、適用されません。
規則が常に適用されることを保証したい場合は、規則の宣言において [[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] および/または [[yii\validators\Validator::skipOnError|skipOnError]] のプロパティを false に設定することが出来ます。
例えば、

[
    ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]











スタンドアロンバリデータ 

スタンドアロンバリデータは、[[yii\validators\Validator]] またはその子クラスを拡張するクラスです。
[[yii\validators\Validator::validateAttribute()]] メソッドをオーバーライドすることによって、その検証ロジックを実装することが出来ます。
インラインバリデータ でするのと同じように、属性が検証に失敗した場合は、[[yii\base\Model::addError()]] を呼んでエラーメッセージをモデルに保存します。

例えば、上記のインラインバリデータは、新しい [[components/validators/CountryValidator]] クラスに作りかえることが出来ます。

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
    public function validateAttribute($model, $attribute)
    {
        if (!in_array($model->$attribute, ['USA', 'Web'])) {
            $this->addError($model, $attribute, '国は "USA" または "Web" でなければなりません。');
        }
    }
}





あなたのバリデータで、モデルを使わない値の検証をサポートしたい場合は、[[yii\validators\Validator::validate()]] もオーバーライドしなければなりません。
または、validateAttribute() と validate() の代りに、[[yii\validators\Validator::validateValue()]] をオーバーライドしても構いません。
と言うのは、前の二つは、デフォルトでは、validateValue() を呼び出すことによって実装されているからです。

次の例は、上記のバリデータクラスをあなたのモデルの中でどのように使用することが出来るかを示すものです。

namespace app\models;

use Yii;
use yii\base\Model;
use app\components\validators\CountryValidator;

class EntryForm extends Model
{
    public $name;
    public $email;
    public $country;

    public function rules()
    {
        return [
            [['name', 'email'], 'required'],
            ['country', CountryValidator::className()],
            ['email', 'email'],
        ];
    }
}










複数の属性の検証 

時として、バリデータが複数の属性に関係する場合があります。次のようなフォームを考えてみてください。

class MigrationForm extends \yii\base\Model
{
    /**
     * 成人一人のための最低限の生活費
     */
    const MIN_ADULT_FUNDS = 3000;
    /**
     * こども一人のための最低限の生活費
     */
    const MIN_CHILD_FUNDS = 1500;

    public $personalSalary;   // 給与
    public $spouseSalary;     // 配偶者の給与
    public $childrenCount;    // こどもの数
    public $description;

    public function rules()
    {
        return [
            [['personalSalary', 'description'], 'required'],
            [['personalSalary', 'spouseSalary'], 'integer', 'min' => self::MIN_ADULT_FUNDS],
            ['childrenCount', 'integer', 'min' => 0, 'max' => 5],
            [['spouseSalary', 'childrenCount'], 'default', 'value' => 0],
            ['description', 'string'],
        ];
    }
}






バリデータを作成する 

家族の収入が子ども達のために十分であるかどうかをチェックする必要があるとしましょう。
そのためには、childrenCount が 1 以上である場合にのみ実行される validateChildrenFunds というインラインバリデータを作れば良いわけです。

検証されるすべての属性 (['personalSalary', 'spouseSalary', 'childrenCount']) にこのバリデータをアタッチすることは出来ない、ということに注意してください。
そのようにすると、同じバリデータが属性ごとに (合計で三回) 走ることになりますが、
属性のセット全体に対してこのバリデータを一度だけ走らせれば十分なのです。

これらの属性のどれを使っても構いません (あるいは、もっとも関係が深いと思うものを使ってください)。

['childrenCount', 'validateChildrenFunds', 'when' => function ($model) {
    return $model->childrenCount > 0;
}],





validateChildrenFunds の実装は次のようにすることが出来ます。

public function validateChildrenFunds($attribute, $params)
{
    $totalSalary = $this->personalSalary + $this->spouseSalary;
    // 配偶者の給与が指定されているときは、成人の最低生活費を倍にする
    $minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 : self::MIN_ADULT_FUNDS;
    $childFunds = $totalSalary - $minAdultFunds;
    if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {
        $this->addError('childrenCount', '子どもの数に対して給与が不足しています。');
    }
}





この検証は属性一つだけに関係するものではないので、$attribute のパラメータは無視することが出来ます。




エラーメッセージを追加する 

複数の属性の場合のエラーメッセージの追加は、フォームをどのように設計するかによって異なってきます。


	もっとも関係が深いとあなたが思うフィールドを選んで、その属性にエラーメッセージを追加する。



$this->addError('childrenCount', '子どもの数に対して給与が不足しています。');






	重要な複数の属性、または、すべての属性を選んで、同じエラーメッセージを追加する。
メッセージを独立した変数に格納してから addError に渡せば、コードを DRY に保つことが出来ます。



$message = '子どもの数に対して給与が不足しています。';
$this->addError('personalSalary', $message);
$this->addError('wifeSalary', $message);
$this->addError('childrenCount', $message);





あるいは、ループを使います。

$attributes = ['personalSalary, 'wifeSalary', 'childrenCount'];
foreach ($attributes as $attribute) {
    $this->addError($attribute, '子どもの数に対して給与が不足しています。');
}






	(特定の属性に結び付かない) 共通のエラーメッセージを追加する。
その時点では属性の存在はチェックされませんので、存在しない属性の名前、例えば * を使ってエラーメッセージを追加することが出来ます。



$this->addError('*', '子どもの数に対して給与が不足しています。');





結果として、フォームのフィールドの近くにはこのエラーメッセージは表示されません。
これを表示するためには、ビューにエラーサマリーを含めます。

<?= $form->errorSummary($model) ?>






Note: 複数の属性を一度に検証するバリデータを作成する方法が community cookbook [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-validator-multiple-attributes.md] で分り易く解説されています。.







クライアント側での検証 

エンドユーザが HTML フォームで値を入力する際には、JavaScript に基づくクライアント側での検証を提供することが望まれます。
というのは、クライアント側での検証は、ユーザが入力のエラーを早く見つけることが出来るようにすることによって、より良いユーザ体験を提供するものだからです。
あなたも、サーバ側での検証 に加えて クライアント側での検証をサポートするバリデータを使用したり実装したりすることが出来ます。


Info: クライアント側での検証は望ましいものですが、不可欠なものではありません。
その主たる目的は、ユーザにより良い体験を提供することにあります。
エンドユーザから来る入力値と同じように、クライアント側での検証を決して信用してはいけません。
この理由により、これまでの項で説明したように、常に [[yii\base\Model::validate()]] を呼び出してサーバ側での検証を実行しなければなりません。



クライアント側での検証を使う 

多くの コアバリデータ は、そのままで、クライアント側での検証をサポートしています。
あなたがする必要があるのは、[[yii\widgets\ActiveForm]] を使って HTML フォームを作るということだけです。
例えば、下の LoginForm は二つの規則を宣言しています。
一つは、required コアバリデータを使っていますが、これはクライアント側とサーバ側の両方でサポートされています。
もう一つは validatePassword インラインバリデータを使っていますが、こちらはサーバ側でのみサポートされています。

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
    public $username;
    public $password;

    public function rules()
    {
        return [
            // username と password はともに必須
            [['username', 'password'], 'required'],

            // password は validatePassword() によって検証される
            ['password', 'validatePassword'],
        ];
    }

    public function validatePassword()
    {
        $user = User::findByUsername($this->username);

        if (!$user || !$user->validatePassword($this->password)) {
            $this->addError('password', 'ユーザ名またはパスワードが違います。');
        }
    }
}





次のコードによって構築される HTML フォームは、username と password の二つの入力フィールドを含みます。
何も入力せずにこのフォームを送信すると、何かを入力するように要求するエラーメッセージが、サーバと少しも交信することなく、ただちに表示されることに気付くでしょう。

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <?= Html::submitButton('ログイン') ?>
<?php yii\widgets\ActiveForm::end(); ?>





舞台裏では、[[yii\widgets\ActiveForm]] がモデルで宣言されている検証規則を読んで、クライアント側の検証をサポートするバリデータのために、適切な JavaScript コードを生成します。
ユーザが入力フィールドの値を変更したりフォームを送信したりすると、クライアント側の検証の JavaScript が起動されます。

クライアント側の検証を完全に無効にしたい場合は、[[yii\widgets\ActiveForm::enableClientValidation]] プロパティを false に設定することが出来ます。
また、個々の入力フィールドごとにクライアント側の検証を無効にしたい場合には、入力フィールドの [[yii\widgets\ActiveField::enableClientValidation]] プロパティを false に設定することが出来ます。
eanbleClientValidation が入力フィールドのレベルとフォームのレベルの両方で構成されている場合は前者が優先されます。


Info: バージョン 2.0.11 以降、[[yii\validators\Validator]] を拡張する全てのバリデータは、
クライアント側のオプションを独立したメソッド - [[yii\validators\Validator::getClientOptions()]] から受け取るようになりました。
これを使うと、次のことが可能になります。


	独自のクライアント側検証を実装しながら、サーバ側検証のオプションとの同期はそのまま残す

	特殊な要求に合うように拡張またはカスタマイズする



public function getClientOptions($model, $attribute)
{
    $options = parent::getClientOptions($model, $attribute);
    // ここで $options を修正

    return $options;
}











クライアント側の検証を実装する 

クライアント側の検証をサポートするバリデータを作成するためには、クライアント側での検証を実行する JavaScript コードを返す [[yii\validators\Validator::clientValidateAttribute()]] メソッドを実装しなければなりません。
その JavaScript の中では、次の事前定義された変数を使用することが出来ます。


	attribute: 検証される属性の名前。

	value: 検証される値。

	messages: 属性に対する検証のエラーメッセージを保持するために使用される配列。

	deferred: Deferred オブジェクトをプッシュして入れることが出来る配列 (次の項で説明します)。



次の例では、入力された値が既存のステータスのデータに含まれる有効なステータス値であるかどうかを検証する StatusValidator を作成します。
このバリデータは、サーバ側とクライアント側の両方の検証をサポートします。

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
    public function init()
    {
        parent::init();
        $this->message = '無効なステータスが入力されました。';
    }

    public function validateAttribute($model, $attribute)
    {
        $value = $model->$attribute;
        if (!Status::find()->where(['id' => $value])->exists()) {
            $model->addError($attribute, $this->message);
        }
    }

    public function clientValidateAttribute($model, $attribute, $view)
    {
        $statuses = json_encode(Status::find()->select('id')->asArray()->column());
        $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
        return <<<JS
if ($.inArray(value, $statuses) === -1) {
    messages.push($message);
}
JS;
    }
}






Tip: 上記のコード例の主たる目的は、クライアント側の検証をサポートする方法を説明することにあります。
実際の仕事では、in コアバリデータを使って、同じ目的を達することが出来ます。
次のように検証規則を書けばよいのです。

[
    ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]









Tip: クライアント側の検証を手動で操作する必要がある場合、すなわち、動的にフィールドを追加したり、何か特殊な UI ロジックを実装する場合は、
Yii 2.0 Cookbook の Working with ActiveForm via JavaScript [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md] を参照してください。





Deferred 検証 

非同期のクライアント側の検証をサポートする必要がある場合は、Defered オブジェクト [http://api.jquery.com/category/deferred-object/] を作成することが出来ます。
例えば、AJAX によるカスタム検証を実行するために、次のコードを使うことが出来ます。

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.push($.get("/check", {value: value}).done(function(data) {
            if ('' !== data) {
                messages.push(data);
            }
        }));
JS;
}





上のコードにおいて、deferred は Yii が提供する変数で、Deferred オブジェクトの配列です。
jQuery の $.get() メソッドによって作成された Deferred オブジェクトが deferred 配列にプッシュされています。

Deferred オブジェクトを明示的に作成して、非同期のコールバックが呼ばれたときに、Deferred オブジェクトの resolve() メソッドを呼ぶことも出来ます。
次の例は、アップロードされる画像ファイルの大きさをクライアント側で検証する方法を示すものです。

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        var def = $.Deferred();
        var img = new Image();
        img.onload = function() {
            if (this.width > 150) {
                messages.push('画像の幅が大きすぎます。');
            }
            def.resolve();
        }
        var reader = new FileReader();
        reader.onloadend = function() {
            img.src = reader.result;
        }
        reader.readAsDataURL(file);

        deferred.push(def);
JS;
}






Note: 属性が検証された後に、resolve() メソッドを呼び出さなければなりません。
そうしないと、主たるフォームの検証が完了しません。


簡潔に記述できるように、deferred 配列はショートカットメソッド add() を装備しており、このメソッドを使うと、自動的に Deferred オブジェクトを作成して deferred 配列に追加することが出来ます。
このメソッドを使えば、上記の例は次のように簡潔に記すことが出来ます。

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.add(function(def) {
            var img = new Image();
            img.onload = function() {
                if (this.width > 150) {
                    messages.push('画像の幅が大きすぎます。');
                }
                def.resolve();
            }
            var reader = new FileReader();
            reader.onloadend = function() {
                img.src = reader.result;
            }
            reader.readAsDataURL(file);
        });
JS;
}








AJAX 検証 

場合によっては、サーバだけが必要な情報を持っているために、サーバ側でしか検証が実行できないことがあります。
例えば、ユーザ名がユニークであるか否かを検証するためには、サーバ側で user テーブルを調べることが必要になります。
このような場合には、AJAX ベースの検証を使うことが出来ます。
AJAX 検証は、通常のクライアント側での検証と同じユーザ体験を保ちながら、入力値を検証するためにバックグラウンドで AJAX リクエストを発行します。

単一のインプットフィールドに対して AJAX 検証を有効にするためには、そのフィールドの [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]] プロパティを true に設定し、フォームに一意の id を指定します。

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();





フォーム全体に対して AJAX 検証を有効にするためには、フォームのレベルで [[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]] を true に設定します。

$form = ActiveForm::begin([
    'id' => 'contact-form',
    'enableAjaxValidation' => true,
]);






Note: enableAjaxValidation プロパティがインプットフィールドのレベルとフォームのレベルの両方で構成された場合は、前者が優先されます。


また、サーバ側では、AJAX 検証のリクエストを処理できるように準備しておく必要があります。
これは、コントローラのアクションにおいて、次のようなコード断片を使用することで達成できます。

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
    Yii::$app->response->format = Response::FORMAT_JSON;
    return ActiveForm::validate($model);
}





上記のコードは、現在のリクエストが AJAX であるかどうかをチェックします。
もし AJAX であるなら、リクエストに応えて検証を実行し、エラーを JSON 形式で返します。


Info: AJAX 検証を実行するためには、Deferred 検証 を使うことも出来ます。
しかし、ここで説明された AJAX 検証の機能の方がより体系化されており、コーディングの労力も少なくて済みます。


enableClientValidation と enableAjaxValidation が両方とも真に設定されているときは、クライアント検証が成功した後でだけ AJAX 検証が起動されます。









          

      

      

    

  

  
    
    
    データのフォーマット
    
    

    
 
  
  

    
      
          
            
  
データのフォーマット

ユーザにとってより読みやすい形式でデータを表示するために、formatter アプリケーションコンポーネント を使ってデータをフォーマットすることが出来ます。
デフォルトでは、フォーマッタは [[yii\i18n\Formatter]] によって実装されており、これが、日付/時刻、数字、通貨、その他のよく使われる形式にデータをフォーマットする一連のメソッドを提供します。
このフォーマッタは次のようにして使うことが出来ます。

$formatter = \Yii::$app->formatter;

// 出力: January 1, 2014
echo $formatter->asDate('2014-01-01', 'long');
 
// 出力: 12.50%
echo $formatter->asPercent(0.125, 2);
 
// 出力: <a href="mailto:cebe@example.com">cebe@example.com</a>
echo $formatter->asEmail('cebe@example.com'); 

// 出力: Yes
echo $formatter->asBoolean(true); 
// it also handles display of null values:

// 出力: (not set)
echo $formatter->asDate(null); 





ご覧のように、これらのメソッドは全て asXyz() という名前を付けられており、Xyz がサポートされている形式を表しています。
別の方法として、汎用メソッド [[yii\i18n\Formatter::format()|format()]] を使ってデータをフォーマットすることも出来ます。
この方法を使うと望む形式をプログラム的に制御することが可能になりますので、[[yii\grid\GridView]] や [[yii\widgets\DetailView]] などのウィジェットでは、こちらがよく使われています。
例えば、

// 出力: January 1, 2014
echo Yii::$app->formatter->format('2014-01-01', 'date'); 

// 配列を使ってフォーマットメソッドのパラメータを指定することも出来ます。
// `2` は asPercent() メソッドの $decimals パラメータの値です。
// 出力: 12.50%
echo Yii::$app->formatter->format(0.125, ['percent', 2]); 






Note: フォーマッタコンポーネントは、エンドユーザへの表示用に値をフォーマットすることを目的に設計されています。
ユーザの入力を機械が読み取れる形式にフォーマットしたい場合、また、日付を機械が読み取れる形式にフォーマットしたいだけ、という場合には、
フォーマッタは適切なツールではありません。
日付と数値についてユーザ入力を変換するためには、それぞれ、[[yii\validators\DateValidator]] と [[yii\validators\NumberValidator]]
を使うことが出来ます。機械が読み取れる日付と時刻のフォーマットの単純な相互変換には、PHP の date() [http://php.net/manual/ja/function.date.php] 関数で十分です。



フォーマッタを構成する 

アプリケーションの構成情報 の中で formatter コンポーネントを構成して、フォーマットの規則をカスタマイズすることが出来ます。
例えば、

return [
    'components' => [
        'formatter' => [
            'dateFormat' => 'dd.MM.yyyy',
            'decimalSeparator' => ',',
            'thousandSeparator' => ' ',
            'currencyCode' => 'EUR',
       ],
    ],
];





構成可能なプロパティについては、[[yii\i18n\Formatter]] を参照してください。




日付と時刻の値をフォーマットする 

フォーマッタは日付と時刻に関連した下記の出力形式をサポートしています。


	[[yii\i18n\Formatter::asDate()|date]] - 値は日付としてフォーマットされます。例えば January 01, 2014。

	[[yii\i18n\Formatter::asTime()|time]] - 値は時刻としてフォーマットされます。例えば 14:23。

	[[yii\i18n\Formatter::asDatetime()|datetime]] - 値は日付および時刻としてフォーマットされます。例えば January 01, 2014 14:23。

	[[yii\i18n\Formatter::asTimestamp()|timestamp]] - 値は unix タイムスタンプ [http://en.wikipedia.org/wiki/Unix_time] としてフォーマットされます。例えば 1412609982。

	[[yii\i18n\Formatter::asRelativeTime()|relativeTime]] - 値は、その日時と現在との間隔として、人間に分かりやすい言葉でフォーマットされます。例えば 1 hour ago。

	[[yii\i18n\Formatter::asDuration()|duration]] - 値は継続時間として、人間に分かりやすい言葉でフォーマットされます。例えば 1 day, 2 minutes。



[[yii\i18n\Formatter::asDate()|date]]、[[yii\i18n\Formatter::asTime()|time]]、[[yii\i18n\Formatter::asDatetime()|datetime]] メソッドに使われるデフォルトの日時書式は、フォーマッタの [[yii\i18n\Formatter::$dateFormat|$dateFormat]]、[[yii\i18n\Formatter::$timeFormat|$timeFormat]]、[[yii\i18n\Formatter::$datetimeFormat|$datetimeFormat]] を構成することで、グローバルにカスタマイズすることが出来ます。

日付と時刻のフォーマットは、ICU 構文 [http://userguide.icu-project.org/formatparse/datetime] によって指定することが出来ます。
また、ICU 構文と区別するために php: という接頭辞を付けて、PHP の date() 構文 [http://php.net/manual/ja/function.date.php] を使うことも出来ます。
例えば、

// ICU 形式
echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06
// PHP date() 形式
echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06





複数の言語をサポートする必要があるアプリケーションを扱う場合には、ロケールごとに異なる日付と時刻のフォーマットを指定しなければならないことがよくあります。
この仕事を単純化するためには、(long、short などの) フォーマットのショートカットを代りに使うことが出来ます。
フォーマッタは、現在アクティブな [[yii\i18n\Formatter::locale|locale]] に従って、フォーマットのショートカットを適切なフォーマットに変換します。
フォーマットのショートカットとして、次のものがサポートされています
(例は en_GB がアクティブなロケールであると仮定したものです)。


	short: 日付は 06/10/2014、時刻は 15:58 を出力

	medium: 6 Oct 2014 と 15:58:42 を出力

	long: 6 October 2014 と 15:58:42 GMT を出力

	full: Monday, 6 October 2014 と 15:58:42 GMT を出力




Info: ja_JP ロケールでは、次のようになります。

short: 2014/10/06 と 15:58
medium: 2014/10/06 と 15:58:42
long: 2014年10月6日 と 15:58:42 JST
full: 2014年10月6日月曜日 と 15時58分42秒 日本標準時




バージョン 2.0.7 以降では、さまざまな暦法に従って日付をフォーマットすることが可能です。
通常のグレゴリオ暦とは異なる暦法を使用する方法については、フォーマッタの [[yii\i18n\Formatter::$calendar|$calendar]]
プロパティの API ドキュメントを参照して下さい。


タイムゾーン 

日時の値をフォーマットするときに、Yii はその値をターゲット [[yii\i18n\Formatter::timeZone|タイムゾーン]] に変換します。
フォーマットされる値は、タイムゾーンが明示的に指定されるか、[[yii\i18n\Formatter::defaultTimeZone]] が構成されるかしていない限り、UTC であると見なされます。

次の例では、ターゲット [[yii\i18n\Formatter::timeZone|タイムゾーン]] が Europe/Berlin に設定されているものとします。

// UNIX タイムスタンプを時刻としてフォーマット
echo Yii::$app->formatter->asTime(1412599260); // 14:41:00

// UTC の日付時刻文字列を時刻としてフォーマット
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00

// CEST の日付時刻文字列を時刻としてフォーマット
echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00






Info:
ターゲット [[yii\i18n\Formatter::timeZone|タイムゾーン]] が Asia/Tokyo である場合は、次のようになります。

echo Yii::$app->formatter->asTime(1412599260); // 21:41:00
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 21:41:00
echo Yii::$app->formatter->asTime('2014-10-06 21:41:00 JST'); // 21:41:00









Note: タイムゾーンは世界中のさまざまな政府によって作られる規則に従うものであり、頻繁に変更されるものであるため、あなたのシステムにインストールされたタイムゾーンのデータベースが最新の情報を持っていない可能性が大いにあります。
タイムゾーンデータベースの更新についての詳細は、ICU マニュアル [http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data] で参照することが出来ます。
PHP 環境を国際化のために設定する も参照してください。







数値をフォーマットする 

フォーマッタは、数値に関連した下記の出力フォーマットをサポートしています。


	[[yii\i18n\Formatter::asInteger()|integer]] - 値は整数としてフォーマットされます。例えば 42。

	[[yii\i18n\Formatter::asDecimal()|decimal]] - 値は小数点と三桁ごとの区切りを考慮して十進数としてフォーマットされます。例えば 2,542.123 または 2.542,123。

	[[yii\i18n\Formatter::asPercent()|percent]] - 値は百分率としてフォーマットされます。例えば 42%。

	[[yii\i18n\Formatter::asScientific()|scientific]] - 値は科学記法による数値としてフォーマットされます。例えば 4.2E4。

	[[yii\i18n\Formatter::asCurrency()|currency]] - 値は通貨の値としてフォーマットされます。例えば £420.00。
この関数が正しく働くためには、en_GB や en_US のように、ロケールが国コードを含んでいる必要があります。
なぜなら、この場合は言語だけでは曖昧になるからです。

	[[yii\i18n\Formatter::asSize()|size]] - バイト数である値が人間にとって読みやすいサイズとしてフォーマットされます。例えば 410 キビバイト。

	[[yii\i18n\Formatter::asShortSize()|shortSize]] - [[yii\i18n\Formatter::asSize()|size]] の短いバージョンです。例えば 410 KiB。



数値のフォーマットに使われる書式は、デフォルトではロケールに従って設定される [[yii\i18n\Formatter::decimalSeparator|decimalSeparator]] と [[yii\i18n\Formatter::thousandSeparator|thousandSeparator]] を使って調整することが出来ます。

更に高度な設定のためには、[[yii\i18n\Formatter::numberFormatterOptions]] と [[yii\i18n\Formatter::numberFormatterTextOptions]] を使って、内部的に使用される NumberFormatter クラス [http://php.net/manual/ja/class.numberformatter.php] を構成することが出来ます。

例えば、小数部の最大桁数と最小桁数を調整するためには、次のように [[yii\i18n\Formatter::numberFormatterOptions]] プロパティを構成します。

'numberFormatterOptions' => [
    NumberFormatter::MIN_FRACTION_DIGITS => 0,
    NumberFormatter::MAX_FRACTION_DIGITS => 2,
]








その他のフォーマット 

日付/時刻と数値のフォーマット以外にも、Yii はよく使われるフォーマットをサポートしています。
その中には、次のものが含まれます。


	[[yii\i18n\Formatter::asRaw()|raw]] - 値はそのまま出力されます。null 値が [[nullDisplay]] を使ってフォーマットされる以外は、何の効果もない擬似フォーマッタです。

	[[yii\i18n\Formatter::asText()|text]] - 値は HTML エンコードされます。
これは GridView DataColumn で使われるデフォルトのフォーマットです。

	[[yii\i18n\Formatter::asNtext()|ntext]] - 値は HTML エンコードされ、改行文字が強制改行に変換された平文テキストとしてフォーマットされます。

	[[yii\i18n\Formatter::asParagraphs()|paragraphs]] - 値は HTML エンコードされ、<p> タグに囲まれた段落としてフォーマットされます。

	[[yii\i18n\Formatter::asHtml()|html]] - 値は XSS 攻撃を避けるために [[HtmlPurifier]] を使って浄化されます。
['html', ['Attr.AllowedFrameTargets' => ['_blank']]] のような追加のオプションを渡すことが出来ます。

	[[yii\i18n\Formatter::asEmail()|email]] - 値は mailto リンクとしてフォーマットされます。

	[[yii\i18n\Formatter::asImage()|image]] - 値は image タグとしてフォーマットされます。

	[[yii\i18n\Formatter::asUrl()|url]] - 値はハイパーリンクとしてフォーマットされます。

	[[yii\i18n\Formatter::asBoolean()|boolean]] - 値は真偽値としてフォーマットされます。
デフォルトでは、true は Yes、false は No とレンダリングされ、現在のアプリケーションの言語に翻訳されます。
この動作は [[yii\i18n\Formatter::booleanFormat]] プロパティを構成して調整できます。






null 値 

Null 値は特殊な方法でフォーマットされます。
空文字列を表示する代りに、フォーマッタは null 値を事前定義された文字列 (そのデフォルト値は (not set) です) に変換し、それを現在のアプリケーションの言語に翻訳します。
この文字列は [[yii\i18n\Formatter::nullDisplay|nullDisplay]] プロパティを構成してカスタマイズすることが出来ます。




データのフォーマットをローカライズする 

既に述べたように、フォーマッタは現在のアクティブな [[yii\i18n\Formatter::locale|locale]] を使って、ターゲットの国/地域にふさわしい値のフォーマットを決定することが出来ます。
例えば、同じ日時の値でも、ロケールによって異なる書式にフォーマットされます。

Yii::$app->formatter->locale = 'en-US';
echo Yii::$app->formatter->asDate('2014-01-01'); // 出力: January 1, 2014

Yii::$app->formatter->locale = 'de-DE';
echo Yii::$app->formatter->asDate('2014-01-01'); // 出力: 1. Januar 2014

Yii::$app->formatter->locale = 'ru-RU';
echo Yii::$app->formatter->asDate('2014-01-01'); // 出力: 1 января 2014 г.

Yii::$app->formatter->locale = 'ja-JP';
echo Yii::$app->formatter->asDate('2014-01-01'); // 出力: 2014/01/01





デフォルトでは、現在のアクティブな [[yii\i18n\Formatter::locale|locale]] は [[yii\base\Application::language]] の値によって決定されます。
これは [[yii\i18n\Formatter::locale]] プロパティを明示的に指定することによってオーバーライドすることが出来ます。


Note: Yii のフォーマッタは、PHP intl extension [http://php.net/manual/ja/book.intl.php] に依存してデータのフォーマットのローカライズをサポートしています。
PHP にコンパイルされた ICU ライブラリのバージョンによってフォーマットの結果が異なる場合がありますので、あなたの全ての環境で、同じ ICU バージョンを使うことが推奨されます。
詳細については、PHP 環境を国際化のために設定する を参照してください。

intl 拡張がインストールされていない場合は、データはローカライズされません。

1901年より前、または、2038年より後の日時の値は、たとえ intl 拡張がインストールされていても、32-bit システムではローカライズされないことに注意してください。
これは、この場合、ICU ライブラリが日時の値に対して 32-bit の UNIX タイムスタンプを使用しているのが原因です。










          

      

      

    

  

  
    
    
    バージョン 1.1 からアップグレードする
    
    

    
 
  
  

    
      
          
            
  
バージョン 1.1 からアップグレードする

Yii フレームワークは 2.0 のために完全に書き直されたため、バージョン 1.1 と 2.0 の間には数多くの違いがあります。
結果として、バージョン 1.1 からのアップグレードは、マイナーバージョン間でのアップグレードのような些細な仕事ではなくなりました。
この節では、二つのバージョン間の主要な違いを説明します。

もし以前に Yii 1.1 を使ったことがなければ、あなたはこの節を飛ばして直接に “始めよう” に進んでも、問題はありません。

Yii 2.0 は、この要約でカバーされているよりも多くの新機能を導入していることに注意してください。
決定版ガイド全体を通読して全ての新機能について学習することを強く推奨します。
おそらく、以前は自分自身で開発する必要があったいくつかの機能が、今ではコアコードの一部になっていることに気付くでしょう。


インストール

Yii 2.0 は、事実上の標準的 PHP パッケージ管理ソフトである Composer [https://getcomposer.org/] を全面的に採用しています。
コアフレームワークも、エクステンションも、インストールは Composer を通じて処理されます。
Yii をインストールする の節を参照して、Yii 2.0 をインストールする方法を学習してください。
新しいエクステンションを作成したい場合、または既存の 1.1 エクステンションを 2.0 互換のエクステンションに作り直したい場合は、ガイドの
エクステンションを作成する の節を参照してください。




PHP の必要条件

Yii 2.0 は PHP 5.4 以上を必要とします。PHP 5.4 は、Yii 1.1 によって必要とされていた PHP 5.2 に比べて、非常に大きく改良されています。
この結果として、注意を払うべき言語レベルでの違いが数多くあります。
以下は PHP に関する主要な変更点の要約です。


	名前空間 [http://php.net/manual/ja/language.namespaces.php]。

	無名関数 [http://php.net/manual/ja/functions.anonymous.php]。

	配列の短縮構文 [...要素...] が array(...要素...) の代りに使われています。

	短縮形の echo タグ <?= がビューファイルに使われています。PHP 5.4 以降は、この形を使っても安全です。

	SPL のクラスとインタフェイス [http://php.net/manual/ja/book.spl.php]。

	遅延静的束縛(Late Static Bindings) [http://php.net/manual/ja/language.oop5.late-static-bindings.php]。

	日付と時刻 [http://php.net/manual/ja/book.datetime.php]。

	トレイト [http://php.net/manual/ja/language.oop5.traits.php]。

	国際化(intl) [http://php.net/manual/ja/book.intl.php]。Yii 2.0 は国際化の機能をサポートするために intl PHP 拡張を利用しています。






名前空間

Yii 2.0 での最も顕著な変更は名前空間の使用です。
ほとんど全てのコアクラスが、例えば、yii\web\Request のように名前空間に属します。
クラス名に “C” の接頭辞はもう使われません。
命名のスキームはディレクトリ構造に従うようになりました。
例えば、yii\web\Request は、対応するクラスファイルが Yii フレームワークフォルダの下の web/Request.php であることを示します。

(全てのコアクラスは、Yii のクラスローダのおかげで、そのクラスファイルを明示的にインクルードせずに使うことが出来ます。)




コンポーネントとオブジェクト

Yii 2.0 は、1.1 の CComponent クラスを二つのクラス、すなわち、[[yii\base\Object]] と [[yii\base\Component]] に分割しました。
[[yii\base\Object|Object]] クラスは、ゲッターとセッターを通じて オブジェクトプロパティ を定義することを可能にする、軽量な基底クラスです。
[[yii\base\Component|Component]] クラスは [[yii\base\Object|Object]] からの拡張であり、イベント と ビヘイビア をサポートします。

あなたのクラスがイベントやビヘイビアの機能を必要としない場合は、[[yii\base\Object|Object]] を基底クラスとして使うことを考慮すべきです。
通常は、基本的なデータ構造を表すクラスに対して、このことが当てはまります。




オブジェクトの構成

[[yii\base\Object|Object]] クラスはオブジェクトを構成するための統一された方法を導入しています。
[[yii\base\Object|Object]] の全ての派生クラスは、コンストラクタが必要な場合には、インスタンスが正しく構成されるように、コンストラクタを以下のようにして宣言しなければなりません。

class MyClass extends \yii\base\Object
{
    public function __construct($param1, $param2, $config = [])
    {
        // ... 構成情報が適用される前の初期化処理

        parent::__construct($config);
    }

    public function init()
    {
        parent::init();

        // ... 構成情報が適用された後の初期化処理
    }
}





上記のように、コンストラクタは最後のパラメータとして構成情報の配列を取らなければなりません。
構成情報の配列に含まれる「名前-値」のペアが、コンストラクタの最後でプロパティを構成します。
[[yii\base\Object::init()|init()]] メソッドをオーバーライドして、構成情報が適用された後に行うべき初期化処理を行うことが出来ます。

この規約に従うことによって、新しいオブジェクトを生成して構成するときに、構成情報配列を使うことが出来るようになります。

$object = Yii::createObject([
    'class' => 'MyClass',
    'property1' => 'abc',
    'property2' => 'cde',
], [$param1, $param2]);





構成情報に関する詳細は、構成情報 の節で見ることが出来ます。




イベント

Yii 1 では、イベントは on メソッド (例えば、onBeforeSave) を定義することによって作成されました。
Yii 2 では、どのようなイベント名でも使うことが出来るようになりました。
[[yii\base\Component::trigger()|trigger()]] メソッドを呼んでイベントを発生させます。

$event = new \yii\base\Event;
$component->trigger($eventName, $event);





イベントにハンドラをアタッチするためには、[[yii\base\Component::on()|on()]] メソッドを使います。

$component->on($eventName, $handler);
// ハンドラをデタッチするためには、以下のようにします。
// $component->off($eventName, $handler);





イベントの機能には数多くの改良がなされました。詳細は イベント の節を参照してください。




パスエイリアス

Yii 2.0 は、パスエイリアスの使用を、ファイル/ディレクトリのパスと URL の両方に広げました。
また、Yii 2.0 では、通常のファイル/ディレクトリのパスや URL と区別するために、エイリアス名は @ という文字で始まることが要求されるようになりました。
例えば、@yii というエイリアスは Yii のインストールディレクトリを指します。
パスエイリアスは Yii のコアコードのほとんどの場所でサポートされています。
例えば [[yii\caching\FileCache::cachePath]] はパスエイリアスと通常のディレクトリパスの両方を受け取ることが出来ます。

パスエイリアスは、また、クラスの名前空間とも密接に関係しています。
ルートの名前空間に対しては、それぞれ、パスエイリアスを定義することが推奨されます。
そうすれば、余計な構成をしなくても、Yii のクラスオートローダを使うことが出来るようになります。
例えば、@yii が Yii のインストールディレクトリを指しているので、yii\web\Request というようなクラスをオートロードすることが出来る訳です。
サードパーティのライブラリ、例えば Zend フレームワークなどを使う場合にも、そのフレームワークのインストールディレクトリを指す @Zend というパスエイリアスを定義することが出来ます。
一旦そうしてしまえば、その Zend フレームワークのライブラリ内のどんなクラスでも、Yii からオートロードすることが出来るようになります。

パスエイリアスに関する詳細は エイリアス の節を参照してください。




ビュー

Yii 2 のビューについての最も顕著な変更は、ビューの中の $this という特殊な変数が現在のコントローラやウィジェットを指すものではなくなった、ということです。
今や $this は 2.0 で新しく導入された概念である ビュー オブジェクトを指します。
ビュー オブジェクトは [[yii\web\View]] という型であり、MVC パターンのビューの部分を表すものです。
ビューにおいてコントローラやウィジェットにアクセスしたい場合は、$this->context を使うことが出来ます。

パーシャルビューを別のビューの中でレンダリングするためには、$this->renderPartial() ではなく、$this->render() を使います。
さらに、render の呼び出しは、2.0 では明示的に echo しなくてはなりません。
と言うのは、render() メソッドは、レンダリング結果を返すものであり、それを直接に表示するものではないからです。
例えば、

echo $this->render('_item', ['item' => $item]);





PHP を主たるテンプレート言語として使う以外に、Yii 2.0 は人気のある二つのテンプレートエンジン、Smarty と Twig に対する正式なサポートを備えています。
Prado テンプレートエンジンはもはやサポートされていません。
これらのテンプレートエンジンを使うためには、[[yii\base\View::$renderers|View::$renderers]] プロパティをセットして、view アプリケーションコンポーネントを構成する必要があります。
詳細は テンプレートエンジン の節を参照してください。




モデル

Yii 2.0 は [[yii\base\Model]] を 1.1 における CModel と同様な基底モデルとして使います。
CFormModel というクラスは完全に廃止されました。
Yii 2 では、それの代りに [[yii\base\Model]] を拡張して、フォームのモデルクラスを作成すべきです。

Yii 2.0 は サポートされるシナリオを宣言するための [[yii\base\Model::scenarios()|scenarios()]] という新しいメソッドを導入しました。
このメソッドを使って、どのシナリオの下で、ある属性が検証される必要があるか、また、安全とみなされるか否か、などを宣言することが出来ます。
例えば、

public function scenarios()
{
    return [
        'backend' => ['email', 'role'],
        'frontend' => ['email', '!role'],
    ];
}





上記では二つのシナリオ、すなわち、backend と frontend が宣言されています。
backend シナリオでは、email と role の属性が両方とも安全であり、一括代入が可能です。
frontend シナリオでは、email は一括代入が可能ですが、role は不可能です。
email と role は、両方とも、規則を使って検証されなければなりません。

[[yii\base\Model::rules()|rules()]] メソッドが、Yii 1.1 に引き続き、検証規則を宣言するために使われます。
[[yii\base\Model::scenarios()|scenarios()]] が導入されたことにより、unsafe バリデータが無くなったことに注意してください。

ほとんどの場合、すなわち、[[yii\base\Model::rules()|rules()]] メソッドが存在しうるシナリオを完全に指定しており、そして unsafe な属性を宣言する必要が無いなら、[[yii\base\Model::scenarios()|scenarios()]] をオーバーライドする必要はありません。

モデルについての詳細を学習するためには、モデル の節を参照してください。




コントローラ

Yii 2.0 は [[yii\web\Controller]] を基底のコントローラクラスとして使います。
これは Yii 1.1 におけるCController と同様なクラスです。
[[yii\base\Action]] がアクションクラスの基底クラスです。

コントローラに関して、あなたのコードに最も顕著な影響を及ぼす変更点は、コントローラのアクションは表示したいコンテントを、エコーするのでなく、返さなければならなくなった、ということです。

public function actionView($id)
{
    $model = \app\models\Post::findOne($id);
    if ($model) {
        return $this->render('view', ['model' => $model]);
    } else {
        throw new \yii\web\NotFoundHttpException;
    }
}





コントローラに関する詳細については コントローラ の節を参照してください。




ウィジェット

Yii 2.0 は [[yii\base\Widget]] を基底のウィジェットクラスとして使用します。これは Yii 1.1 の CWidget と同様なクラスです。

いろんな IDE においてフレームワークに対するより良いサポートを得るために、Yii 2.0 はウィジェットを使うための新しい構文を導入しました。
スタティックなメソッド [[yii\base\Widget::begin()|begin()]]、[[yii\base\Widget::end()|end()]]、そして [[yii\base\Widget::widget()|widget()]] が導入されました。以下のようにして使います。

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// 表示するためには結果を "echo" しなければならないことに注意
echo Menu::widget(['items' => $items]);

// オブジェクトのプロパティを初期化するための配列を渡す
$form = ActiveForm::begin([
    'options' => ['class' => 'form-horizontal'],
    'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... ここにフォームの入力フィールド ...
ActiveForm::end();





詳細については ウィジェット の節を参照してください。




テーマ

テーマは 2.0 では完全に違う動作をします。
テーマは、ソースのビューファイルパスをテーマのビューファイルパスにマップするパスマッピング機構に基づくものになりました。
例えば、あるテーマのパスマップが ['/web/views' => '/web/themes/basic'] である場合、ビューファイル /web/views/site/index.php のテーマ版は /web/themes/basic/site/index.php になります。
この理由により、テーマはどのようなビューファイルに対してでも適用することが出来るようになりました。
コントローラやウィジェットのコンテキストの外で表示されるビューに対してすら、適用できます。

また、CThemeManager コンポーネントはもうありません。
その代りに、theme は view アプリケーションコンポーネントの構成可能なプロパティになりました。

詳細については テーマ の節を参照してください。




コンソールアプリケーション

コンソールアプリケーションは、ウェブアプリケーションと同じように、コントローラとして編成されるようになりました。
1.1 における CConsoleCommand と同様に、コンソールコントローラは [[yii\console\Controller]] を拡張したものでなければなりません。

コンソールコマンドを走らせるためには、yii <route> という構文を使います。
ここで <route> はコントローラのルート (例えば sitemap/index) を表します。
追加の無名の引数は、対応するコントローラのアクションメソッドに引数として渡されます。
一方、名前付きの引数は、[[yii\console\Controller::options()]] での宣言に従って解析されます。

Yii 2.0 はコメントブロックからコマンドのヘルプ情報を自動的に生成する機能をサポートしています。

詳細については コンソールコマンド の節を参照してください。




国際化

Yii 2.0 は PECL intl PHP モジュール [http://pecl.php.net/package/intl] に賛同して、内蔵の日付フォーマッタと数字フォーマッタの部品を取り除きました。

メッセージは i18n アプリケーションコンポーネント経由で翻訳されるようになりました。
このコンポーネントは一連のメッセージソースを管理するもので、メッセージのカテゴリに基づいて異なるメッセージソースを使うことを可能にするものです。

詳細については 国際化 の節を参照してください。




アクションフィルタ

アクションフィルタはビヘイビアによって実装されるようになりました。
新しいカスタムフィルタを定義するためには、[[yii\base\ActionFilter]] を拡張します。
フィルタを使うためには、そのフィルタクラスをビヘイビアとしてコントローラにアタッチします。
例えば、[[yii\filters\AccessControl]] を使うためには、コントローラに次のコードを書くことになります。

public function behaviors()
{
    return [
        'access' => [
            'class' => 'yii\filters\AccessControl',
            'rules' => [
                ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
            ],
        ],
    ];
}





詳細については フィルタ の節を参照してください。




アセット

Yii 2.0 は、アセットバンドル と呼ばれる新しい概念を導入しました。これは、Yii 1.1 にあったスクリプトパッケージの概念を置き換えるものです。

アセットバンドルは、あるディレクトリの下に集められた一群のアセットファイル (例えば、JavaScript ファイル、CSS ファイル、イメージファイルなど) です。
それぞれのアセットバンドルは [[yii\web\AssetBundle]] を拡張したクラスとして表わされます。
アセットバンドルを [[yii\web\AssetBundle::register()]] を通じて登録することによって、そのバンドルに含まれるアセットにウェブ経由でアクセスできるようになります。
Yii 1 とは異なり、バンドルを登録したページは、そのバンドルで指定されている JavaScript と CSS ファイルへの参照を自動的に含むようになります。

詳細については アセット の節を参照してください。




ヘルパ

Yii 2.0 はよく使われるスタティックなヘルパクラスを数多く導入しました。それには以下のものが含まれます。


	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]



詳細については、ヘルパの 概要 の節を参照してください。




フォーム

Yii 2.0 は [[yii\widgets\ActiveForm]] を使ってフォームを作成する際に使用する フィールド の概念を導入しました。
フィールドは、ラベル、インプット、エラーメッセージ および/または ヒントテキストを含むコンテナです。
フィールドは [[yii\widgets\ActiveField|ActiveField]] のオブジェクトとして表現されます。
フィールドを使うことによって、以前よりもすっきりとフォームを作成することが出来るようになりました。

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <div class="form-group">
        <?= Html::submitButton('ログイン') ?>
    </div>
<?php yii\widgets\ActiveForm::end(); ?>





詳細については フォームを作成する の節を参照してください。




クエリビルダ

1.1 においては、クエリの構築が CDbCommand、CDbCriteria、CDbCommandBuilder など、いくつかのクラスに散らばっていました。
Yii 2.0 は DB クエリを [[yii\db\Query|Query]] オブジェクトの形で表現します。
このオブジェクトが舞台裏で [[yii\db\QueryBuilder|QueryBuilder]] の助けを得て SQL 文に変換されます。
例えば、

$query = new \yii\db\Query();
$query->select('id, name')
      ->from('user')
      ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();





何より良いのは、このようなクエリ構築メソッドが アクティブレコード を扱う時にも使える、ということです。

詳細については クエリビルダ の節を参照してください。




アクティブレコード

Yii 2.0 は アクティブレコード に数多くの変更を導入しました。
最も顕著な違いは、クエリの構築方法とリレーショナルクエリの処理の二つです。

1.1 の CDbCriteria クラスは Yii 2 では [[yii\db\ActiveQuery]] に置き換えられました。
このクラスは [[yii\db\Query]] を拡張したものであり、従って全てのクエリ構築メソッドを継承します。
以下のように、[[yii\db\ActiveRecord::find()]] を呼んでクエリの構築を開始します。

// 全てのアクティブな顧客を読み出し、ID によって並べる
$customers = Customer::find()
    ->where(['status' => $active])
    ->orderBy('id')
    ->all();





リレーションを宣言するために必要なことは、[[yii\db\ActiveQuery|ActiveQuery]] オブジェクトを返すゲッターメソッドを定義するだけのことです。
ゲッターによって定義されたプロパティの名前がリレーションの名前を表します。
例えば、以下のコードは orders リレーションを宣言するものです
(1.1 では relations() という一個の中枢でリレーションを宣言しなければなりませんでした)。

class Customer extends \yii\db\ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany('Order', ['customer_id' => 'id']);
    }
}





こうすることで、$customer->orders という構文によって関連テーブルにある顧客のオーダにアクセスすることが出来るようになります。
また、下記のコードを用いて、カスタマイズしたクエリ条件によるオンザフライのリレーショナルクエリを実行することも出来ます。

$orders = $customer->getOrders()->andWhere('status=1')->all();





リレーションをイーガーロードするとき、Yii 2.0 は 1.1 とは異なる動きをします。
具体的に言うと、1.1 では JOIN クエリが生成されて、主レコードと関連レコードの両方がセレクトされていました。
Yii 2.0 では、JOIN を使わずに二つの SQL 文が実行されます。
すなわち、第一の SQL 文が主たるレコードを返し、第二の SQL 文は主レコードのプライマリキーを使うフィルタリングによって関連レコードを返します。

多数のレコードを返すクエリを構築するときは、[[yii\db\ActiveRecord|ActiveRecord]] を返す代りに、[[yii\db\ActiveQuery::asArray()|asArray()]] メソッドをチェインすることが出来ます。
そうすると、クエリ結果は配列として返されることになり、レコードの数が多い場合は、必要な CPU 時間とメモリを著しく削減することが出来ます。
例えば、

$customers = Customer::find()->asArray()->all();





もう一つの変更点は、属性のデフォルト値を public なプロパティによって定義することは出来なくなった、ということです。
デフォルト値を定義する必要がある場合は、アクティブレコードクラスの init メソッドの中で設定しなければなりません。

public function init()
{
    parent::init();
    $this->status = self::STATUS_NEW;
}





1.1 では、アクティブレコードクラスのコンストラクタをオーバーライドすることについて、いくつか問題がありました。
バージョン 2.0 では、もう問題はありません。
コンストラクタにパラメータを追加する場合は、[[yii\db\ActiveRecord::instantiate()]] をオーバーライドする必要があるかもしれないことに注意してください。

アクティブレコードについては、他にも多くの変更と機能強化がなされています。
詳細については アクティブレコード の節を参照してください。




アクティブレコードのビヘイビア

2.0 では基底のビヘイビアクラス CActiveRecordBehavior が廃止されました。
アクティブレコードのビヘイビアを作成したいときは、直接に yii\base\Behavior を拡張しなければなりません。
ビヘイビアクラスがオーナーの何らかのイベントに反応する必要がある場合は、以下のように events() メソッドをオーバーライドしなければなりません。

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
    // ...

    public function events()
    {
        return [
            ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
        ];
    }

    public function beforeValidate($event)
    {
        // ...
    }
}








User と IdentityInterface

1.1 の CWebUser クラスは [[yii\web\User]] に取って換られました。
そして CUserIdentity クラスはもうありません。代りに、使い方がもっと単純な [[yii\web\IdentityInterface]] を実装すべきです。
アドバンストプロジェクトテンプレートがそういう例を提供しています。

詳細は 認証、権限付与、そして アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] の節を参照してください。




URL 管理

Yii 2 の URL 管理は 1.1 のそれと似たようなものです。
主な機能強化は、URL 管理がオプションのパラメータをサポートするようになったことです。
例えば、下記のような規則を宣言した場合に、post/popular と post/1/popular の両方に合致するようになります。
1.1 では、同じ目的を達成するためには、二つの規則を使う必要がありました。

[
    'pattern' => 'post/<page:\d+>/<tag>',
    'route' => 'post/index',
    'defaults' => ['page' => 1],
]





詳細については ルーティングと URL 生成 の節を参照してください。

ルートの命名規約における重要な変更は、コントローラとアクションのキャメルケースの名前が各単語をハイフンで分けた小文字の名前になるようになった、という点です。
例えば、CamelCaseController のコントローラ ID は camel-case となります。
詳細については、コントローラ ID と アクション ID の節を参照してください。




Yii 1.1 と 2.x を一緒に使う

Yii 2.0 と一緒に使いたい Yii 1.1 のレガシーコードを持っている場合は、
Yii 1.1 と 2.0 を一緒に使う の節を参照してください。







          

      

      

    

  

  
    
    
    アクティブレコード
    
    

    
 
  
  

    
      
          
            
  
アクティブレコード

アクティブレコード [http://ja.wikipedia.org/wiki/Active_Record] は、データベースに保存されているデータにアクセスするために、オブジェクト指向のインタフェイスを提供するものです。
アクティブレコードクラスはデータベーステーブルと関連付けられます。
アクティブレコードのインスタンスはそのテーブルの行に対応し、アクティブレコードのインスタンスの 属性 がその行にある特定のカラムの値を表現します。
生の SQL 文を書く代りに、アクティブレコードの属性にアクセスしたり、アクティブレコードのメソッドを呼んだりして、データベーステーブルに保存さているデータにアクセスしたり、データを操作したりします。

例えば、Customer が customer テーブルに関連付けられたアクティブレコードクラスであり、name が customer テーブルのカラムであると仮定しましょう。
customer テーブルに新しい行を挿入するために次のコードを書くことが出来ます。

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();





上記のコードは、MySQL では、次のような生の SQL 文を使うのと等価なものです。
しかし、生の SQL 文の方は、直感的でなく、間違いも生じやすく、また、別の種類のデータベースを使う場合には、互換性の問題も生じ得ます。

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
    ':name' => 'Qiang',
])->execute();





Yii は次のリレーショナルデータベースに対して、アクティブレコードのサポートを提供しています。


	MySQL 4.1 以降: [[yii\db\ActiveRecord]] による。

	PostgreSQL 7.3 以降: [[yii\db\ActiveRecord]] による。

	SQLite 2 および 3: [[yii\db\ActiveRecord]] による。

	Microsoft SQL Server 2008 以降: [[yii\db\ActiveRecord]] による。

	Oracle: [[yii\db\ActiveRecord]] による。

	CUBRID 9.3 以降: [[yii\db\ActiveRecord]] による。(cubrid PDO 拡張の バグ [http://jira.cubrid.org/browse/APIS-658]
のために、値を引用符で囲む機能が動作しません。そのため、サーバだけでなくクライアントも CUBRID 9.3 が必要になります)

	Sphinx: [[yii\sphinx\ActiveRecord]] による。yii2-sphinx エクステンションが必要。

	ElasticSearch: [[yii\elasticsearch\ActiveRecord]] による。yii2-elasticsearch エクステンションが必要。



これらに加えて、Yii は次の NoSQL データベースに対しても、アクティブレコードの使用をサポートしています。


	Redis 2.6.12 以降: [[yii\redis\ActiveRecord]] による。yii2-redis エクステンションが必要。

	MongoDB 1.3.0 以降: [[yii\mongodb\ActiveRecord]] による。yii2-mongodb エクステンションが必要。



このチュートリアルでは、主としてリレーショナルデータベースのためのアクティブレコードの使用方法を説明します。
しかし、ここで説明するほとんどの内容は NoSQL データベースのためのアクティブレコードにも適用することが出来るものです。


アクティブレコードクラスを宣言する 

まずは、[[yii\db\ActiveRecord]] を拡張してアクティブレコードクラスを宣言するところから始めましょう。


テーブル名を設定する

デフォルトでは、すべてのアクティブレコードクラスはデータベーステーブルと関連付けられます。
[[yii\db\ActiveRecord::tableName()|tableName()]] メソッドが、クラス名を [[yii\helpers\Inflector::camel2id()]] によって変換して、テーブル名を返します。
テーブル名がこの規約に従っていない場合は、このメソッドをオーバライドすることが出来ます。

同時に、デフォルトの [[yii\db\Connection::$tablePrefix|tablePrefix]] を適用することも可能です。
例えば、[[yii\db\Connection::$tablePrefix|tablePrefix]] が tbl_ である場合は、Customer は tbl_customer になり、OrderItem はtbl_order_item になります。

テーブル名が {{%TableName}} という形式で与えられた場合は、パーセント記号 % がテーブルプレフィックスに置き換えられます。
例えば、{{%post}} は {{tbl_post}} となります。
テーブル名を囲む二重波括弧は、テーブル名を囲む引用符号 となります。

次の例では、customer というデータベーステーブルのための Customer という名前のアクティブレコードクラスを宣言しています。

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
    const STATUS_INACTIVE = 0;
    const STATUS_ACTIVE = 1;
    
    /**
     * @return string このアクティブレコードクラスと関連付けられるテーブルの名前
     */
    public static function tableName()
    {
        return '{{customer}}';
    }
}








アクティブレコードは「モデル」と呼ばれる

アクティブレコードのインスタンスは モデル であると見なされます。
この理由により、私たちは通常 app\models 名前空間 (あるいはモデルクラスを保管するための他の名前空間) の下にアクティブレコードクラスを置きます。

[[yii\db\ActiveRecord]] は [[yii\base\Model]] から拡張していますので、属性、検証規則、データのシリアル化など、モデル が持つ 全ての 機能を継承しています。






データベースに接続する 

デフォルトでは、アクティブレコードは、db アプリケーションコンポーネント を [[yii\db\Connection|DB 接続]] として使用して、データベースのデータにアクセスしたり操作したりします。
データベースアクセスオブジェクト で説明したように、次のようにして、アプリケーションの構成情報ファイルの中で db コンポーネントを構成することが出来ます。

return [
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=testdb',
            'username' => 'demo',
            'password' => 'demo',
        ],
    ],
];





db コンポーネントとは異なるデータベース接続を使いたい場合は、[[yii\db\ActiveRecord::getDb()|getDb()]] メソッドをオーバーライドしなければなりません。

class Customer extends ActiveRecord
{
    // ...

    public static function getDb()
    {
        // "db2" アプリケーションコンポーネントを使用
        return \Yii::$app->db2;
    }
}








データをクエリする 

アクティブレコードクラスを宣言した後、それを使って対応するデータベーステーブルからデータをクエリすることが出来ます。
このプロセスは通常次の三つのステップを踏みます。


	[[yii\db\ActiveRecord::find()]] メソッドを呼んで、新しいクエリオブジェクトを作成する。

	クエリ構築メソッド を呼んで、クエリオブジェクトを構築する。

	クエリメソッド を呼んで、アクティブレコードのインスタンスの形でデータを取得する。



ご覧のように、このプロセスは クエリビルダ による手続きと非常によく似ています。
唯一の違いは、new 演算子を使ってクエリオブジェクトを生成する代りに、[[yii\db\ActiveQuery]] クラスであるクエリオブジェクトを返す [[yii\db\ActiveRecord::find()]] を呼ぶ、という点です。

以下の例は、アクティブクエリを使ってデータをクエリする方法を示すものです。

// ID が 123 である一人の顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
    ->where(['id' => 123])
    ->one();

// アクティブな全ての顧客を返して、ID によって並べる
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->orderBy('id')
    ->all();

// アクティブな顧客の数を返す
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->count();

// 全ての顧客を顧客IDによってインデックスされた配列として返す
// SELECT * FROM `customer`
$customers = Customer::find()
    ->indexBy('id')
    ->all();





上記において、$customer は Customer オブジェクトであり、$customers は Customer オブジェクトの配列です。
全てこれらには customer テーブルから取得されたデータが投入されます。


Info: [[yii\db\ActiveQuery]] は [[yii\db\Query]] から拡張しているため、クエリビルダ の節で説明されたクエリ構築メソッドとクエリメソッドの 全て を使うことが出来ます。


プライマリキーの値や一群のカラムの値でクエリをすることはよく行われる仕事ですので、Yii はこの目的のために、二つのショートカットメソッドを提供しています。


	

	[[yii\db\ActiveRecord::findAll()]]: 全ての クエリ結果をアクティブレコードインスタンスの配列に投入して返す。



どちらのメソッドも、次のパラメータ形式のどれかを取ることが出来ます。


	スカラ値: 値は検索時に求められるプライマリキーの値として扱われます。
Yii は、データベースのスキーマ情報を読んで、どのカラムがプライマリキーのカラムであるかを自動的に判断します。

	スカラ値の配列: 配列は検索時に求められるプライマリキーの値の配列として扱われます。

	連想配列: キーはカラム名であり、値は検索時に求められる対応するカラムの値です。
詳細については、ハッシュ形式 を参照してください。



次のコードは、これらのメソッドの使用方法を示すものです。

// ID が 123 である一人の顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// ID が 100, 101, 123, 124 のどれかである顧客を全て返す
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// ID が 123 であるアクティブな顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
    'id' => 123,
    'status' => Customer::STATUS_ACTIVE,
]);

// アクティブでない全ての顧客を返す
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
    'status' => Customer::STATUS_INACTIVE,
]);






Note: [yii\db\ActiveRecord::findOne()] も [[yii\db\ActiveQuery::one()]] も、生成される SQL 文に LIMIT 1 を追加しません。
あなたのクエリが多数のデータ行を返すかもしれない場合は、パフォーマンスを向上させるために、limit(1) を明示的に呼ぶべきです。
例えば Customer::find()->limit(1)->one() のように。


クエリ構築メソッドを使う以外に、生の SQL を書いてデータをクエリして結果をアクティブレコードオブジェクトに投入することも出来ます。
そうするためには [[yii\db\ActiveRecord::findBySql()]] メソッドを呼ぶことが出来ます。

// アクティブでない全ての顧客を返す
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();





[[yii\db\ActiveRecord::findBySql()|findBySql()]] を呼んだ後は、追加でクエリ構築メソッドを呼び出してはいけません。呼んでも無視されます。




データにアクセスする 

既に述べたように、データベースから取得されたデータはアクティブレコードのインスタンスに投入されます。
そして、クエリ結果の各行がアクティブレコードの一つのインスタンスに対応します。
アクティブレコードインスタンスの属性にアクセスすることによって、カラムの値にアクセスすることが出来ます。
例えば、

// "id" と "email" は "customer" テーブルのカラム名
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;






Note: アクティブレコードの属性の名前は、関連付けられたテーブルのカラムの名前に従って、大文字と小文字を区別して名付けられます。
Yii は、関連付けられたテーブルの全てのカラムに対して、アクティブレコードの属性を自動的に定義します。
これらの属性は、すべて、再宣言してはいけません。


アクティブレコードの属性はテーブルのカラムに従って命名されるため、テーブルのカラム名がアンダースコアで単語を分ける方法で命名されている場合は、$customer->first_name のような属性名を使って PHP コードを書くことになります。
コードスタイルの一貫性が気になるのであれば、テーブルのカラム名を (例えば camelCase を使う名前に) 変更しなければなりません。


データ変換 

入力または表示されるデータの形式が、データベースにデータを保存するときに使われるものと異なる場合がよくあります。
例えば、データベースでは顧客の誕生日を UNIX タイムスタンプで保存している (まあ、あまり良い設計ではありませんが) けれども、ほとんどの場合において誕生日を 'YYYY/MM/DD' という形式の文字列として操作したい、というような場合です。
この目的を達するために、次のように、Customer アクティブレコードクラスにおいて データ変換 メソッドを定義することが出来ます。

class Customer extends ActiveRecord
{
    // ...

    public function getBirthdayText()
    {
        return date('Y/m/d', $this->birthday);
    }
    
    public function setBirthdayText($value)
    {
        $this->birthday = strtotime($value);
    }
}





このようにすれば、PHP コードにおいて、$customer->birthday にアクセスする代りに、$customer->birthdayText にアクセスすれば、顧客の誕生日を 'YYYY/MM/DD' の形式で入力および表示することが出来ます。


Tip: 上記は、一般にデータの変換を達成するための簡単な方法を示すためのものです。
日付の値については、Yii は、DateValidator と DatePicker ウィジェットを使用するという、より良い方法を提供しています。
DatePicker については、JUI ウィジェットの節 で説明されています。





データを配列に取得する 

データをアクティブレコードオブジェクトの形で取得するのは便利であり柔軟ですが、大きなメモリ使用量を要するために、大量のデータを取得しなければならない場合は、必ずしも望ましい方法ではありません。
そういう場合は、クエリメソッドを実行する前に [[yii\db\ActiveQuery::asArray()|asArray()]] を呼ぶことによって、PHP 配列を使ってデータを取得することが出来ます。

// すべての顧客を返す
// 各顧客は連想配列として返される
$customers = Customer::find()
    ->asArray()
    ->all();






Note: このメソッドはメモリを節約してパフォーマンスを向上させますが、低レベルの DB 抽象レイヤに近いものであり、あなたはアクティブレコードの機能のほとんどを失うことになります。
非常に重要な違いが、カラムの値のデータタイプに現れます。
アクティブレコードインスタンスとしてデータを返す場合、カラムの値は実際のカラムの型に従って自動的に型キャストされます。
一方、配列としてデータを返す場合は、実際のカラムの型に関係なく、カラムの値は文字列になります。
なぜなら、何も処理をしない場合の PDO の結果は文字列だからです。





データをバッチモードで取得する 

クエリビルダ において、大量のデータをデータベースから検索する場合に、メモリ使用量を最小化するために バッチクエリ を使うことが出来るということを説明しました。
おなじテクニックをアクティブレコードでも使うことが出来ます。
例えば、

// 一度に 10 人の顧客を読み出す
foreach (Customer::find()->batch(10) as $customers) {
    // $customers は 10 以下の Customer オブジェクトの配列
}
// 一度に 10 人の顧客を読み出して、一人ずつ反復する
foreach (Customer::find()->each(10) as $customer) {
    // $customer は Customer オブジェクト
}
// イーガーローディングをするバッチクエリ
foreach (Customer::find()->with('orders')->each() as $customer) {
    // $customer は 'orders' リレーションを投入された Customer オブジェクト
}










データを保存する 

アクティブレコードを使えば、次のステップを踏んで簡単にデータをデータベースに保存することが出来ます。


	アクティブレコードのインスタンスを準備する

	アクティブレコードの属性に新しい値を割り当てる

	[[yii\db\ActiveRecord::save()]] を呼んでデータをデータベースに保存する



例えば、

// 新しいデータ行を挿入する
$customer = new Customer();
$customer->name = ‘James’;
$customer->email = ‘james@example.com’;
$customer->save();

// 既存のデータ行を更新する
$customer = Customer::findOne(123);
$customer->email = ‘james@newexample.com’;
$customer->save();


[[yii\db\ActiveRecord::save()|save()]] メソッドは、アクティブレコードインスタンスの状態に従って、データ行を挿入するか、または、更新することが出来ます。
インスタンスが `new` 演算子によって新しく作成されたものである場合は、[[yii\db\ActiveRecord::save()|save()]] を呼び出すと、新しい行が挿入されます。
インスタンスがクエリメソッドの結果である場合は、[[yii\db\ActiveRecord::save()|save()]] を呼び出すと、そのインスタンスと関連付けられた行が更新されます。

アクティブレコードインスタンスの二つの状態は、その [[yii\db\ActiveRecord::isNewRecord|isNewRecord]] プロパティの値をチェックすることによって区別することが出来ます。
下記のように、このプロパティは [[yii\db\ActiveRecord::save()|save()]] によっても内部的に使用されています。

```php
public function save($runValidation = true, $attributeNames = null)
{
 if ($this->getIsNewRecord()) {
 return $this->insert($runValidation, $attributeNames);
 } else {
 return $this->update($runValidation, $attributeNames) !== false;
 }
}

Tip: [[yii\db\ActiveRecord::insert()|insert()]] または [[yii\db\ActiveRecord::update()|update()]] を直接に呼んで、行を挿入または更新することも出来ます。

データの検証

[[yii\db\ActiveRecord]] は [[yii\base\Model]] を拡張したものですので、同じ データ検証 機能を共有しています。
[[yii\db\ActiveRecord::rules()|rules()]] メソッドをオーバーライドすることによって検証規則を宣言し、[[yii\db\ActiveRecord::validate()|validate()]] メソッドを呼ぶことによってテータの検証を実行することが出来ます。

[[yii\db\ActiveRecord::save()|save()]] を呼ぶと、デフォルトでは [[yii\db\ActiveRecord::validate()|validate()]] が自動的に呼ばれます。
検証が通った時だけ、実際にデータが保存されます。
検証が通らなかった時は単に false が返され、[[yii\db\ActiveRecord::errors|errors]] プロパティをチェックして検証エラーメッセージを取得することが出来ます。

Tip: データが検証を必要としないことが確実である場合 (例えば、データが信頼できるソースに由来するものである場合) は、検証をスキップするために save(false) を呼ぶことが出来ます。

一括代入

通常の モデル と同じように、アクティブレコードのインスタンスも 一括代入機能 を享受することが出来ます。
この機能を使うと、下記で示されているように、一つの PHP 文で、アクティブレコードインスタンスの複数の属性に値を割り当てることが出来ます。
ただし、安全な属性 だけが一括代入が可能であることを記憶しておいてください。

$values = [
 'name' => 'James',
 'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();

カウンタを更新する

データベーステーブルのあるカラムの値を増加・減少させるのは、よくある仕事です。
私たちはそのようなカラムをカウンタカラムと呼んでいます。
[[yii\db\ActiveRecord::updateCounters()|updateCounters()]] を使って一つまたは複数のカウンタカラムを更新することが出来ます。
例えば、

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);

Note: カウンタカラムを更新するのに [[yii\db\ActiveRecord::save()]] を使うと、不正確な結果になってしまう場合があります。
というのは、同じカウンタの値を読み書きする複数のリクエストによって、同一のカウンタが保存される可能性があるからです。

ダーティな属性

[[yii\db\ActiveRecord::save()|save()]] を呼んでアクティブレコードインスタンスを保存すると、ダーティな属性 だけが保存されます。
属性は、DB からロードされた後、または、最後に保存された後にその値が変更されると、ダーティ であると見なされます。
ただし、データ検証は、アクティブレコードインスタンスがダーティな属性を持っているかどうかに関係なく実施されることに注意してください。

アクティブレコードはダーティな属性のリストを自動的に保守します。
そうするために、一つ前のバージョンの属性値を保持して、最新のバージョンと比較します。
[[yii\db\ActiveRecord::getDirtyAttributes()]] を呼ぶと、現在ダーティである属性を取得することが出来ます。
また、[[yii\db\ActiveRecord::markAttributeDirty()]] を呼んで、ある属性をダーティであると明示的にマークすることも出来ます。

最新の修正を受ける前の属性値を知りたい場合は、[[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]] または [[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]] を呼ぶことが出来ます。

Note: 新旧の値は === 演算子を使って比較されるため、同じ値を持っていても型が違うとダーティであると見なされます。
このことは、モデルが HTML フォームからユーザの入力を受け取るときにしばしば生じます。
HTML フォームでは全ての値が文字列として表現されるからです。
入力値が正しい型、例えば整数値となることを保証するために、['attributeName', 'filter', 'filter' => 'intval'] のように 検証フィルタ を適用することが出来ます。
このフィルタは、intval() [http://php.net/manual/ja/function.intval.php], floatval() [http://php.net/manual/ja/function.floatval.php],
boolval [http://php.net/manual/ja/function.boolval.php] など、PHP の全てのタイプキャスト関数で動作します。

デフォルト属性値

あなたのテーブルのカラムの中には、データベースでデフォルト値が定義されているものがあるかも知れません。
そして、場合によっては、アクティブレコードインスタンスのウェブフォームに、そういうデフォルト値をあらかじめ投入したいことがあるでしょう。
同じデフォルト値を繰り返して書くことを避けるために、[[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]] を呼んで、DB で定義されたデフォルト値を対応するアクティブレコードの属性に投入することが出来ます。

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz には、"xyz" カラムを定義するときに宣言されたデフォルト値が割り当てられる

属性の型キャスト

[[yii\db\ActiveRecord]] は、クエリの結果を投入されるときに、データベーステーブルスキーマ
からの情報を使って、自動的な型キャストを実行します。これによって、整数として宣言されているテーブルカラムから取得されるデータを
アクティブレコードのインスタンスでも PHP の integer として投入し、
真偽値として宣言されているデータを boolean として投入することが出来るようになっています。
しかしながら、型キャストのメカニズムには、いくつかの制約があります。

	浮動小数点数値は変換されず、文字列として表されます。そうしないと精度が失われるおそれがあるからです。

	整数値の変換は、あなたが使っているオペレーティングシステムの整数の大きさに依存します。具体的に言うと、
‘unsigned integer’ または ‘big integer’ として宣言されたカラムの値は、64-bit オペレーティングシステムでのみ PHP の integer に変換されます。
32-bit オペレーティングシステムでは、文字列として表されます。

属性の型キャストは、アクティブレコードのインスタンスにクエリの結果から値を投入するときだけしか実行されないことに注意してください。
HTTP リクエストから値をロードしたり、プロパティにアクセスして直接に値を設定したりするときには、自動的な変換は行われません。
また、アクティブレコードのデータ保存のための SQL 文を準備する際にもテーブルスキーマが使用されて、値が正しい型でクエリにバインドされることを保証します。
しかし、アクティブレコードのインスタンスの属性値は保存の過程において変換されることはありません。

Tip: アクティブレコードのバリデーションや保存の際の属性型キャストを楽にするために
[[yii\behaviors\AttributeTypecastBehavior]] を使うことが出来ます。

複数の行を更新する

上述のメソッドは、すべて、個別のアクティブレコードインスタンスに対して作用し、個別のテーブル行を挿入したり更新したりするものです。
複数の行を同時に更新するためには、代りに、スタティックなメソッドである [[yii\db\ActiveRecord::updateAll()|updateAll()]] を呼ばなければなりません。

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);

同様に、[[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] を呼んで、複数の行のカウンタカラムを同時に更新することが出来ます。

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);

データを削除する

一行のデータを削除するためには、最初にその行に対応するアクティブレコードインスタンスを取得して、次に [[yii\db\ActiveRecord::delete()]] メソッドを呼びます。

$customer = Customer::findOne(123);
$customer->delete();

[[yii\db\ActiveRecord::deleteAll()]] を呼んで、複数またはすべてのデータ行を削除することが出来ます。例えば、

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);

Note: [[yii\db\ActiveRecord::deleteAll()|deleteAll()]] を呼ぶときは、十分に注意深くしてください。
なぜなら、条件の指定を間違うと、あなたのテーブルからすべてのデータを完全に消し去ってしまうことになるからです。

アクティブレコードのライフサイクル

アクティブレコードがさまざまな目的で使用される場合のそれぞれのライフサイクルを理解しておくことは重要なことです。
それぞれのライフサイクルにおいては、特定の一続きのメソッドが呼び出されます。
そして、これらのメソッドをオーバーライドして、ライフサイクルをカスタマイズするチャンスを得ることが出来ます。
また、ライフサイクルの中でトリガされる特定のアクティブレコードイベントに反応して、あなたのカスタムコードを挿入することも出来ます。
これらのイベントが特に役に立つのは、アクティブレコードのライフサイクルをカスタマイズする必要のあるアクティブレコード ビヘイビア を開発する際です。

次に、さまざまなアクティブレコードのライフサイクルと、そのライフサイクルに含まれるメソッドやイベントを要約します。

新しいインスタンスのライフサイクル

new 演算子によって新しいアクティブレコードインスタンスを作成する場合は、次のライフサイクルを経ます。

	クラスのコンストラクタ。

	[[yii\db\ActiveRecord::init()|init()]]: [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] イベントをトリガ。

データをクエリする際のライフサイクル

クエリメソッド のどれか一つによってデータをクエリする場合は、新しくデータを投入されるアクティブレコードは次のライフサイクルを経ます。

	クラスのコンストラクタ。

	[[yii\db\ActiveRecord::init()|init()]]: [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] イベントをトリガ。

	[[yii\db\ActiveRecord::afterFind()|afterFind()]]: [[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]] イベントをトリガ。

データを保存する際のライフサイクル

[[yii\db\ActiveRecord::save()|save()]] を呼んでアクティブレコードインスタンスを挿入または更新する場合は、次のライフサイクルを経ます。

	[[yii\db\ActiveRecord::beforeValidate()|beforeValidate()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] イベントをトリガ。
このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合、残りのステップはスキップされる。

	データ検証を実行。データ検証が失敗した場合、3 より後のステップはスキップされる。

	[[yii\db\ActiveRecord::afterValidate()|afterValidate()]]: [[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]] イベントをトリガ。

	[[yii\db\ActiveRecord::beforeSave()|beforeSave()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]] または [[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]] イベントをトリガ。
このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合、残りのステップはスキップされる。

	実際のデータの挿入または更新を実行。

	[[yii\db\ActiveRecord::afterSave()|afterSave()]]: [[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] または [[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]] イベントをトリガ。

データを削除する際のライフサイクル

[[yii\db\ActiveRecord::delete()|delete()]] を呼んでアクティブレコードインスタンスを削除する際は、次のライフサイクルを経ます。

	[[yii\db\ActiveRecord::beforeDelete()|beforeDelete()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]] イベントをトリガ。
このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合は、残りのステップはスキップされる。

	実際のデータの削除を実行。

	[[yii\db\ActiveRecord::afterDelete()|afterDelete()]]: [[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]] イベントをトリガ。

Note: 次のメソッドを呼んだ場合は、いずれの場合も、上記のライフサイクルのどれかを開始させることはありません。
これらのメソッドは、レコード単位ではなく、データベース上で直接に動作するためです。

	[[yii\db\ActiveRecord::updateAll()]]

	[[yii\db\ActiveRecord::deleteAll()]]

	[[yii\db\ActiveRecord::updateCounters()]]

	[[yii\db\ActiveRecord::updateAllCounters()]]

データをリフレッシュする際のライフサイクル

[[yii\db\ActiveRecord::refresh()|refresh()]] を呼んでアクティブレコードインスタンスをリフレッシュする際は、リフレッシュが成功してメソッドが true を返すと
[[yii\db\ActiveRecord::EVENT_AFTER_REFRESH|EVENT_AFTER_REFRESH]] イベントがトリガされます。

トランザクションを扱う

アクティブレコードを扱う際には、二つの方法で トランザクション を処理することができます。

最初の方法は、次に示すように、アクティブレコードのメソッドの呼び出しを明示的にトランザクションのブロックで囲む方法です。

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
 $customer->id = 200;
 $customer->save();
 // ... 他の DB 操作 ...
});

// あるいは、別の方法

$transaction = Customer::getDb()->beginTransaction();
try {
 $customer->id = 200;
 $customer->save();
 // ... 他の DB 操作 ...
 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

Note: 上記のコードでは、PHP 5.x と PHP 7.x との互換性のために、二つの
catch ブロックを持っています。\Exception は PHP 7.0 以降では、
\Throwable インターフェイス [http://php.net/manual/ja/class.throwable.php] を実装しています。
従って、あなたのアプリケーションが PHP 7.0 以上しか使わない場合は、\Exception の部分を省略することが出来ます。

第二の方法は、トランザクションのサポートが必要な DB 操作を [[yii\db\ActiveRecord::transactions()]] メソッドに列挙するという方法です。

class Post extends \yii\db\ActiveRecord
{
 public function transactions()
 {
 return [
 'admin' => self::OP_INSERT,
 'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
 // 上は次と等価
 // 'api' => self::OP_ALL,
];
 }
}

[[yii\db\ActiveRecord::transactions()]] メソッドが返す配列では、キーは シナリオ の名前であり、値はトランザクションで囲まれるべき操作でなくてはなりません。
いろいろな DB 操作を参照するのには、次の定数を使わなければなりません。

	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: [[yii\db\ActiveRecord::insert()|insert()]] によって実行される挿入の操作。

	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: [[yii\db\ActiveRecord::update()|update()]] によって実行される更新の操作。

	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: [[yii\db\ActiveRecord::delete()|delete()]] によって実行される削除の操作。

複数の操作を示すためには、| を使って上記の定数を連結してください。
ショートカット定数 [[yii\db\ActiveRecord::OP_ALL|OP_ALL]] を使って、上記の三つの操作すべてを示すことも出来ます。

このメソッドを使って生成されたトランザクションは、[[yii\db\ActiveRecord::beforeSave()|beforeSave()]] を呼ぶ前に開始され、
[[yii\db\ActiveRecord::afterSave()|afterSave()]] を実行した後にコミットされます。

楽観的ロック

楽観的ロックは、一つのデータ行が複数のユーザによって更新されるときに発生しうる衝突を回避するための方法です。
例えば、ユーザ A と ユーザ B が 同時に同じ wiki 記事を編集しており、ユーザ A が自分の編集結果を保存した後に、ユーザ B も自分の編集結果を保存しようとして「保存」ボタンをクリックする場合を考えてください。
ユーザ B は、実際には古くなったバージョンの記事に対する操作をしようとしていますので、彼が記事を保存するのを防止し、彼に何らかのヒントメッセージを表示する方法があることが望まれます。

楽観的ロックは、あるカラムを使って各行のバージョン番号を記録するという方法によって、上記の問題を解決します。
古くなったバージョン番号とともに行を保存しようとすると、[[yii\db\StaleObjectException]] 例外が投げられて、行が保存されるのが防止されます。
楽観的ロックは、 [[yii\db\ActiveRecord::update()]] または [[yii\db\ActiveRecord::delete()]] メソッドを使って既存の行を更新または削除しようとする場合にだけサポートされます。

楽観的ロックを使用するためには、次のようにします。

	アクティブレコードクラスと関連付けられている DB テーブルに、各行のバージョン番号を保存するカラムを作成します。
カラムは長倍精度整数 (big integer) タイプでなければなりません (MySQL では BIGINT DEFAULT 0 です)。

	[[yii\db\ActiveRecord::optimisticLock()]] メソッドをオーバーライドして、このカラムの名前を返すようにします。

	ユーザ入力を収集するウェブフォームに、更新されるレコードの現在のバージョン番号を保持する隠しフィールドを追加します。
バージョン属性が入力の検証規則を持っており、検証が成功することを確かめてください。

	アクティブレコードを使って行の更新を行うコントローラアクションにおいて、[[\yii\db\StaleObjectException]] 例外を捕捉して、衝突を解決するために必要なビジネスロジック (例えば、変更をマージしたり、データの陳腐化を知らせたり) を実装します。

例えば、バージョン番号のカラムが version と名付けられているとすると、次のようなコードによって楽観的ロックを実装することが出来ます。

// ------ ビューのコード -------

use yii\helpers\Html;

// ... 他の入力フィールド
echo Html::activeHiddenInput($model, 'version');

// ------ コントローラのコード -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
 $model = $this->findModel($id);

 try {
 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('update', [
 'model' => $model,
]);
 }
 } catch (StaleObjectException $e) {
 // 衝突を解決するロジック
 }
}

リレーショナルデータを扱う

個々のデータベーステーブルを扱うだけでなく、アクティブレコードは関連したテーブルのデータも一緒に読み出して、主たるデータを通して簡単にアクセス出来るようにすることが出来ます。
例えば、一人の顧客は一つまたは複数の注文を発することがあり得ますので、顧客のデータは注文のデータと関連を持っていることになります。
このリレーションが適切に宣言されていれば、$customer->orders という式を使って顧客の注文情報にアクセスすることが出来ます。
$customer->orders は、顧客の注文情報を Order アクティブレコードインスタンスの配列として返してくれます。

リレーションを宣言する

アクティブレコードを使ってリレーショナルデータを扱うためには、最初に、アクティブレコードクラスの中でリレーションを宣言する必要があります。
これは、以下のように、関心のあるそれぞれのリレーションについて リレーションメソッド を宣言するだけの簡単な作業です。

class Customer extends ActiveRecord
{
 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 // ...

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

上記のコードでは、Customer クラスのために orders リレーションを宣言し、Order クラスのために customer リレーションを宣言しています。

各リレーションメソッドは getXyz という名前にしなければなりません。
ここで xyz (最初の文字は小文字です) が リレーション名 と呼ばれます。
リレーション名は 大文字と小文字を区別する ことに注意してください。

リレーションを宣言する際には、次の情報を指定しなければなりません。

	リレーションの多重性: [[yii\db\ActiveRecord::hasMany()|hasMany()]] または [[yii\db\ActiveRecord::hasOne()|hasOne()]] のどちらかを呼ぶことによって指定されます。
上記の例では、リレーションの宣言において、顧客は複数の注文を持ち得るが、一方、注文は一人の顧客しか持たない、ということが容易に読み取れます。

	関連するアクティブレコードクラスの名前: [[yii\db\ActiveRecord::hasMany()|hasMany()]] または [[yii\db\ActiveRecord::hasOne()|hasOne()]] の最初のパラメータとして指定されます。
クラス名を取得するのに Xyz::className() を呼ぶのが推奨されるプラクティスです。
そうすれば、IDE の自動補完のサポートを得ることことが出来るだけでなく、コンパイル段階でエラーを検出することが出来ます。

	二つのデータタイプ間のリンク: 二つのデータタイプの関連付けに用いられるカラムを指定します。
配列の値は主たるデータ (リレーションを宣言しているアクティブレコードクラスによって表されるデータ) のカラムであり、配列のキーは関連するデータのカラムです。

リレーショナルデータにアクセスする

リレーションを宣言した後は、リレーション名を通じてリレーショナルデータにアクセスすることが出来ます。
これは、リレーションメソッドによって定義されるオブジェクト プロパティ にアクセスするのと同様です。
このため、これを リレーションプロパティ と呼びます。
例えば、

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders is an array of Order objects
$orders = $customer->orders;

Info: xyz という名前のリレーションを getter メソッド getXyz() によって宣言すると、xyz を オブジェクトプロパティ のようにアクセスすることが出来るようになります。
名前は大文字と小文字を区別することに注意してください。

リレーションが [[yii\db\ActiveRecord::hasMany()|hasMany()]] によって宣言されている場合は、このリレーションプロパティにアクセスすると、関連付けられたアクティブレコードインスタンスの配列が返されます。
リレーションが [[yii\db\ActiveRecord::hasOne()|hasOne()]] によって宣言されている場合は、このリレーションプロパティにアクセスすると、関連付けられたアクティブレコードインスタンスか、関連付けられたデータが見つからないときは null が返されます。

リレーションプロパティに最初にアクセスしたときは、上記の例で示されているように、SQL 文が実行されます。
その同じプロパティに再びアクセスしたときは、SQL 文を再実行することなく、以前の結果が返されます。
SQL 文の再実行を強制するためには、まず、リレーションプロパティの割り当てを解除 (unset) しなければなりません : unset($customer->orders)。

Note: リレーションプロパティの概念は オブジェクトプロパティ の機能と同一であるように見えますが、一つ、重要な相違点があります。
通常のオブジェクトプロパティでは、プロパティの値はそれを定義する getter メソッドと同じ型を持ちます。
しかし、リレーションプロパティにアクセスすると [[yii\db\ActiveRecord]] のインスタンスまたはその配列が返されるのに対して、リレーションメソッドは [[yii\db\ActiveQuery]] のインスタンスを返します。

$customer->orders; // `Order` オブジェクトの配列
$customer->getOrders(); // ActiveQuery のインスタンス

このことは、次の項で説明するように、カスタマイズしたクエリを作成するのに役に立ちます。

動的なリレーショナルクエリ

リレーションメソッドは [[yii\db\ActiveQuery]] のインスタンスを返すため、DB クエリを実行する前に、クエリ構築メソッドを使ってこのクエリを更に修正することが出来ます。
例えば、

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getOrders()
 ->where(['>', 'subtotal', 200])
 ->orderBy('id')
 ->all();

リレーションプロパティにアクセスする場合と違って、リレーションメソッドによって動的なリレーショナルクエリを実行する場合は、同じ動的なリレーショナルクエリが以前に実行されたことがあっても、毎回、SQL 文が実行されます。

さらに進んで、もっと簡単に動的なリレーショナルクエリを実行できるように、リレーションの宣言をパラメータ化したい場合もあるでしょう。
例えば、bigOrders リレーションを下記のように宣言することが出来ます。

class Customer extends ActiveRecord
{
 public function getBigOrders($threshold = 100)
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id'])
 ->where('subtotal > :threshold', [':threshold' => $threshold])
 ->orderBy('id');
 }
}

これによって、次のようなリレーショナルクエリを実行することが出来るようになります。

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100 ORDER BY `id`
$orders = $customer->bigOrders;

中間テーブルによるリレーション

データベースの設計において、二つの関連するテーブル間の多重性が多対多である場合は、通常、中間テーブル [https://en.wikipedia.org/wiki/Junction_table] が導入されます。
例えば、order テーブルと item テーブルは、order_item と言う名前の中間テーブルによって関連付けることが出来ます。
このようにすれば、一つの注文を複数の商品に対応させ、また、一つの商品を複数の注文に対応させることが出来ます。

このようなリレーションを宣言するときは、[[yii\db\ActiveQuery::via()|via()]] または [[yii\db\ActiveQuery::viaTable()|viaTable()]] のどちらかを呼んで中間テーブルを指定します。
[[yii\db\ActiveQuery::via()|via()]] と [[yii\db\ActiveQuery::viaTable()|viaTable()]] の違いは、前者が既存のリレーション名の形式で中間テーブルを指定するのに対して、後者は中間テーブルを直接に指定する、という点です。
例えば、

class Order extends ActiveRecord
{
 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->viaTable('order_item', ['order_id' => 'id']);
 }
}

あるいは、また、

class Order extends ActiveRecord
{
 public function getOrderItems()
 {
 return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);
 }

 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->via('orderItems');
 }
}

中間テーブルを使って宣言されたリレーションの使い方は、通常のリレーションと同じです。
例えば、

// SELECT * FROM `order` WHERE `id` = 100
$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100
// SELECT * FROM `item` WHERE `item_id` IN (...)
// 商品オブジェクトの配列を返す
$items = $order->items;

レイジーローディングとイーガーローディング

リレーショナルデータにアクセスする において、通常のオブジェクトプロパティにアクセスするのと同じようにして、アクティブレコードインスタンスのリレーションプロパティにアクセスすることが出来ることを説明しました。
SQL 文は、リレーションプロパティに最初にアクセスするときにだけ実行されます。
このようなリレーショナルデータのアクセス方法を レイジーローディング と呼びます。
例えば、

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$orders = $customer->orders;

// SQL は実行されない
$orders2 = $customer->orders;

レイジーローディングは非常に使い勝手が良いものです。
しかし、複数のアクティブレコードインスタンスの同じリレーションプロパティにアクセスする必要がある場合は、パフォーマンスの問題を生じ得ます。
次のコードサンプルを考えて見てください。実行される SQL 文の数はいくらになるでしょう?

// SELECT * FROM `customer` LIMIT 100
$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {
 // SELECT * FROM `order` WHERE `customer_id` = ...
 $orders = $customer->orders;
}

上のコードのコメントから判るように、実行される SQL 文は 101 にもなります。
これは、for ループの中で、異なる Customer オブジェクトの orders リレーションにアクセスするたびに、SQL 文が一つ実行されることになるからです。

このパフォーマンスの問題を解決するために、次に示すように、いわゆる イーガーローディング の手法を使うことが出来ます。

// SELECT * FROM `customer` LIMIT 100;
// SELECT * FROM `orders` WHERE `customer_id` IN (...)
$customers = Customer::find()
 ->with('orders')
 ->limit(100)
 ->all();

foreach ($customers as $customer) {
 // SQL は実行されない
 $orders = $customer->orders;
}

[[yii\db\ActiveQuery::with()]] を呼ぶことによって、最初の 100 人の顧客の注文をたった一つの SQL 文で返すように、アクティブレコードに指示をしています。
結果として、実行される SQL 文の数は 101 から 2 に減ります。

イーガーローディングは、一つだけでなく、複数のリレーションに対しても使うことが出来ます。
さらには、ネストされたリレーション でさえ、イーガーロードすることが出来ます。
ネストされたリレーションというのは、関連するアクティブレコードの中で宣言されているリレーションです。
例えば、Cutomer が orders リレーションによって Order と関連しており、Order が items リレーションによって Item と関連している場合です。
Customer に対するクエリを実行するときに、ネストされたリレーションの記法である orders.items を使って、items をイーガーロードすることが出来ます。

次のコードは、[[yii\db\ActiveQuery::with()|with()]] のさまざまな使い方を示すものです。
ここでは、Customer クラスは orders と country という二つのリレーションを持っており、また、Order クラスは items という一つのリレーションを持っていると仮定しています。

// "orders" と "country" の両方をイーガーロードする
$customers = Customer::find()->with('orders', 'country')->all();
// これは下の配列記法と等価
$customers = Customer::find()->with(['orders', 'country'])->all();
// SQL は実行されない
$orders= $customers[0]->orders;
// SQL は実行されない
$country = $customers[0]->country;

// "orders" リレーションと、ネストされた "orders.items" をイーガーロード
$customers = Customer::find()->with('orders.items')->all();
// 最初の顧客の、最初の注文の品目にアクセスする
// SQL は実行されない
$items = $customers[0]->orders[0]->items;

深くネストされたリレーション、たとえば a.b.c.c をイーガーロードすることも出来ます。
このとき、すべての親リレーションもイーガーロードされます。
つまり、a.b.c.d を使って [[yii\db\ActiveQuery::with()|with()]] を呼ぶと、a、a.b、a.b.c そして a.b.c.d をイーガーロードすることになります。

Info: 一般化して言うと、N 個のリレーションのうち M 個のリレーションが 中間テーブル によって定義されている場合、この N 個のリレーションをイーガーロードしようとすると、合計で 1+M+N 個の SQL クエリが実行されます。
ネストされたリレーション a.b.c.d は 4 個のリレーションとして数えられることに注意してください。

リレーションをイーガーロードするときに、対応するリレーショナルクエリを無名関数を使ってカスタマイズすることが出来ます。
例えば、

// 顧客を検索し、その国とアクティブな注文を同時に返す
// SELECT * FROM `customer`
// SELECT * FROM `country` WHERE `id` IN (...)
// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1
$customers = Customer::find()->with([
 'country',
 'orders' => function ($query) {
 $query->andWhere(['status' => Order::STATUS_ACTIVE]);
 },
])->all();

リレーションのためのリレーショナルクエリをカスタマイズするときは、リレーション名を配列のキーとし、対応する値に無名関数を使わなければなりません。
無名関数が受け取る $query パラメータは、リレーションのためのリレーショナルクエリを実行するのに使用される [[yii\db\ActiveQuery]] オブジェクトを表します。
上のコード例では、注文の状態に関する条件を追加して、リレーショナルクエリを修正しています。

Note: リレーションをイーガーロードするときに [[yii\db\Query::select()|select()]] を呼ぶ場合は、リレーションの宣言で参照されているカラムが選択されるように注意しなければなりません。
そうしないと、リレーションのモデルが正しくロードされないことがあります。
例えば、

$orders = Order::find()->select(['id', 'amount'])->with('customer')->all();
// この場合、$orders[0]->customer は常に `null` になります。
// 問題を修正するためには、次のようにしなければなりません。
$orders = Order::find()->select(['id', 'amount', 'customer_id'])->with('customer')->all();

リレーションを使ってテーブルを結合する [bookmark: joining-with-relations]

 構成情報

構成情報

新しいオブジェクトを作成したり、既存のオブジェクトを初期化するとき、Yiiでは構成情報が広く使用されています。
構成情報は通常、作成されるオブジェクトのクラス名、およびオブジェクトの プロパティ
に割り当てられる初期値のリストを含みます。構成情報は、オブジェクトの イベント にアタッチされるハンドラのリストや、オブジェクトにアタッチされる
ビヘイビア のリストを含むこともできます。

以下では、データベース接続を作成して初期化するために、構成情報が使用されています:

$config = [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

$db = Yii::createObject($config);

[[Yiiの::CreateObject()]] メソッドは引数に構成情報の配列を受け取り、構成情報で名前指定されたクラスをインスタンス化してオブジェクトを作成します。
オブジェクトがインスタンス化されるとき、その他の設定は、
オブジェクトのプロパティ、イベントハンドラ、およびビヘイビアを初期化するのに使われます。

すでにオブジェクトがある場合は、構成情報配列でオブジェクトのプロパティを初期化するのに [[Yii::configure()]] を使用することができます:

Yii::configure($object, $config);

なお、この場合には、構成情報配列に class 要素を含んではいけません。

構成情報の形式

構成情報の形式は、フォーマルには次のように説明できます:

[
 'class' => 'ClassName',
 'propertyName' => 'propertyValue',
 'on eventName' => $eventHandler,
 'as behaviorName' => $behaviorConfig,
]

ここで

	class 要素は、作成されるオブジェクトの完全修飾クラス名を指定します。

	propertyName 要素は、名前で指定されたプロパティの初期値を指定します。キーはプロパティ名で、値はそれに対応する初期値です。
パブリックメンバ変数と getter/setter によって定義されている プロパティ のみを設定することができます。

	on eventName 要素は、どのようなハンドラがオブジェクトの イベント にアタッチされるかを指定します。
配列のキーが on に続けてイベント名という書式になることに注意してください。サポートされているイベントハンドラの形式については、
イベント のセクションを参照してください。

	as behaviorName 要素は、どのような ビヘイビア がオブジェクトにアタッチされるかを指定します。
配列のキーが as に続けてビヘイビア名という書式になり、 $behaviorConfig で示される値が、ここで説明する一般的な構成情報のような、
ビヘイビアを作成するための構成情報になることに注意してください。

下記は、初期プロパティ値、イベントハンドラ、およびビヘイビアでの構成を示した例です:

[
 'class' => 'app\components\SearchEngine',
 'apiKey' => 'xxxxxxxx',
 'on search' => function ($event) {
 Yii::info("Keyword searched: " . $event->keyword);
 },
 'as indexer' => [
 'class' => 'app\components\IndexerBehavior',
 // ... プロパティ初期値 ...
],
]

構成情報の使用

構成情報は Yii の多くの場所で使用されています。このセクションの冒頭では、 [[Yii::createObject()]]
を使って、構成情報に応じてオブジェクトを作成する方法を示しました。このサブセクションでは、
アプリケーションの構成とウィジェットの構成という、2つの主要な構成情報の用途を説明します。

アプリケーションの構成

アプリケーション の構成は、おそらく Yii の中で最も複雑な配列のひとつです。
それは [[yii\web\Application|アプリケーション]] クラスが、設定可能なプロパティとイベントを数多く持つためです。
さらに重要なことは、その [[yii\web\Application::components|components]] プロパティが、アプリケーションに登録されている
コンポーネント生成用の構成情報配列を受け取ることができることです。以下は、 ベーシックプロジェクトテンプレート
のアプリケーション構成ファイルの概要です。

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
];

この構成情報には、 class キーがありません。それは、エントリスクリプト で以下のように、
クラス名が既に与えられて使用されているためです。

(new yii\web\Application($config))->run();

アプリケーションの components プロパティ構成の詳細については、 アプリケーション セクションと サービスロケータ セクションにあります。

バージョン 2.0.11 以降では、アプリケーション構成で container プロパティを使って 依存注入コンテナ を構成することがサポートされています。

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'container' => [
 'definitions' => [
 'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
],
 'singletons' => [
 // 依存注入コンテナのシングルトンの構成
]
]
];

definitions と singletons の構成情報配列に使用できる値とその実例についてさらに知るためには、
依存注入コンテナの記事の 高度な実際の使用方法 の節を読んでください。

ウィジェットの構成

ウィジェット を使用するときは、多くの場合、ウィジェットのプロパティをカスタマイズするために、構成情報を使用する必要があります。
[[yii\base\Widget::widget()]] と [[yii\base\Widget::begin()]] の両メソッドを使って、ウィジェットを作成できます。それらは、以下のような構成情報配列を取ります。

use yii\widgets\Menu;

echo Menu::widget([
 'activateItems' => false,
 'items' => [
 ['label' => 'ホーム', 'url' => ['site/index']],
 ['label' => '製品', 'url' => ['product/index']],
 ['label' => 'ログイン', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
],
]);

上記のコードは、 Menu ウィジェットを作成し、その activateItems プロパティが false になるよう初期化します。
items プロパティも、表示されるメニュー項目で構成されます。

クラス名がすでに与えられているので、構成情報配列が class キーを持つべきではないことに注意してください。

構成情報ファイル

構成情報がとても複雑になる場合、一般的な方法は、 構成情報ファイル と呼ばれる、ひとつまたは複数の PHP ファイルにそれを格納することです。
構成情報ファイルは、構成情報を表す PHP 配列を return します。
たとえば、次のように、 web.php と名づけたファイルにアプリケーション構成を保持することができます。

return [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
 'components' => require(__DIR__ . '/components.php'),
];

components の構成もまた複雑になるため、上記のように、 components.php と呼ぶ別のファイルにそれを格納し web.php でそのファイルを “require” しています。
この components.php の内容は、次のようになっています。

return [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
];

構成情報ファイルに格納されている構成情報を取得するには、以下のように、それを “require” するだけです:

$config = require('path/to/web.php');
(new yii\web\Application($config))->run();

デフォルト設定

[[Yii::createObject()]] メソッドは、 依存性注入コンテナ をベースに実装されています。
そのため、指定されたクラスが [[Yii::createObject()]] を使用して作成されるとき、そのすべてのインスタンスに適用される、
いわゆる デフォルト設定 のセットを指定することができます。デフォルト設定は、
ブートストラップ コード内の Yii::$container->set() を呼び出すことで指定することができます。

たとえばあなたが、すべてのリンクページャーが最大で5つのページボタン (デフォルト値は10) を伴って表示されるよう
[[yii\widgets\LinkPager]] をカスタマイズしたいとき、その目標を達成するには次のコードを使用することができます。

\Yii::$container->set('yii\widgets\LinkPager', [
 'maxButtonCount' => 5,
]);

デフォルト設定を使用しなければ、あなたは、リンクページャーを使うすべての箇所で maxButtonCount を設定しなければなりません。

環境定数

構成情報は、多くの場合、アプリケーションが実行される環境に応じて変化します。たとえば、
開発環境では mydb_dev という名前のデータベースを使用し、本番サーバー上では mydb_prod データベースを
使用したいかもしれません。環境の切り替えを容易にするために、Yii は、あなたのアプリケーションの
エントリスクリプト で定義可能な YII_ENV という名前の定数を提供します。
たとえば:

defined('YII_ENV') or define('YII_ENV', 'dev');

YII_ENV を次のいずれかの値と定義することができます:

	prod: 本番環境。定数 YII_ENV_PROD が true と評価されます。
とくに定義しない場合、これが YII_ENV のデフォルト値です。

	dev: 開発環境。定数 YII_ENV_DEV が true と評価されます。

	test: テスト環境。定数 YII_ENV_TEST が true と評価されます。

これらの環境定数を使用すると、現在の環境に基づいて条件付きで構成情報を指定することもできます。
たとえば、アプリケーション構成情報には、開発環境での デバッグツールバーとデバッガ
を有効にするために、次のコードを含むことができます。

$config = [...];

if (YII_ENV_DEV) {
 // 'dev' 環境用に構成情報を調整
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;

 プロパティ

プロパティ

PHPでは、クラスのメンバ変数は プロパティ とも呼ばれます。これらの変数は、クラス定義の一部で、クラスのインスタンスの状態を表すために
(すなわち、クラスのあるインスタンスを別のものと区別するために) 使用されます。現実には、特別な方法でこのプロパティの読み書きを扱いたい
場合がよくあります。たとえば、label プロパティに割り当てられる文字列が常にトリミングされるようにしたい、など。その仕事を成し遂げるために、
あなたは次のようなコードを使ってきたのではありませんか:

$object->label = trim($label);

上記のコードの欠点は、 label プロパティを設定するすべてのコードで、trim() を呼び出す必要があるということです。もし将来的に、
label プロパティに、最初の文字を大文字にしなければならない、といった新たな要件が発生したら、 label に値を代入するすべてのコードを変更しなければなりません。
コードの繰り返しはバグを誘発するので、できれば避けたいところです。

この問題を解決するために、Yii は getter メソッドと setter メソッドをベースにしたプロパティ定義をサポートする、 [[yii\base\Object]] 基底クラスを提供します。
クラスがその機能を必要とするなら、 [[yii\base\Object]] またはその子クラスを継承しましょう。

Note: Yiiのフレームワークのほぼすべてのコアクラスは、 [[yii\base\Object]] またはその子クラスを継承しています。
これは、コアクラスに getter または setter があれば、それをプロパティのように使用できることを意味します。

getter メソッドは、名前が get で始まるメソッドで、setter メソッドは、set で始まるメソッドです。
get または set 接頭辞の後の名前で、プロパティ名を定義します。次のコードに示すように、たとえば、getLabel() という getter と setLabel() という setter は、
label という名前のプロパティを定義します:

namespace app\components;

use yii\base\Object;

class Foo extends Object
{
 private $_label;

 public function getLabel()
 {
 return $this->_label;
 }

 public function setLabel($value)
 {
 $this->_label = trim($value);
 }
}

詳しく言うと、getter および setter メソッドは、この場合には、内部的に _label と名付けられた private 属性を参照する label プロパティを作っています。

getter と setter によって定義されたプロパティは、クラスのメンバ変数のように使用することができます。主な違いは、
それらのプロパティが読み取りアクセスされるときは、対応する getter ソッドが呼び出されることであり、プロパティに値が割り当てられるときには、
対応する setter メソッドが呼び出されるということです。例:

// $label = $object->getLabel(); と同じ
$label = $object->label;

// $object->setLabel('abc'); と同じ
$object->label = 'abc';

setter なしの getter で定義されたプロパティは、 読み取り専用 です。そのようなプロパティに値を代入しようとすると、
[[yii\base\InvalidCallException|InvalidCallException]] が発生します。同様に、getter なしの setter で定義されたプロパティは、
書き込み専用 で、そのようなプロパティを読み取りしようとしても、例外が発生します。書き込み専用のプロパティを持つのは一般的ではありませんが。

getter と setter で定義されたプロパティには、いくつかの特別なルールと制限があります:

	この種のプロパティでは、名前の 大文字と小文字を区別しません 。たとえば、 $object->label と $object->Label は同じです。
これは、PHP のメソッド名が大文字と小文字を区別しないためです。

	この種のプロパティの名前と、クラスのメンバ変数の名前とが同じである場合、後者が優先されます。
たとえば、上記の Foo クラスがメンバ変数 label を持っている場合は、$object->label = 'abc'
という代入は メンバ変数の label に作用することになります。その行から setLabel() setter メソッドは呼び出されません。

	これらのプロパティは可視性をサポートしていません。プロパティが public、protected、private であるかどうかを、
getter または setter メソッドの定義によって決めることは出来ません。

	プロパティは、 静的でない getter および setter によってのみ定義することが出来ます。静的なメソッドは同様には扱われません。

	通常の property_exists() の呼び出しでは、マジック・プロパティが存在するかどうかを知ることは出来ません。
それぞれ、[[yii\base\Object::canGetProperty()|canGetProperty()]] または [[yii\base\Object::canSetProperty()|canSetProperty()]] を呼び出さなければなりません。

このガイドの冒頭で説明した問題に戻ると、 label に値が代入されているあらゆる箇所で trim() を呼ぶのではなく、もう setLabel() という setter の内部だけで trim() を呼べば済むのです。
さらに、新しい要求でラベルの先頭を大文字にする必要が発生しても、他のいっさいのコードに触れることなく、すぐに setLabel() メソッドを変更することができます。一箇所の変更は、すべての label への代入に普遍的に作用します。

 レスポンス

レスポンス

アプリケーションは リクエスト の処理を完了すると、[[yii\web\Response|レスポンス]] オブジェクトを生成して、エンドユーザに送信します。
レスポンスオブジェクトは、HTTP ステータスコード、HTTP ヘッダ、HTTP ボディなどの情報を含みます。
ウェブアプリケーション開発の最終的な目的は、本質的には、さまざまなリクエストに対してそのようなレスポンスオブジェクトを作成することにあります。

ほとんどの場合は、主として、デフォルトでは [[yii\web\Response]] のインスタンスである response アプリケーションコンポーネント を使用すべきです。
しかしながら、Yii は、以下で説明するように、あなた自身のレスポンスオブジェクトを作成してエンドユーザに送信することも許容しています。

この節では、レスポンスを構成してエンドユーザに送信する方法を説明します。

ステータスコード

レスポンスを作成するときに最初にすることの一つは、リクエストが成功裡に処理されたかどうかを記述することです。
そのためには、[[yii\web\Response::statusCode]] プロパティに有効な HTTP ステータスコード [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] の一つを設定します。
例えば、下記のように、リクエストの処理が成功したことを示すために、ステータスコードを 200 に設定します。

Yii::$app->response->statusCode = 200;

ただし、たいていの場合、ステータスコードを明示的に設定する必要はありません。
これは、[[yii\web\Response::statusCode]] のデフォルト値が 200 であるからです。
そして、リクエストが失敗したことを示したいときは、下記のように、適切な HTTP 例外を投げることが出来ます。

throw new \yii\web\NotFoundHttpException;

エラーハンドラ は、例外をキャッチすると、例外からステータスコードを抽出してレスポンスに割り当てます。
上記の [[yii\web\NotFoundHttpException]] の場合は、HTTP ステータス 404 と関連付けられています。
次の HTTP 例外が Yii によって事前定義されています。

	[[yii\web\BadRequestHttpException]]: ステータスコード 400

	[[yii\web\ConflictHttpException]]: ステータスコード 409

	[[yii\web\ForbiddenHttpException]]: ステータスコード 403

	[[yii\web\GoneHttpException]]: ステータスコード 410

	[[yii\web\MethodNotAllowedHttpException]]: ステータスコード 405

	[[yii\web\NotAcceptableHttpException]]: ステータスコード 406

	[[yii\web\NotFoundHttpException]]: ステータスコード 404

	[[yii\web\ServerErrorHttpException]]: ステータスコード 500

	[[yii\web\TooManyRequestsHttpException]]: ステータスコード 429

	[[yii\web\UnauthorizedHttpException]]: ステータスコード 401

	[[yii\web\UnsupportedMediaTypeHttpException]]: ステータスコード 415

投げたい例外が上記のリストに無い場合は、[[yii\web\HttpException]] から拡張したものを作成することが出来ます。
あるいは、ステータスコードを指定して [[yii\web\HttpException]] を直接に投げることも出来ます。
例えば、

throw new \yii\web\HttpException(402);

HTTP ヘッダ

response コンポーネントの [[yii\web\Response::headers|ヘッダコレクション]] を操作することによって、HTTP ヘッダを送信することが出来ます。
例えば、

$headers = Yii::$app->response->headers;

// Pragma ヘッダを追加する。既存の Pragma ヘッダは上書きされない。
$headers->add('Pragma', 'no-cache');

// Pragma ヘッダを設定する。既存の Pragma ヘッダは全て破棄される。
$headers->set('Pragma', 'no-cache');

// Pragma ヘッダを削除して、削除された Pragma ヘッダの値を配列に返す。
$values = $headers->remove('Pragma');

Info: ヘッダ名は大文字小文字を区別しません。
そして、新しく登録されたヘッダは、[[yii\web\Response::send()]] メソッドが呼ばれるまで送信されません。

レスポンスボディ

ほとんどのレスポンスは、エンドユーザに対して表示したい内容を示すボディを持っていなければなりません。

既にフォーマットされたボディの文字列を持っている場合は、それをレスポンスの [[yii\web\Response::content]] プロパティに割り付けることが出来ます。
例えば、

Yii::$app->response->content = 'hello world!';

データをエンドユーザに送信する前にフォーマットする必要がある場合は、[[yii\web\Response::format|format]] と [[yii\web\Response::data|data]] の両方のプロパティをセットしなければなりません。
[[yii\web\Response::format|format]] プロパティは [[yii\web\Response::data|data]] がどの形式でフォーマットされるべきかを指定するものです。
例えば、

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];

Yii は下記の形式を初めからサポートしています。
それぞれ、[[yii\web\ResponseFormatterInterface|フォーマッタ]] クラスとして実装されています。
[[yii\web\Response::formatters]] プロパティを構成することで、これらのフォーマッタをカスタマイズしたり、新しいフォーマッタを追加したりすることが出来ます。

	[[yii\web\Response::FORMAT_HTML|HTML]]: [[yii\web\HtmlResponseFormatter]] によって実装

	[[yii\web\Response::FORMAT_XML|XML]]: [[yii\web\XmlResponseFormatter]] によって実装

	[[yii\web\Response::FORMAT_JSON|JSON]]: [[yii\web\JsonResponseFormatter]] によって実装

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: [[yii\web\JsonResponseFormatter]] によって実装

	

レスポンスボディは、上記のように、明示的に設定することも出来ますが、たいていの場合は、アクション メソッドの返り値によって暗黙のうちに設定することが出来ます。
よくあるユースケースは下記のようなものになります。

public function actionIndex()
{
 return $this->render('index');
}

上記の index アクションは、index ビューのレンダリング結果を返しています。
返された値は response コンポーネントによって受け取られ、フォーマットされてエンドユーザに送信されます。

デフォルトのレスポンス形式が [[yii\web\Response::FORMAT_HTML|HTML]] であるため、アクションメソッドの中では文字列を返すだけにすべきです。
別のレスポンス形式を使いたい場合は、データを返す前にレスポンス形式を設定しなければなりません。
例えば、

public function actionInfo()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'hello world',
 'code' => 100,
];
}

既に述べたように、デフォルトの response アプリケーションコンポーネントを使う代りに、自分自身のレスポンスオブジェクトを作成してエンドユーザに送信することも出来ます。
そうするためには、次のように、アクションメソッドの中でそのようなオブジェクトを返します。

public function actionInfo()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',
 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'hello world',
 'code' => 100,
],
]);
}

Note: 自分自身のレスポンスオブジェクトを作成しようとする場合は、アプリケーションの構成情報で response コンポーネントのために設定した構成情報を利用することは出来ません。
しかし、 依存の注入 を使えば、 共通の構成情報をあなたの新しいレスポンスオブジェクトに適用することが出来ます。

ブラウザのリダイレクト

ブラウザのリダイレクトは Location HTTP ヘッダの送信に依存しています。
この機能は通常よく使われるものであるため、Yii はこれについて特別のサポートを提供しています。

[[yii\web\Response::redirect()]] メソッドを呼ぶことによって、ユーザのブラウザをある URL にリダイレクトすることが出来ます。
このメソッドは与えられた URL を持つ適切な Location ヘッダを設定して、レスポンスオブジェクトそのものを返します。
アクションメソッドの中では、そのショートカット版である [[yii\web\Controller::redirect()]] を呼ぶことが出来ます。
例えば、

public function actionOld()
{
 return $this->redirect('http://example.com/new', 301);
}

上記のコードでは、アクションメソッドが redirect() メソッドの結果を返しています。
前に説明したように、アクションメソッドによって返されるレスポンスオブジェクトが、エンドユーザに送信されるレスポンスとして使用されることになります。

アクションメソッド以外の場所では、[[yii\web\Response::redirect()]] を直接に呼び出し、メソッドチェーンで [[yii\web\Response::send()]] メソッドを呼んで、レスポンスに余計なコンテントが追加されないことを保証しなければなりません。

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: デフォルトでは、[[yii\web\Response::redirect()]] メソッドはレスポンスのステータスコードを 302 にセットします。
これはブラウザに対して、リクエストされているリソースが 一時的に 異なる URI に配置されていることを示すものです。
ブラウザに対してリソースが 恒久的に 配置替えされたことを教えるためには、ステータスコード 301 を渡すことが出来ます。

現在のリクエストが AJAX リクエストである場合は、Location ヘッダを送っても自動的にブラウザをリダイレクトすることにはなりません。
この問題を解決するために、[[yii\web\Response::redirect()]] メソッドは X-Redirect ヘッダにリダイレクト先 URL を値としてセットします。
そして、クライアントサイドで、このヘッダの値を読み、それに応じてブラウザをリダイレクトする JavaScript を書くことが出来ます。

Info: Yii には yii.js という JavaScript ファイルが付属しています。
これは、よく使われる一連の JavaScript 機能を提供するもので、その中には X-Redirect ヘッダに基づくブラウザのリダイレクトも含まれています。
従って、あなたが ([[yii\web\YiiAsset]] アセットバンドルを登録して) この JavaScript ファイルを使うつもりなら、AJAX のリダイレクトをサポートするためには、何も書く必要がなくなります。
yii.js に関する更なる情報は クライアントスクリプトの節 にあります。

ファイルを送信する

ブラウザのリダイレクトと同じように、ファイルの送信という機能も特定の HTTP ヘッダに依存しています。
Yii はさまざまなファイル送信の必要をサポートするための一連のメソッドを提供しています。それらはすべて、HTTP range ヘッダに対するサポートを内蔵しています。

	

	

	

これらのメソッドは同じメソッドシグニチャを持ち、返り値としてレスポンスオブジェクトを返します。
送信しようとしているファイルが非常に大きなものである場合は、メモリ効率の良い [yii\web\Response::sendStreamAsFile()] の使用を検討すべきです。
次の例は、コントローラアクションでファイルを送信する方法を示すものです。

public function actionDownload()
{
 return \Yii::$app->response->sendFile('path/to/file.txt');
}

ファイル送信メソッドをアクションメソッド以外の場所で呼ぶ場合は、その後で [[yii\web\Response::send()]] メソッドも呼んで、レスポンスに余計なコンテントが追加されないことを保証しなければなりません。

\Yii::$app->response->sendFile('path/to/file.txt')->send();

ウェブサーバには、X-Sendfile と呼ばれる特別なファイル送信をサポートするものがあります。
アイデアとしては、ファイルに対するリクエストをウェブサーバにリダイレクトして、ウェブサーバに直接にファイルを送信させる、というものです。
その結果として、ウェブサーバがファイルを送信している間でも、ウェブアプリケーションは早期に終了することが出来るようになります。
この機能を使うために、[[yii\web\Response::xSendFile()]] を呼ぶことが出来ます。
次のリストは、よく使われるいくつかのウェブサーバにおいて X-Sendfile 機能を有効にする方法を要約するものです。

	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]

レスポンスを送信する

レスポンスの中のコンテントは、[[yii\web\Response::send()]] メソッドが呼ばれるまでは、エンドユーザに向けて送信されません。
デフォルトでは、このメソッドは [[yii\base\Application::run()]] の最後で自動的に呼ばれます。
しかし、このメソッドを明示的に呼んで、強制的にレスポンスを即座に送信することも可能です。

[[yii\web\Response::send()]] メソッドは次のステップを踏んでレスポンスを送出します。

	[[yii\web\Response::EVENT_BEFORE_SEND]] イベントをトリガする。

	[[yii\web\Response::prepare()]] を呼んで [[yii\web\Response::data|レスポンスデータ]] を
[[yii\web\Response::content|レスポンスコンテント]] としてフォーマットする。

	[[yii\web\Response::EVENT_AFTER_PREPARE]] イベントをトリガする。

	[[yii\web\Response::sendHeaders()]] を呼んで、登録された HTTP ヘッダを送出する。

	[[yii\web\Response::sendContent()]] を呼んで、レスポンスのボディコンテントを送出する。

	[[yii\web\Response::EVENT_AFTER_SEND]] イベントをトリガする。

[[yii\web\Response::send()]] メソッドが一度呼び出された後では、このメソッドに対する更なる呼び出しは無視されます。
このことは、いったんレスポンスが送出された後では、それにコンテントを追加することは出来なくなる、ということを意味します。

ごらんのように、[[yii\web\Response::send()]] メソッドはいくつかの有用なイベントをトリガします。
これらのイベントに反応することによって、レスポンスを調整したり修飾したりすることが出来ます。

 アプリケーションコンポーネント

アプリケーションコンポーネント

アプリケーションは サービスロケータ です。
アプリケーションは、リクエストを処理するためのいろいろなサービスを提供する一連のオブジェクト、いわゆる アプリケーションコンポーネント をホストします。
例えば、urlManager がウェブリクエストを適切なコントローラにルーティングする役割を負い、db コンポーネントが DB 関連のサービスを提供する、等々です。

全てのアプリケーションコンポーネントは、それぞれ、同一のアプリケーション内で他のアプリケーションコンポーネントから区別できるように、ユニークな ID を持ちます。
アプリケーションコンポーネントには、次の式によってアクセス出来ます。

\Yii::$app->componentID

例えば、\Yii::$app->db を使って、アプリケーションに登録された [[yii\db\Connection|DB 接続]] を取得することが出来ます。
また、\Yii::$app->cache を使って、[[yii\caching\Cache|プライマリキャッシュ]] を取得できます。

アプリケーションコンポーネントは、上記の式を使ってアクセスされた最初の時に作成されます。
二度目以降のアクセスでは、同じコンポーネントインスタンスが返されます。

どのようなオブジェクトでも、アプリケーションコンポーネントとすることが可能です。
アプリケーションの構成情報 の中で [[yii\base\Application::components]] プロパティを構成することによって、アプリケーションコンポーネントを登録することが出来ます。
例えば、

[
 'components' => [
 // クラス名を使って "cache" コンポーネントを登録
 'cache' => 'yii\caching\ApcCache',

 // 構成情報の配列を使って "db" コンポーネントを登録
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],

 // 無名関数を使って "search" コンポーネントを登録
 'search' => function () {
 return new app\components\SolrService;
 },
],
]

Info: 必要なだけ多くのアプリケーションコンポーネントを登録することが出来ますが、慎重にしなければなりません。
アプリケーションコンポーネントはグローバル変数のようなものです。
あまり多くのアプリケーションコンポーネントを使うと、コードのテストと保守が困難になるおそれがあります。
多くの場合、必要なときにローカルなコンポーネントを作成して使用するだけで十分です。

コンポーネントをブートストラップに含める

上述のように、アプリケーションコンポーネントは最初にアクセスされた時に初めてインスタンスが作成されます。
リクエストの間に全くアクセスされなかった時は、インスタンスは作成されません。
けれども、場合によっては、明示的にアクセスされないときでも、リクエストごとにアプリケーションコンポーネントのインスタンスを作成したいことがあります。
そうするためには、アプリケーションの [[yii\base\Application::bootstrap|bootstrap]] プロパティのリストにそのコンポーネントの ID を挙げることが出来ます。

例えば、次のアプリケーション構成情報は、log コンポーネントが常にロードされることを保証するものです。

[
 'bootstrap' => [
 'log',
],
 'components' => [
 'log' => [
 // "log" コンポーネントの構成情報
],
],
]

コアアプリケーションコンポーネント

Yii は固定の ID とデフォルトの構成情報を持つ一連の コア アプリケーションコンポーネントを定義しています。
例えば、[[yii\web\Application::request|request]] コンポーネントは、ユーザリクエストに関する情報を収集して、それを ルート として解決するために使用されます。
また、[[yii\base\Application::db|db]] コンポーネントは、それを通じてデータベースクエリを実行できるデータベース接続を表現します。
Yii のアプリケーションがユーザリクエストを処理出来るのは、まさにこれらのコアアプリケーションコンポーネントの助けがあってこそです。

下記が事前に定義されたコアアプリケーションコンポーネントです。
通常のアプリケーションコンポーネントに対するのと同様に、これらを構成し、カスタマイズすることが出来ます。
コアアプリケーションコンポーネントを構成するときは、クラスを指定しない場合は、デフォルトのクラスが使用されます。

	詳細は アセット の節を参照してください。

	[[yii\db\Connection|db]]: データベース接続を表します。これを通じて、DB クエリを実行することが出来ます。
このコンポーネントを構成するときは、コンポーネントのクラスはもちろん、[[yii\db\Connection::dsn]] のような必須のコンポーネントプロパティを指定しなければならないことに注意してください。
詳細は データアクセスオブジェクト の節を参照してください。

	[[yii\base\Application::errorHandler|errorHandler]]: PHP のエラーと例外を処理します。
詳細は エラー処理 の節を参照してください。

	例えば、数字が3桁ごとの区切りを使って表示されたり、日付が長い書式で表示されたりします。
詳細は データの書式設定 の節を参照してください。

	詳細は 国際化 の節を参照してください。

	詳細は ロギング の節を参照してください。

	詳細は メール の節を参照してください。

	詳細は レスポンス の節を参照してください。

	詳細は リクエスト の節を参照してください。

	このコンポーネントは、[[yii\web\Application|ウェブアプリケーション]] においてのみ利用できます。
詳細は セッションとクッキー の節を参照してください。

	[[yii\web\UrlManager|urlManager]]: URL の解析と生成をサポートします。
詳細は ルーティング と URL 生成 の節を参照してください。

	このコンポーネントは、[[yii\web\Application|ウェブアプリケーション]] においてのみ利用できます。
詳細は 認証 の節を参照してください。

	詳細は ビュー の節を参照してください。

 機能テスト

機能テスト

Note: この節はまだ執筆中です。

	Codeception Functional Tests [http://codeception.com/docs/04-FunctionalTests]

アプリケーションテンプレートの機能テストを走らせる

apps/advanced/tests/README.md および apps/basic/tests/README.md で提供されている説明を参照してください。

 コンポーネント

コンポーネント

コンポーネントは、Yiiアプリケーションの主要な構成ブロックです。コンポーネントは [[yii\base\Component]] 、
またはその派生クラスのインスタンスです。コンポーネントが他のクラスに提供する主な機能は次の 3 つです:

	プロパティ

	イベント

	ビヘイビア

個々にでも、組み合わせでも、これらの機能は Yii のクラスのカスタマイズ性と使いやすさをとても高めてくれます。たとえば、[[yii\jui\DatePicker|日付選択]] を行うユーザインターフェース·コンポーネントは、
対話型の日付選択UIを生成するとき、ビュー で次のように使用することができます:

use yii\jui\DatePicker;

echo DatePicker::widget([
 'language' => 'ja',
 'name' => 'country',
 'clientOptions' => [
 'dateFormat' => 'yy-mm-dd',
],
]);

クラスが [[yii\base\Component]] を継承しているおかげで、ウィジェットのプロパティは簡単に記述できます。

コンポーネントは非常に強力ですが、 イベント と ビヘイビア をサポートするため、
余分にメモリとCPU時間を要し、通常のオブジェクトよりも少し重くなります。
あなたのコンポーネントがこれら2つの機能を必要としない場合、[[yii\base\Component]] の代わりに、 [[yii\base\Object]] からコンポーネントクラスを派生することを検討してもよいでしょう。
そうすることで、あなたのコンポーネントは、 プロパティ のサポートが維持されたまま、通常のPHPオブジェクトのように効率的になります。

[[yii\base\Component]] または [[yii\base\Object]] からクラスを派生するときは、次の規約に従うことが推奨されます:

	コンストラクタをオーバーライドする場合は、コンストラクタの 最後の パラメータとして $config パラメータを指定し、親のコンストラクタにこのパラメータを渡すこと。

	自分がオーバーライドしたコンストラクタの 最後で 、必ず親クラスのコンストラクタを呼び出すこと。

	[[yii\base\Object::init()]] メソッドをオーバーライドする場合は、自分の init() メソッドの 最初に 、必ず init() の親実装を呼び出すようにすること。

例:

<?php

namespace yii\components\MyClass;

use yii\base\Object;

class MyClass extends Object
{
 public $prop1;
 public $prop2;

 public function __construct($param1, $param2, $config = [])
 {
 // ... 構成前の初期化

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... 構成後の初期化
 }
}

このガイドラインに従うことで、あなたのコンポーネントは生成時に コンフィグ可能 になります。例:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// とする代わりに
$component = \Yii::createObject([
 'class' => MyClass::className(),
 'prop1' => 3,
 'prop2' => 4,
], [1, 2]);

Note: [[Yii::createObject()]] を呼び出すアプローチは複雑に見えますが、より強力です。というのも、それが 依存性注入コンテナ 上に実装されているからです。

[[yii\base\Object]] クラスには、次のオブジェクトライフサイクルが適用されます:

	コンストラクタ内の事前初期化。ここでデフォルトのプロパティ値を設定することができます。

	$config によるオブジェクトの構成。構成情報は、コンストラクタ内で設定されたデフォルト値を上書きすることがあります。

	[[yii\base\Object::init()|init()]] 内の事後初期化。サニティ・チェックやプロパティの正規化を行いたいときは、このメソッドをオーバーライドします。

	オブジェクトのメソッド呼び出し。

最初の 3 つのステップは、すべて、オブジェクトのコンストラクタ内で発生します。これは、あなたがクラスインスタンス (つまり、オブジェクト) を得たときには、
すでにそのオブジェクトが適切な、信頼性の高い状態に初期化されていることを意味します。

 パスワードを扱う

パスワードを扱う

ほとんどの開発者はパスワードを平文テキストで保存してはいけないということを知っていますが、パスワードを md5 や sha1 でハッシュしてもまだ安全だと思っている開発者がたくさんいます。
かつては、前述のハッシュアルゴリズムを使えば十分であった時もありましたが、現代のハードウェアをもってすれば、そのようなハッシュはブルートフォースアタックを使って非常に簡単に復元することが可能です。

最悪のシナリオ (アプリケーションに侵入された場合) であっても、ユーザのパスワードについて強化されたセキュリティを提供することが出来るように、ブルートフォースアタックに対する耐性が強いハッシュアルゴリズムを使う必要があります。
現在、最善の選択は bcrypt です。
PHP では、crypt 関数 [http://php.net/manual/ja/function.crypt.php] を使って bcrypt ハッシュを生成することが出来ます。
Yii は crypt を使ってハッシュを安全に生成し検証することを容易にするために、二つのヘルパ関数を提供しています。

ユーザが初めてパスワードを提供するとき (例えば、ユーザ登録の時) には、パスワードをハッシュする必要があります。

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

そして、ハッシュを対応するモデル属性と関連付けて、後で使用するためにデータベースに保存します。

ユーザがログインを試みたときは、送信されたパスワードは、前にハッシュされて保存されたパスワードと照合して検証されなければなりません。

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
 // よろしい、ユーザをログインさせる
} else {
 // パスワードが違う
}

 レート制限

レート制限

悪用を防止するために、あなたの API に レート制限 を加えることを検討すべきです。
例えば、各ユーザの API 使用を 10 分間で最大 100 回までの API 呼び出しに制限したいとしましょう。
ユーザから上記の期間内に多すぎるリクエストを受け取った場合は、ステータスコード 429 (「リクエストが多すぎる」の意味) を持つレスポンスを返さなければなりません。

レート制限を可能にするためには、[[yii\web\User::identityClass|ユーザアイデンティティクラス]] で [[yii\filters\RateLimitInterface]] を実装しなければなりません。
このインタフェイスは次の三つのメソッドを実装することを要求します。

	getRateLimit(): 許可されているリクエストの最大数と期間を返します
(例えば、[100, 600] は 600 秒間に最大 100 回の API 呼び出しが出来ることを意味します)。

	loadAllowance(): 許可されているリクエストの残り数と、レート制限が最後にチェックされたときの対応する UNIX タイムスタンプを返します。

	saveAllowance(): 許可されているリクエストの残り数と現在の UNIX タイムスタンプの両方を保存します。

ユーザテーブルに二つのカラムを追加して、許容されているリクエスト数とタイムスタンプの情報を記録するのが良いでしょう。
それらを定義すれば、loadAllowance() と saveAllowance() は、認証された現在のユーザに対応する二つのカラムの値を読み書きするものとして実装することが出来ます。
パフォーマンスを向上させるために、これらの情報をキャッシュや NoSQL ストレージに保存することを検討しても構いません。

User モデルにおける実装は次のようなものになります。

public function getRateLimit($request, $action)
{
 return [$this->rateLimit, 1]; // 1秒間に $rateLimit 回のリクエスト
}

public function loadAllowance($request, $action)
{
 return [$this->allowance, $this->allowance_updated_at];
}

public function saveAllowance($request, $action, $allowance, $timestamp)
{
 $this->allowance = $allowance;
 $this->allowance_updated_at = $timestamp;
 $this->save();
}

アイデンティティのクラスに必要なインタフェイスを実装すると、Yii は [[yii\rest\Controller]] のアクションフィルタとして構成された [[yii\filters\RateLimiter]] を使って、自動的にレート制限のチェックを行うようになります。
レート制限を超えると、レートリミッタが [[yii\web\TooManyRequestsHttpException]] を投げます。

レートリミッタは、REST コントローラクラスの中で、次のようにして構成することが出来ます。

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['rateLimiter']['enableRateLimitHeaders'] = false;
 return $behaviors;
}

レート制限が有効にされると、デフォルトでは、送信される全てのレスポンスに、現在のレート制限の情報を含む次の HTTP ヘッダが付加されます。

	X-Rate-Limit-Limit - 一定期間内に許可されるリクエストの最大数

	X-Rate-Limit-Remaining - 現在の期間において残っている許可されているリクエスト数

	X-Rate-Limit-Reset - 許可されているリクエストの最大数にリセットされるまで待たなければならない秒数

これらのヘッダは、上記のコード例で示されているように、[[yii\filters\RateLimiter::enableRateLimitHeaders]] を false に設定することで無効にすることが出来ます。

 イベント

イベント

イベントを使うと、既存のコードの特定の実行ポイントに、カスタムコードを挿入することができます。イベントにカスタムコードを添付すると、
イベントがトリガされたときにコードが自動的に実行されます。たとえば、メーラーオブジェクトがメッセージを正しく送信できたとき、
messageSent イベントをトリガするとします。もしメッセージの送信がうまく行ったことを知りたければ、単に messageSent
イベントにトラッキングコードを付与するだけで、それが可能になります。

Yiiはイベントをサポートするために、 [[yii\base\Component]] と呼ばれる基底クラスを導入してします。クラスがイベントをトリガする必要がある場合は、
[[yii\base\Component]] もしくはその子クラスを継承する必要があります。

イベントハンドラ

イベントハンドラとは、関連するイベントがトリガされたときに実行される、 PHP コールバック [http://www.php.net/manual/ja/language.types.callable.php]
です。次のコールバックのいずれも使用可能です:

	文字列で指定されたグローバル PHP 関数 (括弧を除く)、例えば 'trim'。

	オブジェクトとメソッド名文字列の配列で指定された、オブジェクトのメソッド (括弧を除く)、例えば [$object, 'methodName']。

	クラス名文字列とメソッド名文字列の配列で指定された、静的なクラスメソッド (括弧を除く)、例えば ['ClassName', 'methodName']。

	無名関数、例えば function ($event) { ... }。

イベントハンドラのシグネチャはこのようになります:

function ($event) {
 // $event は yii\base\Event またはその子クラスのオブジェクト
}

$event パラメータを介して、イベントハンドラは発生したイベントに関して次の情報を得ることができます:

	[[yii\base\Event::name|イベント名]]

	[[yii\base\Event::sender|イベント送信元]]: trigger() メソッドを呼び出したオブジェクト

	

イベントハンドラのアタッチ

イベントハンドラは [[yii\base\Component::on()]] を呼び出すことでアタッチできます。たとえば:

$foo = new Foo;

// このハンドラはグローバル関数です
$foo->on(Foo::EVENT_HELLO, 'function_name');

// このハンドラはオブジェクトのメソッドです
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// このハンドラは静的なクラスメソッドです
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// このハンドラは無名関数です
$foo->on(Foo::EVENT_HELLO, function ($event) {
 // イベント処理ロジック
});

また、 構成情報 を通じてイベントハンドラをアタッチすることもできます。詳細については
構成情報 の章を参照してください。

イベントハンドラをアタッチするとき、 [[yii\base\Component::on()]] の3番目のパラメータとして、付加的なデータを提供することができます。
そのデータは、イベントがトリガされてハンドラが呼び出されるときに、ハンドラ内で利用きます。たとえば:

// 次のコードはイベントがトリガされたとき "abc" を表示します
// "on" に3番目の引数として渡されたデータを $event->data が保持しているからです
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
 echo $event->data;
}

イベントハンドラの順序

ひとつのイベントには、ひとつだけでなく複数のハンドラをアタッチすることができます。イベントがトリガされると、アタッチされたハンドラは、
それらがイベントにアタッチされた順序どおりに呼び出されます。あるハンドラがその後に続くハンドラの呼び出しを停止する必要がある場合は、
$event パラメータの [[yii\base\Event::handled]] プロパティを true に設定します:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 $event->handled = true;
});

デフォルトでは、新たに接続されたハンドラは、イベントの既存のハンドラのキューに追加されます。その結果、
イベントがトリガされたとき、そのハンドラは一番最後に呼び出されます。もし、そのハンドラが最初に呼び出されるよう、
ハンドラのキューの先頭に新しいハンドラを挿入したい場合は、[[yii\base\Component::on()]] を呼び出とき、4番目のパラメータ $append に false を渡します:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 // ...
}, $data, false);

イベントのトリガ

イベントは、 [[yii\base\Component::trigger()]] メソッドを呼び出すことでトリガされます。このメソッドには イベント名 が必須で、
オプションで、イベントハンドラに渡されるパラメータを記述したイベントオブジェクトを渡すこともできます。たとえば:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
 const EVENT_HELLO = 'hello';

 public function bar()
 {
 $this->trigger(self::EVENT_HELLO);
 }
}

上記のコードでは、すべての bar() の呼び出しは、 hello という名前のイベントをトリガします。

Tip: イベント名を表すときはクラス定数を使用することをお勧めします。上記の例では、定数 EVENT_HELLO は
hello イベントを表しています。このアプローチには 3 つの利点があります。まず、タイプミスを防ぐことができます。次に、IDE の自動補完サポートでイベントを
認識できるようになります。第 3 に、クラスでどんなイベントがサポートされているかを表したいとき、定数の宣言をチェックするだけで済みます。

イベントをトリガするとき、イベントハンドラに追加情報を渡したいことがあります。たとえば、メーラーが messageSent イベントのハンドラに
メッセージ情報を渡して、ハンドラが送信されたメッセージの詳細を知ることができるようにしたいかもしれません。
これを行うために、 [[yii\base\Component::trigger()]] メソッドの2番目のパラメータとして、イベントオブジェクトを与えることができます。
イベントオブジェクトは [[yii\base\Event]] クラスあるいはその子クラスのインスタンスでなければなりません。たとえば:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
 public $message;
}

class Mailer extends Component
{
 const EVENT_MESSAGE_SENT = 'messageSent';

 public function send($message)
 {
 // ... $message 送信 ...

 $event = new MessageEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_MESSAGE_SENT, $event);
 }
}

[[yii\base\Component::trigger()]] メソッドが呼び出されたとき、この名前を付けられたイベントに
アタッチされたハンドラがすべて呼び出されます。

イベントハンドラのデタッチ

イベントからハンドラを取り外すには、 [[yii\base\Component::off()]] メソッドを呼び出します。たとえば:

// このハンドラはグローバル関数です
$foo->off(Foo::EVENT_HELLO, 'function_name');

// このハンドラはオブジェクトのメソッドです
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// このハンドラは静的なクラスメソッドです
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// このハンドラは無名関数です
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

一般的には、イベントにアタッチされたときどこかに保存してある場合を除き、無名関数を取り外そうとはしないでください。
上記の例は、無名関数は変数 $anonymousFunction として保存されていたものとしています。

イベントから すべて のハンドラを取り外すには、単純に、第 2 パラメータを指定せずに [[yii\base\Component::off()]] を呼び出します。

$foo->off(Foo::EVENT_HELLO);

クラスレベル・イベントハンドラ

ここまでの項では、 インスタンスレベル でのイベントにハンドラをアタッチする方法を説明してきました。
場合によっては、特定のインスタンスだけではなく、クラスのすべてのインスタンスがトリガした
イベントに応答したいことがあります。すべてのインスタンスにイベントハンドラをアタッチする代わりに、静的メソッド
[[yii\base\Event::on()]] を呼び出すことで、 クラスレベル でハンドラをアタッチすることができます。

たとえば、アクティブレコード オブジェクトは、データベースに新しいレコードを挿入するたびに、
[[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] イベントをトリガします。 すべての
アクティブレコード オブジェクトによって行われる挿入を追跡するには、次のコードが使えます：

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
 Yii::trace(get_class($event->sender) . ' が挿入されました');
});

[[yii\db\ActiveRecord|ActiveRecord]] またはその子クラスのいずれかが、 [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
をトリガするといつでも、このイベントハンドラが呼び出されます。ハンドラの中では、 $event->sender を通して、
イベントをトリガしたオブジェクトを取得することができます。

オブジェクトがイベントをトリガするときは、最初にインスタンスレベルのハンドラを呼び出し、続いてクラスレベルのハンドラとなります。

静的メソッド [[yii\base\Event::trigger()]] を呼び出すことによって、 クラスレベル でイベントをトリガすることができます。
クラスレベルでのイベントは、特定のオブジェクトに関連付けられていません。そのため、これはクラスレベルのイベントハンドラだけを
呼び出します。たとえば:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
 var_dump($event->sender); // "null" を表示
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

この場合、$event->sender は、オブジェクトインスタンスではなく、イベントをトリガするクラスの名前を指すことに注意してください。

Note: クラスレベルのハンドラは、そのクラスのあらゆるインスタンス、またはあらゆる子クラスのインスタンスがトリガしたイベントに応答
してしまうため、よく注意して使わなければなりません。 [[yii\base\Object]] のように、クラスが低レベルの基底クラスの場合は特にそうです。

クラスレベルのイベントハンドラを取り外すときは、 [[yii\base\Event::off()]] を呼び出します。たとえば:

// $handler をデタッチ
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// Foo::EVENT_HELLO のすべてのハンドラをデタッチ
Event::off(Foo::className(), Foo::EVENT_HELLO);

インターフェイスを使うイベント

イベントを扱うためには、もっと抽象的な方法もあります。
特定のイベントのために専用のインターフェイスを作っておき、必要な場合にいろいろなクラスでそれを実装するのです。

例えば、次のようなインタフェイスを作ります。

namespace app\interfaces;

interface DanceEventInterface
{
 const EVENT_DANCE = 'dance';
}

そして、それを実装する二つのクラスを作ります。

class Dog extends Component implements DanceEventInterface
{
 public function meetBuddy()
 {
 echo "ワン!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

class Developer extends Component implements DanceEventInterface
{
 public function testsPassed()
 {
 echo "よっしゃ!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

これらのクラスのどれかによってトリガされた EVENT_DANCE を扱うためには、インターフェイスの名前を最初の引数にして [[yii\base\Event::on()|Event::on()]] を呼びます。

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
 Yii::trace(get_class($event->sender) . ' が躍り上がって喜んだ。'); // 犬または開発者が躍り上がって喜んだことをログに記録。
});

これらのクラスのイベントをトリガすることも出来ます。

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);

ただし、このインタフェイスを実装する全クラスのイベントをトリガすることは出来ない、ということに注意して下さい。

// これは動かない
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

イベントハンドラをデタッチするためには、[[yii\base\Event::off()|Event::off()]] を呼びます。
例えば、

// $handler をデタッチ
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// DanceEventInterface::EVENT_DANCE の全てのハンドラをデタッチ
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

グローバル・イベント

Yiiは、実際に上記のイベントメカニズムに基づいたトリックである、いわゆる グローバル・イベント をサポートしています。
グローバル・イベントは、 アプリケーション インスタンス自身などの、グローバルにアクセス可能なシングルトンを必要とします。

グローバルイベントを作成するには、イベント送信者は、送信者の自前の trigger() メソッドを呼び出す代わりに、シングルトンの
trigger() メソッドを呼び出してイベントをトリガします。同じく、イベントハンドラも、シングルトンのイベントにアタッチされます。たとえば:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
 echo get_class($event->sender); // "app\components\Foo" を表示
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

グローバルイベントを使用する利点は、オブジェクトによってトリガされるイベントハンドラを設けたいとき、オブジェクトがなくてもいい
ということです。その代わりに、ハンドラのアタッチとイベントのトリガはともに、(アプリケーションのインスタンスなど) シングルトンを
介して行われます。

しかし、グローバルイベントの名前空間はあらゆる部分から共有されているので、ある種の名前空間 (“frontend.mail.sent”、”backend.mail.sent” など)
を導入するというような、賢いグローバルイベントの名前付けをする必要があります。

 エラー処理

エラー処理

RESTful API リクエストを処理していて、ユーザのリクエストにエラーがあったり、何か予期しないことがサーバ上で起ったりしたときには、何かがうまく行かなかったことをユーザに知らせるために単に例外を投げることも出来ます。
エラーの原因 (例えば、リクエストされたリソースが存在しない、など) を特定することが出来るなら、適切な HTTP ステータスコード (例えば、404 ステータスコードを表わす [[yii\web\NotFoundHttpException]]) とともに例外を投げることを検討すべきです。
そうすれば、Yii は対応する HTTP ステータスのコードとテキストをレスポンスとともに送信します。
Yii はまた、レスポンスボディにも、シリアライズされた表現形式の例外を含めます。
例えば、

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

次のリストは、Yii の REST フレームワークで使われる HTTP ステータスコードの要約です。

	200: OK。すべて期待されたとおりに動作しました。

	201: POST リクエストに対するレスポンスとしてリソースが成功裡に作成されました。
Location ヘッダが、新しく作成されたリソースを指し示す URL を含んでいます。

	204: リクエストは成功裡に処理されましたが、レスポンスはボディコンテントを含んでいません (DELTE リクエストなどの場合)。

	304: リソースは修正されていません。キャッシュしたバージョンを使うことが可能です。

	400: 無効なリクエストです。これはユーザのさまざまな行為によって引き起こされます。例えば、リクエストのボディに無効な JSON データを入れたり、無効なアクションパラメータを指定したり、など。

	401: 認証が失敗しました。

	403: 認証されたユーザは指定された API エンドポイントにアクセスすることを許可されていません。

	404: リクエストされたリソースは存在しません。

	405: メソッドが許可されていません。どの HTTP メソッドが許可されているか、Allow ヘッダをチェックしてください。

	415: サポートされていないメディアタイプです。リクエストされたコンテントタイプまたはバージョン番号が無効です。

	422: データのバリデーションが失敗しました (例えば POST リクエストに対するレスポンスで)。
レスポンスボディで詳細なエラーメッセージをチェックしてください。

	429: リクエストの数が多すぎます。レート制限のためにリクエストが拒絶されました。

	500: 内部的サーバエラー。これは内部的なプログラムエラーによって生じ得ます。

エラーレスポンスをカスタマイズする

場合によっては、デフォルトのエラーレスポンス形式をカスタマイズしたいことがあるでしょう。
例えば、さまざまな HTTP ステータスを使ってさまざまなエラーを示すという方法によるのではなく、次に示すように、HTTP ステータスとしては常に 200 を使い、実際の HTTP ステータスコードはレスポンスの JSON 構造の一部として包み込む、という方式です。

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

アプリケーションの構成情報で response コンポーネントの beforeSend イベントに応答することで、この目的を達することが出来ます。

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null && Yii::$app->request->get('suppress_response_code')) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

上記のコードは、suppress_response_code が GET のパラメータとして渡された場合に、レスポンスを (成功したものも、失敗したものも) 上記で説明したように再フォーマットします。

 データベースを扱う

データベースを扱う

この節では、country という名前のデータベーステーブルから読み出した国データを表示する新しいページの作り方を説明します。
この目的を達するために、データベース接続を構成し、アクティブレコード クラスを作成し、アクション を定義し、そして ビュー を作成します。

このチュートリアルを通じて、次のことを学びます。

	DB 接続を構成する方法

	アクティブレコードのクラスを定義する方法

	アクティブレコードのクラスを使ってデータを検索する方法

	改ページを伴う仕方でビューにデータを表示する方法

この節を完了するためには、データベースを使うことについて基本的な知識と経験が無ければならないことに注意してください。
具体的に言えば、DB クライアントツールを用いてデータベースを作成する方法と、SQL 文を実行する方法を知っていなければなりません。

データベースを準備する

まず初めに、yii2basic という名前のデータベースを作成してください。このデータベースからアプリケーションにデータを読み出すことになります。
Yii は多数のデータベース製品に対するサポートを内蔵していますので、作成するデータベースは、SQLite、MySQL、PosttreSQL、MSSQL または Oracle から選ぶことが出来ます。
以下の説明では、話を単純にするために、MySQL を前提とします。

次に、データベースに country という名前のテーブルを作り、いくつかのサンプルデータを挿入します。
そうするためには、次の SQL 文を実行することが出来ます。

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

この時点で、あなたは yii2basic という名前のデータベースを持ち、その中に三つのカラムを持つ country というテーブルがあり、country テーブルは 10 行のデータを持っている、ということになります。

DB 接続を構成する

先に進む前に、PDO [http://www.php.net/manual/en/book.pdo.php] PHP 拡張および使用しているデータベースの PDO ドライバ (例えば、MySQL のための pdo_mysql) の両方をインストール済みであることを確認してください。
アプリケーションがリレーショナルデータベースを使う場合、これは基本的な必要条件です。

これらがインストール済みなら、config/db.php というファイルを開いて、あなたのデータベースに適合するようにパラメータを変更してください。
デフォルトでは、このファイルは下記の記述を含んでいます。

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

この config/db.php というファイルは典型的なファイルベースの 構成情報 ツールです。
この構成情報ファイルが、背後のデータベースに対する SQL クエリの実行を可能にする [[yii\db\Connection]] インスタンスの作成と初期化に必要なパラメータを指定するものです。

上記のようにして構成された DB 接続は、アプリケーションコードの中で Yii::$app->db という式でアクセスすることが出来ます。

Info: config/db.php は、メインのアプリケーション構成情報ファイルである config/web.php によってインクルードされます。
この config/web.php が アプリケーション インスタンスが初期化される仕方を指定するものです。
詳しい情報については、構成情報 の節を参照してください。
Yii がサポートを内蔵していないデータベースを扱う必要がある場合は、以下のエクステンションの利用を検討してください。

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

アクティブレコードを作成する

country テーブルの中のデータを表現し取得するために、アクティブレコード から派生した Country という名前のクラスを作成し、それを models/Country.php というファイルに保存します。

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

Country クラスは [[yii\db\ActiveRecord]] を拡張しています。この中には一つもコードを書く必要はありません。
単に上記のコードだけで、Yii は関連付けられたテーブル名をクラス名から推測します。

Info: クラス名とテーブル名を直接に合致させることが出来ない場合は、[[yii\db\ActiveRecord::tableName()]] メソッドをオーバーライドして、関連づけられたテーブル名を明示的に指定することが出来ます。

Country クラスを使うことによって、以下のコード断片で示すように、country テーブルの中のデータを簡単に操作することが出来ます。

use app\models\Country;

// country テーブルから全ての行を取得して "name" 順に並べる
$countries = Country::find()->orderBy('name')->all();

// プライマリキーが "US" である行を取得する
$country = Country::findOne('US');

// "United States" を表示する
echo $country->name;

// 国名を "U.S.A." に修正してデータベースに保存する
$country->name = 'U.S.A.';
$country->save();

Info: アクティブレコードは、オブジェクト指向の流儀でデータベースのデータにアクセスし、操作する強力な方法です。
アクティブレコード の節で、詳細な情報を得ることが出来ます。
もう一つの方法として、データアクセスオブジェクト と呼ばれる、より低レベルなデータアクセス方法を使ってデータベースを操作することも出来ます。

アクションを作成する

国データをエンドユーザに公開するために、新しいアクションを作成する必要があります。
これまでの節でしたように site コントローラの中に新しいアクションを置くのではなく、国データに関係する全てのアクションに限定した新しいコントローラを作成する方が理にかなうでしょう。
この新しいコントローラを CountryController と名付けます。そして、下記に示すように、index アクションをその中に作成します。

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

上記のコードを controllers/CountryController.php というファイルに保存します。

index アクションは Country::find() を呼び出します。
このアクティブレコードのメソッドは DB クエリを構築して、country テーブルから全てのデータを読み出します。
一回のリクエストで返される国の数を制限するために、クエリは [[yii\data\Pagination]] オブジェクトの助けを借りてページ付けされます。
Pagination オブジェクトは二つの目的に奉仕します。

	クエリによって表現される SQL 文に offset 句と limit 句をセットして、一度に一ページ分のデータだけ (1ページ最大5行) を返すようにします。

	次の項で説明されるように、一連のページボタンからなるページャをビューに表示するために使われます。

コードの最後で、index アクションは index と言う名前のビューをレンダリングしています。
このとき、国データだけでなく、そのページネーション情報がビューに渡されます。

ビューを作成する

最初に、views ディレクトリの下に country という名前のサブディレクトリを作ってください。
このフォルダが country コントローラによって表示される全てのビューを保持するのに使われます。
views/country ディレクトリの中に、下記のコードを含む index.php という名前のファイルを作成します。

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>国リスト</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->name} ({$country->code})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

ビューは国データの表示に関連して二つの部分に分けられます。
最初の部分では、提供された国データがたどられて、HTML の順序無しリストとしてレンダリングされます。
第二の部分では、アクションから渡されたページネーション情報を使って、[[yii\widgets\LinkPager]] ウィジェットがレンダリングされます。
LinkPager ウィジェットはページボタンのリストを表示します。ボタンのどれかをクリックすると、対応するページの国データが更新表示されます。

試してみる

上記のコード全てがどのように動作するかを見るために、ブラウザで下記の URL をアクセスします。

http://hostname/index.php?r=country%2Findex

[image: 国リスト]

最初、ページは5つの国を表示しています。
そして、国リストの下には、4つのボタンを持ったページャがあります。
“2” のボタンをクリックすると、ページはデータベースにある次の5つの国、すなわち、2ページ目のレコードを表示します。
注意深く観察すると、ブラウザの URL も次のように変ったことに気付くでしょう。

http://hostname/index.php?r=country%2Findex&page=2

舞台裏では、[[yii\data\Pagination|Pagination]] が、データセットをページ付けするのに必要な全ての機能を提供しています。

	初期状態では、[[yii\data\Pagination|Pagination]] は、1ページ目を表しています。
これを反映して、国の SELECT クエリは LIMIT 5 OFFSET 0 という句を伴うことになります。
その結果、最初の5つの国が取得されて表示されます。

	[[yii\widgets\LinkPager|LinkPager]] ウィジェットは、[[yii\data\Pagination::createUrl()|Pagination]] によって作成された URL を使ってページボタンをレンダリングします。
URL は、別々のページ番号を表現する page というクエリパラメータを含んだものになります。

	ページボタン “2” をクリックすると、country/index のルートに対する新しいリクエストが発行され、処理されます。
[[yii\data\Pagination|Pagination]] が URL から page クエリパラメータを読み取って、カレントページ番号を 2 にセットします。
こうして、新しい国のクエリは LIMIT 5 OFFSET 5 という句を持ち、次の5つの国を表示のために返すことになります。

まとめ

この節では、データベースを扱う方法を学びました。
また、[[yii\data\Pagination]] と [[yii\widgets\LinkPager]] の助けを借りて、ページ付けされたデータを取得し表示する方法も学びました。

次の節では、Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md] と呼ばれる強力なコード生成ツールを使う方法を学びます。
このツールは、データベーステーブルのデータを取り扱うための「作成・読出し・更新・削除 (CRUD)」操作のような、通常必要とされることが多いいくつかの機能の迅速な実装を手助けしてくれるものです。
実際のところ、あなたがたった今書いたばかりのコードは、Gii ツールを使えば、全部、Yii が自動的に生成してくれるものです。

 サードパーティのコードを扱う

サードパーティのコードを扱う

時々、Yii アプリケーションの中でサードパーティのコードを使用する必要があることがあります。
あるいは、サードパーティのシステムの中で Yii をライブラリとして使用したいこともあるでしょう。
この節では、こういう目的をどうやって達成するかを説明します。

Yii の中でサードパーティのライブラリを使う

Yii アプリケーションの中でサードパーティのライブラリを使うために主として必要なことは、そのライブラリのクラスが適切にインクルードされること、または、オートロード可能であることを保証することです。

Composer パッケージを使う

多くのサードパーティライブラリは Composer [https://getcomposer.org/] パッケージの形式でリリースされています。
そのようなライブラリは、次の二つの簡単なステップを踏むことによって、インストールすることが出来ます。

	アプリケーションの composer.json ファイルを修正して、どの Composer パッケージをインストールしたいかを指定する。

	composer install を実行して、指定したパッケージをインストールする。

インストールされた Composer パッケージ内のクラスは、Composer のオートローダを使ってオートロードすることが出来ます。
アプリケーションの エントリスクリプト に、Composer のオートローダをインストールするための下記の行があることを確認してください。

// Composer のオートローダをインストール
require(__DIR__ . '/../vendor/autoload.php');

// Yii クラスファイルをインクルード
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

ダウンロードしたライブラリを使う

ライブラリが Composer パッケージとしてリリースされていない場合は、そのライブラリのインストールの指示に従ってインストールしなければなりません。
たいていの場合は、リリースファイルを手動でダウンロードし、BasePath/vendor ディレクトリの下に解凍する必要があります。
ここで BasePath は、アプリケーションの base path を表すものです。

ライブラリがそれ自身のオートローダを持っている場合は、それをアプリケーションの エントリスクリプト でインストールすることが出来ます。
複数のオートローダクラスの中で Yii のクラスオートローダが優先されるように、ライブラリのオートローダは Yii.php ファイルをインクルードする前にインストールすることを推奨します。

ライブラリがクラスオートローダを提供していない場合でも、クラスの命名規約が PSR-4 [http://www.php-fig.org/psr/psr-4/] に従っている場合は、ライブラリのクラスをオートロードするのに Yii のクラスオートローダを使うことが出来ます。
必要なことは、ライブラリのクラスによって使われている全てのルート名前空間に対して ルートエイリアス を宣言することだけです。
例えば、ライブラリを vendor/foo/bar ディレクトリの下にインストールしたとしましょう。
そしてライブラリのクラスは xyz ルート名前空間の下にあるとします。
この場合、アプリケーションの構成情報において、次のコードを含めれば良いのです。

[
 'aliases' => [
 '@xyz' => '@vendor/foo/bar',
],
]

上記のどちらにも当てはまらない場合、おそらくそのライブラリは、クラスファイルを探して適切にインクルードするために、PHP の include path 設定に依存しているのでしょう。
この場合は、PHP include path の設定に関するライブラリの指示に従うしかありません。

最悪の場合として、ライブラリが全てのクラスファイルを明示的にインクルードすることを要求している場合は、次の方法を使ってクラスを必要に応じてインクルードすることが出来るようになります。

	ライブラリに含まれるクラスを特定する。

	アプリケーションの エントリスクリプト において、クラスと対応するファイルパスを Yii::$classMap としてリストアップする。
例えば、

Yii::$classMap['Class1'] = 'path/to/Class1.php';
Yii::$classMap['Class2'] = 'path/to/Class2.php';

サードパーティのシステムで Yii を使う

Yii は数多くの優れた機能を提供していますので、サードパーティのシステム (例えば、WordPress、Joomla、または、他の PHP フレームワークを使って開発されるアプリケーション) を開発したり機能拡張したりするのをサポートするために Yii の機能のいくつかを使用したいことがあるでしょう。
例えば、[[yii\helpers\ArrayHelper]] クラスや アクティブレコード をサードパーティのシステムで使いたいことがあるでしょう。
この目的を達するためには、主として、二つのステップを踏む必要があります。
すなわち、Yii のインストールと、Yii のブートストラップです。

サードパーティのシステムが Composer を使って依存を管理している場合は、単に下記のコマンドを実行すれば Yii をインストールすることが出来ます。

composer global require "fxp/composer-asset-plugin:~1.3.1"
composer require yiisoft/yii2
composer install

最初のコマンドは composer アセットプラグイン [https://github.com/francoispluchino/composer-asset-plugin/] をインストールします。
これは、Composer によって bower と npm の依存パッケージを管理できるようにするものです。
このことは、データベースなど、アセットに関係しない Yii の機能を使いたいだけの場合でも、Yii の Composer パッケージをインストールするために必要とされます。

Yii のアセット発行の機能 を使いたい場合は、あなたの composer.json の extra セクションに次の構成も追加しなければなりません。

{
 ...
 "extra": {
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
 }
}

Composer に関する更なる情報や、インストールの過程で出現しうる問題に対する解決方法については、一般的な Composer によるインストール の節を参照してください。

そうでない場合は、Yii のリリースを ダウンロード [http://www.yiiframework.com/download/] して、BasePath/vendor ディレクトリに解凍してください。

次に、サードパーティのシステムのエントリスクリプトを修正します。
次のコードをエントリスクリプトの先頭に追加してください。

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$yiiConfig = require(__DIR__ . '/../config/yii/web.php');
new yii\web\Application($yiiConfig); // ここで run() を呼ばない

ごらんのように、上記のコードは典型的な Yii アプリケーションの エントリスクリプト と非常に良く似ています。
唯一の違いは、アプリケーションのインスタンスが作成された後に run() メソッドが呼ばれない、という点です。
run() を呼ぶと Yii がリクエスト処理のワークフローを制御するようになりますが、この場合はリクエストを処理する別のアプリケーションが既に存在していますので、これは必要ではないからです。

Yii アプリケーションでの場合と同じように、サードパーティシステムが走っている環境に基づいて Yii のアプリケーションインスタンスを構成する必要があります。
例えば、アクティブレコード の機能を使うためには、サードパーティシステムによって使用されている DB 接続の設定を使って db アプリケーションコンポーネント を構成しなければなりません。

これで、Yii によって提供されているほとんどの機能を使うことが出来ます。
例えば、アクティブレコードクラスを作成して、それを使ってデータベースを扱うことが出来ます。

Yii 2 を Yii 1 とともに使う

あなたが Yii 1 を前から使っている場合は、たぶん、稼働中の Yii 1 アプリケーションを持っているでしょう。
アプリケーション全体を Yii 2 で書き直す代りに、Yii 2 でのみ利用できる機能を使ってアプリケーションを機能拡張したいこともあるでしょう。
このことは、以下に述べるようにして、実現できます。

Note: Yii 2 は PHP 5.4 以上を必要とします。
あなたのサーバと既存のアプリケーションが PHP 5.4 以上をサポートしていることを確認しなければなりません。

最初に、直前の項 で述べられている指示に従って、Yii 2 を既存のアプリケーションにインストールします。

次に、アプリケーションのエントリスクリプトを以下のように修正します。

// カスタマイズされた Yii クラスをインクルード (下記で説明)
require(__DIR__ . '/../components/Yii.php');

// Yii 2 アプリケーションの構成
$yii2Config = require(__DIR__ . '/../config/yii2/web.php');
new yii\web\Application($yii2Config); // ここで run() を呼ばない。yii2 app はサービスロケータとしてのみ使用される。

// Yii 1 アプリケーションの構成
$yii1Config = require(__DIR__ . '/../config/yii1/main.php');
Yii::createWebApplication($yii1Config)->run();

Yii 1 と Yii 2 の両者が Yii クラスを持っているため、二つを結合するカスタムバージョンを作成する必要があります。
上記のコードでカスタマイズされた Yii クラスファイルをインクルードしていますが、これは下記のようにして作成することが出来ます。

$yii2path = '/path/to/yii2';
require($yii2path . '/BaseYii.php'); // Yii 2.x

$yii1path = '/path/to/yii1';
require($yii1path . '/YiiBase.php'); // Yii 1.x

class Yii extends \yii\BaseYii
{
 // YiiBase (1.x) のコードをここにコピー・ペースト
}

Yii::$classMap = include($yii2path . '/classes.php');
// Yii 2 オートローダを Yii 1 によって登録
Yii::registerAutoloader(['yii\BaseYii', 'autoload']);
// 依存注入コンテナを作成
Yii::$container = new yii\di\Container;

以上です。
これで、あなたのコードのどの部分においても、Yii::$app を使って Yii 2 アプリケーションインスタンスにアクセスすることが出来、Yii::app() によって Yii 1 アプリケーションインスタンスを取得することが出来ます。

echo get_class(Yii::app()); // 'CWebApplication' を出力
echo get_class(Yii::$app); // 'yii\web\Application' を出力

 エイリアス

エイリアス

ファイルパスや URL を表すのにエイリアスを使用すると、あなたはプロジェクト内で絶対パスや URL をハードコードする必要がなくなります。エイリアスは、通常のファイルパスや URL と区別するために、 @ 文字で始まる必要があります。
先頭に @ を付けずに定義されたエイリアスは、@ 文字が先頭に追加されます。

Yii はすでに利用可能な多くの事前定義エイリアスを持っています。
たとえば、 @yii というエイリアスは Yii フレームワークのインストールパスを表し、 @web は現在実行中の Web アプリケーションのベース URL を表します。

エイリアスの定義

[[Yii::setAlias()]] を呼び出すことにより、ファイルパスまたは URL のエイリアスを定義することができます。

// ファイルパスのエイリアス
Yii::setAlias('@foo', '/path/to/foo');

// URL のエイリアス
Yii::setAlias('@bar', 'http://www.example.com');

Note: エイリアスされているファイルパスや URL は、必ずしも実在するファイルまたはリソースを参照しない場合があります。

定義済みのエイリアスがあれば、スラッシュ / に続けて 1 つ以上のパスセグメントを追加することで（[[Yii::setAlias()]]
の呼び出しを必要とせずに) 新しいエイリアスを導出することができます。 [[Yii::setAlias()]] を通じて定義されたエイリアスは
ルートエイリアス となり、それから派生したエイリアスは 派生エイリアス になります。たとえば、 @foo がルートエイリアスなら、
@foo/bar/file.php は派生エイリアスです。

エイリアスを、他のエイリアス (ルートまたは派生のいずれか) を使用して定義することができます:

Yii::setAlias('@foobar', '@foo/bar');

ルートエイリアスは通常、 ブートストラップ 段階で定義されます。
たとえば、エントリスクリプト で [[Yii::setAlias()]] を呼び出すことができます。
便宜上、 アプリケーション は、aliases という名前の書き込み可能なプロパティを提供しており、
それをアプリケーションの 構成情報 で設定することが可能です。

return [
 // ...
 'aliases' => [
 '@foo' => '/path/to/foo',
 '@bar' => 'http://www.example.com',
],
];

エイリアスの解決

[[Yii::getAlias()]] を呼び出して、ルートエイリアスが表すファイルパスまたは URL を解決することができます。
同メソッドで、派生エイリアスを対応するファイルパスまたは URL に解決することもできます。

echo Yii::getAlias('@foo'); // /path/to/foo を表示
echo Yii::getAlias('@bar'); // http://www.example.com を表示
echo Yii::getAlias('@foo/bar/file.php'); // /path/to/foo/bar/file.php を表示

派生エイリアスによって表されるパスや URL は、派生エイリアス内のルートエイリアス部分を、対応するパス/URL
で置換して決定されます。

Note: [[Yii::getAlias()]] メソッドは、 結果のパスや URL が実在するファイルやリソースを参照しているかをチェックしません。

ルートエイリアス名にはスラッシュ / 文字を含むことができます。 [[Yii::getAlias()]] メソッドは、
エイリアスのどの部分がルートエイリアスであるかを賢く判別し、正確に対応するファイルパスや URL を決定します:

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // /path/to/foo/test/file.php を表示
Yii::getAlias('@foo/bar/file.php'); // /path2/bar/file.php を表示

もし @foo/bar がルートエイリアスとして定義されていなければ、最後のステートメントは /path/to/foo/bar/file.php を表示します。

エイリアスの使用

エイリアスは、それをパスや URL に変換するための [[Yii::getAlias()​]] の呼び出しがなくても、Yii の多くの場所でみられます。
たとえば、 [[yii\caching\FileCache::cachePath]] は、ファイルパスとファイルパスを表すエイリアスの両方を受け入れることができ、
接頭辞 @ によって、エイリアスとファイルパスを区別することができます。

use yii\caching\FileCache;

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

プロパティやメソッドのパラメータがエイリアスをサポートしているかどうかは、API ドキュメントに注意を払ってください。

事前定義されたエイリアス

Yii では、一般的に使用されるファイルのパスと URL を簡単に参照できるよう、エイリアスのセットが事前に定義されています:

	@yii, BaseYii.php ファイルがあるディレクトリ (フレームワークディレクトリとも呼ばれます)

	@app, 現在実行中のアプリケーションの [[yii\base\Application::basePath|ベースパス]]

	@runtime, 現在実行中のアプリケーションの [[yii\base\Application::runtimePath|ランタイムパス]] 。デフォルトは @app/runtime 。

	@webroot, 現在実行中の Web アプリケーションの Web ルートディレクトリ。エントリスクリプトを含むディレクトリをもとに決定されます。

	@web, 現在実行中の Web アプリケーションのベース URL。これは、 [[yii\web\Request::baseUrl]] と同じ値を持ちます。

	@vendor, [[yii\base\Application::vendorPath|Composerのベンダーディレクトリ]] 。デフォルトは @app/vendor 。

	@bower, bower パッケージ [http://bower.io/] が含まれるルートディレクトリ。デフォルトは @vendor/bower 。

	@npm, npm パッケージ [https://www.npmjs.org/] が含まれるルートディレクトリ。デフォルトは @vendor/npm 。

@yii エイリアスは エントリスクリプト に Yii.php ファイルを読み込んだ時点で定義されます。
エイリアスの残りの部分は、アプリケーションのコンストラクタ内で、アプリケーションの 構成情報 を適用するときに定義されます。

エクステンションのエイリアス

Composer でインストールされる各 エクステンション ごとに、エイリアスが自動的に定義されます。
各エイリアスは、その composer.json ファイルで宣言された、エクステンションのルート名前空間にちなんで名付けられており、
それらは、パ​​ッケージのルートディレクトリを表します。たとえば、あなたが yiisoft/yii2-jui エクステンションをインストールしたとすると、
自動的に @yii/jui というエイリアスができ、 ブートストラップ 段階で、次のと同等のものとして定義されます:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

 テスト環境の構築

テスト環境の構築

Note: この節はまだ執筆中です。

Yii 2 は Codeception [https://github.com/Codeception/Codeception] テストフレームワークとの統合を公式にサポートしており、次のタイプのテストを作成することを可能にしています。

	単体テスト - 一かたまりのコードが期待通りに動くことを検証する。

	機能テスト - ブラウザのエミュレーションによって、ユーザの視点からシナリオを検証する。

	受入テスト - ブラウザの中で、ユーザの視点からシナリオを検証する。

これら三つのタイプのテスト全てについて、Yii は、yii2-basic [https://github.com/yiisoft/yii2-app-basic] と yii2-advanced [https://github.com/yiisoft/yii2-app-advanced] の両方のプロジェクトテンプレートで、そのまま使えるテストセットを提供しています。

テストを走らせるためには、Codeception [https://github.com/Codeception/Codeception] をインストールする必要があります。
Codeception は、特定のプロジェクトのためだけにローカルにインストールするか、開発マシンのためにグローバルにインストールするかを選ぶことが出来ます。

ローカルのインストールのためには、次のコマンドを使います。

composer require "codeception/codeception=2.1.*"
composer require "codeception/specify=*"
composer require "codeception/verify=*"

グローバルのインストールのためには、global 命令を使う必要があります。

composer global require "codeception/codeception=2.1.*"
composer global require "codeception/specify=*"
composer global require "codeception/verify=*"

以前にグローバルパッケージのために Composer を使ったことが一度もない場合は、composer global status を実行してください。
次のように出力される筈です。

Changed current directory to <directory>

そうしたら、<directory>/vendor/bin をあなたの PATH 環境変数に追加してください。
これでコマンドラインから codecept をグローバルに使うことが出来ます。

Note: グローバルにインストールすると、あなたの開発環境で扱っている全てのプロジェクトに対して Codeception を使うことが出来るようになります。
パスを指定せずに codecept シェルコマンドをグローバルに走らせることが可能になります。
しかしながら、例えば、二つのプロジェクトが異なるバージョンの Codeception のインストールを要求している場合など、この方法が不適切なこともあり得ます。
話を単純にするために、このガイドで実行しているテストに関するシェルコマンドは、全て、Codeception がグローバルにインストールされていることを前提にしています。

 Url ヘルパ

Url ヘルパ

Url ヘルパは URL を管理するための一連のスタティックメソッドを提供します。

よく使う URL を取得する

よく使う URL を取得するために使うことが出来るメソッドが二つあります。
すなわち、ホーム URL と、現在のリクエストのベース URL を取得するメソッドです。
ホーム URL を取得するためには、次のようにします。

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');

パラメータが渡されない場合は、生成される URL は相対 URL になります。
パラメータとして true を渡せば、現在のスキーマの絶対 URL を取得することが出来ます。
または、スキーマ (http, https) を明示的に指定しても構いません。

現在のリクエストのベース URL を取得するためには、次のようにします。

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');

このメソッドの唯一のパラメータは、Url::home() の場合と全く同じ動作をします。

URL を生成する

与えられたルートへの URL を生成するためには、Url::toRoute() メソッドを使います。
このメソッドは、[[\yii\web\UrlManager]] を使って URL を生成します。

$url = Url::toRoute(['product/view', 'id' => 42]);

ルートは、文字列として指定することが出来ます (例えば、site/index)。
または、生成される URL に追加のクエリパラメータを指定したい場合は、配列を使うことも出来ます。
配列の形式は、以下のようにしなければなりません。

// /index.php?r=site%2Findex¶m1=value1¶m2=value2 を生成
['site/index', 'param1' => 'value1', 'param2' => 'value2']

アンカーの付いた URL を生成したい場合は、# パラメータを持つ配列を使うことが出来ます。例えば、

// /index.php?r=site%2Findex¶m1=value1#name を生成
['site/index', 'param1' => 'value1', '#' => 'name']

ルートは、絶対ルートか相対ルートかのどちらかです。
絶対ルートは先頭にスラッシュを持ち (例えば /site/index)、相対ルートは持ちません (例えば site/index または index)。
相対ルートは次の規則に従って絶対ルートに変換されます。

	ルートが空文字列である場合は、現在の [[yii\web\Controller::route|ルート]] が使用されます。

	ルートがスラッシュを全く含まない場合は (例えば index)、カレントコントローラのアクション ID であると見なされて、カレントコントローラの [[\yii\web\Controller::uniqueId|uniqueId]] が前置されます。

	ルートが先頭にスラッシュを含まない場合は (例えば site/index)、カレントモジュールに対する相対ルートと見なされて、カレントモジュールの [[\yii\base\Module::uniqueId|uniqueId]] が前置されます。

バージョン 2.0.2 以降では、エイリアス の形式でルートを指定することが出来ます。
その場合は、エイリアスが最初に実際のルートに変換され、そのルートが上記の規則に従って絶対ルートに変換されます。

以下に、このメソッドの使用例をいくつか挙げます。

// /index.php?r=site%2Findex
echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 エイリアス "@postEdit" は "post/edit" と定義されていると仮定
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', 'https');

もうひとつ、[[toRoute()]] と非常によく似た Url::to() というメソッドがあります。
唯一の違いは、このメソッドはルートを配列として指定することを要求する、という点です。
文字列が与えられた場合は、URL として扱われます。

最初の引数は、次のいずれかを取り得ます。

	配列: URL を生成するために [[toRoute()]] が呼び出されます。例えば、['site/index']、['post/index', 'page' => 2]。
ルートの指定方法の詳細については [[toRoute()]] を参照してください。

	@ で始まる文字列: これはエイリアスとして扱われ、エイリアスに対応する文字列が返されます。

	空文字列: 現在リクエストされている URL が返されます。

	通常の文字列: その通りのものとして扱われます。

$scheme (文字列または true) が指定された場合は、ホスト情報 ([[\yii\web\UrlManager::hostInfo]] から取得されます) を伴う絶対 URL が返されます。
$url が既に絶対 URL であった場合には、そのスキームが指定されたものに置き換えられます。

下記にいくつかの用例を挙げます。

// /index.php?r=site%2Findex
echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 エイリアス "@postEdit" が "post/edit" と定義されていると仮定
echo Url::to(['@postEdit', 'id' => 100]);

// 現在リクエストされている URL
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');

バージョン 2.0.3 以降では、[[yii\helpers\Url::current()]] を使って、現在リクエストされているルートと GET パラメータに基づいて URL を生成することが出来ます。
$params パラメータを渡して、GET パラメータの中のいくつかを修正したり削除したり、または新しい GET パラメータを追加したりすることが出来ます。
例えば、

// $_GET が ['id' => 123, 'src' => 'google'] であり、現在のルートが "post/view" であると仮定

// /index.php?r=post%2Fview&id=123&src=google
echo Url::current();

// /index.php?r=post%2Fview&id=123
echo Url::current(['src' => null]);
// /index.php?r=post%2Fview&id=100&src=google
echo Url::current(['id' => 100]);

URL を記憶する

URL を記憶して、後に続く一連のリクエストの一つを処理するときに、記憶した URL を使わなければならないという場合があります。
これは、次のようにして達成することが出来ます。

// 現在の URL を記憶する
Url::remember();

// 指定された URL を記憶する。引数の形式は Url::to() を参照。
Url::remember(['product/view', 'id' => 42]);

// 指定された名前で URL を記憶する。
Url::remember(['product/view', 'id' => 42], 'product');

次のリクエストで、記憶された URL を次のようにして取得することが出来ます。

$url = Url::previous();
$productUrl = Url::previous('product');

相対 URL かどうかチェックする

URL が相対 URL であること、すなわち、URL がホスト情報の部分を持っていないことを確かめるために、次のコードを使うことが出来ます。

$isRelative = Url::isRelative('test/it');

 データベースマイグレーション

データベースマイグレーション

データベース駆動型のアプリケーションを開発し保守する途上で、ソースコードが進化するのと同じように、使用されるデータベースの構造も進化していきます。
例えば、アプリケーションの開発中に、新しいテーブルが必要であることが分ったり、アプリケーションを配備した後に、クエリのパフォーマンスを向上させるためにインデックスを作成すべきことが発見されたりします。
データベースの構造の変更が何らかのソースコードの変更を要求する場合はよくありますから、Yii はいわゆる データベースマイグレーション 機能を提供して、ソースコードとともにバージョン管理される データベースマイグレーション の形式でデータベースの変更を追跡できるようにしています。

下記の一連のステップは、開発中にチームによってデータベースマイグレーションがどのように使用されるかを示す例です。

	Tim が新しいマイグレーション (例えば、新しいテーブルを作成したり、カラムの定義を変更したりなど) を作る。

	Tim が新しいマイグレーションをソースコントロールシステム (例えば Git や Mercurial) にコミットする。

	Doug がソースコントロールシステムから自分のレポジトリを更新して新しいマイグレーションを受け取る。

	Doug がマイグレーションを彼のローカルの開発用データベースに適用して、自分のデータベースの同期を取り、Tim が行った変更を反映する。

そして、次の一連のステップは、本番環境でデータベースマイグレーションとともに新しいリリースを配備する方法を示すものです。

	Scott は新しいデータベースマイグレーションをいくつか含むプロジェクトのレポジトリにリリースタグを作成する。

	Scott は本番サーバでソースコードをリリースタグまで更新する。

	Scott は本番のデータベースに対して累積したデータベースマイグレーションを全て適用する。

Yii は一連のマイグレーションコマンドラインツールを提供して、以下の機能をサポートします。

	新しいマイグレーションの作成

	マイグレーションの適用

	マイグレーションの取消

	マイグレーションの再適用

	マイグレーションの履歴と状態の表示

これらのツールは、全て、yii migrate コマンドからアクセスすることが出来ます。
この節では、これらのツールを使用して、さまざまなタスクをどうやって達成するかを詳細に説明します。
各ツールの使用方法は、ヘルプコマンド yii help migrate によっても知ることが出来ます。

Tip: マイグレーションはデータベーススキーマに影響を及ぼすだけでなく、既存のデータを新しいスキーマに合うように修正したり、RBAC 階層を作成したり、
キャッシュをクリーンアップしたりするために使うことも出来ます。

マイグレーションを作成する

新しいマイグレーションを作成するためには、次のコマンドを実行します。

yii migrate/create <name>

要求される name パラメータには、マイグレーションの非常に短い説明を指定します。
例えば、マイグレーションが news という名前のテーブルを作成するものである場合は、create_news_table という名前を使って、次のようにコマンドを実行すれば良いでしょう。

yii migrate/create create_news_table

Note: この name 引数は、生成されるマイグレーションクラス名の一部として使用されますので、アルファベット、数字、および/または、アンダースコアだけを含むものでなければなりません。

上記のコマンドは、m150101_185401_create_news_table.php という名前の新しい PHP クラスファイルを @app/migrations ディレクトリに作成します。
このファイルは次のようなコードを含み、主として、スケルトンコードを持った m150101_185401_create_news_table というマイグレーションクラスを宣言するためのものす。

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {

 }

 public function down()
 {
 echo "m101129_185401_create_news_table cannot be reverted.\n";

 return false;
 }

 /*
 // Use safeUp/safeDown to run migration code within a transaction
 public function safeUp()
 {
 }

 public function safeDown()
 {
 }
 */
}

各データベースマイグレーションは [[yii\db\Migration]] から拡張した PHP クラスとして定義されます。
マイグレーションクラスの名前は、m<YYMMDD_HHMMSS>_<Name> という形式で自動的に生成されます。
ここで、

	<YYMMDD_HHMMSS> は、マイグレーション作成コマンドが実行された UTC 日時を表し、

	<Name> は、あなたがコマンドに与えた name 引数と同じ値になります。

マイグレーションクラスにおいて、あなたがなすべき事は、データベースの構造に変更を加える up() メソッドにコードを書くことです。
また、up() によって加えられた変更を取り消すための down() メソッドにも、コードを書きたいと思うかもしれません。
up() メソッドは、このマイグレーションによってデータベースをアップグレードする際に呼び出され、down() メソッドはデータベースをダウングレードする際に呼び出されます。
下記のコードは、新しい news テーブルを作成するマイグレーションクラスをどのようにして実装するかを示すものです。

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => Schema::TYPE_PK,
 'title' => Schema::TYPE_STRING . ' NOT NULL',
 'content' => Schema::TYPE_TEXT,
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }

}

Info: 全てのマイグレーションが取り消し可能な訳ではありません。
例えば、up() メソッドがテーブルからある行を削除するものである場合、down() メソッドでその行を回復することは出来ません。
また、データベースマイグレーションを取り消すことはあまり一般的ではありませんので、場合によっては、面倒くさいというだけの理由で down() を実装しないこともあるでしょう。
そういう場合は、マイグレーションが取り消し不可能であることを示すために、down() メソッドで false を返さなければなりません。

基底のマイグレーションクラス [[yii\db\Migration]] は、[[yii\db\Migration::db|db]] プロパティによって、データベース接続にアクセスすることを可能にしています。
このデータベース接続によって、データベーススキーマを扱う で説明されているメソッドを使い、データベーススキーマを操作することが出来ます。

テーブルやカラムを作成するときは、物理的な型を使うのでなく、抽象型 を使って、あなたのマイグレーションが特定の DBMS に依存しないようにします。
[[yii\db\Schema]] クラスが、サポートされている抽象型を表す一連の定数を定義しています。
これらの定数は TYPE_<Name> という形式の名前を持っています。
例えば、TYPE_PK は、オートインクリメントのプライマリキー型であり、TYPE_STRING は文字列型です。
これらの抽象型は、マイグレーションが特定のデータベースに適用されるときに、対応する物理型に翻訳されます。
MySQL の場合は、TYPE_PK は int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY に変換され、TYPE_STRING は varchar(255) となります。

抽象型を使用するときに、付随的な制約を追加することが出来ます。
上記の例では、Schema::TYPE_STRING に NOT NULL を追加して、このカラムが null を許容しないことを指定しています。

Info: 抽象型と物理型の対応関係は、それぞれの QueryBuilder の具象クラスの [[yii\db\QueryBuilder::$typeMap|$typeMap]] プロパティによって定義されています。

バージョン 2.0.6 以降は、カラムのスキーマを定義するための更に便利な方法を提供するスキーマビルダが新たに導入されています。
したがって、上記のマイグレーションは次のように書くことが出来ます。

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

カラムの型を定義するために利用できる全てのメソッドのリストは、[[yii\db\SchemaBuilderTrait]] の API ドキュメントで参照することが出来ます。

マイグレーションを生成する

バージョン 2.0.7 以降では、マイグレーション・コンソールがマイグレーションを生成する便利な方法を提供しています。

マイグレーションの名前が特別な形式である場合は、生成されるマイグレーション・ファイルに追加のコードが書き込まれます。
例えば、create_xxx_table や drop_xxx_table であれば、テーブルの作成や削除をするコードが追加されます。
以下で、この機能の全ての変種を説明します。

テーブルの作成

yii migrate/create create_post_table

上記のコマンドは、次のコードを生成します。

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey()
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

テーブルのフィールドも直接に生成したい場合は、--fields オプションでフィールドを指定します。

yii migrate/create create_post_table --fields="title:string,body:text"

これは、次のコードを生成します。

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(),
 'body' => $this->text(),
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

さらに多くのフィールド・パラメータを指定することも出来ます。

yii migrate/create create_post_table --fields="title:string(12):notNull:unique,body:text"

これは、次のコードを生成します。

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Note: プライマリ・キーが自動的に追加されて、デフォルトでは id と名付けられます。
別の名前を使いたい場合は、--fields="name:primaryKey" のように、明示的に指定してください。

外部キー

バージョン 2.0.8 からは、foreignKey キーワードを使って外部キーを生成することができます。

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"

これは、次のコードを生成します。

/**
 * Handles the creation for table `post`.
 * Has foreign keys to the tables:
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'author_id' => $this->integer()->notNull(),
 'category_id' => $this->integer()->defaultValue(1),
 'title' => $this->string(),
 'body' => $this->text(),
]);

 // creates index for column `author_id`
 $this->createIndex(
 'idx-post-author_id',
 'post',
 'author_id'
);

 // add foreign key for table `user`
 $this->addForeignKey(
 'fk-post-author_id',
 'post',
 'author_id',
 'user',
 'id',
 'CASCADE'
);

 // creates index for column `category_id`
 $this->createIndex(
 'idx-post-category_id',
 'post',
 'category_id'
);

 // add foreign key for table `category`
 $this->addForeignKey(
 'fk-post-category_id',
 'post',
 'category_id',
 'category',
 'id',
 'CASCADE'
);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 // drops foreign key for table `user`
 $this->dropForeignKey(
 'fk-post-author_id',
 'post'
);

 // drops index for column `author_id`
 $this->dropIndex(
 'idx-post-author_id',
 'post'
);

 // drops foreign key for table `category`
 $this->dropForeignKey(
 'fk-post-category_id',
 'post'
);

 // drops index for column `category_id`
 $this->dropIndex(
 'idx-post-category_id',
 'post'
);

 $this->dropTable('post');
 }
}

カラムの記述における foreignKey キーワードの位置によって、生成されるコードが変ることはありません。
つまり、

	author_id:integer:notNull:foreignKey(user)

	author_id:integer:foreignKey(user):notNull

	author_id:foreignKey(user):integer:notNull

これらはすべて同じコードを生成します。

foreignKey キーワードは括弧の中にパラメータを取ることが出来て、これが生成される外部キーの関連テーブルの名前になります。
パラメータが渡されなかった場合は、テーブル名はカラム名から推測されます。

上記の例で author_id:integer:notNull:foreignKey(user) は、user テーブルへの外部キーを持つ author_id という名前のカラムを生成します。
一方、category_id:integer:defaultValue(1):foreignKey は、category テーブルへの外部キーを持つ category_id というカラムを生成します。

2.0.11 以降では、foreignKey キーワードは空白で区切られた第二のパラメータを取ることが出来ます。
これは、生成される外部キーに関連づけられるカラム名を表します。
第二のパラメータが渡されなかった場合は、カラム名はテーブルスキーマから取得されます。
スキーマが存在しない場合や、プライマリキーが設定されていなかったり、複合キーであったりする場合は、デフォルト名として id が使用されます。

テーブルを削除する

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique,body:text"

これは、次のコードを生成します。

class m150811_220037_drop_post_table extends Migration
{
 public function up()
 {
 $this->dropTable('post');
 }

 public function down()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }
}

カラムを追加する

マイグレーションの名前が add_xxx_column_to_yyy_table の形式である場合、ファイルの内容は、必要となる addColumn と dropColumn を含むことになります。

カラムを追加するためには、次のようにします。

yii migrate/create add_position_column_to_post_table --fields="position:integer"

これが次のコードを生成します。

class m150811_220037_add_position_column_to_post_table extends Migration
{
 public function up()
 {
 $this->addColumn('post', 'position', $this->integer());
 }

 public function down()
 {
 $this->dropColumn('post', 'position');
 }
}

次のようにして複数のカラムを指定することも出来ます。

yii migrate/create add_xxx_column_yyy_column_to_zzz_table --fields="xxx:integer,yyy:text"

カラムを削除する

マイグレーションの名前が drop_xxx_column_from_yyy_table の形式である場合、ファイルの内容は、必要となる addColumn と dropColumn を含むことになります。

yii migrate/create drop_position_column_from_post_table --fields="position:integer"

これは、次のコードを生成します。

class m150811_220037_drop_position_column_from_post_table extends Migration
{
 public function up()
 {
 $this->dropColumn('post', 'position');
 }

 public function down()
 {
 $this->addColumn('post', 'position', $this->integer());
 }
}

中間テーブルを追加する

マイグレーションの名前が create_junction_table_for_xxx_and_yyy_tables の形式である場合は、中間テーブルを作成するのに必要となるコードが生成されます。

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="created_at:dateTime"

これは、次のコードを生成します。

/**
 * Handles the creation for table `post_tag`.
 * Has foreign keys to the tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
 /**
 * @inheritdoc
 */
 public function up()
 {
 $this->createTable('post_tag', [
 'post_id' => $this->integer(),
 'tag_id' => $this->integer(),
 'created_at' => $this->dateTime(),
 'PRIMARY KEY(post_id, tag_id)',
]);

 // creates index for column `post_id`
 $this->createIndex(
 'idx-post_tag-post_id',
 'post_tag',
 'post_id'
);

 // add foreign key for table `post`
 $this->addForeignKey(
 'fk-post_tag-post_id',
 'post_tag',
 'post_id',
 'post',
 'id',
 'CASCADE'
);

 // creates index for column `tag_id`
 $this->createIndex(
 'idx-post_tag-tag_id',
 'post_tag',
 'tag_id'
);

 // add foreign key for table `tag`
 $this->addForeignKey(
 'fk-post_tag-tag_id',
 'post_tag',
 'tag_id',
 'tag',
 'id',
 'CASCADE'
);
 }

 /**
 * @inheritdoc
 */
 public function down()
 {
 // drops foreign key for table `post`
 $this->dropForeignKey(
 'fk-post_tag-post_id',
 'post_tag'
);

 // drops index for column `post_id`
 $this->dropIndex(
 'idx-post_tag-post_id',
 'post_tag'
);

 // drops foreign key for table `tag`
 $this->dropForeignKey(
 'fk-post_tag-tag_id',
 'post_tag'
);

 // drops index for column `tag_id`
 $this->dropIndex(
 'idx-post_tag-tag_id',
 'post_tag'
);

 $this->dropTable('post_tag');
 }
}

2.0.11 以降では、中間テーブルの外部キーのカラム名はテーブルスキーマから取得されます。
スキーマでテーブルが定義されていない場合や、プライマリキーが設定されていなかったり複合キーであったりする場合は、デフォルト名 id が使われます。

トランザクションを使うマイグレーション

複雑な一連の DB マイグレーションを実行するときは、通常、データベースの一貫性と整合性を保つために、各マイグレーションが全体として成功または失敗することを保証する必要があります。
この目的を達成するために、各マイグレーションの DB 操作を トランザクション で囲むことが推奨されます。

トランザクションを使うマイグレーションを実装するためのもっと簡単な方法は、マイグレーションのコードを safeUp() と safeDown() のメソッドに入れることです。
この二つのメソッドが up() および down() と違う点は、これらが暗黙のうちにトランザクションに囲まれていることです。
結果として、これらのメソッドの中で何か操作が失敗した場合は、先行する全ての操作が自動的にロールバックされます。

次の例では、news テーブルを作成するだけでなく、このテーブルに初期値となる行を挿入しています。

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function safeUp()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);

 $this->insert('news', [
 'title' => 'test 1',
 'content' => 'content 1',
]);
 }

 public function safeDown()
 {
 $this->delete('news', ['id' => 1]);
 $this->dropTable('news');
 }
}

通常、safeUp() で複数の DB 操作を実行する場合は、safeDown() では実行の順序を逆にしなければならないことに注意してください。
上記の例では、safeUp() では、最初にテーブルを作って、次に行を挿入し、safeDown() では、先に行を削除して、次にテーブルを削除しています。

Note: 全ての DBMS がトランザクションをサポートしている訳ではありません。
また、トランザクションに入れることが出来ない DB クエリもあります。
いくつかの例を 暗黙のコミット [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html] で見ることが出来ます。
その場合には、代りに、up() と down() を実装しなければなりません。

データベースアクセスメソッド

基底のマイグレーションクラス [[yii\db\Migration]] は、データベースにアクセスして操作するための一連のメソッドを提供しています。
あなたは、これらのメソッドが、[[yii\db\Command]] クラスによって提供される DAO メソッド と同じような名前を付けられていることに気付くでしょう。
例えば、[[yii\db\Migration::createTable()]] メソッドは、[[yii\db\Command::createTable()]] と全く同じように、新しいテーブルを作成します。

[[yii\db\Migration]] によって提供されているメソッドを使うことの利点は、[[yii\db\Command]] インスタンスを明示的に作成する必要がないこと、そして、各メソッドを実行すると、どのようなデータベース操作がどれだけの時間をかけて実行されたかを教えてくれる有益なメッセージが自動的に表示されることです。

以下がそういうデータベースアクセスメソッドの一覧です。

	[[yii\db\Migration::execute()|execute()]]: SQL 文を実行

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Info: [[yii\db\Migration]] は、データベースクエリメソッドを提供しません。
これは、通常、データベースからのデータ取得については、メッセージを追加して表示する必要がないからです。
更にまた、複雑なクエリを構築して実行するためには、強力な クエリビルダ を使うことが出来るからです。

Note: マイグレーションを使ってデータを操作する場合に、あなたは、あなたの アクティブレコード クラスをデータ操作に使えば便利じゃないか、と気付くかもしれません。
なぜなら、いくつかのロジックは既にアクティブレコードで実装済みだから、と。
しかしながら、マイグレーションの中で書かれるコードが永久に不変であることを本質とするのと対照的に、アプリケーションのロジックは変化にさらされるものであるということを心に留めなければなりません。
従って、マイグレーションのコードでアクティブレコードを使用していると、アクティブレコードのレイヤにおけるロジックの変更が思いがけず既存のマイグレーションを破壊することがあり得ます。
このような理由のため、マイグレーションのコードはアクティブレコードのようなアプリケーションの他のロジックから独立を保つべきです。

マイグレーションを適用する

データベースを最新の構造にアップグレードするためには、利用できる全ての新しいマイグレーションを適用するために、次のコマンドを使わなければなりません。

yii migrate

コマンドを実行すると、まだ適用されていない全てのマイグレーションが一覧表示されます。
リストされたマイグレーションを適用することをあなたが確認すると、タイムスタンプの値の順に、一つずつ、すべての新しいマイグレーションクラスの up() または safeUp() メソッドが実行されます。
マイグレーションのどれかが失敗した場合は、コマンドは残りのマイグレーションを適用せずに終了します。

Tip: あなたのサーバでコマンドラインを使用できない場合は
web shell [https://github.com/samdark/yii2-webshell] エクステンションを使ってみてください。

適用が成功したマイグレーションの一つ一つについて、migration という名前のデータベーステーブルに行が挿入されて、マイグレーションの成功が記録されます。
この記録によって、マイグレーションツールは、どのマイグレーションが適用され、どのマイグレーションが適用されていないかを特定することが出来ます。

Info: マイグレーションツールは、コマンドの [[yii\console\controllers\MigrateController::db|db]] オプションで指定されたデータベースに migration テーブルを自動的に作成します。
デフォルトでは、このデータベースは db アプリケーションコンポーネント によって指定されます。

時として、利用できる全てのマイグレーションではなく、一つまたは数個の新しいマイグレーションだけを適用したい場合があります。
コマンドを実行するときに、適用したいマイグレーションの数を指定することによって、そうすることが出来ます。
例えば、次のコマンドは、次の三個の利用できるマイグレーションを適用しようとするものです。

yii migrate 3

また、そのマイグレーションまでをデータベースに適用するという、特定のマイグレーションを明示的に指定することも出来ます。
そのためには、migrate/to コマンドを、次のどれかの形式で使います。

yii migrate/to 150101_185401 # タイムスタンプを使ってマイグレーションを指定
yii migrate/to "2015-01-01 18:54:01" # strtotime() によって解釈できる文字列を使用
yii migrate/to m150101_185401_create_news_table # フルネームを使用
yii migrate/to 1392853618 # UNIX タイムスタンプを使用

指定されたマイグレーションよりも古いものが適用されずに残っている場合は、指定されたものが適用される前に、すべて適用されます。

指定されたマイグレーションが既に適用済みである場合、それより新しいものが適用されていれば、すべて取り消されます。

マイグレーションを取り消す

適用済みのマイグレーションを一個または複数個取り消したい場合は、下記のコマンドを使うことが出来ます。

yii migrate/down # 最近に適用されたマイグレーション一個を取り消す
yii migrate/down 3 # 最近に適用されたマイグレーション三個を取り消す

Note: 全てのマイグレーションが取り消せるとは限りません。
そのようなマイグレーションを取り消そうとするとエラーとなり、取り消しのプロセス全体が終了させられます。

マイグレーションを再適用する

マイグレーションの再適用とは、指定されたマイグレーションを最初に取り消してから、再度適用することを意味します。
これは次のコマンドによって実行することが出来ます。

yii migrate/redo # 最後に適用された一個のマイグレーションを再適用する
yii migrate/redo 3 # 最後に適用された三個のマイグレーションを再適用する

Note: マイグレーションが取り消し不可能な場合は、それを再適用することは出来ません。

マイグレーションをリスト表示する

どのマイグレーションが適用済みであり、どのマイグレーションが未適用であるかをリスト表示するために、次のコマンドを使うことが出来ます。

yii migrate/history # 最後に適用された 10 個のマイグレーションを表示
yii migrate/history 5 # 最後に適用された 5 個のマイグレーションを表示
yii migrate/history all # 適用された全てのマイグレーションを表示

yii migrate/new # 適用可能な最初の 10 個のマイグレーションを表示
yii migrate/new 5 # 適用可能な最初の 5 個のマイグレーションを表示
yii migrate/new all # 適用可能な全てのマイグレーションを表示

マイグレーション履歴を修正する

時として、実際にマイグレーションを適用したり取り消したりするのではなく、データベースが特定のマイグレーションまでアップグレードされたとマークしたいだけ、という場合があります。
このようなことがよく起るのは、データベースを手作業で特定の状態に変更した後に、その変更のための一つまたは複数のマイグレーションを記録はするが再度適用はしたくない、という場合です。
次のコマンドでこの目的を達することが出来ます。

yii migrate/mark 150101_185401 # タイムスタンプを使ってマイグレーションを指定
yii migrate/mark "2015-01-01 18:54:01" # strtotime() によって解釈できる文字列を使用
yii migrate/mark m150101_185401_create_news_table # フルネームを使用
yii migrate/mark 1392853618 # UNIX タイムスタンプを使用

このコマンドは、一定の行を追加または削除して、migration テーブルを修正し、データベースが指定されたものまでマイグレーションが適用済みであることを示します。
このコマンドによってマイグレーションが適用されたり取り消されたりはしません。

マイグレーションをカスタマイズする

マイグレーションコマンドをカスタマイズする方法がいくつかあります。

コマンドラインオプションを使う

マイグレーションコマンドには、その動作をカスタマイズするために使うことが出来るコマンドラインオプションがいくつかあります。

	interactive: 真偽値 (デフォルト値は true)。
マイグレーションを対話モードで実行するかどうかを指定します。
true である場合は、コマンドが何らかの操作を実行する前に、ユーザは確認を求められます。
コマンドがバックグラウンドのプロセスで使用される場合は、このオプションを false にセットします。

	migrationPath: 文字列 (デフォルト値は @app/migrations)。
全てのマイグレーションクラスファイルを保存しているディレクトリを指定します。
この値は、ディレクトリパスか、パス エイリアス として指定することが出来ます。
ディレクトリが存在する必要があり、そうでなければコマンドがエラーを発生させることに注意してください。

	migrationTable: 文字列 (デフォルト値は migration)。
マイグレーション履歴の情報を保存するためのデータベーステーブル名を指定します。
テーブルが存在しない場合は、コマンドによって自動的に作成されます。
version varchar(255) primary key, apply_time integer という構造のテーブルを手作業で作成しても構いません。

	db: 文字列 (デフォルト値は db)。
データベース アプリケーションコンポーネント の ID を指定します。
このコマンドによってマイグレーションを適用されるデータベースを表します。

	templateFile: 文字列 (デフォルト値は @yii/views/migration.php)。
スケルトンのマイグレーションクラスファイルを生成するために使用されるテンプレートファイルのパスを指定します。
この値は、ファイルパスか、パス エイリアス として指定することが出来ます。
テンプレートファイルは PHP スクリプトであり、その中で、マイグレーションクラスの名前を取得するための $className という事前定義された変数を使うことが出来ます。

	generatorTemplateFiles: 配列 (デフォルト値は ['create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php'])。
マイグレーション・コードを生成するためのテンプレート・ファイルを指定します。
詳細は “マイグレーションを生成する” を参照してください。

	fields: マイグレーション・コードを生成するためのカラム定義文字列の配列。
デフォルト値は []。個々の定義の書式は COLUMN_NAME:COLUMN_TYPE:COLUMN_DECORATOR です。
例えば、--fields=name:string(12):notNull は、サイズが 12 の null でない文字列カラムを作成します。

次の例は、これらのオプションの使い方を示すものです。

例えば、forum モジュールにマイグレーションを適用しようとしており、そのマイグレーションファイルがモジュールの migrations ディレクトリに配置されている場合、次のコマンドを使うことが出来ます。

forum モジュールのマイグレーションを非対話的に適用する
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0

コマンドをグローバルに構成する

マイグレーションコマンドを実行するたびに同じオプションの値を入力する代りに、次のように、アプリケーションの構成情報でコマンドを一度だけ構成して済ませることが出来ます。

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationTable' => 'backend_migration',
],
],
];

上記のように構成しておくと、migrate コマンドを実行するたびに、backend_migration テーブルがマイグレーション履歴を記録するために使われるようになります。
もう、migrationTable のコマンドラインオプションを使ってテーブルを指定する必要はなくなります。

名前空間を持つマイグレーション

2.0.10 以降では、マイグレーションのクラスに名前空間を適用することが出来ます。
マイグレーションの名前空間のリストをを [[yii\console\controllers\MigrateController::migrationNamespaces|migrationNamespaces]] によって指定することが出来ます。
マイグレーションのクラスに名前空間を使うと、マイグレーションのソースについて、複数の配置場所を使用することが出来ます。
例えば、

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => [
 'app\migrations', // アプリケーション全体のための共通のマイグレーション
 'module\migrations', // プロジェクトの特定のモジュールのためのマイグレーション
 'some\extension\migrations', // 特定のエクステンションのためのマイグレーション
],
],
],
];

Note: 異なる名前空間に属するマイグレーションを適用しても、単一の マイグレーション履歴が生成されます。
つまり、特定の名前空間に属するマイグレーションだけを適用したり元に戻したりすることは出来ません。

名前空間を持つマイグレーションを操作するときは、新規作成時も、元に戻すときも、マイグレーション名の前にフルパスの名前空間を指定しなければなりません。
バックスラッシュ (\) のシンボルは、通常、シェルでは特殊文字として扱われますので、シェルのエラーや誤った動作を防止するために、適切にエスケープしなければならないことに注意して下さい。
例えば、

yii migrate/create 'app\\migrations\\createUserTable'

Note: [[yii\console\controllers\MigrateController::migrationPath|migrationPath]] によって指定されたマイグレーションは、名前空間を持つことが出来ません。
名前空間を持つマイグレーションは [[yii\console\controllers\MigrateController::migrationNamespaces]] プロパティを通じてのみ適用可能です。

分離されたマイグレーション

プロジェクトのマイグレーション全体に単一のマイグレーション履歴を使用することが望ましくない場合もあります。
例えば、完全に独立した機能性とそれ自身のためのマイグレーションを持つような ‘blog’ エクステンションをインストールする場合には、
メインのプロジェクトの機能専用のマイグレーションに影響を与えたくないでしょう。

これらをお互いに完全に分離して適用かつ追跡したい場合は、別々の名前空間とマイグレーション履歴テーブルを使う
複数のマイグレーションコマンドを構成することが出来ます。

return [
 'controllerMap' => [
 // アプリケーション全体のための共通のマイグレーション
 'migrate-app' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['app\migrations'],
 'migrationTable' => 'migration_app',
],
 // 特定のモジュールのためのマイグレーション
 'migrate-module' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['module\migrations'],
 'migrationTable' => 'migration_module',
],
 // 特定のエクステンションのためのマイグレーション
 'migrate-rbac' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationPath' => '@yii/rbac/migrations',
 'migrationTable' => 'migration_rbac',
],
],
];

データベースを同期するためには、一つではなく複数のコマンドを実行しなければならなくなることに注意してください。

yii migrate-app
yii migrate-module
yii migrate-rbac

複数のデータベースにマイグレーションを適用する

デフォルトでは、マイグレーションは db アプリケーションコンポーネント によって指定された同じデータベースに対して適用されます。
マイグレーションを別のデータベースに適用したい場合は、次のように、db コマンドラインオプションを指定することが出来ます。

yii migrate --db=db2

上記のコマンドはマイグレーションを db2 データベースに適用します。

場合によっては、いくつかの マイグレーションはあるデータベースに適用し、別のいくつかの マイグレーションはもう一つのデータベースに適用したい、ということがあります。
この目的を達するためには、マイグレーションクラスを実装する時に、そのマイグレーションが使用する DB コンポーネントの ID を明示的に指定しなければなりません。
例えば、次のようにします。

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function init()
 {
 $this->db = 'db2';
 parent::init();
 }
}

上記のマイグレーションは、db コマンドラインオプションで別のデータベースを指定した場合でも、db2 に対して適用されます。
ただし、マイグレーション履歴は、db コマンドラインオプションで指定されたデータベースに記録されることに注意してください。

同じデータベースを使う複数のマイグレーションがある場合は、上記の init() コードを持つ基底のマイグレーションクラスを作成することを推奨します。
そうすれば、個々のマイグレーションクラスは、その基底クラスから拡張することが出来ます。

こうすると、特定のデータベースに適用されるべきマイグレーションを作成するためには、対応する基底マイグレーションクラスから拡張するだけで済みます。
これで、yii migrate コマンドを実行すると、全てのマイグレーションはそれぞれ対応するデータベースに対して適用されるようになります。

Tip: 異なるデータベースを操作するためには、[[yii\db\Migration::db|db]] プロパティを設定する以外にも、マイグレーションクラスの中で新しいデータベース接続を作成するという方法があります。
そうすれば、そのデータベース接続で DAO メソッド を使って、違うデータベースを操作することが出来ます。

複数のデータベースに対してマイグレーションを適用するために採用できるもう一つの戦略としては、異なるデータベースに対するマイグレーションは異なるマイグレーションパスに保持する、というものがあります。
そうすれば、次のように、異なるデータベースのマイグレーションを別々のコマンドで適用することが出来ます。

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...

最初のコマンドは @app/migrations/db1 にあるマイグレーションを db1 データベースに適用し、第二のコマンドは @app/migrations/db2 にあるマイグレーションを db2 データベースに適用する、という具合です。

 並べ替え

並べ替え

複数のデータ行を表示する際に、エンドユーザによって指定されるカラムに従ってデータを並べ替えなければならないことがよくあります。
Yii は [[yii\data\Sort]] オブジェクトを使って並べ替えのスキーマに関する情報を表します。
具体的に言えば、

	[[yii\data\Sort::$attributes|attributes]] データの並べ替えに使用できる 属性 を指定します。
単純で良ければ、モデルの属性 をこの属性とすることが出来ます。
また、複数のモデル属性や DB のカラムを結合した合成的な属性を指定することも出来ます。
詳細については後述します。

	[[yii\data\Sort::$attributeOrders|attributeOrders]] 各属性について、現在リクエストされている並べ替えの方向を指定します。

	[[yii\data\Sort::$orders|orders]] 並べ替えの方向をカラムを使う低レベルな形式で示します。

[[yii\data\Sort]] を使用するためには、最初にどの属性が並べ替え可能であるかを宣言します。
次に、現在リクエストされている並べ替え情報を [[yii\data\Sort::$attributeOrders|attributeOrders]] または [[yii\data\Sort::$orders|orders]] から取得して、データのクエリをカスタマイズします。
例えば、

use yii\data\Sort;

$sort = new Sort([
 'attributes' => [
 'age',
 'name' => [
 'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],
 'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],
 'default' => SORT_DESC,
 'label' => '氏名',
],
],
]);

$articles = Article::find()
 ->where(['status' => 1])
 ->orderBy($sort->orders)
 ->all();

上記の例では、[[yii\data\Sort|Sort]] オブジェクトに対して二つの属性が宣言されています。
すなわち、age と name です。

age 属性は Article アクティブレコードクラスの age 属性に対応する 単純な 属性です。
これは、次の宣言と等価です。

'age' => [
 'asc' => ['age' => SORT_ASC],
 'desc' => ['age' => SORT_DESC],
 'default' => SORT_ASC,
 'label' => Inflector::camel2words('age'),
]

name 属性は Article の first_name と last_name によって定義される 合成的な 属性です。
これは次のような配列構造を使って宣言されています。

	asc および desc の要素は、それぞれ、この属性を昇順および降順に並べ替える方法を指定します。
この値が、データの並べ替えに使用されるべき実際のカラムと方向を表します。
一つまたは複数のカラムを指定して、単純な並べ替えや合成的な並べ替えを示すことが出来ます。

	default 要素は、最初にリクエストされたときの属性の並べ替えに使用されるべき方向を指定します。
デフォルト値は昇順です。
つまり、以前に並べ替えられたことがない状態でこの属性による並べ替えをリクエストすると、この属性の昇順に従ってデータが並べ替えられることになります。

	label 要素は、並べ替えのリンクを作成するために [[yii\data\Sort::link()]] を呼んだときに、どういうラベルを使用すべきかを指定するものです。
設定されていない場合は、[[yii\helpers\Inflector::camel2words()]] が呼ばれて、属性名からラベルが生成されます。
ラベルは HTML エンコードされないことに注意してください。

Info: [[yii\data\Sort::$orders|orders]] の値をデータベースのクエリに直接に供給して、ORDER BY 句を構築することが出来ます。
データベースのクエリが認識できない合成的な属性が入っている場合があるため、[[yii\data\Sort::$attributeOrders|attributeOrders]] を使ってはいけません。

[[yii\data\Sort::link()]] を呼んでハイパーリンクを生成すれば、それをクリックして、指定した属性によるデータの並べ替えをリクエストすることが出来るようになります。
[[yii\data\Sort::createUrl()]] を呼んで並べ替えを実行する URL を生成することも出来ます。
例えば、

// 生成される URL が使用すべきルートを指定する
// これを指定しない場合は、現在リクエストされているルートが使用される
$sort->route = 'article/index';

// 氏名による並べ替えと年齢による並べ替えを実行するリンクを表示
echo $sort->link('name') . ' | ' . $sort->link('age');

// /index.php?r=article%2Findex&sort=age を表示
echo $sort->createUrl('age');

[[yii\data\Sort]] は、リクエストの sort クエリパラメータをチェックして、どの属性による並べ替えがリクエストされたかを判断します。
このクエリパラメータが存在しない場合のデフォルトの並べ替え方法は [[yii\data\Sort::defaultOrder]] によって指定することが出来ます。
また、[[yii\data\Sort::sortParam|sortParam]] プロパティを構成して、このクエリパラメータの名前をカスタマイズすることも出来ます。

 クエリビルダ

クエリビルダ

データベースアクセスオブジェクト の上に構築されているクエリビルダは、SQL クエリをプログラム的に、かつ、DBMS の違いを意識せずに作成することを可能にしてくれます。
クエリビルダを使うと、生の SQL 文を書くことに比べて、より読みやすい SQL 関連のコードを書き、より安全な SQL 文を生成することが容易になります。

通常、クエリビルダの使用は、二つのステップから成ります。

	SELECT SQL 文のさまざまな部分 (例えば、SELECT、FROM) を表現する [[yii\db\Query]] オブジェクトを構築する。

	[[yii\db\Query]] のクエリメソッド (例えば all()) を実行して、データベースからデータを取得する。

次のコードは、クエリビルダを使用する典型的な方法を示すものです。

$rows = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->all();

上記のコードは、次の SQL クエリを生成して実行します。
ここでは、:last_name パラメータは 'Smith' という文字列にバインドされています。

SELECT `id`, `email`
FROM `user`
WHERE `last_name` = :last_name
LIMIT 10

Info: 通常は、[[yii\db\QueryBuilder]] ではなく、主として [[yii\db\Query]] を使用します。
前者は、クエリメソッドの一つを呼ぶときに、後者によって黙示的に起動されます。
[[yii\db\QueryBuilder]] は、DBMS に依存しない [[yii\db\Query]] オブジェクトから、DBMS に依存する SQL 文を生成する (例えば、テーブルやカラムの名前を DBMS ごとに違う方法で引用符で囲む) 役割を負っているクラスです。

クエリを構築する

[[yii\db\Query]] オブジェクトを構築するために、さまざまなクエリ構築メソッドを呼んで、SQL クエリのさまざまな部分を定義します。
これらのメソッドの名前は、SQL 文の対応する部分に使われる SQL キーワードに似たものになっています。
例えば、SQL クエリの FROM の部分を定義するためには、from() メソッドを呼び出します。
クエリ構築メソッドは、すべて、クエリオブジェクトそのものを返しますので、複数の呼び出しをチェーンしてまとめることが出来ます。

以下で、それぞれのクエリ構築メソッドの使用方法を説明しましょう。

[[yii\db\Query::select()|select()]]

[[yii\db\Query::select()|select()]] メソッドは、SQL 文の SELECT 句を定義します。
選択されるカラムは、次のように、配列または文字列として指定することが出来ます。
選択されるカラムの名前は、クエリオブジェクトから SQL 文が生成されるときに、自動的に引用符で囲まれます。

$query->select(['id', 'email']);

// 次と等価

$query->select('id, email');

選択されるカラム名は、生の SQL クエリを書くときにするように、テーブル接頭辞 および/または カラムのエイリアスを含むことが出来ます。
例えば、

$query->select(['user.id AS user_id', 'email']);

// 次と等価

$query->select('user.id AS user_id, email');

カラムを指定するのに配列形式を使っている場合は、配列のキーを使ってカラムのエイリアスを指定することも出来ます。
例えば、上記のコードは次のように書くことが出来ます。

$query->select(['user_id' => 'user.id', 'email']);

クエリを構築するときに [[yii\db\Query::select()|select()]] メソッドを呼ばなかった場合は、* がセレクトされます。
すなわち、全て のカラムが選択されることになります。

カラム名に加えて、DB 式をセレクトすることも出来ます。
カンマを含む DB 式をセレクトする場合は、自動的に引用符で囲む機能が誤動作しないように、配列形式を使わなければなりません。
例えば、

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email']);

生の SQL が使われる場所ではどこでもそうですが、セレクトに DB 式を書く場合には、テーブルやカラムの名前を表すために
特定のデータベースに依存しない引用符の構文 を使うことが出来ます。

バージョン 2.0.1 以降では、サブクエリもセレクトすることが出来ます。
各サブクエリは、[[yii\db\Query]] オブジェクトの形で指定しなければなりません。
例えば、

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');

重複行を除外してセレクトするためには、次のように、[[yii\db\Query::distinct()|distinct()]] を呼ぶことが出来ます。

// SELECT DISTINCT `user_id` ...
$query->select('user_id')->distinct();

[[yii\db\Query::from()|from()]]

[[yii\db\Query::from()|from()]] メソッドは、SQL 文の FROM 句を定義します。例えば、

// SELECT * FROM `user`
$query->from('user');

セレクトの対象になる (一つまたは複数の) テーブルは、文字列または配列として指定することが出来ます。
テーブル名は、生の SQL 文を書くときにするように、スキーマ接頭辞 および/または テーブルエイリアスを含むことが出来ます。例えば、

$query->from(['public.user u', 'public.post p']);

// 次と等価

$query->from('public.user u, public.post p');

配列形式を使う場合は、次のように、配列のキーを使ってテーブルエイリアスを指定することも出来ます。

$query->from(['u' => 'public.user', 'p' => 'public.post']);

テーブル名の他に、[[yii\db\Query]] オブジェクトの形で指定することによって、サブクエリをセレクトの対象とすることも出来ます。
例えば、

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u
$query->from(['u' => $subQuery]);

[[yii\db\Query::where()|where()]]

[[yii\db\Query::where()|where()]] メソッドは、SQL クエリの WHERE 句を定義します。
WHERE の条件を指定するために、次の三つの形式から一つを選んで使うことが出来ます。

	文字列形式、例えば、'status=1'

	ハッシュ形式、例えば、['status' => 1, 'type' => 2]

	演算子形式、例えば、['like', 'name', 'test']

文字列形式

文字列形式は、非常に単純な条件を定義する場合や、DBMS の組み込み関数を使う必要がある場合に最適です。
これは、生の SQL を書いている場合と同じように動作します。
例えば、

$query->where('status=1');

// あるいは、パラメータバインディングを使って、動的にパラメータをバインドする
$query->where('status=:status', [':status' => $status]);

// date フィールドに対して MySQL の YEAR() 関数を使う生の SQL
$query->where('YEAR(somedate) = 2015');

次のように、条件式に変数を直接に埋め込んではいけません。
特に、変数の値がユーザの入力に由来する場合、あなたのアプリケーションを SQL インジェクション攻撃にさらすことになりますので、してはいけません。

// 危険! $status が整数であることが絶対に確実でなければ、してはいけない。
$query->where("status=$status");

パラメータバインディングを使う場合は、[[yii\db\Query::params()|params()]] または [[yii\db\Query::addParams()|addParams()]] を使って、パラメータの指定を分離することが出来ます。

$query->where('status=:status')
 ->addParams([':status' => $status]);

生の SQL が使われる場所ではどこでもそうですが、文字列形式で条件を書く場合には、テーブルやカラムの名前を表すために
特定のデータベースに依存しない引用符の構文 を使うことが出来ます。

ハッシュ形式

値が等しいことを要求する単純な条件をいくつか AND で結合する場合は、ハッシュ形式を使うのが最適です。
個々の条件を表す配列の各要素は、キーをカラム名、値をそのカラムが持つべき値とします。
例えば、

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))
$query->where([
 'status' => 10,
 'type' => null,
 'id' => [4, 8, 15],
]);

ご覧のように、クエリビルダは頭が良いので、null や配列である値も、適切に処理します。

次のように、サブクエリをハッシュ形式で使うことも出来ます。

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)
$query->where(['id' => $userQuery]);

ハッシュ形式を使う場合、Yii は内部的にパラメータバインディングを使用します。
従って、文字列形式 とは対照的に、ここでは手動でパラメータを追加する必要はありません。

演算子形式

演算子形式を使うと、任意の条件をプログラム的な方法で指定することが出来ます。
これは次の形式を取るものです。

[演算子, オペランド1, オペランド2, ...]

ここで、各オペランドは、文字列形式、ハッシュ形式、あるいは、再帰的に演算子形式として指定することが出来ます。
そして、演算子には、次のどれか一つを使うことが出来ます。

	and: 二つのオペランドが AND を使って結合されます。例えば、['and', 'id=1', 'id=2'] は id=1 AND id=2 を生成します。
オペランドが配列である場合は、ここで説明されている規則に従って文字列に変換されます。
例えば、['and', 'type=1', ['or', 'id=1', 'id=2']] は type=1 AND (id=1 OR id=2) を生成します。
このメソッドは、文字列を引用符で囲ったりエスケープしたりしません。

	or: 二つのオペランドが OR を使って結合されること以外は and 演算子と同じです。

	between: オペランド 1 はカラム名、オペランド 2 と 3 はカラムの値が属すべき範囲の開始値と終了値としなければなりません。
例えば、['between', 'id', 1, 10] は id BETWEEN 1 AND 10 を生成します。

	not between: 生成される条件において BETWEEN が NOT BETWEEN に置き換えられる以外は、between と同じです。

	in: オペランド 1 はカラム名または DB 式でなければなりません。
オペランド 2 は、配列または Query オブジェクトのどちらかを取ることが出来ます。
オペランド 2 が配列である場合は、その配列は、カラムまたは DB 式が該当すべき値域を表すものとされます。
オペランド 2 が Query オブジェクトである場合は、サブクエリが生成されて、カラムまたは DB 式の値域として使われます。
例えば、['in', 'id', [1, 2, 3]] は id IN (1, 2, 3) を生成します。
このメソッドは、カラム名を適切に引用符で囲み、値域の値をエスケープします。
in 演算子はまた複合カラムをもサポートしています。
その場合、オペランド 1 はカラム名の配列とし、オペランド 2 は配列の配列、または、複合カラムの値域を表す Query オブジェクトでなければなりません。

	not in: 生成される条件において IN が NOT IN に置き換えられる以外は、in と同じです。

	like: オペランド 1 はカラム名または DB 式、オペランド 2 はカラムまたは DB 式がマッチすべき値を示す文字列または配列でなければなりません。
例えば、['like', 'name', 'tester'] は name LIKE '%tester%' を生成します。
値域が配列として与えられた場合は、複数の LIKE 述語が生成されて ‘AND’ によって結合されます。
例えば、['like', 'name', ['test', 'sample']] は name LIKE '%test%' AND name LIKE '%sample%' を生成します。
さらに、オプションである三番目のオペランドによって、値の中の特殊文字をエスケープする方法を指定することも出来ます。
このオペランド 3 は、特殊文字とそのエスケープ結果のマッピングを示す配列でなければなりません。
このオペランドが提供されない場合は、デフォルトのエスケープマッピングが使用されます。
false または空の配列を使って、値が既にエスケープ済みであり、それ以上エスケープを適用すべきでないことを示すことが出来ます。
エスケープマッピングを使用する場合 (または第三のオペランドが与えられない場合) は、値が自動的に一組のパーセント記号によって囲まれることに注意してください。

Note: PostgreSQL を使っている場合は、like の代りに、大文字と小文字を区別しない比較のための ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE] を使うことも出来ます。

	or like: オペランド 2 が配列である場合に LIKE 述語が OR によって結合される以外は、like 演算子と同じです。

	not like: 生成される条件において LIKE が NOT LIKE に置き換えられる以外は、like 演算子と同じです。

	or not like: NOT LIKE 述語が OR によって結合される以外は、not like 演算子と同じです。

	exists: 要求される一つだけのオペランドは、サブクエリを表す [[yii\db\Query]] のインスタンスでなければなりません。
これは EXISTS (sub-query) という式を構築します。

	not exists: exists 演算子と同じで、NOT EXISTS (sub-query) という式を構築します。

	>、<=、その他、二つのオペランドを取る有効な DB 演算子全て: 最初のオペランドはカラム名、第二のオペランドは値でなければなりません。
例えば、['>', 'age', 10] は age>10 を生成します。

演算子形式を使う場合、Yii は内部的にパラメータバインディングを使用します。
従って、文字列形式 とは対照的に、ここでは手動でパラメータを追加する必要はありません。

条件を追加する

[[yii\db\Query::andWhere()|andWhere()]] または [[yii\db\Query::orWhere()|orWhere()]] を使って、既存の条件に別の条件を追加することが出来ます。
これらのメソッドを複数回呼んで、複数の条件を別々に追加することが出来ます。
例えば、

条件の一部を動的に構築しようとする場合は、andWhere() と orWhere() を使うのが非常に便利です。

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
 $query->andWhere(['like', 'title', $search]);
}

$search が空でない場合は次の WHERE 条件 が生成されます。

WHERE (`status` = 10) AND (`title` LIKE '%yii%')

フィルタ条件

ユーザの入力に基づいて WHERE の条件を構築する場合、普通は、空の入力値は無視したいものです。
例えば、ユーザ名とメールアドレスによる検索が可能な検索フォームにおいては、ユーザが username/email のインプットフィールドに何も入力しなかった場合は、username/email の条件を無視したいでしょう。
[[yii\db\Query::filterWhere()|filterWhere()]] メソッドを使うことによって、この目的を達することが出来ます。

// $username と $email はユーザの入力による
$query->filterWhere([
 'username' => $username,
 'email' => $email,
]);

[[yii\db\Query::filterWhere()|filterWhere()]] と [[yii\db\Query::where()|where()]] の唯一の違いは、前者は ハッシュ形式 の条件において提供された空の値を無視する、という点です。
従って、$email が空で $sername がそうではない場合は、上記のコードは、結果として WHERE username=:username という SQL 条件になります。

Info: 値が空であると見なされるのは、null、空の配列、空の文字列、または空白のみを含む文字列である場合です。

[[yii\db\Query::andWhere()|andWhere()]] または [[yii\db\Query::orWhere()|orWhere()]] と同じように、[[yii\db\Query::andFilterWhere()|andFilterWhere()]] または [[yii\db\Query::orFilterWhere()|orFilterWhere()]] を使って、既存の条件に別のフィルタ条件を追加することも出来ます。

さらに加えて、値の方に含まれている比較演算子を適切に判断してくれる [[yii\db\Query::andFilterCompare()]] があります。

$query->andFilterCompare('name', 'John Doe');
$query->andFilterCompare('rating', '>9');
$query->andFilterCompare('value', '<=100');

比較演算子を明示的に指定することも可能です。

$query->andFilterCompare('name', 'Doe', 'like');

Yii 2.0.11 以降には、HAVING の条件のためにも、同様のメソッドがあります。

	[[yii\db\Query::filterHaving()|filterHaving()]]

	[[yii\db\Query::andFilterHaving()|andFilterHaving()]]

	[[yii\db\Query::orFilterHaving()|orFilterHaving()]]

[[yii\db\Query::orderBy()|orderBy()]]

[[yii\db\Query::orderBy()|orderBy()]] メソッドは SQL クエリの ORDER BY 句を指定します。例えば、

// ... ORDER BY `id` ASC, `name` DESC
$query->orderBy([
 'id' => SORT_ASC,
 'name' => SORT_DESC,
]);

上記のコードにおいて、配列のキーはカラム名であり、配列の値は並べ替えの方向です。
PHP の定数 SORT_ASC は昇順、SORT_DESC は降順を指定するものです。

ORDER BY が単純なカラム名だけを含む場合は、生の SQL 文を書くときにするように、文字列を使って指定することが出来ます。
例えば、

$query->orderBy('id ASC, name DESC');

Note: ORDER BY が何らかの DB 式を含む場合は、配列形式を使わなければなりません。

[[yii\db\Query::addOrderBy()|addOrderBy()]] を呼んで、`ORDER BY’ 句にカラムを追加することが出来ます。
例えば、

$query->orderBy('id ASC')
 ->addOrderBy('name DESC');

[[yii\db\Query::groupBy()|groupBy()]]

[[yii\db\Query::groupBy()|groupBy()]] メソッドは SQL クエリの GROUP BY 句を指定します。
例えば、

// ... GROUP BY `id`, `status`
$query->groupBy(['id', 'status']);

GROUP BY が単純なカラム名だけを含む場合は、生の SQL 文を書くときにするように、文字列を使って指定することが出来ます。
例えば、

$query->groupBy('id, status');

Note: GROUP BY が何らかの DB 式を含む場合は、配列形式を使わなければなりません。

[[yii\db\Query::addGroupBy()|addGroupBy()]] を呼んで、GROUP BY 句にカラムを追加することが出来ます。
例えば、

$query->groupBy(['id', 'status'])
 ->addGroupBy('age');

[[yii\db\Query::having()|having()]]

[[yii\db\Query::having()|having()]] メソッドは SQL クエリの HAVING 句を指定します。
このメソッドが取る条件は、where() と同じ方法で指定することが出来ます。
例えば、

// ... HAVING `status` = 1
$query->having(['status' => 1]);

条件を指定する方法の詳細については、where() のドキュメントを参照してください。

[[yii\db\Query::andHaving()|andHaving()]] または [[yii\db\Query::orHaving()|orHaving()]] を呼んで、HAVING 句に条件を追加することが出来ます。
例えば、

// ... HAVING (`status` = 1) AND (`age` > 30)
$query->having(['status' => 1])
 ->andHaving(['>', 'age', 30]);

[[yii\db\Query::limit()|limit()]] と [[yii\db\Query::offset()|offset()]]

[[yii\db\Query::limit()|limit()]] と [[yii\db\Query::offset()|offset()]] のメソッドは、SQL クエリの LIMIT 句と OFFSET 句を指定します。
例えば、

// ... LIMIT 10 OFFSET 20
$query->limit(10)->offset(20);

無効な上限やオフセット (例えば、負の数) を指定した場合は、無視されます。

Info: LIMIT と OFFSET をサポートしていない DBMS (例えば MSSQL) に対しては、クエリビルダが LIMIT/OFFSET の振る舞いをエミュレートする SQL 文を生成します。

[[yii\db\Query::join()|join()]]

[[yii\db\Query::join()|join()]] メソッドは SQL クエリの JOIN 句を指定します。例えば、

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

[[yii\db\Query::join()|join()]] メソッドは、四つのパラメータを取ります。

	$type: 結合のタイプ、例えば、'INNER JOIN'、'LEFT JOIN'。

	$table: 結合されるテーブルの名前。

	$on: オプション。結合条件、すなわち、ON 句。
条件の指定方法の詳細については、where() を参照してください。
カラムに基づく条件を指定する場合は、配列記法は使えないことに注意してください。
例えば、['user.id' => 'comment.userId'] は、user の id が 'comment.userId' という文字列でなければならない、という条件に帰結します。
配列記法ではなく文字列記法を使って、'user.id = comment.userId' という条件を指定しなければなりません。

	$params: オプション。結合条件にバインドされるパラメータ。

INNER JOIN、LEFT JOIN および RIGHT JOIN を指定するためには、それぞれ、次のショートカットメソッドを使うことが出来ます。

	[[yii\db\Query::innerJoin()|innerJoin()]]

	[[yii\db\Query::leftJoin()|leftJoin()]]

	[[yii\db\Query::rightJoin()|rightJoin()]]

例えば、

$query->leftJoin('post', 'post.user_id = user.id');

複数のテーブルを結合するためには、テーブルごとに一回ずつ、上記の結合メソッドを複数回呼び出します。

テーブルを結合することに加えて、サブクエリを結合することも出来ます。
そうするためには、結合されるべきサブクエリを [[yii\db\Query]] オブジェクトとして指定します。
例えば、

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');

この場合、サブクエリを配列に入れて、配列のキーを使ってエイリアスを指定しなければなりません。

[[yii\db\Query::union()|union()]]

[[yii\db\Query::union()|union()]] メソッドは SQL クエリの UNION 句を指定します。例えば、

$query1 = (new \yii\db\Query())
 ->select("id, category_id AS type, name")
 ->from('post')
 ->limit(10);

$query2 = (new \yii\db\Query())
 ->select('id, type, name')
 ->from('user')
 ->limit(10);

$query1->union($query2);

[[yii\db\Query::union()|union()]] を複数回呼んで、UNION 句をさらに追加することが出来ます。

クエリメソッド

[[yii\db\Query]] は、さまざまな目的のクエリのために、一揃いのメソッドを提供しています。

	

	

	

	

	

	[[yii\db\Query::count()|count()]]: COUNT クエリの結果を返す。

	その他の集計クエリ、すなわち、[[yii\db\Query::sum()|sum($q)]], [[yii\db\Query::average()|average($q)]],
[[yii\db\Query::max()|max($q)]], [[yii\db\Query::min()|min($q)]].
これらのメソッドでは、$q パラメータは必須であり、カラム名または DB 式とすることが出来る。

上記のメソッドの全ては、オプションで、DB クエリの実行に使用されるべき [[yii\db\Connection|DB 接続]] を表す $db パラメータを取ることが出来ます。
このパラメータを省略した場合は、DB 接続として db アプリケーションコンポーネント が使用されます。
次に [[yii\db\Query::count()|count()]] クエリメソッドを使う例をもう一つ挙げます。

// 実行される SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name
$count = (new \yii\db\Query())
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->count();

あなたが [[yii\db\Query]] のクエリメソッドを呼び出すと、実際には、内部的に次の仕事がなされます。

	[[yii\db\QueryBuilder]] を呼んで、[[yii\db\Query]] の現在の構成に基づいた SQL 文を生成する。

	生成された SQL 文で [[yii\db\Command]] オブジェクトを作成する。

	[[yii\db\Command]] のクエリメソッド (例えば [[yii\db\Command::queryAll()|queryAll()]]) を呼んで、SQL 文を実行し、データを取得する。

場合によっては、[[yii\db\Query]] オブジェクトから構築された SQL 文を調べたり使ったりしたいことがあるでしょう。
次のコードを使って、その目的を達することが出来ます。

$command = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->createCommand();

// SQL 文を表示する
echo $command->sql;
// バインドされるパラメータを表示する
print_r($command->params);

// クエリ結果の全ての行を返す
$rows = $command->queryAll();

クエリ結果をインデックスする

[yii\db\Query::all()|all()] を呼ぶと、結果の行は連続した整数でインデックスされた配列で返されます。
場合によっては、違う方法でインデックスしたいことがあるでしょう。
例えば、特定のカラムの値や、何らかの式の値によってインデックスするなどです。
この目的は、[yii\db\Query::all()|all()] の前に [[yii\db\Query::indexBy()|indexBy()]] を呼ぶことによって達成することが出来ます。
例えば、

// [100 => ['id' => 100, 'username' => '...', ...], 101 => [...], 103 => [...], ...] を返す
$query = (new \yii\db\Query())
 ->from('user')
 ->limit(10)
 ->indexBy('id')
 ->all();

式の値によってインデックスするためには、[[yii\db\Query::indexBy()|indexBy()]] メソッドに無名関数を渡します。

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy(function ($row) {
 return $row['id'] . $row['username'];
 })->all();

この無名関数は、現在の行データを含む $row というパラメータを取り、現在の行のインデックス値として使われるスカラ値を返さなくてはなりません。

Note: [[yii\db\Query::groupBy()|groupBy()]] や [[yii\db\Query::orderBy()|orderBy()]]
のようなクエリメソッドが SQL に変換されてクエリの一部となるのとは対照的に、
このメソッドはデータベースからデータが取得された後で動作します。
このことは、クエリの SELECT に含まれるカラム名だけを使うことが出来る、ということを意味します。
また、テーブルプレフィックスを付けてカラムを選択した場合、例えば customer.id を選択した場合は、
リザルトセットのカラム名は id しか含みませんので、テーブルプレフィックス無しで ->indexBy('id') と呼ぶ必要があります。

バッチクエリ

大量のデータを扱う場合は、[[yii\db\Query::all()]] のようなメソッドは適していません。
なぜなら、それらのメソッドは、全てのデータをメモリ上に読み込むことを必要とするためです。
必要なメモリ量を低く抑えるために、Yii はいわゆるバッチクエリのサポートを提供しています。
バッチクエリはデータカーソルを利用して、バッチモードでデータを取得します。

バッチクエリは次のようにして使うことが出来ます。

use yii\db\Query;

$query = (new Query())
 ->from('user')
 ->orderBy('id');

foreach ($query->batch() as $users) {
 // $users は user テーブルから取得した 100 以下の行の配列
}

// または、一行ずつ反復したい場合は
foreach ($query->each() as $user) {
 // $user は user テーブルから取得した一つの行を表す
}

[[yii\db\Query::batch()]] メソッドと [[yii\db\Query::each()]] メソッドは [[yii\db\BatchQueryResult]] オブジェクトを返します。
このオブジェクトは Iterator インタフェイスを実装しており、従って、foreach 構文の中で使うことが出来ます。
初回の反復の際に、データベースに対する SQL クエリが作成されます。データは、その後、反復のたびにバッチモードで取得されます。
デフォルトでは、バッチサイズは 100 であり、各バッチにおいて 100 行のデータが取得されます。
batch() または each() メソッドに最初のパラメータを渡すことによって、バッチサイズを変更することが出来ます。

[[yii\db\Query::all()]] とは対照的に、バッチクエリは一度に 100 行のデータしかメモリに読み込みません。
データを処理した後、すぐにデータを破棄するようにすれば、バッチクエリの助けを借りてメモリ消費量を削減することが出来ます。

[[yii\db\Query::indexBy()]] によってクエリ結果をあるカラムでインデックスするように指定している場合でも、バッチクエリは正しいインデックスを保持します。
例えば、

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy('username');

foreach ($query->batch() as $users) {
 // $users は "username" カラムでインデックスされている
}

foreach ($query->each() as $username => $user) {
 // ...
}

 レスポンス形式の設定

レスポンス形式の設定

RESTful API のリクエストを処理するとき、アプリケーションは、通常、レスポンス形式の設定に関して次のステップを踏みます。

	レスポンス形式に影響するさまざまな要因、例えば、メディアタイプ、言語、バージョンなどを決定します。
このプロセスは コンテントネゴシエーション [http://en.wikipedia.org/wiki/Content_negotiation] としても知られるものです。

	リソースオブジェクトを配列に変換します。
リソース の節で説明したように、この作業は [[yii\rest\Serializer]] によって実行されます。

	配列をコンテントネゴシエーションのステップで決定された形式の文字列に変換します。
この作業は、response アプリケーションコンポーネント の [[yii\web\Response::formatters|formatters]] プロパティに登録された [[yii\web\ResponseFormatterInterface|レスポンスフォーマッタ]] によって実行されます。

コンテントネゴシエーション

Yii は [[yii\filters\ContentNegotiator]] フィルタによってコンテントネゴシエーションをサポートします。
RESTful API の基底コントローラクラス [[yii\rest\Controller]] は contentNegotiator という名前でこのフィルタを持っています。
このフィルタは、レスポンス形式のネゴシエーションと同時に言語のネゴシエーションも提供します。
例えば、RESTful API リクエストが下記のヘッダを含んでいるとします。

Accept: application/json; q=1.0, */*; q=0.1

この場合、リクエストは JSON 形式のレスポンスを受け取ることになります。例えば、次のような具合です。

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

舞台裏では、RESTful API コントローラアクションが実行される前に、[[yii\filters\ContentNegotiator]] フィルタがリクエストの Accept HTTP ヘッダをチェックして、[[yii\web\Response::format|レスポンス形式]] を 'json' に設定します。
アクションが実行されて、その結果のリソースのオブジェクトまたはコレクションが返されると、[[yii\rest\Serializer]] が結果を配列に変換します。
そして最後に、[[yii\web\JsonResponseFormatter]] が配列を JSON 文字列に変換して、それをレスポンスボディに入れます。

デフォルトでは、RESTful API は JSON と XML の両方の形式をサポートします。
新しい形式をサポートするためには、下記のように、API コントローラクラスの中で contentNegotiator フィルタの [[yii\filters\ContentNegotiator::formats|formats]] プロパティを構成しなければなりません。

use yii\web\Response;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['text/html'] = Response::FORMAT_HTML;
 return $behaviors;
}

formats プロパティのキーはサポートされる MIME タイプであり、値は対応するレスポンス形式名です。
このレスポンス形式名は、[[yii\web\Response::formatters]] の中でサポートされているものでなければなりません。

データのシリアライズ

上記で説明したように、[[yii\rest\Serializer]] が、リソースのオブジェクトやコレクションを配列に変換する際に、中心的な役割を果たします。
Serializer は、[[yii\base\Arrayable]] および [[yii\data\DataProviderInterface]] のインタフェイスを実装したオブジェクトを認識します。
前者は主としてリソースオブジェクトによって実装され、後者はリソースコレクションによって実装されています。

[[yii\rest\Controller::serializer]] プロパティに構成情報配列をセットしてシリアライザを構成することが出来ます。
例えば、場合によっては、クライアントの開発作業を単純化するために、ページネーション情報をレスポンスボディに直接に含ませたいことがあるでしょう。
そうするためには、[[yii\rest\Serializer::collectionEnvelope]] プロパティを次のように構成します。

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
 public $serializer = [
 'class' => 'yii\rest\Serializer',
 'collectionEnvelope' => 'items',
];
}

このようにすると、http://localhost/users というリクエストに対して、次のレスポンスを得ることが出来ます。

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "items": [
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
],
 "_links": {
 "self": {
 "href": "http://localhost/users?page=1"
 },
 "next": {
 "href": "http://localhost/users?page=2"
 },
 "last": {
 "href": "http://localhost/users?page=50"
 }
 },
 "_meta": {
 "totalCount": 1000,
 "pageCount": 50,
 "currentPage": 1,
 "perPage": 20
 }
}

JSON 出力を制御する

JSON 形式のレスポンスを生成する [[yii\web\JsonResponseFormatter|JsonResponseFormatter]] クラスは [[yii\helpers\Json|JSON ヘルパ]] を内部的に使用します。
このフォーマッタはさまざまなオプションによって構成することが可能です。
例えば、[[yii\web\JsonResponseFormatter::$prettyPrint|$prettyPrint]] オプションは、より読みやすいレスポンスのためのもので、開発時に有用なオプションです。
また、[[yii\web\JsonResponseFormatter::$encodeOptions|$encodeOptions]] によって JSON エンコーディングの出力を制御することが出来ます。

フォーマッタは、以下のように、アプリケーションの 構成情報 の中で、response アプリケーション・コンポーネントの [[yii\web\Response::formatters|formatters]] プロパティの中で構成することが出来ます。

'response' => [
 // ...
 'formatters' => [
 \yii\web\Response::FORMAT_JSON => [
 'class' => 'yii\web\JsonResponseFormatter',
 'prettyPrint' => YII_DEBUG, // デバッグモードでは "きれい" な出力を使用
 'encodeOptions' => JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE,
 // ...
],
],
],

DAO データベース・レイヤを使ってデータベースからデータを返す場合は、全てのデータが文字列として表されます。
しかし、特に数値は JSON では数として表現されなければなりませんので、これは必ずしも期待通りの結果であるとは言えません。
一方、ActiveRecord レイヤを使ってデータベースからデータを取得する場合は、数値カラムの値は、[[yii\db\ActiveRecord::populateRecord()]] においてデータベースからデータが取得される際に、整数に変換されます。

 ルーティング

ルーティング

リソースとコントローラのクラスが準備できたら、通常のウェブアプリケーションと同じように、http://localhost/index.php?r=user/create というような URL を使ってリソースにアクセスすることが出来ます。

実際には、綺麗な URL を有効にして HTTP 動詞を利用したいというのが普通でしょう。
例えば、POST /users というリクエストが user/create アクションへのアクセスを意味するようにする訳です。
これは、アプリケーションの構成情報で urlManager アプリケーションコンポーネント を次のように構成することによって容易に達成することが出来ます。

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

ウェブアプリケーションの URL 管理と比べたときに、上記で目に付く新しいことは、RESTful API リクエストのルーティングに [[yii\rest\UrlRule]] を使用していることです。
この特殊な URL 規則クラスが、一揃いの子 URL 規則を作成して、指定されたコントローラのルーティングと URL 生成をサポートします。
例えば、上記のコードは、おおむね下記の規則と等価です。

[
 'PUT,PATCH users/<id>' => 'user/update',
 'DELETE users/<id>' => 'user/delete',
 'GET,HEAD users/<id>' => 'user/view',
 'POST users' => 'user/create',
 'GET,HEAD users' => 'user/index',
 'users/<id>' => 'user/options',
 'users' => 'user/options',
]

そして、次の API エンドポイントがこの規則によってサポートされます。

	GET /users: 全てのユーザをページごとにリストする。

	HEAD /users: ユーザ一覧の概要を示す。

	POST /users: 新しいユーザを作成する。

	GET /users/123: ユーザ 123 の詳細を返す。

	HEAD /users/123: ユーザ 123 の概要情報を示す。

	PATCH /users/123 と PUT /users/123: ユーザ 123 を更新する。

	DELETE /users/123: ユーザ 123 を削除する。

	OPTIONS /users: エンドポイント /users に関してサポートされる動詞を示す。

	OPTIONS /users/123: エンドポイント /users/123 に関してサポートされる動詞を示す。

only および except オプションを構成すると、それぞれ、どのアクションをサポートするか、また、どのアクションを無効にするかを明示的に指定することが出来ます。
例えば、

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'except' => ['delete', 'create', 'update'],
],

また、patterns あるいは extraPatterns を構成して、既存のパターンを再定義したり、この規則によってサポートされる新しいパターンを追加したりすることも出来ます。
例えば、エンドポイント GET /users/search によって新しいアクション search をサポートするためには、extraPatterns オプションを次のように構成します。

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'extraPatterns' => [
 'GET search' => 'search',
],
]

エンドポイントの URL ではコントローラ ID user が users という複数形で出現していることに気が付いたかもしれません。
これは、[[yii\rest\UrlRule]] が子 URL 規則を作るときに、コントローラの ID を自動的に複数形にするためです。
この振る舞いは [[yii\rest\UrlRule::pluralize]] を false に設定することで無効にすることが出来ます。

Info: コントローラ ID の複数形化は [[yii\helpers\Inflector::pluralize()]] によって行われます。
このメソッドは特殊な複数形の規則を考慮します。
例えば、box という単語の複数形は boxs ではなく boxes になります。

自動的な複数形化があなたの要求を満たさない場合は、[[yii\rest\UrlRule::controller]] プロパティを構成して、エンドポイント URL で使用される名前とコントローラ ID の対応を明示的に指定することも可能です。
例えば、次のコードはエンドポイント名 u をコントローラ ID user に割り当てます。

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['u' => 'user'],
]

 テスト

テスト

テストはソフトウェア開発の重要な部分です。
気付いているか否かにかかわらず、私たちは継続的にテストをしています。
例えば、PHP でクラスを書くとき、私たちはステップごとにデバッグしたり、または単純に echo 文や die 文を使ったりして、実装が最初の計画通りに動作することを検証します。
ウェブアプリケーションの場合は、何らかのテストデータをフォームに入力して、ページが期待通りにユーザと相互作用をすることを確認します。

テストを実行するプロセスを自動化して、何かを検証する必要があるときは、いつでも、それを代行してくれるコードを呼び出すだけでよいようにすることが出来ます。
結果が計画したものと合致することを検証するコードが テスト と呼ばれ、それを作成して更に実行するプロセスが テスト自動化 として知られています。
このテストの章の主題は、このテストの自動化です。

テストとともに開発する

テスト駆動開発 (TDD) とビヘイビア駆動開発 (BDD) のソフトウェア開発手法においては、実際のコードを書く前に、コードの断片または全体の機能の振る舞いを一連のシナリオまたはテストとして記述します。
そして、その後で初めて、テストに合格するように実装を作成して、意図された振る舞いが達成されていることを検証します。

一つの機能を開発するプロセスは以下のようになります。

	実装されるべき機能を記述するテストを作成する。

	新しいテストを走らせて、失敗することを確認する。
まだ実装がないので、これは予期された結果です。

	新しいテストに合格するための単純なコードを書く。

	全てのテストを走らせて、全てが合格することを確認する。

	コードを改良して、それでも全てのテストが OK であることを確認する。

完了すれば、別の機能または改良のために、このプロセスを再び繰り返します。
既存の機能が変更される場合は、テストも変更されなければなりません。

Tip: 多数の小さくて単純なイテレーションを繰り返すために時間を取られていると感じる場合は、テストシナリオのカバー範囲を広くして、テストを再度実行するまでの作業量を増やしてみてください。
デバッグばかりやっている場合は、逆に範囲を狭めてみてください。

全ての実装作業の前にテストを作成する理由は、そうすれば、その後で、達成したい事柄に集中して「どのようにするか」に没頭することが出来るからです。
通常、そのようにすることは、良い抽象化、機能修正時の容易なテスト保守、また、結合度の低いコンポーネントにつながります。

ですから、このような手法の長所を要約すると次のようになります。

	一時に一つの事柄に集中できるため、計画と実装がより良いものになる。

	より多くの機能をより詳細にテストでカバーできる。つまり、テストが OK なら何も問題がないと期待できる。

通常は、長い期間で見れば、かなり時間を節約する効果があります。

Tip: ソフトウェアの要求仕様の取り纏めと対象事物のモデリングに関する原則について更に知りたい場合は、ドメイン駆動設計 (DDD) [http://ja.wikipedia.org/wiki/%E3%83%89%E3%83%A1%E3%82%A4%E3%83%B3%E9%A7%86%E5%8B%95%E8%A8%AD%E8%A8%88] を学習するのが良いでしょう。

いつ、どうやって、テストするか

上記で説明したテストファーストの手法は長期間にわたる比較的複雑なプロジェクトには合理的なものですが、簡単なプロジェクトでは、やりすぎとなるおそれもあります。
この手法が適切であることを示す指標がいくつかあります。

	プロジェクトは既に大きくて複雑である。

	プロジェクトの要求仕様が複雑になってきている。プロジェクトが継続的に大きくなっている。

	プロジェクトが長期にわたる予定である。

	失敗のコストが高すぎる。

既存の実装の振る舞いをカバーするテストを作成することは、何も悪いことではありません。

	プロジェクトはレガシーなものであるが、段階的に刷新される予定である。

	従事すべきプロジェクトを得たが、それにはテストがなかった。

どんな形式の自動化テストもやりすぎになる、という場合もあるでしょう。

	プロジェクトは単純で、この先も、複雑になる心配はない。

	これ以上かかわることはない一度限りのプロジェクトである。

ただ、このような場合であっても、時間に余裕があれば、テストを自動化することは良いことです。

参考

	Test Driven Development: By Example / Kent Beck. ISBN: 0321146530.

 コンソールアプリケーション

コンソールアプリケーション

ウェブアプリケーションを構築するための豊富な機能に加えて、Yii はコンソールアプリケーションのためのフル装備のサポートを持っています。
コンソールアプリケーションは、主として、ウェブサイトのために実行する必要のあるバックグラウンドのタスクやメンテナンスのタスクを作成するために使われるものです。

コンソールアプリケーションの構造は Yii のウェブアプリケーションのそれと非常に良く似ています。
コンソールアプリケーションは一つまたは複数の [[yii\console\Controller]] クラスから構成されます。
コントローラはコンソール環境ではしばしば「コマンド」と呼ばれます。
また、各コントローラは、ウェブのコントローラと全く同じように、一つまたは複数のアクションを持つことが出来ます。

プロジェクトテンプレートは、両方とも、既にコンソールアプリケーションを持っています。
レポジトリのベースディレクトリにある yii スクリプトを呼び出すことによって、コンソールアプリケーションを実行することが出来ます。
このスクリプトは、何もパラメータを追加せずに実行すると、利用できるコマンドの一覧を表示します。

[image: ./yii コマンドを実行してヘルプを表示する]

スクリーンショットに表示されているように、デフォルトで利用できる一連のコマンドが Yii によって既に定義されています。

	[[yii\console\controllers\AssetController|AssetController]] - JavaScript と CSS ファイルを結合して圧縮することが出来ます。
このコマンドについては、アセットの節 でさらに学習することが出来ます。

	[[yii\console\controllers\CacheController|CacheController]] - アプリケーションのキャッシュをフラッシュすることが出来ます。

	[[yii\console\controllers\FixtureController|FixtureController]] - テストのために、フィクスチャデータのロードとアンロードを管理します。
このコマンドについては テストのフィクスチャの節 で詳細に説明されています。

	[[yii\console\controllers\HelpController|HelpController]] - コンソールコマンドについてのヘルプ情報を提供します。
これがデフォルトのコマンドであり、上のスクリーンショットで見た出力を表示するものです。

	[[yii\console\controllers\MessageController|MessageController]] - ソースファイルから翻訳すべきメッセージを抽出します。
このコマンドについてさらに学習するためには、国際化の節 を参照してください。

	[[yii\console\controllers\MigrateController|MigrateController]] - アプリケーションのマイグレーションを管理します。
データベースのマイグレーションについては、データベースのマイグレーションの節 で詳しく説明されています。

	[[yii\console\controllers\ServeController|ServeController]] - PHP の内蔵ウェブサーバを走らせることが出来ます。

使用方法

コンソールのコントローラアクションは次の構文を使って実行します。

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]

上記において、<route> はコントローラアクションへのルートを示すものです。
オプション (options) はクラスのプロパティに代入され、引数 (arguments) はアクションメソッドのパラメータとなります。

例えば、[[yii\console\controllers\MigrateController::$migrationTable|MigrateController::$migrationTable]] として migrations を指定し、マイグレーションの上限を 5 と指定して [[yii\console\controllers\MigrateController::actionUp()|MigrateController::actionUp()]] を呼び出すためには、次のようにします。

yii migrate/up 5 --migrationTable=migrations

Note: コンソールで * を使う場合は、"*" として引用符号で囲むことを忘れないでください。
これは、* をカレントディレクトリの全てのファイル名に置き換えられるシェルのグロブとして実行してしまうことを避けるためです。

エントリスクリプト

コンソールアプリケーションのエントリスクリプトは、ウェブアプリケーションで使用されるブートストラップファイル index.php に相当するものです。
コンソールのエントリスクリプトは通常は yii と呼ばれるもので、アプリケーションのルートディレクトリに配置されています。
それは次のようなコードを含んでいます。

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);

require(__DIR__ . '/vendor/autoload.php');
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

このスクリプトはアプリケーションの一部として生成されるものです。
あなたの必要を満たすように、自由に編集して構いません。
エラー発生時にスタックトレースを見たくない、または、全体のパフォーマンスを上げたい、という場合は、YII_DEBUG 定数を false に設定することが出来ます。
ベーシックプロジェクトテンプレートでも、アドバンストプロジェクトテンプレートでも、コンソールアプリケーションのエントリスクリプトは、開発者に優しい環境を提供するために、デフォルトでデバッグを有効にしています。

構成情報

上記のコードで見るように、コンソールアプリケーションは、console.php という名前のそれ自身の構成情報ファイルを使用します。
このファイルの中で、さまざまな アプリケーションコンポーネント、取り分け、コンソールアプリケーションのためのプロパティを構成しなければなりません。

ウェブアプリケーションとコンソールアプリケーションが構成情報のパラメータと値を数多く共有する場合は、共通の部分を独立したファイルに移動して、そのファイルを両方のアプリケーション (ウェブとコンソール) の構成情報にインクルードすることを検討しても良いでしょう。
その例を「アドバンスト」プロジェクトテンプレートの中で見ることが出来ます。

Tip: 場合によっては、エントリスクリプトで指定されているのとは異なるアプリケーション構成情報を使ってコンソールコマンドを実行したいことがあります。
例えば、yii migrate コマンドを使ってテストのデータベースをアップグレードするとき、データベースが個々のテストスイートの中で構成されているような場合です。
構成情報を動的に変更するためには、コマンドを実行するときに appconfig オプションを使ってカスタムの構成情報ファイルを指定するだけで大丈夫です。

yii <route> --appconfig=path/to/config.php ...

あなた自身のコンソールコマンドを作成する

コンソールのコントローラとアクション

コンソールコマンドは、[[yii\console\Controller]] を拡張するコントローラクラスとして定義することが出来ます。
コントローラクラスの中で、コントローラのサブコマンドに対応する一つまたは複数のアクションを定義します。
各アクションの中で、その特定のサブコマンドのための適切なタスクを実装するコードを書きます。

コマンドを実行するときは、コントローラのアクションに対するルートを指定する必要があります。
例えば、ルート migrate/create は、[[yii\console\controllers\MigrateController::actionCreate()|MigrateController::actionCreate()]] アクションメソッドに対応するサブコマンドを呼び出します。
実行時に提供されたルートにアクション ID が含まれない場合は、(ウェブのコントローラの場合と同じように) デフォルトのアクションが実行されます。

オプション

[[yii\console\Controller::options()]] メソッドをオーバーライドすることによって、コンソールコマンド (controller/actionID) で利用できるオプションを指定することが出来ます。
このメソッドはコントローラクラスのパブリックなプロパティのリストを返さなければなりません。
コマンドを実行するときは、--OptionName=OptionValue という構文を使ってオプションの値を指定することが出来ます。これはコントローラクラスの OptionName プロパティに OptionValue を割り当てるものです。

オプションのデフォルト値が配列型である場合、実行時にこのオプションをセットすると、オプションの値は、入力文字列をカンマで分離することによって、配列に変換されます。

オプションのエイリアス

バージョン 2.0.8 以降、コンソールコマンドは、オプションにエイリアスを追加するための [[yii\console\Controller::optionAliases()]] メソッドを提供しています。

エイリアスを定義するためには、コントローラで [[yii\console\Controller::optionAliases()]] をオーバーライドします。
例えば、

namespace app\commands;

use yii\console\Controller;

class HelloController extends Controller
{
 public $message;

 public function options($actionID)
 {
 return ['message'];
 }

 public function optionAliases()
 {
 return ['m' => 'message'];
 }

 public function actionIndex()
 {
 echo $this->message . "\n";
 }
}

これで、次の構文を使ってコマンドを走らせることが出来るようになります。

./yii hello -m=hello

引数

オプションに加えてに、コマンドは引数を取ることも出来ます。
引数は、リクエストされたサブコマンドに対応するアクションメソッドへのパラメータとして渡されます。
最初の引数は最初のパラメータに対応し、二番目の引数は二番目のパラメータに対応し、以下同様です。
コマンドが呼び出されたときに十分な数の引数が提供されなかったときは、対応するパラメータは、定義されていれば、宣言されているデフォルト値をとります。
デフォルト値が設定されておらず、実行時に値が提供されなかった場合は、コマンドはエラーで終了します。

array タイプヒントを使って、引数が配列として扱われるべきことを示すことが出来ます。
配列は入力文字列をカンマで分割することによって生成されます。

次に引数を宣言する方法を示す例を挙げます。

class ExampleController extends \yii\console\Controller
{
 // コマンド "yii example/create test" は "actionCreate('test')" を呼び出す
 public function actionCreate($name) { ... }

 // コマンド "yii example/index city" は "actionIndex('city', 'name')" を呼び出す
 // コマンド "yii example/index city id" は call "actionIndex('city', 'id')" を呼び出す
 public function actionIndex($category, $order = 'name') { ... }

 // コマンド "yii example/add test" は "actionAdd(['test'])" を呼び出す
 // コマンド "yii example/add test1,test2" は "actionAdd(['test1', 'test2'])" を呼び出す
 public function actionAdd(array $name) { ... }
}

終了コード

終了コードを使うことはコンソールアプリケーション開発のベストプラクティスです。
コマンドは何も問題が無かったことを示すために 0 を返すのが慣例です。
コマンドが 1 以上の値を返したときは、何かエラーを示唆するものとみなされます。
返される数値がエラーコードであり、それによってエラーに関する詳細を見出すことが出来る場合もあります。
例えば、1 は一般的な未知のエラーを示すものとし、2 以上の全てのコードは特定のエラー、例えば、入力エラー、ファイルが見つからない、等々を示すものとすることが出来ます。

コンソールコマンドに終了コードを返させるためには、単にコントローラのアクションメソッドで整数を返すようにします。

public function actionIndex()
{
 if (/* 何らかの問題が発生 */) {
 echo "A problem occurred!\n";
 return 1;
 }
 // 何かをする
 return 0;
}

いくつか使用できる事前定義された定数があります。

	[[yii\console\Controller::EXIT_CODE_NORMAL|Controller::EXIT_CODE_NORMAL]] - 値は 0

	[[yii\console\Controller::EXIT_CODE_ERROR|Controller::EXIT_CODE_ERROR]] - 値は 1

もっと多くのエラーコードの種類がある場合は、コントローラで意味のある定数を定義するのが良いプラクティスです。

書式設定と色

Yii のコンソールコマンドは出力の書式設定をサポートしています。
これは、コマンドを走らせている端末がサポートしていない場合は、自動的に書式設定の無い出力にグレードダウンされます。

書式設定された文字列を出力することは簡単です。
ボールドのテキストを出力するには、次のようにします。

$this->stdout("Hello?\n", Console::BOLD);

複数のスタイルを動的に結合して文字列を構成する必要がある場合は、[[yii\helpers\Console::ansiFormat()|ansiFormat()]] を使うほうが良いでしょう。

$name = $this->ansiFormat('Alex', Console::FG_YELLOW);
echo "Hello, my name is $name.";

 エントリスクリプト

エントリスクリプト

エントリスクリプトは、アプリケーションのブートストラップの過程における最初のステップです。
アプリケーションは (ウェブアプリケーションであれ、コンソールアプリケーションであれ）単一のエントリスクリプトを持ちます。
エンドユーザはエントリスクリプトに対してリクエストを発行し、エントリスクリプトはアプリケーションのインスタンスを作成して、それにリクエストを送付します。

ウェブアプリケーションのエントリスクリプトは、エンドユーザからアクセス出来るように、ウェブからのアクセスが可能なディレクトリの下に保管されなければなりません。
たいていは index.php と名付けられますが、ウェブサーバが見つけることが出来る限り、どのような名前を使っても構いません。

コンソールアプリケーションのエントリスクリプトは、通常は、アプリケーションの ベースパス の下に保管され、yii と名付けられます (.php の拡張子を伴います) 。
これは、ユーザが ./yii <route> [引数] [オプション] というコマンドによってコンソールアプリケーションを走らせることが出来るようにするためのスクリプトであり、実行可能なパーミッションを与えられるべきものです。

エントリスクリプトは主として次の仕事をします。

	グローバルな定数を定義する。

	Composer のオートローダ [https://getcomposer.org/doc/01-basic-usage.md#autoloading] を登録する。

	[[Yii]] クラスファイルをインクルードする。

	アプリケーションの構成情報を読み出す。

	アプリケーション のインスタンスを生成して構成する。

	[[yii\base\Application::run()]] を呼んで、受け取ったリクエストを処理する。

ウェブアプリケーション

次に示すのが、ベーシックウェブプロジェクトテンプレート のエントリスクリプトです。

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// Composer のオートローダを登録
require(__DIR__ . '/../vendor/autoload.php');

// Yii クラスファイルをインクルード
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// アプリケーションの構成情報を読み出す
$config = require(__DIR__ . '/../config/web.php');

// アプリケーションを作成し、構成して、走らせる
(new yii\web\Application($config))->run();

コンソールアプリケーション

同様に、下記がコンソールアプリケーションのエントリスクリプトです。

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// Composer のオートローダを登録
require(__DIR__ . '/vendor/autoload.php');

// Yii クラスファイルをインクルード
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

// アプリケーションの構成情報を読み出す
$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

定数を定義する

グローバルな定数を定義するには、エントリスクリプトが最善の場所です。
Yii は下記の三つの定数をサポートしています。

	YII_DEBUG: アプリケーションがデバッグモードで走るかどうかを指定します。
デバッグモードにおいては、アプリケーションはより多くのログ情報を保持し、例外が投げられたときに、より詳細なエラーのコールスタックを表示します。
この理由により、デバッグモードは主として開発時に使用されるべきものとなります。
YII_DEBUG のデフォルト値は false です。

	YII_ENV: どういう環境でアプリケーションが走っているかを指定します。
詳細は、構成情報 の節で説明されます。
YII_ENV のデフォルト値は 'prod' であり、アプリケーションが本番環境で走っていることを意味します。

	YII_ENABLE_ERROR_HANDLER: Yii によって提供されるエラーハンドラを有効にするかどうかを指定します。
この定数のデフォルト値は true です。

定数を定義するときには、しばしば次のようなコードを用います。

defined('YII_DEBUG') or define('YII_DEBUG', true);

これは下記のコードと同じ意味のものです。

if (!defined('YII_DEBUG')) {
 define('YII_DEBUG', true);
}

明らかに前者の方が簡潔で理解しやすいでしょう。

他のPHP ファイルがインクルードされる時に定数の効力が生じるようにするために、定数はエントリスクリプトの冒頭で定義されなければなりません。

 暗号化

暗号化

個の節では、セキュリティの以下の側面について見ていきます。

	乱数データの生成

	暗号化と複合化

	データの完全性の確認

擬似乱数データを生成する

擬似乱数データはさまざまな状況で役に立ちます。
例えば、メール経由でパスワードをリセットするときは、トークンを生成してデータベースに保存し、それをユーザにメールで送信します。
そして、ユーザはこのトークンを自分がアカウントの所有者であることの証拠として使用します。
このトークンがユニークかつ推測困難なものであることは非常に重要なことです。
さもなくば、攻撃者がトークンの値を推測してユーザのパスワードをリセットする可能性があります。

Yii のセキュリティヘルパは擬似乱数データの生成を単純な作業にしてくれます。

$key = Yii::$app->getSecurity()->generateRandomString();

暗号化と復号化

Yii は秘密鍵を使ってデータを暗号化/復号化することを可能にする便利なヘルパ関数を提供しています。
データを暗号化関数に渡して、秘密鍵を持つ者だけが復号化することが出来るようにすることが出来ます。
例えば、何らかの情報をデータベースに保存する必要があるけれども、(たとえアプリケーションのデータベースが第三者に漏洩した場合でも) 秘密鍵を持つユーザだけがそれを見ることが出来るようにする必要がある、という場合には次のようにします。

// $data と $secretKey はフォームから取得する
$encryptedData = Yii::$app->getSecurity()->encryptByPassword($data, $secretKey);
// $encryptedData をデータベースに保存する

そして、後でユーザがデータを読みたいときは、次のようにします。

// $secretKey はユーザ入力から取得、$encryptedData はデータベースから取得
$data = Yii::$app->getSecurity()->decryptByPassword($encryptedData, $secretKey);

[[\yii\base\Security::encryptByKey()]] と [[\yii\base\Security::decryptByKey()]] によって、パスワードの代わりにキーを使うことも可能です。

データの完全性を確認する

データが第三者によって改竄されたり、更には何らかの形で毀損されたりしていないことを確認する必要がある、という場合があります。
Yii は二つのヘルパ関数の形で、データの完全性を確認するための簡単な方法を提供しています。

秘密鍵とデータから生成されたハッシュをデータにプレフィクスします。

// $secretKey はアプリケーションまたはユーザの秘密、$genuineData は信頼できるソースから取得
$data = Yii::$app->getSecurity()->hashData($genuineData, $secretKey);

データの完全性が毀損されていないかチェックします。

// $secretKey はアプリケーションまたはユーザの秘密、$data は信頼できないソースから取得
$data = Yii::$app->getSecurity()->validateData($data, $secretKey);

 Gii でコードを生成する

Gii でコードを生成する

この節では、Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md] を使って、ウェブサイトの一般的な機能のいくつかを実装するコードを自動的に生成する方法を説明します。
Gii を使ってコードを自動生成することは、Gii のウェブページに表示される指示に対して正しい情報を入力するだけのことです。

このチュートリアルを通じて、次のことを学びます。

	アプリケーションで Gii を有効にする方法

	Gii を使って、アクティブレコードのクラスを生成する方法

	Gii を使って、DB テーブルの CRUD 操作を実装するコードを生成する方法

	Gii によって生成されるコードをカスタマイズする方法

Gii を開始する

Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md] は Yii の モジュール として提供されています。
Gii は、アプリケーションの [[yii\base\Application::modules|modules]] プロパティの中で構成することで有効にすることが出来ます。
アプリケーションを生成した仕方にもよりますが、config/web.php の構成情報ファイルの中に、多分、下記のコードが既に提供されているでしょう。

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

上記の構成情報は、開発環境 において、アプリケーションは gii という名前のモジュールをインクルードすべきこと、そして gii は [[yii\gii\Module]] というクラスであることを記述しています。

アプリケーションの エントリスクリプト である web/index.php をチェックすると、次の行があることに気付くでしょう。
これは本質的には YII_ENV_DEV を true に設定するものです。

defined('YII_ENV') or define('YII_ENV', 'dev');

この行のおかげで、アプリケーションは開発モードになっており、上記の構成情報によって、Gii が既に有効になっています。
これで、下記の URL によって Gii にアクセスすることが出来ます。

http://hostname/index.php?r=gii

Note: ローカルホスト以外のマシンから Gii にアクセスしようとすると、デフォルトではセキュリティ上の理由でアクセスが拒否されます。
下記のように Gii を構成して、許可される IP アドレスを追加することが出来ます。

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // 必要に応じて調整
],

[image: Gii]

アクティブレコードのクラスを生成する

Gii を使ってアクティブレコードのクラスを生成するためには、”Model Generator” を選びます
(Gii のインデックスページのリンクをクリックして下さい)。
そして、次のようにフォームに入力します。

	Table Name: country

	Model Class: Country

[image: Model Generator]

次に、”Preview” ボタンをクリックします。
そうすると、結果として作成されるクラスファイルのリストに models/Country.php が挙ってきます。
クラスファイルの名前をクリックすると、内容をプレビューすることが出来ます。

Gii を使うときに、既に同じファイルを作成していて、それを上書きしようとしている場合は、ファイル名の隣の diff ボタンをクリックして、生成されようとしているコードと既存のバージョンの違いを見てください。

[image: Model Generator のプレビュー]

既存のファイルを上書きするときは、”overwrite” の隣のチェックボックスをチェックしてから “Generate” ボタンをクリックします。
新しいファイルを作成するときは、単に “Generate” をクリックすれば十分です。

次に、コードの生成が成功したことを示す確認ページが表示されます。
既存のファイルがあった場合は、それが新しく生成されたコードで上書きされたことを示すメッセージも同じく表示されます。

CRUD コードを生成する

CRUD は Create(作成)、Read(読出し)、Update(更新)、そして Delete(削除) を意味しており、ほとんどのウェブサイトでデータを扱うときによく用いられる4つのタスクを表しています。
Gii を使って CRUD 機能を作成するためには、”CRUD Generator” を選びます (Gii のインデックスページのリンクをクリックしてください) 。
「国リスト」のサンプルのためには、表示されたフォームに以下のように入力します。

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: CRUD Generator]

次に、”Preview” ボタンをクリックします。
生成されるファイルのリストは、次のようになります。

[image: CRUD Generator のプレビュー]

以前に（ガイドのデータベースの節で）controllers/CountryController.php と views/country/index.php のファイルを作成していた場合は、それらを置き換えるために “overwrite” のチェックボックスをチェックしてください。
(以前のバージョンは フル機能の CRUD をサポートしていません。)

試してみる

どのように動作するかを見るために、ブラウザを使って下記の URL にアクセスしてください。

http://hostname/index.php?r=country%2Findex

データグリッドがデータベーステーブルから取得した国を表示しているページが表示されます。
グリッドをソートしたり、カラムのヘッダに検索条件を入力してグリッドにフィルタを適用したりすることが出来ます。

グリッドに表示されているそれぞれの国について、詳細を見たり、更新したり、または削除したりすることが出来ます。
また、グリッドの上にある “Create Country” ボタンをクリックすると、新しい国データを作成するためのフォームが利用に供されます。

[image: 国リストのデータグリッド]

[image: 国データを更新する]

下記が Gii によって生成されるファイルのリストです。
これらの機能がどのように実装されているかを調査したい場合、また、これらの機能をカスタマイズしたいときに参照してください。

	Controller: controllers/CountryController.php

	Models: models/Country.php と models/CountrySearch.php

	Views: views/country/*.php

Info: Gii は非常にカスタマイズしやすく拡張しやすいコード生成ツールとして設計されています。
これを賢く使うと、アプリケーションの開発速度を大いに高めることが出来ます。
詳細については、Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md] の節を参照してください。

まとめ

この節では、Gii を使ってコードを生成して、データベーステーブルに保存されているコンテントのための完全な CRUD 機能を実装する方法を学びました。

 モデル

モデル

モデルは MVC [http://ja.wikipedia.org/wiki/Model_View_Controller] アーキテクチャの一部を成すものです。
これは、ビジネスのデータ、規則、ロジックを表現するオブジェクトです。

モデルクラスは、[[yii\base\Model]] またはその子クラスを拡張することによって作成することが出来ます。
基底クラス [[yii\base\Model]] は、次のような数多くの有用な機能をサポートしています。

	属性: ビジネスデータを表現します。通常のオブジェクトプロパティや配列要素のようにしてアクセスすることが出来ます。

	属性のラベル: 属性の表示ラベルを指定します。

	一括代入: 一回のステップで複数の属性にデータを投入することをサポートしています。

	検証規則: 宣言された検証規則に基いて入力されたデータの有効性を保証します。

	データのエクスポート: カスタマイズ可能な形式でモデルデータを配列にエクスポートすることが出来ます。

Model クラスは、アクティブレコード のような、更に高度なモデルの基底クラスでもあります。
それらの高度なモデルについての詳細は、関連するドキュメントを参照してください。

Info: あなたのモデルクラスの基底クラスとして [[yii\base\Model]] を使うことが要求されている訳ではありません。
しかしながら、Yii のコンポーネントの多くが [[yii\base\Model]] をサポートするように作られていますので、通常は [[yii\base\Model]] がモデルの基底クラスとして推奨されます。

属性

モデルはビジネスデータを 属性 の形式で表現します。
全ての属性はそれぞれパブリックにアクセス可能なモデルのプロパティと同様なものです。
[[yii\base\Model::attributes()]] メソッドが、モデルがどのような属性を持つかを指定します。

属性に対しては、通常のオブジェクトプロパティにアクセスするのと同じようにして、アクセスすることが出来ます。

$model = new \app\models\ContactForm;

// "name" は ContactForm の属性
$model->name = 'example';
echo $model->name;

また、配列の要素にアクセスするようして、属性にアクセスすることも出来ます。
これは、[[yii\base\Model]] が ArrayAccess インターフェイス [http://php.net/manual/ja/class.arrayaccess.php] と Traversable インターフェイス [http://jp2.php.net/manual/ja/class.traversable.php] をサポートしている恩恵です。

$model = new \app\models\ContactForm;

// 配列要素のように属性にアクセスする
$model['name'] = 'example';
echo $model['name'];

// モデルは foreach で中身をたどることが出来る
foreach ($model as $name => $value) {
 echo "$name: $value\n";
}

属性を定義する

あなたのモデルが [[yii\base\Model]] を直接に拡張するものである場合、デフォルトでは、全ての static でない public な メンバ変数は属性となります。
例えば、次に示す ContactForm モデルは四つの属性、すなわち、name、email、subject、そして、body を持ちます。
この ContactForm モデルは、HTML フォームから受け取る入力データを表現するために使われます。

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;
}

[[yii\base\Model::attributes()]] をオーバーライドして、属性を異なる方法で定義することが出来ます。
このメソッドはモデルが持つ属性の名前を返さなくてはなりません。
例えば、[[yii\db\ActiveRecord]] は、関連付けられたデータベーステーブルのコラム名を属性の名前として返すことによって、属性を定義しています。
ただし、これと同時に、定義された属性に対して通常のオブジェクトプロパティと同じようにアクセスすることが出来るように、__get() や __set() などのマジックメソッドをオーバーライドする必要があるかもしれないことに注意してください。

属性のラベル

属性の値を表示したり、入力してもらったりするときに、属性と関連付けられたラベルを表示する必要があることがよくあります。
例えば、firstName という名前の属性を考えたとき、入力フォームやエラーメッセージのような箇所でエンドユーザに表示するときは、もっとユーザフレンドリーな First Name というラベルを表示したいと思うでしょう。

[[yii\base\Model::getAttributeLabel()]] を呼ぶことによって属性のラベルを得ることが出来ます。例えば、

$model = new \app\models\ContactForm;

// "Name" を表示する
echo $model->getAttributeLabel('name');

デフォルトでは、属性のラベルは属性の名前から自動的に生成されます。
ラベルの生成は [[yii\base\Model::generateAttributeLabel()]] というメソッドによって行われます。
このメソッドは、キャメルケースの変数名を複数の単語に分割し、各単語の最初の文字を大文字にします。
例えば、username は Username となり、firstName は First Name となります。

自動的に生成されるラベルを使用したくない場合は、[[yii\base\Model::attributeLabels()]] をオーバーライドして、属性のラベルを明示的に宣言することが出来ます。例えば、

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;

 public function attributeLabels()
 {
 return [
 'name' => 'Your name',
 'email' => 'Your email address',
 'subject' => 'Subject',
 'body' => 'Content',
];
 }
}

複数の言語をサポートするアプリケーションでは、属性のラベルを翻訳したいと思うでしょう。
これも、以下のように、[[yii\base\Model::attributeLabels()|attributeLabels()]] の中で行うことが出来ます。

public function attributeLabels()
{
 return [
 'name' => \Yii::t('app', 'Your name'),
 'email' => \Yii::t('app', 'Your email address'),
 'subject' => \Yii::t('app', 'Subject'),
 'body' => \Yii::t('app', 'Content'),
];
}

条件に従って属性のラベルを定義することも出来ます。
例えば、モデルが使用される シナリオ に基づいて、同じ属性に対して違うラベルを返すことことが出来ます。

Info: 厳密に言えば、属性のラベルは ビュー の一部を成すものです。
しかし、たいていの場合、モデルの中でラベルを宣言する方が便利が良く、結果としてクリーンで再利用可能なコードになります。

シナリオ

モデルはさまざまに異なる シナリオ で使用されます。
例えば、User モデルはユーザログインの入力を収集するために使われますが、同時に、ユーザ登録の目的でも使われます。
異なるシナリオの下では、モデルが使用するビジネスルールとロジックも異なるものになり得ます。
例えば、email 属性はユーザ登録の際には必須とされるかも知れませんが、ログインの際にはそうではないでしょう。

モデルは [[yii\base\Model::scenario]] プロパティを使って、自身が使われているシナリオを追跡します。
デフォルトでは、モデルは default という一つのシナリオだけをサポートします。
次のコードは、モデルのシナリオを設定する二つの方法を示すものです。

// シナリオをプロパティとして設定する
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// シナリオを設定情報で設定する
$model = new User(['scenario' => User::SCENARIO_LOGIN]);

デフォルトでは、モデルによってサポートされるシナリオは、モデルで宣言されている 検証規則 によって決定されます。
しかし、次のように、[[yii\base\Model::scenarios()]] メソッドをオーバーライドして、この振る舞いをカスタマイズすることが出来ます。

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
 }
}

Info: 上記の例と後続の例では、モデルクラスは [[yii\db\ActiveRecord]] を拡張するものとなっています。
というのは、複数のシナリオを使用することは、通常は、アクティブレコード クラスで発生するからです。

seanarios() メソッドは、キーがシナリオの名前であり、値が対応する アクティブな属性 である配列を返します。
アクティブな属性とは、一括代入 することが出来て、検証 の対象になる属性です。
上記の例では、login シナリオにおいては username と password の属性がアクティブであり、一方、register シナリオにおいては、username と password に加えて email もアクティブです。

scenarios() のデフォルトの実装は、検証規則の宣言メソッドである [[yii\base\Model::rules()]] に現れる全てのシナリオを返すものです。
scenarios() をオーバーライドするときに、デフォルトのシナリオに加えて新しいシナリオを導入したい場合は、次のようなコードを書きます。

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 public function scenarios()
 {
 $scenarios = parent::scenarios();
 $scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];
 $scenarios[self::SCENARIO_REGISTER] = ['username', 'email', 'password'];
 return $scenarios;
 }
}

シナリオの機能は、主として、検証 と 属性の一括代入 によって使用されます。
しかし、他の目的に使うことも可能です。例えば、現在のシナリオに基づいて異なる 属性のラベル を宣言することも出来ます。

検証規則

モデルのデータをエンドユーザから受け取ったときは、データを検証して、それが一定の規則 (検証規則、あるいは、いわゆる ビジネスルール) を満たしていることを確認しなければなりません。
ContactForm モデルを例に挙げるなら、全ての属性が空ではなく、email 属性が有効なメールアドレスを含んでいることを確認したいでしょう。
いずれかの属性の値が対応するビジネスルールを満たしていないときは、ユーザがエラーを訂正するのを助ける適切なエラーメッセージが表示されなければなりません。

受信したデータを検証するために、[[yii\base\Model::validate()]] を呼ぶことが出来ます。
このメソッドは、[[yii\base\Model::rules()]] で宣言された検証規則を使って、該当するすべての属性を検証します。
エラーが見つからなければ、メソッドは true を返します。
そうでなければ、[[yii\base\Model::errors]] にエラーを保存して、false を返します。
例えば、

$model = new \app\models\ContactForm;

// モデルの属性にユーザの入力を代入する
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // すべての入力値は有効である
} else {
 // 検証が失敗: $errors はエラーメッセージを含む配列
 $errors = $model->errors;
}

モデルに関連付けられた検証規則を宣言するためには、[[yii\base\Model::rules()]] メソッドをオーバーライドして、モデルの属性が満たすべき規則を返すようにします。
次の例は、ContactForm モデルのために宣言された検証規則を示します。

public function rules()
{
 return [
 // name、email、subject、body の属性が必須
 [['name', 'email', 'subject', 'body'], 'required'],

 // email 属性は、有効なメールアドレスでなければならない
 ['email', 'email'],
];
}

一つの規則は、一つまたは複数の属性を検証するために使うことが出来ます。
また、一つの属性は、一つまたは複数の規則によって検証することが出来ます。
検証規則をどのように宣言するかについての詳細は 入力を検証する の節を参照してください。

時として、特定の シナリオ にのみ適用される規則が必要になるでしょう。
そのためには、下記のように、規則に on プロパティを指定することが出来ます。

public function rules()
{
 return [
 // "register" シナリオでは、username、email、password のすべてが必須
 [['username', 'email', 'password'], 'required', 'on' => self::SCENARIO_REGISTER],

 // "login" シナリオでは、username と password が必須
 [['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN],
];
}

on プロパティを指定しない場合は、その規則は全てのシナリオに適用されることになります。
現在の [[yii\base\Model::scenario|シナリオ]] に適用可能な規則は アクティブな規則 と呼ばれます。

属性が検証されるのは、それが scenarios() の中でアクティブな属性であると宣言されており、かつ、その属性が rules() の中で宣言されている一つまたは複数のアクティブな規則と結び付けられている場合であり、また、そのような場合だけです。

一括代入

一括代入は、一行のコードを書くだけで、ユーザの入力した複数のデータをモデルに投入できる便利な方法です。
一括代入は、入力されたデータを [[yii\base\Model::$attributes]] プロパティに直接に代入することによって、モデルの属性にデータを投入します。
次の二つのコード断片は等価であり、どちらもエンドユーザから送信されたフォームのデータを ContactForm モデルの属性に割り当てようとするものです。
明らかに、一括代入を使う前者の方が、後者よりも明快で間違いも起こりにくいでしょう。

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;

安全な属性

一括代入は、いわゆる 安全な属性、すなわち、[[yii\base\Model::scenarios()]] においてモデルの現在の [[yii\base\Model::scenario|シナリオ]] のためにリストされている属性に対してのみ適用されます。
例えば、User モデルが次のようなシナリオ宣言を持っている場合において、現在のシナリオが login であるときは、username と password のみが一括代入が可能です。
その他の属性はいっさい触れられません。

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
}

Info: 一括代入が安全な属性に対してのみ適用されるのは、エンドユーザの入力データがどの属性を修正することが出来るか、ということを制御する必要があるからです。
例えば、User モデルに、ユーザに割り当てられた権限を決定する permission という属性がある場合、この属性が修正できるのは、管理者がバックエンドのインターフェイスを通じてする時だけに制限したいでしょう。

[[yii\base\Model::scenarios()]] のデフォルトの実装は [[yii\base\Model::rules()]] に現われる全てのシナリオと属性を返すものです。
従って、このメソッドをオーバーライドしない場合は、アクティブな検証規則のどれかに出現する限り、その属性は安全である、ということになります。

このため、実際に検証することなく属性を安全であると宣言できるように、safe というエイリアスを与えられた特別なバリデータが提供されています。
例えば、次の規則は title と description の両方が安全な属性であると宣言しています。

public function rules()
{
 return [
 [['title', 'description'], 'safe'],
];
}

安全でない属性

上記で説明したように、[[yii\base\Model::scenarios()]] メソッドは二つの目的を持っています。
すなわち、どの属性が検証されるべきかを決めることと、どの属性が安全であるかを決めることです。
めったにない場合として、属性を検証する必要はあるが、安全であるという印は付けたくない、ということがあります。
そういう時は、下の例の secret 属性のように、名前の前に感嘆符 ! を付けて scenarios() の中で宣言することが出来ます。

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
];
}

このモデルが login シナリオにある場合、三つの属性は全て検証されます。
しかし、username と password の属性だけが一括代入が可能です。
secret 属性に入力値を割り当てるためには、下記のように明示的に代入を実行する必要があります。

$model->secret = $secret;

同じ事が rules() メソッドの中でも出来ます。

public function rules()
{
 return [
 [['username', 'password', '!secret'], 'required', 'on' => 'login']
];
}

この場合、username、password そして secret の属性が必須項目とされますが、secret は明示的に代入される必要があります。

データのエクスポート

モデルを他の形式にエクスポートする必要が生じることはよくあります。
例えば、モデルのコレクションを JSON や Excel 形式に変換したい場合があるでしょう。
このエクスポートのプロセスは二つの独立したステップに分割することが出来ます。

	モデルが配列に変換され、

	配列が目的の形式に変換される。

あなたは最初のステップだけに注力することが出来ます。
と言うのは、第二のステップは汎用的なデータフォーマッタ、例えば [[yii\web\JsonResponseFormatter]] によって達成できるからです。

モデルを配列に変換する最も簡単な方法は、[[yii\base\Model::$attributes]] プロパティを使うことです。
例えば、

$post = \app\models\Post::findOne(100);
$array = $post->attributes;

デフォルトでは、[[yii\base\Model::$attributes]] プロパティは [[yii\base\Model::attributes()]] で宣言されている 全て の属性の値を返します。

モデルを配列に変換するためのもっと柔軟で強力な方法は、[[yii\base\Model::toArray()]] メソッドを使うことです。
このメソッドのデフォルトの動作は [[yii\base\Model::$attributes]] のそれと同じものです。
しかしながら、このメソッドを使うと、どのデータ項目 (フィールド と呼ばれます) を結果の配列に入れるか、そして、その項目にどのような書式を適用するかを選ぶことが出来ます。
実際、レスポンス形式の設定 で説明されているように、RESTful ウェブサービスの開発においては、これがモデルをエクスポートするデフォルトの方法となっています。

フィールド

フィールドとは、単に、モデルの [[yii\base\Model::toArray()]] メソッドを呼ぶことによって取得される配列に含まれる、名前付きの要素のことです。

デフォルトでは、フィールドの名前は属性の名前と等しいものになります。
しかし、このデフォルトの動作は、[[yii\base\Model::fields()|fields()]] および/または [[yii\base\Model::extraFields()|extraFields()]] メソッドをオーバーライドして、変更することが出来ます。
どちらのメソッドも、フィールド定義のリストを返します。
fields() によって定義されるフィールドは、デフォルトフィールドです。すなわち、toArray() はデフォルトでこれらのフィールドを返す、ということを意味します。
extraFields() メソッドは、$expand パラメータによって指定する限りにおいて toArray() によって返される、追加のフィールドを定義するものです。
例として、次のコードは、fields() で定義された全てのフィールドと、(extraFields() で定義されていれば) prettyName と fullAddress フィールドを返すものです。

$array = $model->toArray([], ['prettyName', 'fullAddress']);

fields() をオーバーライドして、フィールドを追加、削除、リネーム、再定義することが出来ます。
fields() の返り値は配列でなければなりません。配列のキーはフィールド名であり、配列の値は対応するフィールド定義です。
フィールドの定義には、プロパティ/属性 の名前か、または、対応するフィールドの値を返す無名関数を使うことが出来ます。
フィールド名がそれを定義する属性名と同一であるという特殊な場合においては、配列のキーを省略することが出来ます。
例えば、

// 明示的に全てのフィールドをリストする方法。(API の後方互換性を保つために) DB テーブルや
// モデル属性の変更がフィールドの変更を引き起こさないことを保証したい場合に適している。
public function fields()
{
 return [
 // フィールド名が属性名と同じ
 'id',

 // フィールド名は "email"、対応する属性名は "email_address"
 'email' => 'email_address',

 // フィールド名は "name"、その値は PHP コールバックで定義
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// いくつかのフィールドを除外する方法。親の実装を継承しつつ、公開すべきでないフィールドは
// 除外したいときに適している。
public function fields()
{
 $fields = parent::fields();

 // 公開すべきでない情報を含むフィールドを削除する
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: デフォルトではモデルの全ての属性がエクスポートされる配列に含まれるため、データを精査して、公開すべきでない情報が含まれていないことを確認しなければなりません。
そういう情報がある場合は、fields() をオーバーライドして、除外しなければなりません。
上記の例では、auth_key、password_hash および password_reset_token を除外しています。

ベストプラクティス

モデルは、ビジネスのデータ、規則、ロジックを表わす中心的なオブジェクトです。
モデルは、たいてい、さまざまな場所で再利用される必要があります。
良く設計されたアプリケーションでは、通常、モデルは コントローラ よりもはるかに太ったものになります。

要約すると、モデルは、

	ビジネスデータを表現する属性を含むことが出来ます。

	データの有効性と整合性を保証する検証規則を含むことが出来ます。

	ビジネスロジックを実装するメソッドを含むことが出来ます。

	リクエスト、セッション、または他の環境データに直接アクセスするべきではありません。
これらのデータは、コントローラ によってモデルに注入されるべきです。

	HTML を埋め込むなどの表示用のコードは避けるべきです - 表示は ビュー で行う方が良いです。

	あまりに多くの シナリオ を一つのモデルで持つことは避けましょう。

大規模で複雑なシステムを開発するときには、たいてい、上記の最後にあげた推奨事項を考慮するのが良いでしょう。
そういうシステムでは、モデルは数多くの場所で使用され、それに従って、数多くの規則セットやビジネスロジックを含むため、非常に太ったものになり得ます。
コードの一ヶ所に触れるだけで数ヶ所の違った場所に影響が及ぶため、ついには、モデルのコードの保守が悪夢になってしまうこともよくあります。
モデルのコードの保守性を高めるためには、以下の戦略をとることが出来ます。

	異なる アプリケーション または モジュール によって共有される一連の基底モデルクラスを定義します。
これらのモデルクラスは、すべてで共通に使用される最小限の規則セットとロジックのみを含むべきです。

	モデルを使用するそれぞれの アプリケーション または モジュール において、対応する基底モデルクラスから拡張した具体的なモデルクラスを定義します。
この具体的なモデルクラスが、そのアプリケーションやモジュールに固有の規則やロジックを含むべきです。

例えば、アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] の中で、基底モデルクラス common\models\Post を定義することが出来ます。
次に、フロントエンドアプリケーションにおいては、common\models\Post から拡張した具体的なモデルクラス frontend\models\Post を定義して使います。
また、バックエンドアプリケーションにおいても、同様に、backend\models\Post を定義します。
この戦略を取ると、frontend\models\Post の中のコードはフロントエンドアプリケーション固有のものであると保証することが出来ます。
そして、フロントエンドのコードにどのような変更を加えても、バックエンドアプリケーションを壊すかもしれないと心配する必要がなくなります。

 受入テスト

受入テスト

Note: この節はまだ執筆中です。

	Codeception Acceptance Tests [http://codeception.com/docs/03-AcceptanceTests]

アプリケーションテンプレートの受入テストを走らせる

apps/advanced/tests/README.md および apps/basic/tests/README.md で提供されている説明を参照してください。

 共有ホスティング環境

共有ホスティング環境

共有ホスティング環境では、たいてい、構成やディレクトリ構造について、大きな制約があります。
それでも、ほとんどの場合、少し調整をすれば、Yii 2.0 を共有ホスティング環境で走らせることが可能です。

ベーシックプロジェクトテンプレートを配備する

通例、共有ホスティング環境では、一つのウェブルートしかありませんので、可能であればベーシックプロジェクトテンプレートを使用して下さい。
まず、Yii をインストールする の節を参照して、プロジェクトテンプレートをローカル環境にインストールします。
そして、ローカル環境でアプリケーションが動くようにした後で、共有ホスティング環境でホスト出来るようにいくつかの修正を行います。

ウェブルートの名前を変える

FTP またはその他の手段であなたの共有ホストに接続します。おそらく、下記のようなディレクトリが見えるでしょう。

config
logs
www

上記で www はウェブサーバのウェブルートディレクトリです。
別の名前かもしれません。よくある名前は、www、htdocs、public_html です。

私たちのベーシックプロジェクトテンプレートではウェブルートの名前は web になっています。
あなたのウェブサーバにアップロードする前に、ローカルのウェブルートの名前をあなたのサーバに適合するように変更します。
すなわち、web から www や public_html など、何であれ、あなたの共有ホストのウェブルートの名前に変更します。

FTP ルートディレクトリは書き込み可能

ルートレベルのディレクトリ、すなわち、config、logs、www があるディレクトリに対して書き込みが出来るのであれば、
assets、commands などをそのままルートレベルのディレクトリにアップロードします。

ウェブサーバのための追加設定

使用されているウェブサーバが Apache である場合は、次の内容を持つ .htaccess ファイルを web (または public_html など、要するに、index.php があるディレクトリ) に追加する必要があります。

Options +FollowSymLinks
IndexIgnore */*

RewriteEngine on

ディレクトリかファイルが存在すれば、それを直接使う
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

それ以外は、index.php にフォワードする
RewriteRule . index.php

nginx の場合は、追加の構成ファイルは必要がない筈です。

必要条件をチェックする

Yii を走らせるためには、あなたのウェブサーバは Yii の必要条件を満たさなければなりません。
最低限の必要条件は PHP 5.4 です。
必要条件をチェックするために、requirements.php をルートディレクトリからウェブルートディレクトリにコピーして、
http://example.com/requirements.php という URL を使ってブラウザ経由で走らせます。
後でファイルを削除するのを忘れないでください。

アドバンストプロジェクトテンプレートを配備する

アドバンストプロジェクトテンプレートを共有ホストに配備することは、ベーシックプロジェクトテンプレートを配備するのに比べると少しトリッキーにはなりますが、可能です。
アドバンストプロジェクトテンプレートのドキュメント [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/topic-shared-hosting.md]
で説明されている指示に従って下さい。

 フィクスチャ

フィクスチャ

フィクスチャはテストの重要な部分です。
フィクスチャの主な目的は、テストを期待されている方法で繰り返して実行できるように、環境を固定された既知の状態に設定することです。
Yii は、フィクスチャを正確に定義して容易に使うことを可能にするフィクスチャフレームワークを提供しています。

Yii のフィクスチャフレームワークにおける鍵となる概念は、いわゆる フィクスチャオブジェクト です。
フィクスチャオブジェクトはテスト環境のある特定の側面を表現するもので、[[yii\test\Fixture]] またはその子クラスのインスタンスです。
例えば、ユーザの DB テーブルが固定されたデータセットを含むことを保証するために UserFixture を使う、という具合です。
テストを実行する前に一つまたは複数のフィクスチャオブジェクトをロードし、テストの完了時にアンロードします。

フィクスチャは他のフィクスチャに依存する場合があります。依存は [[yii\test\Fixture::depends]] プロパティによって定義されます。
フィクスチャがロードされるとき、依存するフィクスチャはそのフィクスチャの前に自動的にロードされます。
そしてフィクスチャがアンロードされるときには、依存するフィクスチャはそのフィクスチャの後にアンロードされます。

フィクスチャを定義する

フィクスチャを定義するためには、[[yii\test\Fixture]] または [[yii\test\ActiveFixture]] を拡張して新しいクラスを作ります。
前者は汎用目的のフィクスチャに最も適しています。
一方、後者はデータベースとアクティブレコードを扱うために専用に設計された拡張機能を持っています。

次のコードは、User アクティブレコードとそれに対応するテーブルに関して、フィクスチャを定義するものです。

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
 public $modelClass = 'app\models\User';
}

Tip: すべての ActiveFixture は、テストの目的のために DB テーブルを準備するものです。
[[yii\test\ActiveFixture::tableName]] プロパティまたは [[yii\test\ActiveFixture::modelClass]] プロパティを設定することによって、テーブルを指定することが出来ます。
後者を使う場合は、modelClass によって指定される ActiveRecord クラスからテーブル名が取得されます。

Note: [[yii\test\ActiveFixture]] は SQL データベースにのみ適しています。
NoSQL データベースのためには、Yii は以下の ActiveFixture クラスを提供しています。

	Mongo DB: [[yii\mongodb\ActiveFixture]]

	Elasticsearch: [[yii\elasticsearch\ActiveFixture]] (バージョン 2.0.2 以降)

ActiveFixture フィクスチャのフィクスチャデータは通常は FixturePath/data/TableName.php として配置されるファイルで提供されます。
ここで FixturePath はフィクスチャクラスファイルを含むディレクトリを意味し、TableName はフィクスチャと関連付けられているテーブルの名前です。
上記の例では、ファイルは @app/tests/fixtures/data/user.php となります。
データファイルは、ユーザのテーブルに挿入されるデータ行の配列を返さなければなりません。
例えば、

<?php
return [
 'user1' => [
 'username' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 'user2' => [
 'username' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

データ行にはエイリアスを付けることが出来て、後でテストのときにエイリアスを使って行を参照することが出来ます。
上の例では、二つの行はそれぞれ user1 および user2 というエイリアスを付けられています。

また、オートインクリメントのカラムに対してはデータを指定する必要はありません。
フィクスチャがロードされるときに Yii が自動的に実際の値を行に入れます。

Tip: [[yii\test\ActiveFixture::dataFile]] プロパティを設定して、データファイルの所在をカスタマイズすることが出来ます。
[[yii\test\ActiveFixture::getData()]] をオーバーライドしてデータを提供することも可能です。

前に説明したように、フィクスチャは別のフィクスチャに依存する場合があります。
例えば、ユーザプロファイルのテーブルはユーザのテーブルを指す外部キーを含んでいるため、UserProfileFixture は UserFixture に依存します。
依存関係は、次のように、[[yii\test\Fixture::depends]] プロパティによって指定されます。

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture
{
 public $modelClass = 'app\models\UserProfile';
 public $depends = ['app\tests\fixtures\UserFixture'];
}

依存関係は、また、複数のフィクスチャが正しく定義された順序でロードされ、アンロードされることを保証します。
上記の例では、全ての外部キー参照が存在することを保証するために UserFixture は常に UserProfileFixture の前にロードされます。
また、同じ理由によって、UserFixture は常に UserProfileFixture がアンロードされた後でアンロードされます。

上記では、DB テーブルに関してフィクスチャを定義する方法を示しました。
DB と関係しないフィクスチャ (例えば、何らかのファイルやディレクトリに関するフィクスチャ) を定義するためには、より汎用的な基底クラス [[yii\test\Fixture]] から拡張して、[[yii\test\Fixture::load()|load()]] と [[yii\test\Fixture::unload()|unload()]] のメソッドをオーバーライドすることが出来ます。

フィクスチャを使用する

Codeception [http://codeception.com/] を使ってコードをテストしている場合は、フィクスチャのローディングとアクセスを内蔵でサポートしている yii2-codeception を使用することを検討すべきです。
その他のテストフレームワークを使っている場合は、テストケースで [[yii\test\FixtureTrait]] を使って同じ目的を達することが出来ます。

次に yii2-codeception を使って UserProfile 単体テストを書く方法を説明します。

[[yii\codeception\DbTestCase]] または [[yii\codeception\TestCase]] を拡張する単体テストクラスにおいて、どのフィクスチャを使用したいかを [[yii\test\FixtureTrait::fixtures()|fixtures()]] メソッドの中で宣言します。
例えば、

namespace app\tests\unit\models;

use yii\codeception\DbTestCase;
use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends DbTestCase
{
 public function fixtures()
 {
 return [
 'profiles' => UserProfileFixture::className(),
];
 }

 // ... テストのメソッド ...
}

fixtures() メソッドにリストされたメソッドは、テストケースの中のどのテストメソッドが走る前にも自動的にロードされ、テストメソッドが完了した後にアンロードされます。
前に説明したように、フィクスチャがロードされるときには、それが依存するフィクスチャのすべてが最初に自動的にロードされます。
上の例では、UserProfileFixture は UserFixture に依存しているので、テストクラスのどのテストメソッドを走らせるときでも、二つのフィクスチャが連続してロードされます。
すなわち、最初に UserFixture がロードされ、次に UserProfileFixture がロードされます。

fixtures() でフィクスチャを指定するときは、クラス名あるいはフィクスチャを指す構成情報配列を使うことが出来ます。
構成情報配列を使うと、フィクスチャがロードされるときのフィクスチャのプロパティをカスタマイズすることが出来ます。

また、フィクスチャにエイリアスを割り当てることも出来ます。
上記の例では、UserProfileFixture に profiles というエイリアスが与えられています。
そうすると、テストメソッドの中でエイリアスを使ってフィクスチャオブジェクトにアクセスすることが出来るようになります。
例えば、$this->profiles が UserProfileFixture を返すことになります。

さらには、UserProfileFixture は ActiveFixture を拡張するものですので、フィクスチャによって提供されたデータに対して、次の構文を使ってアクセスすることも出来ます。

// 'user1' というエイリアスのデータ行を返す
$row = $this->profiles['user1'];
// 'user1' というエイリアスのデータ行に対応する UserProfileModel を返す
$profile = $this->profiles('user1');
// フィクスチャにある全てのデータ行をたどる
foreach ($this->profiles as $row) ...

Info: $this->profiles は依然として UserProfileFixture という型です。
上記のアクセス機能は PHP マジックメソッドによって実装されています。

グローバルフィクスチャを定義して使用する

上記で説明されたフィクスチャは主として個別のテストケースによって使われます。
たいていの場合、全てまたは多くのテストケースに適用されるグローバルなフィクスチャもいくつか必要になります。
一例は、[[yii\test\InitDbFixture]] で、これは二つのことをします。

	@app/tests/fixtures/initdb.php に配置されたスクリプトを実行して、いくつかの共通の初期化作業を行う。

	他の DB フィクスチャをロードする前に、データベースの整合性チェックを無効化し、他の DB フィクスチャがアンロードされた後で、それを再び有効化する。

グローバルフィクスチャの使い方は、グローバルでないフィクスチャと同じです。
違うところは、グローバルフィクスチャは fixtures() ではなく [[yii\codeception\TestCase::globalFixtures()]] で宣言するという点です。
テストケースがフィクスチャをロードするときは、最初にグローバルフィクスチャをロードし、次にグローバルでないものをロードします。

デフォルトでは、[[yii\codeception\DbTestCase]] は InitDbFixture を globalFixtures() メソッドの中で既に宣言しています。
このことは、どのテストの前にも何らかの初期化作業をしたい場合は、@app/tests/fixtures/initdb.php だけを触ればよいことを意味します。
その必要がなければ、単にそれぞれの個別テストケースとそれに対応するフィクスチャの開発に専念することが出来ます。

フィクスチャクラスとデータファイルを編成する

デフォルトでは、フィクスチャクラスは対応するデータファイルを探すときに、フィクスチャのクラスファイルを含むフォルダのサブフォルダである data フォルダの中を見ます。
簡単なプロジェクトではこの規約に従うことができます。
大きなプロジェクトでは、おそらくは、同じフィクスチャクラスを異なるテストに使うために、データファイルを切り替える必要がある場合が頻繁に生じるでしょう。
従って、クラスの名前空間と同じように、データファイルを階層的な方法で編成することを推奨します。
例えば、

tests\unit\fixtures フォルダの下に

data\
 components\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
 models\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
等々

このようにして、テスト間でフィクスチャのデータファイルが衝突するのを回避し、必要に応じてデータファイルを使い分けます。

Note: 上の例では、フィクスチャファイルには例示目的だけの名前が付けられています。
実際の現場では、フィクスチャクラスの拡張元である基底クラスに従って名前を付けるべきです。
例えば、DB フィクスチャを [[yii\test\ActiveFixture]] から拡張している場合は、DB テーブルの名前をフィクスチャのデータファイル名として使うべきです。
MongoDB フィクスチャを [[yii\mongodb\ActiveFixture]] から拡張している場合は、コレクション名をファイル名として使うべきです。

同様な階層は、フィクスチャクラスファイルを編成するのにも使うことが出来ます。
data をルートディレクトリとして使うのでなく、データファイルとの衝突を避けるために fixtures をルートディレクトリとして使うのが良いでしょう。

まとめ

以上、フィクスチャを定義して使用する方法を説明しました。
下記に、DB に関連したユニットテストを走らせる場合の典型的なワークフローをまとめておきます。

	yii migrate ツールを使って、テストのデータベースを最新版にアップグレードする

	テストケースを走らせる
	フィクスチャをロードする - 関係する DB テーブルをクリーンアップし、フィクスチャデータを投入する

	実際のテストを実行する

	フィクスチャをアンロードする

	全てのテストが完了するまで、ステップ 2 を繰り返す

(以下は削除または大幅に改稿される可能性が高いので、当面、翻訳を見合わせます)

To be cleaned up below

Managing Fixtures

Note: This section is under development.

todo: this tutorial may be merged with the above part of test-fixtures.md

Fixtures are important part of testing. Their main purpose is to populate you with data that needed by testing
different cases. With this data using your tests becoming more efficient and useful.

Yii supports fixtures via the yii fixture command line tool. This tool supports:

	Loading fixtures to different storage such as: RDBMS, NoSQL, etc;

	Unloading fixtures in different ways (usually it is clearing storage);

	Auto-generating fixtures and populating it with random data.

Fixtures format

Fixtures are objects with different methods and configurations, refer to official documentation [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md] on them.
Lets assume we have fixtures data to load:

#users.php file under fixtures data path, by default @tests\unit\fixtures\data

return [
 [
 'name' => 'Chase',
 'login' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 [
 'name' => 'Celestine',
 'login' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

If we are using fixture that loads data into database then these rows will be applied to users table. If we are using nosql fixtures, for example mongodb
fixture, then this data will be applied to users mongodb collection. In order to learn about implementing various loading strategies and more, refer to official documentation [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md].
Above fixture example was auto-generated by yii2-faker extension, read more about it in these section.
Fixture classes name should not be plural.

Loading fixtures

Fixture classes should be suffixed by Fixture class. By default fixtures will be searched under tests\unit\fixtures namespace, you can
change this behavior with config or command options. You can exclude some fixtures due load or unload by specifying - before its name like -User.

To load fixture, run the following command:

yii fixture/load <fixture_name>

The required fixture_name parameter specifies a fixture name which data will be loaded. You can load several fixtures at once.
Below are correct formats of this command:

// load `User` fixture
yii fixture/load User

// same as above, because default action of "fixture" command is "load"
yii fixture User

// load several fixtures
yii fixture "User, UserProfile"

// load all fixtures
yii fixture/load "*"

// same as above
yii fixture "*"

// load all fixtures except ones
yii fixture "*, -DoNotLoadThisOne"

// load fixtures, but search them in different namespace. By default namespace is: tests\unit\fixtures.
yii fixture User --namespace='alias\my\custom\namespace'

// load global fixture `some\name\space\CustomFixture` before other fixtures will be loaded.
// By default this option is set to `InitDbFixture` to disable/enable integrity checks. You can specify several
// global fixtures separated by comma.
yii fixture User --globalFixtures='some\name\space\Custom'

Unloading fixtures

To unload fixture, run the following command:

// unload Users fixture, by default it will clear fixture storage (for example "users" table, or "users" collection if this is mongodb fixture).
yii fixture/unload User

// Unload several fixtures
yii fixture/unload "User, UserProfile"

// unload all fixtures
yii fixture/unload "*"

// unload all fixtures except ones
yii fixture/unload "*, -DoNotUnloadThisOne"

Same command options like: namespace, globalFixtures also can be applied to this command.

Configure Command Globally

While command line options allow us to configure the migration command
on-the-fly, sometimes we may want to configure the command once for all. For example you can configure
different migration path as follows:

'controllerMap' => [
 'fixture' => [
 'class' => 'yii\console\controllers\FixtureController',
 'namespace' => 'myalias\some\custom\namespace',
 'globalFixtures' => [
 'some\name\space\Foo',
 'other\name\space\Bar'
],
],
]

Auto-generating fixtures

Yii also can auto-generate fixtures for you based on some template. You can generate your fixtures with different data on different languages and formats.
These feature is done by Faker [https://github.com/fzaninotto/Faker] library and yii2-faker extension.
See extension guide [https://github.com/yiisoft/yii2-faker] for more docs.

 ロギング

ロギング

Yii は高度なカスタマイズ性と拡張性を持った強力なロギングフレームワークを提供しています。
このフレームワークを使用すると、さまざまな種類のメッセージを記録し、それをフィルタして、ファイル、データベース、メールなど、さまざまなターゲットに収集することが簡単に出来ます。

Yii のロギングフレームワークを使うためには、下記のステップを踏みます。

	コードのさまざまな場所で ログメッセージ を記録する。

	ログメッセージをフィルタしてエクスポートするために、アプリケーションの構成情報で ログターゲット を構成する。

	さまざまなターゲット (例えば Yii デバッガ) によって、フィルタされエクスポートされたログメッセージを調査する。

この節では、主として最初の二つのステップについて説明します。

メッセージを記録する

ログメッセージを記録することは、次のログ記録メソッドのどれかを呼び出すだけの簡単なことです。

	

	

	

	

これらのログ記録メソッドは、ログメッセージをさまざまな 重大性レベル と カテゴリ で記録するものです。
これらのメソッドは function ($message, $category = 'application') という関数シグニチャを共有しており、$message は記録されるログメッセージを示し、$category はログメッセージのカテゴリを示します。
次のコードサンプルは、トレースメッセージをデフォルトのカテゴリである application の下に記録するものです。

Yii::trace('平均収益の計算を開始');

Info: ログメッセージは文字列でも、配列やオブジェクトのような複雑なデータでも構いません。
ログメッセージを適切に取り扱うのは ログターゲット の責任です。
デフォルトでは、ログメッセージが文字列でない場合は、[[yii\helpers\VarDumper::export()]] が呼ばれて文字列に変換されることになります。

ログメッセージを上手に編成しフィルタするために、すべてのログメッセージにそれぞれ適切なカテゴリを指定することが推奨されます。
カテゴリに階層的な命名方法を採用すると、ログターゲット がカテゴリに基づいてメッセージをフィルタすることが容易になります。
簡単でしかも効果的な命名方法は、カテゴリ名に PHP のマジック定数 __METHOD__ を使用することです。
これは、Yii フレームワークのコアコードでも使われている方法です。例えば、

Yii::trace('平均収益の計算を開始', __METHOD__);

__METHOD__ という定数は、それが出現する場所のメソッド名 (完全修飾のクラス名が前置されます) として評価されます。
例えば、上記のコードが app\controllers\RevenueController::calculate というメソッドの中で呼ばれている場合は、__METHOD__ は 'app\controllers\RevenueController::calculate' という文字列と同じになります。

Info: 上記で説明したメソッドは、実際には、[[yii\log\Logger|ロガーオブジェクト]] の [[yii\log\Logger::log()|log()]] メソッドへのショートカットです。
[[yii\log\Logger|ロガーオブジェクト]] は Yii::getLogger() という式でアクセス可能なシングルトンです。
ロガーオブジェクトは、十分な量のメッセージが記録されたとき、または、アプリケーションが終了するときに、[[yii\log\Dispatcher|メッセージディスパッチャ]] を呼んで、登録された ログターゲット に記録されたログメッセージを送信します。

ログターゲット

ログターゲットは [[yii\log\Target]] クラスまたはその子クラスのインスタンスです。
ログターゲットは、ログメッセージを重大性レベルとカテゴリによってフィルタして、何らかの媒体にエクスポートします。
例えば、[[yii\log\DbTarget|データベースターゲット]] は、フィルタされたログメッセージをデータベーステーブルにエクスポートし、[[yii\log\EmailTarget|メールターゲット]] は、ログメッセージを指定されたメールアドレスにエクスポートします。

一つのアプリケーションの中で複数のログターゲットを登録することが出来ます。
そのためには、次のように、アプリケーションの構成情報の中で、log アプリケーションコンポーネント によってログターゲットを構成します。

return [
 // "log" コンポーネントはブートストラップ時にロードされなければならない
 'bootstrap' => ['log'],

 'components' => [
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\DbTarget',
 'levels' => ['error', 'warning'],
],
 [
 'class' => 'yii\log\EmailTarget',
 'levels' => ['error'],
 'categories' => ['yii\db*'],
 'message' => [
 'from' => ['log@example.com'],
 'to' => ['admin@example.com', 'developer@example.com'],
 'subject' => 'example.com で、データベースエラー発生',
],
],
],
],
],
];

Note: log コンポーネントは、ログメッセージをターゲットに即座に送付することが出来るように、ブートストラップ 時にロードされなければなりません。
この理由により、上記の例で示されているように、bootstrap の配列に log をリストアップしています。

上記のコードでは、二つのログターゲットが [[yii\log\Dispatcher::targets]] プロパティに登録されています。

	最初のターゲットは、エラーと警告のメッセージを選択して、データベーステーブルに保存します。

	第二のターゲットは、名前が yii\db\ で始まるカテゴリのエラーメッセージを選んで、admin@example.com と developer@example.com の両方にメールで送信します。

Yii は下記のログターゲットをあらかじめ内蔵しています。
その構成方法と使用方法を学ぶためには、これらのクラスの API ドキュメントを参照してください。

	

	

	

	[[yii\log\SyslogTarget]]: ログメッセージを PHP 関数 syslog() を呼んでシステムログに保存する。

以下では、全てのターゲットに共通する機能について説明します。

メッセージのフィルタリング

全てのログターゲットについて、それぞれ、[[yii\log\Target::levels|levels]] と [[yii\log\Target::categories|categories]] のプロパティを構成して、ターゲットが処理すべきメッセージの重要性レベルとカテゴリを指定することが出来ます。

[[yii\log\Target::levels|levels]] プロパティは、次のレベルの一つまたは複数からなる配列を値として取ります。

	error: [Yii::error()] によって記録されたメッセージに対応。

	warning: [Yii::warning()] によって記録されたメッセージに対応。

	info: [Yii::info()] によって記録されたメッセージに対応。

	trace: [Yii::trace()] によって記録されたメッセージに対応。

	profile: [[Yii::beginProfile()]] と [[Yii::endProfile()]] によって記録されたメッセージに対応。
これについては、プロファイリング の項で詳細に説明します。

[[yii\log\Target::levels|levels]] プロパティを指定しない場合は、ターゲットが 全ての 重大性レベルのメッセージを処理することを意味します。

[[yii\log\Target::categories|categories]] プロパティは、メッセージカテゴリの名前またはパターンからなる配列を値として取ります。
ターゲットは、カテゴリの名前がこの配列にあるか、または配列にあるパターンに合致する場合にだけ、メッセージを処理します。
カテゴリパターンというのは、最後にアスタリスク * を持つカテゴリ名接頭辞です。カテゴリ名は、パターンと同じ接頭辞で始まる場合に、カテゴリパターンに合致します。
例えば、yii\db\Command::execute と yii\db\Command::query は、[[yii\db\Command]] クラスで記録されるログメッセージのためのカテゴリ名です。
そして、両者は共に yii\db* というパターンに合致します。

[[yii\log\Target::categories|categories]] プロパティを指定しない場合は、ターゲットが 全ての カテゴリのメッセージを処理することを意味します。

カテゴリを [[yii\log\Target::categories|categories]] プロパティでホワイトリストとして登録する以外に、一定のカテゴリを [[yii\log\Target::except|except]] プロパティによってブラックリストとして登録することも可能です。
カテゴリの名前がこの配列にあるか、または配列にあるパターンに合致する場合は、メッセージはターゲットによって処理されません。

次のターゲットの構成は、ターゲットが、yii\db* または yii\web\HttpException:* に合致するカテゴリ名を持つエラーおよび警告のメッセージだけを処理すべきこと、ただし、yii\web\HttpException:404 は除外すべきことを指定するものです。

[
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
 'categories' => [
 'yii\db*',
 'yii\web\HttpException:*',
],
 'except' => [
 'yii\web\HttpException:404',
],
]

Info: HTTP 例外が エラーハンドラ によって捕捉されたときは、yii\web\HttpException:ErrorCode という書式のカテゴリ名でエラーメッセージがログに記録されます。
例えば、[[yii\web\NotFoundHttpException]] は、yii\web\HttpException:404 というカテゴリのエラーメッセージを発生させます。

メッセージの書式設定

ログターゲットはフィルタされたログメッセージを一定の書式でエクスポートします。
例えば、[yii\log\FileTarget] クラスのログターゲットをインストールした場合は、runtime/log/app.log ファイルに、下記と同様なログメッセージが書き込まれます。

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug

デフォルトでは、ログメッセージは [[yii\log\Target::formatMessage()]] によって、下記のように書式設定されます。

タイムスタンプ [IP アドレス][ユーザ ID][セッション ID][重要性レベル][カテゴリ] メッセージテキスト

この書式は、[[yii\log\Target::prefix]] プロパティを構成することでカスタマイズすることが出来ます。
[[yii\log\Target::prefix]] プロパティは、カスタマイズされたメッセージ前置情報を返す PHP コーラブルを値として取ります。
例えば、次のコードは、ログターゲットが全てのログメッセージの前にカレントユーザの ID を置くようにさせるものです
(IP アドレスとセッション ID はプライバシー上の理由から削除されています)。

[
 'class' => 'yii\log\FileTarget',
 'prefix' => function ($message) {
 $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
 $userID = $user ? $user->getId(false) : '-';
 return "[$userID]";
 }
]

メッセージ前置情報以外にも、ログターゲットは、一群のログメッセージごとに一定のコンテキスト情報を追加します。
デフォルトでは、その情報には、次のグローバル PHP 変数、すなわち、$_GET、$_POST、$_FILES、$_COOKIE、$_SESSION および $_SERVER の値が含まれます。
ログターゲットに含ませたいグローバル変数の名前を [[yii\log\Target::logVars]] プロパティに設定することによって、この動作を調整することが出来ます。
例えば、次のログターゲットの構成は、$_SERVER の値だけをログメッセージに追加するように指定するものです。

[
 'class' => 'yii\log\FileTarget',
 'logVars' => ['_SERVER'],
]

logVars を空の配列として構成して、コンテキスト情報をまったく含ませないようにすることも出来ます。
あるいは、また、コンテキスト情報の提供方法を自分で実装したい場合は、[[yii\log\Target::getContextMessage()]] メソッドをオーバーライドすることも出来ます。

メッセージのトレースレベル

開発段階では、各ログメッセージがどこから来ているかを知りたい場合がよくあります。
これは、次のように、log コンポーネントの [[yii\log\Dispatcher::traceLevel|traceLevel]] プロパティを構成することによって達成できます。

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [...],
],
],
];

上記のアプリケーションの構成は、[[yii\log\Dispatcher::traceLevel|traceLevel]] を YII_DEBUG が on のときは 3、YII_DEBUG が off のときは 0 に設定します。
これは、YII_DEBUG が on のときは、各ログメッセージに対して、ログメッセージが記録されたときのコールスタックを最大 3 レベルまで追加し、YII_DEBUG が 0 のときはコールスタックを含めない、ということを意味します。

Info: コールスタック情報の取得は軽微な処理ではありません。従って、この機能は開発時またはアプリケーションをデバッグするときに限って使用するべきです。

メッセージの吐き出しとエクスポート

既に述べたように、ログメッセージは [[yii\log\Logger|ロガーオブジェクト]] によって配列の中に保持されます。
この配列のメモリ消費を制限するために、この配列に一定数のログメッセージが蓄積されるたびに、ロガーは記録されたメッセージを ログターゲット に吐き出します。
この数は、log コンポーネントの [[yii\log\Dispatcher::flushInterval|flushInterval]] プロパティを構成することによってカスタマイズすることが出来ます。

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 100, // デフォルトは 1000
 'targets' => [...],
],
],
];

Info: メッセージの吐き出しは、アプリケーションの終了時にも実行されます。これによって、ログターゲットが完全なログメッセージを受け取ることが保証されます。

[[yii\log\Logger|ロガーオブジェクト]] が ログターゲット にログメッセージを吐き出しても、ログメッセージはただちにはエクスポートされません。
そうではなく、ログターゲットが一定数のフィルタされたメッセージを蓄積して初めて、メッセージのエクスポートが発生します。
この数は、下記のように、個々の ログターゲット の [[yii\log\Target::exportInterval|exportInterval]] プロパティを構成することによってカスタマイズすることが出来ます。

[
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 100, // デフォルトは 1000
]

デフォルトの状態では、吐き出しとエクスポートの間隔の設定のために、Yii::trace() やその他のログ記録メソッドを呼んでも、ただちには、ログメッセージはログターゲットに出現しません。
このことは、長時間にわたって走るコンソールアプリケーションでは、問題になる場合もあります。
各ログメッセージがただちにログターゲットに出現するようにするためには、下記のように、[[yii\log\Dispatcher::flushInterval|flushInterval]] と [[yii\log\Target::exportInterval|exportInterval]] の両方を 1 に設定しなければなりません。

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 1,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 1,
],
],
],
],
];

Note: 頻繁なメッセージの吐き出しとエクスポートはアプリケーションのパフォーマンスを低下させます。

ログターゲットの 有効/無効 を切り替える

[[yii\log\Target::enabled|enabled]] プロパティを構成することによって、ログターゲットを有効にしたり無効にしたりすることが出来ます。
この切り替えは、ログターゲットのコンフィギュレーションでも出来ますが、コードの中で次の PHP 文を使っても出来ます。

Yii::$app->log->targets['file']->enabled = false;

上記のコードでは、ターゲットが file という名前であることが必要とされています。
下記のように、targets の配列で文字列のキーを使ってターゲットの名前を指定して下さい。

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'targets' => [
 'file' => [
 'class' => 'yii\log\FileTarget',
],
 'db' => [
 'class' => 'yii\log\DbTarget',
],
],
],
],
];

新しいターゲットを作る

新しいログターゲットを作ることは非常に簡単です。
必要なことは、主として、[[yii\log\Target::messages]] 配列の中身を指定された媒体に送出する [[yii\log\Target::export()]] メソッドを実装することです。
各メッセージに書式を設定するためには、[[yii\log\Target::formatMessage()]] を呼ぶことが出来ます。
詳細については、Yii リリースに含まれているログターゲットクラスのどれか一つを参照してください。

パフォーマンスプロファイリング

パフォーマンスプロファイリングは、特定のコードブロックに要した時間を測定してパフォーマンスのボトルネックになっている所を見つけ出すために使われる、特殊なタイプのメッセージロギングです。
例えば、[[yii\db\Command]] クラスは、各 DB クエリに要した時間を知るために、パフォーマンスプロファイリングを使用しています。

パフォーマンスプロファイリングを使用するためには、最初に、プロファイリングが必要なコードブロックを特定します。そして、各コードブロックを次のように囲みます。

\Yii::beginProfile('myBenchmark');

... プロファイリングされるコードブロック ...

\Yii::endProfile('myBenchmark');

ここで myBenchmark はコードブロックを特定するユニークなトークンを表します。
後でプロファイリング結果を検査するときに、このトークンを使って、対応するコードブロックによって消費された時間を調べます。

beginProfile と endProfile のペアが適正な入れ子になっていることを確認することが非常に重要なことです。
例えば、

\Yii::beginProfile('block1');

 // プロファイリングされる何らかのコード

 \Yii::beginProfile('block2');
 // プロファイリングされる別のコード
 \Yii::endProfile('block2');

\Yii::endProfile('block1');

\Yii::endProfile('block1') を忘れたり、\Yii::endProfile('block1') と \Yii::endProfile('block2') の順序を入れ替えたりすると、パフォーマンスプロファイリングは機能しません。

プロファイルされるコードブロックの全てについて、おのおの、重大性レベルが profile であるログメッセージが記録されます。
そのようなメッセージを集めてエクスポートする ログターゲット を構成してください。
Yii デバッガ が、プロファイリング結果を表示するパフォーマンスプロファイリングパネルを内蔵しています。

 依存注入コンテナ

依存注入コンテナ

依存注入 (DI) コンテナは、オブジェクトとそれが依存するすべてのブジェクトを、インスタンス化し、設定する方法を知っているオブジェクトです。
なぜ DI コンテナが便利なのかは、Martin Fowler の記事 [http://martinfowler.com/articles/injection.html] の説明がわかりやすいでしょう。
ここでは、主に Yii の提供する DI コンテナの使用方法を説明します。

依存注入

Yii は [[yii\di\Container]] クラスを通して DI コンテナの機能を提供します。これは、次の種類の依存注入をサポートしています:

	コンストラクタ·インジェクション

	メソッド・インジェクション

	セッター/プロパティ·インジェクション

	PHP コーラブル·インジェクション

コンストラクタ·インジェクション

DI コンテナは、コンストラクタのパラメータの型ヒントの助けを借りた、コンストラクタ·インジェクションをサポートしています。
型ヒントは、コンテナが新しいオブジェクトの作成に使用されるさい、オブジェクトがどういうクラスやインタフェースに依存しているかをコンテナに教えます。
コンテナは、依存クラスやインタフェースのインスタンスを取得することを試み、コンストラクタを通して、新しいオブジェクトにそれらを注入します。
たとえば

class Foo
{
 public function __construct(Bar $bar)
 {
 }
}

$foo = $container->get('Foo');
// これは下記と等価:
$bar = new Bar;
$foo = new Foo($bar);

メソッド・インジェクション

通常、クラスの依存はコンストラクタに渡されて、そのクラスの内部でライフサイクル全体にわたって利用可能になります。
メソッド・インジェクションを使うと、クラスのメソッドの一つだけに必要となる依存、例えば、コンストラクタに渡すことが不可能であったり、大半のユースケースにおいてはオーバーヘッドが大きすぎるような依存を提供することが可能になります。

クラスのメソッドを次の例の doSomething メソッドのように定義することが出来ます。

class MyClass extends \yii\base\Component
{
 public function __construct(/* 軽量の依存はここに */, $config = [])
 {
 // ...
 }

 public function doSomething($param1, \my\heavy\Dependency $something)
 {
 // $something を使って何かをする
 }
}

このメソッドを呼ぶためには、あなた自身で \my\heavy\Dependency のインスタンスを渡すか、または、次のように
[[yii\di\Container::invoke()]] を使います。

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something は DI コンテナによって提供される

セッター/プロパティ·インジェクション

セッター/プロパティ·インジェクションは、構成情報 を通してサポートされます。
依存を登録するときや、新しいオブジェクトを作成するときに、対応するセッターまたはプロパティを通しての依存注入に使用される構成情報を、コンテナに提供することが出来ます。
たとえば

use yii\base\Object;

class Foo extends Object
{
 public $bar;

 private $_qux;

 public function getQux()
 {
 return $this->_qux;
 }

 public function setQux(Qux $qux)
 {
 $this->_qux = $qux;
 }
}

$container->get('Foo', [], [
 'bar' => $container->get('Bar'),
 'qux' => $container->get('Qux'),
]);

Info: [[yii\di\Container::get()]] メソッドは三番目のパラメータを、生成されるオブジェクトに適用されるべき構成情報配列として受け取ります。
クラスが [[yii\base\Configurable]] インタフェイスを実装している場合 (例えば、クラスが [[yii\base\Object]] である場合) には、この構成情報配列がクラスのコンストラクタの最後のパラメータとして渡されます。
そうでない場合は、構成情報はオブジェクトが生成された 後で 適用されることになります。

PHP コーラブル・インジェクション

この場合、コンテナは、登録された PHP のコーラブルを使用して、クラスの新しいインスタンスを構築します。
[[yii\di\Container::get()]] が呼ばれるたびに、対応するコーラブルが起動されます。
このコーラブルが、依存を解決し、新しく作成されたオブジェクトに適切に依存を注入する役目を果たします。
たとえば

$container->set('Foo', function () {
 $foo = new Foo(new Bar);
 // ... その他の初期化 ...
 return $foo;
});

$foo = $container->get('Foo');

新しいオブジェクトを構築するための複雑なロジックを隠蔽するために、スタティックなクラスメソッドをコーラブルとして使うことが出来ます。
例えば、

class FooBuilder
{
 public static function build()
 {
 $foo = new Foo(new Bar);
 // ... その他の初期化 ...
 return $foo;
 }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');

このようにすれば、Foo クラスを構成しようとする人は、Foo がどのように構築されるかを気にする必要はもうなくなります。

依存の登録

[[yii\di\Container::set()]] を使って依存を登録することができます。
登録には依存の名前だけでなく、依存の定義が必要です。
依存の名前は、クラス名、インタフェース名、エイリアス名を指定することができます。
依存の定義には、クラス名、構成情報配列、PHPのコーラブルを指定できます。

$container = new \yii\di\Container;

// クラス名そのままの登録。これは省略可能です。
$container->set('yii\db\Connection');

// インターフェースの登録
// クラスがインターフェースに依存する場合、対応するクラスが
// 依存オブジェクトとしてインスタンス化されます
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// エイリアス名の登録。$container->get('foo') を使って
// Connection のインスタンスを作成できます
$container->set('foo', 'yii\db\Connection');

// 構成情報をともなうクラスの登録。クラスが get() でインスタンス化
// されるとき構成情報が適用されます
$container->set('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// クラスの構成情報をともなうエイリアス名の登録
// この場合、クラスを指定する "class" 要素が必要です
$container->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// PHP コーラブルの登録
// このコーラブルは $container->get('db') が呼ばれるたびに実行されます
$container->set('db', function ($container, $params, $config) {
 return new \yii\db\Connection($config);
});

// コンポーネントインスタンスの登録
// $container->get('pageCache') は呼ばれるたびに毎回同じインスタンスを返します
$container->set('pageCache', new FileCache);

Note: 依存の名前が対応する依存の定義と同じである場合は、それを DI コンテナに登録する必要はありません。

set() を介して登録された依存は、依存が必要とされるたびにインスタンスを生成します。
[[yii\di\Container::setSingleton()]] を使うと、単一のインスタンスしか生成しない依存を登録することができます:

$container->setSingleton('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

依存の解決

依存を登録すると、新しいオブジェクトを作成するのに DI コンテナを使用することができます。
そして、コンテナが自動的に依存をインスタンス化し、新しく作成されたオブジェクトに注入して、
依存を解決します。依存の解決は再帰的に行われます。つまり、ある依存が他の依存を持っている場合、
それらの依存も自動的に解決されます。

[[yii\di\Container::get()|get()]] を使って、オブジェクトのインスタンスを取得または作成することができます。
このメソッドは依存の名前を引数として取ります、依存の名前は、クラス名、インタフェース名、あるいは、エイリアス名で指定できます。
依存の名前は、 [[yii\di\Container::set()|set()]] または [[yii\di\Container::setSingleton()|setSingleton()]] を介して登録されている場合もあります。
オプションで、クラスのコンストラクタのパラメータのリストや、設定情報 を渡して、新しく作成されるオブジェクトを構成することも出来ます。

たとえば、

// "db" は事前に登録されたエイリアス名
$db = $container->get('db');

// これと同じ意味: $engine = new \app\components\SearchEngine($apiKey, $apiSecret, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey, $apiSecret], ['type' => 1]);

見えないところで、DIコンテナは、単に新しいオブジェクトを作成するよりもはるかに多くの作業を行います。
コンテナは、最初にクラスのコンストラクタを調査し、依存クラスまたはインタフェースの名前を見つけると、
自動的にそれらの依存を再帰的に解決します。

次のコードでより洗練された例を示します。 UserLister クラスは UserFinderInterface
インタフェースを実装するオブジェクトに依存します。 UserFinder クラスはこのインターフェイスを実装していて、かつ、
Connection オブジェクトに依存します。これらのすべての依存は、クラスのコンストラクタのパラメータの型ヒントによって宣言されています。
プロパティ依存性の登録をすれば、DI コンテナは自動的にこれらの依存を解決し、単純に get('userLister')
を呼び出すだけで新しい UserLister インスタンスを作成できます。

namespace app\models;

use yii\base\Object;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
 function findUser();
}

class UserFinder extends Object implements UserFinderInterface
{
 public $db;

 public function __construct(Connection $db, $config = [])
 {
 $this->db = $db;
 parent::__construct($config);
 }

 public function findUser()
 {
 }
}

class UserLister extends Object
{
 public $finder;

 public function __construct(UserFinderInterface $finder, $config = [])
 {
 $this->finder = $finder;
 parent::__construct($config);
 }
}

$container = new Container;
$container->set('yii\db\Connection', [
 'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
 'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// と、いうのはこれと同じ:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

実際の使用方法

あなたのアプリケーションの エントリスクリプト で Yii.php ファイルをインクルードするとき、
Yii は DI コンテナを作成します。この DI コンテナは [[Yii::$container]] を介してアクセス可能です。 [[Yii::createObject()]] を呼び出したとき、
このメソッドは実際にはコンテナの [[yii\di\Container::get()|get()]] メソッドを呼び出して新しいオブジェクトを作成します。
前述のとおり、DI コンテナは(もしあれば)自動的に依存を解決し、取得されたオブジェクトにそれらを注入します。
Yii は、新しいオブジェクトを作成するコアコードのほとんどにおいて [[Yii::createObject()]] を使用しています。このことは、
[[Yii::$container]] を操作することでグローバルにオブジェクトをカスタマイズすることができるということを意味しています。

例として、 [[yii\widgets\LinkPager]] のページネーションボタンのデフォルト個数をグローバルにカスタマイズしてみましょう。

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

そして、次のコードでビューでウィジェットを使用すれば、maxButtonCount プロパティは、
クラスで定義されているデフォルト値 10 の代わりに 5 で初期化されます。

echo \yii\widgets\LinkPager::widget();

ただし、DI コンテナを経由して設定された値を上書きすることは、まだ可能です:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Tip: どのような型の値であろうとも上書きされますので、オプションの配列の指定には気を付けてください。オプションの配列はマージされません。

もう一つの例は、DI コンテナの自動コンストラクタ・インジェクションの利点を活かすものです。
あなたのコントローラクラスが、ホテル予約サービスのような、いくつかの他のオブジェクトに依存するとします。
あなたは、コンストラクタのパラメータを通して依存を宣言して、DI コンテナにそれを解決させることができます。

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
 protected $bookingService;

 public function __construct($id, $module, BookingInterface $bookingService, $config = [])
 {
 $this->bookingService = $bookingService;
 parent::__construct($id, $module, $config);
 }
}

あなたがブラウザからこのコントローラにアクセスすると、 BookingInterface をインスタンス化できない、という不平を言う
エラーが表示されるでしょう。これは、この依存に対処する方法を DI コンテナに教える必要があるからです:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');

これで、あなたが再びコントローラにアクセスするときは、app\components\BookingService
のインスタンスが作成され、コントローラのコンストラクタに3番目のパラメータとして注入されるようになります。

高度な実際の使用方法

API アプリケーションを開発していて、以下のクラスを持っているとします。

	app\components\Request クラス。yii\web\Request から拡張され、追加の機能を提供する。

	app\components\Response クラス。yii\web\Response から拡張。生成されるときに、format プロパティが json に設定されなければならない。

	app\storage\FileStorage および app\storage\DocumentsReader クラス。
何らかのファイルストレージに配置されているドキュメントを操作するロジックを実装する。

class FileStorage
{
 public function __contruct($root) {
 // あれやこれや
 }
}

class DocumentsReader
{
 public function __contruct(FileStorage $fs) {
 // なんやかんや
 }
}

[[yii\di\Container::setDefinitions()|setDefinitions()]] または [[yii\di\Container::setSingletons()|setSingletons()]]
のメソッドに構成情報の配列を渡して、複数の定義を一度に構成することが可能です。
これらのメソッドは、構成情報配列を反復して、各アイテムに対し、それぞれ [[yii\di\Container::set()|set()]] を呼び出します。

構成情報配列のフォーマットは、

	key: クラス名、インタフェイス名、または、エイリアス名。
このキーが [[yii\di\Container::set()|set()]] メソッドの最初の引数 $class として渡されます。

	value: $class と関連づけられる定義。指定できる値は、[[yii\di\Container::set()|set()]] の $definition
パラメータのドキュメントで説明されています。[[set()]] メソッドに二番目のパラメータ $definition として渡されます。

例として、上述の要求に従うように私たちのコンテナを構成しましょう。

$container->setDefinitions([
 'yii\web\Request' => 'app\components\Request',
 'yii\web\Response' => [
 'class' => 'app\components\Response',
 'format' => 'json'
],
 'app\storage\DocumentsReader' => function () {
 $fs = new app\storage\FileStorage('/var/tempfiles');
 return new app\storage\DocumentsReader($fs);
 }
]);

$reader = $container->get('app\storage\DocumentsReader);
// 構成情報に書かれている依存とともに DocumentReader オブジェクトが生成されます

Tip: バージョン 2.0.11 以降では、アプリケーションの構成情報を使って、宣言的なスタイルでコンテナを構成することが出来ます。
構成情報 のガイドの アプリケーションの構成 の節を参照してください。
これで全部動きますが、DocumentWriter クラスを生成する必要がある場合には、
FileStorage オブジェクトを生成する行をコピペすることになるでしょう。
もちろん、それが一番スマートな方法ではありません。

依存を解決する の節で説明したように、[[yii\di\Container::set()|set()]] と [[yii\di\Container::setSingleton()|setSingleton()]] は、
オプションで、第三の引数として依存のコンストラクタのパラメータを取ることが出来ます。
コンストラクタのパラメータを設定するために、以下の構成情報配列の形式を使うことが出来ます。

	key: クラス名、インタフェイス名、または、エイリアス名。
このキーが [[yii\di\Container::set()|set()]] メソッドの最初の引数 $class として渡されます。

	value: 二つの要素を持つ配列。最初の要素は [[set()]] メソッドに二番目のパラメータ $definition として渡され、第二の要素が $params として渡されます。

では、私たちの例を修正しましょう。

$container->setDefinitions([
 'tempFileStorage' => [// 便利なようにエイリアスを作りました
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles'] // 何らかの構成ファイルから抽出することも可能
],
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader);
// 前の例と全く同じオブジェクトが生成されます

Instance::of('tempFileStorage') という記法に気づいたことでしょう。
これは、[[yii\di\Container|Container]] が、tempFileStorage という名前で登録されている依存を黙示的に提供して、
app\storage\DocumentsWriter のコンストラクタの最初の引数として渡す、ということを意味しています。

Note: [[yii\di\Container::setDefinitions()|setDefinitions()]] および [[yii\di\Container::setSingletons()|setSingletons()]]
のメソッドは、バージョン 2.0.11 以降で利用できます。

構成情報の最適化にかかわるもう一つのステップは、いくつかの依存をシングルトンとして登録することです。
[[yii\di\Container::set()|set()]] を通じて登録された依存は、必要になるたびに、毎回インスタンス化されます。
しかし、ある種のクラスは実行時を通じて状態を変化させませんので、アプリケーションのパフォーマンスを高めるためにシングルトンとして登録することが出来ます。

app\storage\FileStorage クラスが好例でしょう。これは単純な API によってファイルシステムに対する何らかの操作を実行するもの
(例えば $fs->read() や $fs->write()) ですが、これらの操作はクラスの内部状態を変化させないものです。
従って、このクラスのインスタンスを一度だけ生成して、それを複数回使用することが可能です。

$container->setSingletons([
 'tempFileStorage' => [
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles']
],
]);

$container->setDefinitions([
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader');

いつ依存を登録するか

依存は、新しいオブジェクトが作成されるとき必要とされるので、それらの登録は可能な限り早期に行われるべきです。
推奨されるプラクティスは以下のとおりです:

	あなたがアプリケーションの開発者である場合は、アプリケーションの構成情報を使って依存を登録することが出来ます。
構成情報 のガイドの アプリケーションの構成 の節を読んでください。

	あなたが再配布可能な エクステンション の開発者である場合は、エクステンションのブートストラップクラス内で
依存を登録することができます。

まとめ

依存注入と サービスロケータ はともに、疎結合でよりテストしやすい方法でのソフトウェア構築を可能にする、
定番のデザインパターンです。依存注入とサービスロケータへのより深い理解を得るために、 Martin の記事 [http://martinfowler.com/articles/injection.html]
を読むことを強くお勧めします。

Yii はその サービスロケータ を、依存注入 (DI) コンテナの上に実装しています。
サービスロケータは、新しいオブジェクトのインスタンスを作成しようとするとき、DI コンテナに呼び出しを転送します。
後者は、依存を、上で説明したように自動的に解決します。

 ヘルパ

ヘルパ

Note: この節はまだ執筆中です。

Yii は、一般的なコーディングのタスク、例えば、文字列や配列の操作、HTML コードの生成などを手助けする多くのクラスを提供しています。
これらのヘルパクラスは yii\helpers 名前空間の下に編成されており、すべてスタティックなクラス (すなわち、スタティックなプロパティとメソッドのみを含み、インスタンス化すべきでないクラス) です。

ヘルパクラスは、そのスタティックなメソッドの一つを直接に呼び出すことによって使用します。
例えば、

use yii\helpers\Html;

echo Html::encode('Test > test');

Note: ヘルパクラスをカスタマイズする ことをサポートするために、Yii はコアヘルパクラスのすべてを二つのクラスに分割しています。
すなわち、基底クラス (例えば BaseArrayHelper) と具象クラス (例えば ArrayHelper) です。
ヘルパを使うときは、具象クラスのみを使うべきであり、基底クラスは決して使ってはいけません。

コアヘルパクラス

以下のコアヘルパクラスが Yii のリリースにおいて提供されています。

	配列ヘルパ

	Console

	FileHelper

	FormatConverter

	Html ヘルパ

	HtmlPurifier

	Imagine (yii2-imagine エクステンションによって提供)

	Inflector

	Json

	Markdown

	StringHelper

	Url ヘルパ

	VarDumper

ヘルパクラスをカスタマイズする

コアヘルパクラス (例えば [[yii\helpers\ArrayHelper]]) をカスタマイズするためには、そのヘルパに対応する基底クラス (例えば [[yii\helpers\BaseArrayHelper]]) を拡張するクラスを作成して、名前空間も含めて、対応する具象クラス (例えば [[yii\helpers\ArrayHelper]]) と同じ名前を付けます。
このクラスが、フレームワークのオリジナルの実装を置き換えるものとしてセットアップされます。

次の例は、[[yii\helpers\ArrayHelper]] クラスの [[yii\helpers\ArrayHelper::merge()|merge()]] メソッドをカスタマイズする方法を示すものです。

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
 public static function merge($a, $b)
 {
 // あなた独自の実装
 }
}

あなたのクラスを ArrayHelper.php という名前のファイルに保存します。
このファイルはどこに置いても構いません。例えば、@app/components に置くことにしましょう。

次に、アプリケーションの エントリスクリプト で、次のコード行を yii.php ファイルをインクルードする行の後に追加して、Yii クラスオートローダ に、フレームワークから本来のヘルパクラスをロードする代りに、あなたのカスタムクラスをロードすべきことを教えます。

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';

ヘルパクラスのカスタマイズは、ヘルパの既存の関数の振る舞いを変更したい場合にだけ役立つものであることに注意してください。
アプリケーションの中で使用する関数を追加したい場合には、そのための独立したヘルパを作成する方が良いでしょう。

 Yii をインストールする

Yii をインストールする

Yii は二つの方法でインストールすることが出来ます。すなわち、Composer [https://getcomposer.org/] を使うか、アーカイブファイルをダウンロードするかです。
前者がお薦めの方法です。と言うのは、一つのコマンドを走らせるだけで、新しい エクステンション をインストールしたり、Yii をアップデートしたりすることが出来るからです。

Yii の標準的なインストールを実行すると、フレームワークとプロジェクトテンプレートの両方がダウンロードされてインストールされます。
プロジェクトテンプレートは、いくつかの基本的な機能、例えば、ログインやコンタクトフォームなどを実装した、動作する Yii アプリケーションです。
そのコードは推奨される方法に従って編成されています。
そのため、プロジェクトテンプレートは、あなたのプロジェクトのための良い開始点としての役割を果たしうるものです。

この節と後続のいくつかの節においては、いわゆる ベーシックプロジェクトテンプレート とともに Yii をインストールする方法、および、このテンプレート上に新しい機能を実装する方法を説明します。
Yii はもう一つ、アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] と呼ばれるテンプレートも提供しています。
こちらは、チーム開発環境において多層構造のアプリケーションを開発するときに使用する方が望ましいものです。

Info: ベーシックプロジェクトテンプレートは、ウェブアプリケーションの 90 パーセントを開発するのに適したものです。
アドバンストプロジェクトテンプレートとの主な違いは、コードがどのように編成されているかという点にあります。
あなたが Yii は初めてだという場合は、シンプルでありながら十分な機能を持っているベーシックプロジェクトテンプレートに留まることを強く推奨します。

Composer によるインストール

Composer をインストールする

まだ Composer をインストールしていない場合は、getcomposer.org の指示に従ってインストールすることが出来ます。
Linux や Mac OS X では、次のコマンドを実行します。

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

Windows では、Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe] をダウンロードして実行します。

何か問題が生じたときは、Composer ドキュメントのトラブル・シューティングの節 [https://getcomposer.org/doc/articles/troubleshooting.md] を参照してください。
Composer は初めてだという場合は、少なくとも、Composer ドキュメントの 基本的な使い方の節 [https://getcomposer.org/doc/01-basic-usage.md] も参照することを推奨します。

このガイドでは、composer のコマンドの全ては、あなたが composer を グローバル [https://getcomposer.org/doc/00-intro.md#globally] にインストールし、composer コマンドとして使用できるようにしているものと想定しています。
そうではなく、ローカル・ディレクトリにある composer.phar を使おうとする場合は、例に出てくるコマンドをそれに合せて修正しなければなりません。

以前に Composer をインストールしたことがある場合は、確実に最新のバージョンを使うようにしてください。
Composer は composer self-update コマンドを実行してアップデートすることが出来ます。

Note: Yii のインストールを実行する際に、Composer は大量の情報を Github API から要求する必要が生じます。
リクエストの数は、あなたのアプリケーションが持つ依存の数によりますが、Github API レート制限 より大きくなることがあり得ます。
この制限にかかった場合、Composer は Github API トークンを取得するために、あなたの Github ログイン認証情報を要求するでしょう。
高速な接続においては、Composer が対処できるよりも早い段階でこの制限にかかることもありますので、
Yii のインストールの前に、このアクセス・トークンを構成することを推奨します。
アクセス・トークンの構成の仕方については、Github API トークンに関する Composer ドキュメント [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens]
の指示を参照して下さい。

Yii をインストールする

Composer がインストールされたら、ウェブからアクセスできるフォルダで下記のコマンドを実行することによって Yii をインストールすることが出来ます。

composer global require "fxp/composer-asset-plugin:~1.3.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

最初のコマンドは composer アセットプラグイン [https://github.com/francoispluchino/composer-asset-plugin/] をインストールします。
これにより、Composer を通じて bower と npm の依存パッケージを管理することが出来るようになります。
このコマンドは一度だけ実行すれば十分です。
第二のコマンドは basic という名前のディレクトリに Yii の最新の安定版をインストールします。
必要なら別のディレクトリ名を選ぶことも出来ます。

Info: composer create-project コマンドが失敗するときは、composer asset plugin が正しくインストール出来ているかどうかを確認して下さい。
composer global show を実行することで確認することが出来ます。このコマンドの出力に fxp/composer-asset-plugin のエントリが含まれていなければなりません。.
よくあるエラーについては、Composer ドキュメントのトラブル・シューティングの節 [https://getcomposer.org/doc/articles/troubleshooting.md]
も参照して下さい。
エラーを修正した後は、basic ディレクトリの中で composer update を実行して、中断されたインストールを再開することが出来ます。

Tip: Yii の最新の開発バージョンをインストールしたい場合は、stability option [https://getcomposer.org/doc/04-schema.md#minimum-stability] を追加した次のコマンドを代りに使うことが出来ます。

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

開発バージョンは動いているあなたのコードを動かなくするかもしれませんので、本番環境では使うべきでないことに注意してください。

アーカイブファイルからインストールする

アーカイブファイルから Yii をインストールするには、三つの手順を踏みます。

	yiiframework.com [http://www.yiiframework.com/download/] からアーカイブファイルをダウンロードする。

	ダウンロードしたファイルをウェブからアクセスできるフォルダーに展開する。

	config/web.php ファイルを編集して、cookieValidationKey という構成情報の項目に秘密キーを入力する
(Composer を使って Yii をインストールするときは、これは自動的に実行されます)。

// !!! 下記に(もし空白なら)秘密キーを入力する - これはクッキー検証のために必要
'cookieValidationKey' => '秘密キーをここに入力',

他のインストールオプション

上記のインストール方法の説明は Yii のインストールの仕方を示すものですが、それは同時に、直ちに動作する基本的なウェブアプリケーションを作成するものでもあります。
これは、規模の大小に関わらず、ほとんどのプロジェクトを開始するのに良い方法です。
特に、Yii の学習を始めたばかりの場合には、この方法が適しています。

しかし、他のインストールオプションも利用可能です。

	コアフレームワークだけをインストールし、アプリケーション全体を一から構築したい場合は、アプリケーションを一から構築する
で説明されている指示に従うことが出来ます。

	もっと洗練された、チーム開発環境により適したアプリケーションから開始したい場合は、 アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] をインストールすることを考慮することが出来ます。

インストールを検証する

インストール完了後、あなたのウェブサーバを構成してください (次の説を参照してください)。
あるいは、プロジェクトの web ディレクトリで次のコマンドを実行して、
PHP の内蔵ウェブサーバ [https://secure.php.net/manual/ja/features.commandline.webserver.php] を使ってください。

php yii serve

Note: デフォルトでは、この HTTP サーバは 8080 ポートをリスンします。
しかし、このポートがすでに使われていたり、複数のアプリケーションをこの方法で動かしたい場合は、どのポートを使うかを指定したいと思うでしょう。
単に –port 引数を追加して下さい。

php yii serve --port=8888

下記の URL によって、インストールされた Yii アプリケーションにブラウザを使ってアクセスすることが出来ます。

http://localhost:8080/

[image: Yii のインストールが成功]

ブラウザに上のような “おめでとう!” のページが表示されるはずです。
もし表示されなかったら、PHP のインストールが Yii の必要条件を満たしているかどうか、チェックしてください。
最低限の必要条件を満たしているかどうかは、次の方法のどちらかによってチェックすることが出来ます。

	requirements.php を /web/requirements.php としてコピーし、ブラウザを使って URL http://localhost/requirements.php にアクセスする。

	次のコマンドを実行する。

cd basic
php requirements.php

Yii の最低必要条件を満たすように PHP のインストールを構成しなければなりません。
最も重要なことは、PHP 5.4 以上でなければならないということです。最新の PHP 7 なら理想的です。
また、アプリケーションがデータベースを必要とする場合は、PDO PHP 拡張 [http://www.php.net/manual/ja/pdo.installation.php] および対応するデータベースドライバ (MySQL データベースのための pdo_mysql など) をインストールしなければなりません。

ウェブサーバを構成する

Info: もし Yii の試運転をしているだけで、本番サーバに配備する意図がないのであれば、当面、この項は飛ばしても構いません。

上記の説明に従ってインストールされたアプリケーションは、Apache HTTP サーバ [http://httpd.apache.org/] と Nginx HTTP サーバ [http://nginx.org/] のどちらでも、また、Windows、Mac OS X、Linux のどれでも、PHP 5.4 以上を走らせている環境であれば、そのままの状態で動作するはずです。
Yii 2.0 は、また、facebook の HHVM [http://hhvm.com/] とも互換性があります。
ただし HHVM がネイティブの PHP とは異なる振舞いをする特殊なケースもいくつかありますので、HHVM を使うときはいくらか余分に注意を払う必要があります。

本番用のサーバでは、http://www.example.com/basic/web/index.php の代りに http://www.example.com/index.php という URL でアプリケーションにアクセス出来るようにウェブサーバを設定したいでしょう。
そういう設定をするためには、ウェブサーバのドキュメントルートを basic/web フォルダに向けることが必要になります。
また、ルーティングと URL 生成 の節で述べられているように、URL から index.php を隠したいとも思うでしょう。
この節では、これらの目的を達するために Apache または Nginx サーバをどのように設定すれば良いかを学びます。

Info: basic/web をドキュメントルートに設定することは、basic/web の兄弟ディレクトリに保存されたプライベートなアプリケーションコードや公開できないデータファイルにエンドユーザがアクセスすることを防止することにもなります。
basic/web 以外のフォルダに対するアクセスを拒否することはセキュリティ強化の一つです。

Info: あなたがウェブサーバの設定を修正する権限を持たない共用ホスティング環境でアプリケーションが走る場合であっても、セキュリティ強化のためにアプリケーションの構造を調整することがまだ出来ます。
詳細については、共有ホスティング環境 の節を参照してください。

推奨される Apache の構成

下記の設定を Apache の httpd.conf ファイルまたはバーチャルホスト設定の中で使います。
path/to/basic/web の部分を basic/web の実際のパスに置き換えなければならないことに注意してください。

ドキュメントルートを "basic/web" に設定
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # 綺麗な URL をサポートするために mod_rewrite を使う
 RewriteEngine on
 # ディレクトリかファイルが存在する場合は、リクエストをそのまま通す
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # そうでなければ、リクエストを index.php に送付する
 RewriteRule . index.php

 # ... 他の設定 ...
</Directory>

推奨される Nginx の構成

Nginx [http://wiki.nginx.org/] を使うためには、PHP を FPM SAPI [http://jp1.php.net/install.fpm] としてインストールしなければなりません。
下記の Nginx の設定を使うことができます。
path/to/basic/web の部分を basic/web の実際のパスに置き換え、mysite.local を実際のサーバのホスト名に置き換えてください。

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.local;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # 本当のファイルでないものは全て index.php にリダイレクト
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # 存在しない静的ファイルの呼び出しを Yii に処理させたくない場合はコメントを外す
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 # /assets ディレクトリの php ファイルへのアクセスを拒否する
 location ~ ^/assets/.*\.php$ {
 deny all;
 }

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~* /\. {
 deny all;
 }
}

この構成を使う場合は、多数の不要な stat() システムコールを避けるために、php.ini ファイルで cgi.fix_pathinfo=0 を同時に設定しておくべきです。

また、HTTPS サーバを走らせている場合には、安全な接続であることを Yii が正しく検知できるように、fastcgi_param HTTPS on; を追加しなければならないことにも注意を払ってください。

 先を見通す

先を見通す

「はじめよう」の章全体を読み通したなら、いまやあなたは、完全な Yii のアプリケーションを作成したことがある、ということになります。
その過程で、あなたは必要とされることが多いいくつかの機能、例えば、HTML フォームを通じてユーザからデータを取得することや、データベースからデータを取得すること、また、ページ付けをしてデータを表示することなどを実装する方法を学びました。
また、Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md] を使ってコードを自動的に生成する方法も学びました。
Gii をコード生成に使うと、ウェブ開発のプロセスの大部分が、いくつかのフォームに入力していくだけの簡単な仕事になります。

この節では、Yii フレームワークを使うときの生産性を更に高めるために利用できるリソースについてまとめます。

	ドキュメント
	決定版ガイド [http://www.yiiframework.com/doc-2.0/guide-README.html]:
名前が示すように、このガイドは Yii がどのように動作すべきものかを正確に記述し、Yii を使用するについての全般的な手引きを提供するものです。
これは唯一の最も重要な Yii のチュートリアルであり、Yii のコードを少しでも書く前にあなたはこれを読まなければなりません。

	クラスリファレンス [http://www.yiiframework.com/doc-2.0/index.html]:
これは Yii によって提供される全てのクラスの使用法を記述しています。
主として、コードを書いている時に、特定のクラス、メソッド、プロパティについて理解したい場合に読まれるべきものです。
クラスリファレンスの使用は、フレームワーク全体の文脈的な理解が出来てからにするのが最善です。

	Wiki の記事 [http://www.yiiframework.com/wiki/?tag=yii2]:
Wiki の記事は、Yii のユーザが自身の経験に基づいて書いたものです。
ほとんどの記事は、料理本のレシピのように書かれており、特定の問題を Yii を使って解決する方法を示しています。
これらの記事の品質は決定版ガイドほどには良くないかもしれませんが、より広範なトピックをカバーしていることと、たいていは即座に使えるソリューションを提供してくれることにおいて有用なものです。

	書籍 [http://www.yiiframework.com/doc/]

	エクステンション [http://www.yiiframework.com/extensions/]:
Yii は、ユーザによって作られた数千におよぶエクステンションのライブラリを誇りとしています。
エクステンションはあなたのアプリケーションに簡単に組み込むことが出来、そうすることでアプリケーションの開発作業をより一層速くて簡単なものにします。

	コミュニティ
	フォーラム: http://www.yiiframework.com/forum/

	IRC チャット: freenode ネットワーク (irc://irc.freenode.net/yii) の #yii チャンネル

	Gitter チャット: https://gitter.im/yiisoft/yii2

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

 Html ヘルパ

Html ヘルパ

全てのウェブアプリケーションは大量の HTML マークアップを生成します。
マークアップが静的な場合は、PHP と HTML を一つのファイルに混ぜる [http://php.net/manual/ja/language.basic-syntax.phpmode.php] ことによって効率よく生成することが可能ですが、マークアップを動的にするとなると、何らかの助けが無ければ、処理がトリッキーになってきます。
Yii はそのような手助けを Html ヘルパの形式で提供します。
これは、よく使われる HTML タグとそのオプションやコンテントを処理するための一連のスタティックメソッドを提供するものです。

Note: あなたのマークアップがおおむね静的なものである場合は、HTML を直接に使用する方が適切です。
何でもかんでも Html ヘルパの呼び出しでラップする必要はありません。

基礎

動的な HTML を文字列の連結によって構築していると、あっという間に乱雑なコードになります。
そのため、Yii はタグのオプションを操作し、それらのオプションに基づいてタグを構築する一連のメソッドを提供します。

タグを生成する

タグを生成するコードは次のようなものです。

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>

最初の引数はタグの名前です。
二番目の引数は、開始タグと終了タグの間に囲まれることになるコンテントです。
Html::encode を使っていることに注目してください。
これは、必要な場合には HTML を使うことが出来るように、コンテントが自動的にはエンコードされないからです。
三番目の引数は HTML のオプション、言い換えると、タグの属性です。
この配列で、キーは class、href、target などの属性の名前であり、値は属性の値です。

上記のコードは次の HTML を生成します。

<p class="username">samdark</p>

開始タグまたは終了タグだけが必要な場合は、Html::beginTag() または Html::endTag() のメソッドを使うことが出来ます。

オプションは多くの Html ヘルパのメソッドとさまざまなウィジェットで使用されます。
その全ての場合において、いくつか追加の処理がなされることを知っておいてください。

	値が null である場合は、対応する属性はレンダリングされません。

	値が真偽値である属性は、真偽値属性 (boolean attributes) [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes] として扱われます。

	属性の値は [[yii\helpers\Html::encode()|Html::encode()]] を使って HTML エンコードされます。

	属性の値が配列である場合は、次のように処理されます。
	属性が [[yii\helpers\Html::$dataAttributes]] にリストされているデータ属性である場合、例えば data や ng である場合は、値の配列にある要素の一つ一つについて、属性のリストがレンダリングされます。
例えば、'data' => ['id' => 1, 'name' => 'yii'] は data-id="1" data-name="yii" を生成します。
また、'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] は data-params='{"id":1,"name":"yii"}' data-status="ok" を生成します。
後者の例において、下位の配列に対して JSON 形式が使用されていることに注意してください。

	属性がデータ属性でない場合は、値は JSON エンコードされます。
例えば、['params' => ['id' => 1, 'name' => 'yii'] は params='{"id":1,"name":"yii"}' を生成します。

CSS のクラスとスタイルを形成する

HTML タグのオプションを構築する場合、たいていは、デフォルトの値から始めて必要な修正をする、という方法をとります。
CSS クラスを追加または削除するために、次のコードを使用することが出来ます。

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
 Html::removeCssClass($options, 'btn-default');
 Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Pwede na', $options);

// $type が 'success' の場合、次のようにレンダリングされる
// <div class="btn btn-success">Pwede na</div>

配列形式を使って複数の CSS クラスを指定することも出来ます。

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Save', $options);
// '<div class="btn btn-default">Save</div>' をレンダリングする

クラスを追加・削除する際にも配列形式を使うことが出来ます。

$options = ['class' => 'btn'];

if ($type === 'success') {
 Html::addCssClass($options, ['btn-success', 'btn-lg']);
}

echo Html::tag('div', 'Save', $options);
// '<div class="btn btn-success btn-lg">Save</div>' をレンダリングする

Html::addCssClass() はクラスの重複を防止しますので、同じクラスが二度出現するかも知れないと心配する必要はありません。

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // クラス 'btn-default' は既に存在する

echo Html::tag('div', 'Save', $options);
// '<div class="btn btn-default">Save</div>' をレンダリングする

CSS のクラスオプションを配列形式で指定する場合には、名前付きのキーを使ってクラスの論理的な目的を示すことが出来ます。
この場合、Html::addCssClass() で同じキーを持つクラスを指定しても無視されます。

$options = [
 'class' => [
 'btn',
 'theme' => 'btn-default',
]
];

Html::addCssClass($options, ['theme' => 'btn-success']); // 'theme' キーは既に使用されている

echo Html::tag('div', 'Save', $options);
// '<div class="btn btn-default">Save</div>' をレンダリングする

CSS のスタイルも style 属性を使って、同じように設定することが出来ます。

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// style="width: 100px; height: 200px; position: absolute;" となる
Html::addCssStyle($options, 'height: 200px; position: absolute;');

// style="position: absolute;" となる
Html::removeCssStyle($options, ['width', 'height']);

[[yii\helpers\Html::addCssStyle()|addCssStyle()]] を使うときには、CSS プロパティの名前と値に対応する「キー-値」ペアの配列か、または、width: 100px; height: 200px; のような文字列を指定することが出来ます。
この二つの形式は、[[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] と [[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]] を使って、双方向に変換することが出来ます。
[[yii\helpers\Html::removeCssStyle()|removeCssStyle()]] メソッドは、削除すべきプロパティの配列を受け取ります。
プロパティが一つだけである場合は、文字列で指定することも出来ます。

コンテントをエンコードおよびデコードする

コンテントが適切かつ安全に HTML として表示されるためには、コンテント内の特殊文字がエンコードされなければなりません。
特殊文字のエンコードとデコードは、PHP では htmlspecialchars [http://www.php.net/manual/ja/function.htmlspecialchars.php] と htmlspecialchars_decode [http://www.php.net/manual/ja/function.htmlspecialchars-decode.php] によって行われます。
これらのメソッドを直接使用する場合の問題は、文字エンコーディングと追加のフラグを毎回指定しなければならないことです。
フラグは毎回同じものであり、文字エンコーディングはセキュリティ問題を防止するためにアプリケーションのそれと一致すべきものですから、Yii は二つのコンパクトかつ使いやすいメソッドを用意しました。

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);

フォーム

フォームのマークアップを扱う仕事は、極めて面倒くさく、エラーを生じがちなものです。
このため、フォームのマークアップの仕事を助けるための一群のメソッドがあります。

Note: モデルを扱っており、バリデーションが必要である場合は、[[yii\widgets\ActiveForm|ActiveForm]] を使うことを検討してください。

フォームを作成する

フォームを開始するためには、次のように [[yii\helpers\Html::beginForm()|beginForm()]] メソッドを使うことが出来ます。

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>

最初の引数は、フォームが送信されることになる URL です。
これは [[yii\helpers\Url::to()|Url::to()]] によって受け入れられる Yii のルートおよびパラメータの形式で指定することが出来ます。
第二の引数は使われるメソッドです。post がデフォルトです。
第三の引数はフォームタグのオプションの配列です。
上記の場合では、POST リクエストにおけるフォームデータのエンコーディング方法を multipart/form-data に変更しています。
これはファイルをアップロードするために必要とされます。

フォームタグを閉じるのは簡単です。

<?= Html::endForm() ?>

ボタン

ボタンを生成するためには、次のコードを使うことが出来ます。

<?= Html::button('押してね !', ['class' => 'teaser']) ?>
<?= Html::submitButton('送信', ['class' => 'submit']) ?>
<?= Html::resetButton('リセット', ['class' => 'reset']) ?>

最初の引数は、三つのメソッドのどれでも、ボタンのタイトルであり、第二の引数はオプションです。
タイトルはエンコードされませんので、エンドユーザからデータを取得する場合は [[yii\helpers\Html::encode()|Html::encode()]] を使ってエンコードしてください。

インプットフィールド

インプットのメソッドには二つのグループがあります。
一つは active から始まるものでアクティブインプットと呼ばれます。もう一方は active から始まらないものです。
アクティブインプットは、データを指定されたモデルと属性から取得しますが、通常のインプットでは、データは直接に指定されます。

最も汎用的なメソッドは以下のものです。

タイプ、インプットの名前、値、オプション
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

タイプ、モデル、モデルの属性名、オプション
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>

インプットのタイプが前もって判っている場合は、ショートカットメソッドを使う方が便利です。

	[[yii\helpers\Html::buttonInput()]]

	[[yii\helpers\Html::submitInput()]]

	[[yii\helpers\Html::resetInput()]]

	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]

	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]

	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]

	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]

	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]

ラジオとチェックボックスは、メソッドのシグニチャの面で少し異なっています。

<?= Html::radio('agree', true, ['label' => '同意します']);
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => '同意します']);
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])

ドロップダウンリストとリストボックスは、次のようにしてレンダリングすることが出来ます。

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

最初の引数はインプットの名前、第二の引数は現在選択されている値です。
そして第三の引数は「キー-値」のペアであり、配列のキーはリストの値、配列の値はリストのラベルです。

複数の選択肢を選択できるようにしたい場合は、チェックボックスリストが最適です。

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

そうでない場合は、ラジオリストを使います。

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

ラベルとエラー

インプットと同じように、ラベルを生成するメソッドが二つあります。
モデルからデータを取るアクティブなラベルと、データを直接受け入れるアクティブでないラベルです。

<?= Html::label('ユーザ名', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username']) ?>

一つまたは複数のモデルから取得したエラーを要約として表示するためには、次のコードを使うことが出来ます。

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>

個別のエラーを表示するためには、次のようにします。

<?= Html::error($post, 'title', ['class' => 'error']) ?>

インプットの名前と値

モデルに基づいてインプットフィールドの名前、ID、値を取得するメソッドがあります。
これらは主として内部的に使用されるものですが、場合によっては重宝します。

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// '私の最初の投稿'
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');

上記において、最初の引数はモデルであり、第二の引数は属性を示す式です。
これは最も単純な形式においては属性名ですが、配列の添字を前 および/または 後に付けた属性名とすることも出来ます。
配列の添字は主として表形式データ入力のために使用されます。

	[0]content は、表形式データ入力で使われます。表形式入力の最初のモデルの “content” 属性を表します。

	dates[0] は、”dates” 属性の最初の配列要素を表します。

	[0]dates[0] は、表形式入力の最初のモデルの “dates” 属性の最初の配列要素を表します。

前後の添字なしに属性名を取得するためには、次のコードを使うことが出来ます。

// dates
echo Html::getAttributeName('dates[0]');

スタイルとスクリプト

埋め込みのスタイルとスクリプトをラップするタグを生成するメソッドが二つあります。

<?= Html::style('.danger { color: #f00; }') ?>

これは次の HTML を生成します。

<style>.danger { color: #f00; }</style>

<?= Html::script('alert("こんにちは!");', ['defer' => true]);

これは次の HTML を生成します。

<script defer>alert("こんにちは!");</script>

CSS ファイルの外部スタイルをリンクしたい場合は、次のようにします。

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

これは次の HTML を生成します。

<!--[if IE 5]>
 <link href="http://example.com/css/ie5.css" />
<![endif]-->

最初の引数は URL であり、第二の引数はオプションの配列です。
通常のオプションに加えて、次のものを指定することが出来ます。

	condition - 指定された条件を使って <link を条件付きコメントで囲みます。
条件付きコメントなんて、使う必要が無くなっちゃえば良いのにね ;)

	noscript - true に設定すると <link を <noscript> タグで囲むことができます。
この場合、JavaScript がブラウザでサポートされていないか、ユーザが JavaScript を無効にしたときだけ、CSS がインクルードされます。

JavaScript ファイルをリンクするためには、次のようにします。

<?= Html::jsFile('@web/js/main.js') ?>

CSS と同じように、最初の引数はインクルードされるファイルへのリンクを指定するものです。
オプションを第二の引数として渡すことが出来ます。
オプションに置いて、cssFile のオプションと同じように、condition を指定することが出来ます。

ハイパーリンク

ハイパーリンクを手軽に生成できるメソッドがあります。

<?= Html::a('プロファイル', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>

最初の引数はタイトルです。
これはエンコードされませんので、エンドユーザから取得したデータを使う場合は、Html::encode() でエンコードする必要があります。
第二の引数が、<a タグの href に入ることになるものです。
どのような値が受け入れられるかについて、詳細は Url::to() を参照してください。
第三の引数は、タグのプロパティの配列です。

mailto リンクを生成する必要があるときは、次のコードを使うことが出来ます。

<?= Html::mailto('連絡先', 'admin@example.com') ?>

画像

イメージタグを生成するためには次のようにします。

<?= Html::img('@web/images/logo.png', ['alt' => '私のロゴ']) ?>

これは次の HTML を生成します。

最初の引数は、エイリアス 以外にも、ルートとパラメータ、または URL を受け入れることが出来ます。
Url::to() と同様です。

リスト

順序なしリストは、次のようにして生成することが出来ます。

<?= Html::ul($posts, ['item' => function($item, $index) {
 return Html::tag(
 'li',
 $this->render('post', ['item' => $item]),
 ['class' => 'post']
);
}]) ?>

順序付きリストを生成するためには、代りに Html:ol() を使ってください。

 コントローラ

コントローラ

リソースクラスを作成して、リソースデータをどのようにフォーマットすべきかを指定したら、次は、RESTful API を通じてエンドユーザにリソースを公開するコントローラアクションを作成します。

Yii は、RESTful アクションを作成する仕事を簡単にするための二つの基底コントローラクラスを提供しています。
すなわち、[[yii\rest\Controller]] と [[yii\rest\ActiveController]] です。
二つのコントローラの違いは、後者は アクティブレコード として表現されるリソースの扱いに特化した一連のアクションをデフォルトで提供する、という点にあります。
従って、あなたが アクティブレコード を使っていて、提供される組み込みのアクションに満足できるのであれば、コントローラクラスを [[yii\rest\ActiveController]] から拡張することを検討すると良いでしょう。
そうすれば、最小限のコードで強力な RESTful API を作成することが出来ます。

[[yii\rest\Controller]] と [[yii\rest\ActiveController]] は、ともに、下記の機能を提供します。
これらのいくつかについては、後続の節で詳細に説明します。

	HTTP メソッドのバリデーション

	コンテントネゴシエーションとデータの書式設定

	認証

	レート制限

[[yii\rest\ActiveController]] は次の機能を追加で提供します。

	普通は必要とされる一連のアクション: index、view、create、update、delete、options

	リクエストされたアクションとリソースに対するユーザへの権限付与

コントローラクラスを作成する

新しいコントローラクラスを作成する場合、コントローラクラスの命名規約は、リソースの型の名前を単数形で使う、というものです。
例えば、ユーザの情報を提供するコントローラは UserController と名付けることが出来ます。

新しいアクションを作成する仕方はウェブアプリケーションの場合とほぼ同じです。
唯一の違いは、render() メソッドを呼んでビューを使って結果を表示する代りに、RESTful アクションの場合はデータを直接に返す、という点です。
[[yii\rest\Controller::serializer|シリアライザ]] と [[yii\web\Response|レスポンスオブジェクト]] が、元のデータからリクエストされた形式への変換を処理します。
例えば、

public function actionView($id)
{
 return User::findOne($id);
}

フィルタ

[[yii\rest\Controller]] によって提供される RESTful API 機能のほとんどは フィルタ の形で実装されています。
具体的に言うと、次のフィルタがリストされた順に従って実行されます。

	レスポンス形式の設定 の節で説明します。

	[[yii\filters\VerbFilter|verbFilter]]: HTTP メソッドのバリデーションをサポート。

	認証 の節で説明します。

	レート制限 の節で説明します。

これらの名前付きのフィルタは、[[yii\rest\Controller::behaviors()|behaviors()]] メソッドで宣言されます。
このメソッドをオーバーライドして、個々のフィルタを構成したり、どれかを無効にしたり、あなた自身のフィルタを追加したりすることが出来ます。
例えば、HTTP 基本認証だけを使いたい場合は、次のようなコードを書くことが出来ます。

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

CORS

コントローラに CORS (クロスオリジンリソース共有) フィルタを追加するのは、上記の他のフィルタを追加するのより、若干複雑になります。
と言うのは、CORS フィルタは認証メソッドより前に適用されなければならないため、他のフィルタとは少し異なるアプローチが必要だからです。
また、ブラウザが認証クレデンシャルを送信する必要なく、リクエストが出来るかどうかを前もって安全に判断できるように、
CORS プリフライトリクエスト [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests] の認証を無効にする必要もあります。
下記のコードは、[[yii\rest\ActiveController]] を拡張した既存のコントローラに [[yii\filters\Cors]] フィルタを追加するのに必要なコードを示しています。

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();

 // 認証フィルタを削除する
 $auth = $behaviors['authenticator'];
 unset($behaviors['authenticator']);

 // CORS フィルタを追加する
 $behaviors['corsFilter'] = [
 'class' => \yii\filters\Cors::className(),
];

 // 認証フィルタを再度追加する
 $behaviors['authenticator'] = $auth;
 // CORS プリフライトリクエスト (HTTP OPTIONS メソッド) の認証を回避する
 $behaviors['authenticator']['except'] = ['options'];

 return $behaviors;
}

ActiveController を拡張する

コントローラを [[yii\rest\ActiveController]] から拡張する場合は、このコントローラを通じて提供しようとしているリソースクラスの名前を [[yii\rest\ActiveController::modelClass|modelClass]] プロパティにセットしなければなりません。
リソースクラスは [[yii\db\ActiveRecord]] から拡張しなければなりません。

アクションをカスタマイズする

デフォルトでは、[[yii\rest\ActiveController]] は次のアクションを提供します。

	

	

	

	

	

	[[yii\rest\OptionsAction|options]]: サポートされている HTTP メソッドを返す。

これらのアクションは全て [[yii\rest\ActiveController::actions()|actions()]] メソッドによって宣言されます。
actions() メソッドをオーバーライドすることによって、これらのアクションを構成したり、そのいくつかを無効化したりすることが出来ます。
例えば、

public function actions()
{
 $actions = parent::actions();

 // "delete" と "create" のアクションを無効にする
 unset($actions['delete'], $actions['create']);

 // データプロバイダの準備を "prepareDataProvider()" メソッドでカスタマイズする
 $actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'];

 return $actions;
}

public function prepareDataProvider()
{
 // "index" アクションのためにデータプロバイダを準備して返す
}

どういう構成オプションが利用できるかを学ぶためには、個々のアクションクラスのリファレンスを参照してください。

アクセスチェックを実行する

RESTful API によってリソースを公開するときには、たいてい、現在のユーザがリクエストしているリソースにアクセスしたり操作したりする許可を持っているか否かをチェックする必要があります。
これは、[[yii\rest\ActiveController]] を使う場合は、[[yii\rest\ActiveController::checkAccess()|checkAccess()]] メソッドを次のようにオーバーライドすることによって出来ます。

/**
 * 現在のユーザの特権をチェックする。
 *
 * 現在のユーザが指定されたデータモデルに対して指定されたアクションを実行する特権を
 * 有するか否かをチェックするためには、このメソッドをオーバーライドしなければなりません。
 * ユーザが権限をもたない場合は、[[ForbiddenHttpException]] が投げられなければなりません。
 *
 * @param string $action 実行されるアクションの ID。
 * @param \yii\base\Model $model アクセスされるモデル。null の場合は、アクセスされる特定のモデルが無いことを意味する。
 * @param array $params 追加のパラメータ
 * @throws ForbiddenHttpException ユーザが権限をもたない場合
 */
public function checkAccess($action, $model = null, $params = [])
{
 // ユーザが $action と $model に対する権限を持つかどうかをチェック
 // アクセスを拒否すべきときは ForbiddenHttpException を投げる
 if ($action === 'update' || $action === 'delete') {
 if ($model->author_id !== \Yii::$app->user->id)
 throw new \yii\web\ForbiddenHttpException(sprintf('You can only %s articles that you\'ve created.', $action));
 }
}

checkAccess() メソッドは [[yii\rest\ActiveController]] のデフォルトのアクションから呼ばれます。
新しいアクションを作成して、それに対してもアクセスチェックをしたい場合は、新しいアクションの中からこのメソッドを明示的に呼び出さなければなりません。

Tip: ロールベースアクセス制御 (RBAC) コンポーネント を使って checkAccess() を実装することも可能です。

 データキャッシュ

データキャッシュ

データキャッシュは PHP の変数をキャッシュに格納し、あとでキャッシュからそれらを読み込みます。
これは、クエリキャッシュ や ページキャッシュ などの、より高度なキャッシュ機能の基礎でもあります。

以下のコードが、データキャッシュの典型的な利用パターンです。ここで、$cache は キャッシュコンポーネント を指しています。

// キャッシュから $data を取得しようと試みる
$data = $cache->get($key);

if ($data === false) {

 // キャッシュの中に $data が見つからない場合は一から作る
 $data = $this->calculateSomething();

 // $data をキャッシュに格納して、次回はそれを取得できるようにする
 $cache->set($key, $data);
}

// この時点で $data は利用可能になっている

バージョン 2.0.11 以降は、キャッシュコンポーネント が提供する [yii\caching\Cache::getOrSet()|getOrSet()] メソッドを使って、
データを取得、計算、保存するためのコードを単純化することが出来ます。
次に示すコードは、上述の例と全く同じことをするものです。

$data = $cache->getOrSet($key, function () {
 return $this->calculateSomething();
});

キャッシュが $key と関連づけられたデータを保持している場合は、キャッシュされている値が返されます。
そうでない場合は、渡された無名関数が実行されて値が計算され、その値がキャッシュされるとともに返されます。

無名関数が外部のスコープの何らかのデータを必要とする場合は、それを use 文を使って渡すことが出来ます。
例えば、

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
 return $this->calculateSomething($user_id);
});

Note: [yii\caching\Cache::getOrSet()|getOrSet()] メソッドは、有効期限と依存もサポートしています。
詳しくは キャッシュの有効期限 と キャッシュの依存 を参照してください。

キャッシュコンポーネント

データキャッシュはメモリ、ファイル、データベースなどさまざまなキャッシュストレージを表す、いわゆる キャッシュコンポーネント に依存しています。

キャッシュコンポーネントは通常グローバルに設定しアクセスできるように アプリケーションコンポーネント として登録されます。
以下のコードは、二台のキャッシュサーバを用いる Memcached [http://memcached.org/] を使うように cache アプリケーションコンポーネントを構成する方法を示すものです。

'components' => [
 'cache' => [
 'class' => 'yii\caching\MemCache',
 'servers' => [
 [
 'host' => 'server1',
 'port' => 11211,
 'weight' => 100,
],
 [
 'host' => 'server2',
 'port' => 11211,
 'weight' => 50,
],
],
],
],

こうすると、上記のキャッシュコンポーネントに Yii::$app->cache という式でアクセスできるようになります。

すべてのキャッシュコンポーネントは同じ API をサポートしているので、アプリケーションの構成情報で設定しなおせば、キャッシュを使っているコードに変更を加えることなく、異なるキャッシュコンポーネントに入れ替えることができます。
例えば上記の構成を [[yii\caching\ApcCache|APC キャッシュ]] を使うように変更する場合は以下のようにします:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
],
],

Tip: キャッシュコンポーネントは複数登録することができます。cache という名前のコンポーネントが、キャッシュに依存する多数のクラスによってデフォルトで使用されます (例えば [[yii\web\UrlManager]] など) 。

サポートされているキャッシュストレージ

Yii はさまざまなキャッシュストレージをサポートしています。以下は概要です:

	[[yii\caching\ApcCache]]: PHP の APC [http://php.net/manual/ja/book.apc.php] 拡張モジュールを使用します。
集中型の分厚いアプリケーションのキャッシュを扱うときには最速の一つとして考えることができます
(例えば、サーバが一台で、専用のロードバランサを持っていない、などの場合)。

	[[yii\caching\DbCache]]: キャッシュされたデータを格納するためにデータベースのテーブルを使用します。このキャッシュを使用するには [[yii\caching\DbCache::cacheTable]] で指定したテーブルを作成する必要があります。

	このコンポーネントの目的は、キャッシュが利用できることをチェックするためのコードを簡略化することです。
たとえば、開発中やサーバに実際のキャッシュサポートがない場合に、このキャッシュを使用するようにキャッシュコンポーネントを構成することができます。
そして、実際のキャッシュサポートが有効になったときに、対応するキャッシュコンポーネントに切替えて使用します。
どちらの場合も、Yii::$app->cache が null かも知れないと心配せずに、データを取得するために同じコード Yii::$app->cache->get($key) を使用できます。

	

	[[yii\caching\MemCache]]: PHP の Memcache [http://php.net/manual/ja/book.memcache.php] と Memcached [http://php.net/manual/ja/book.memcached.php] 拡張モジュールを使用します。
分散型のアプリケーションでキャッシュを扱うときには最速の一つとして考えることができます (例えば、複数台のサーバで、ロードバランサがある、などの場合) 。

	[[yii\redis\Cache]]: Redis [http://redis.io/] の key-value ストアに基づいてキャッシュコンポーネントを実装しています。(Redis の バージョン 2.6.12 以降が必要です) 。

	[[yii\caching\WinCache]]: PHP の WinCache [http://iis.net/downloads/microsoft/wincache-extension] (関連リンク [http://php.net/manual/ja/book.wincache.php]) 拡張モジュールを使用します。

	[[yii\caching\XCache]]: PHP の XCache [http://xcache.lighttpd.net/] 拡張モジュールを使用します。

	[[yii\caching\ZendDataCache]]: キャッシュメディアして Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm] を使用します。

Tip: 同じアプリケーション内で異なるキャッシュを使用することもできます。一般的なやり方として、小さくとも常に使用されるデータ (例えば、統計データ) を格納する場合はメモリベースのキャッシュストレージを使用し、大きくて使用頻度の低いデータ (例えば、ページコンテント) を格納する場合はファイルベース、またはデータベースのキャッシュストレージを使用します 。

キャッシュ API

すべてのキャッシュコンポーネントが同じ基底クラス [[yii\caching\Cache]] を持っているので、以下の API をサポートしています。

	[[yii\caching\Cache::get()|get()]]: 指定されたキーを用いてキャッシュからデータを取得します。データが見つからないか、もしくは有効期限が切れたり無効になったりしている場合は false を返します。

	

	

	取得できなかった場合は、渡されたコールバック関数を実行し、関数の返り値をそのキーでキャッシュに保存し、そしてその値を返します。

	

	

	

	

	

	

Note: [[yii\caching\Cache::get()|get()]] メソッドは、データがキャッシュ内に見つからないことを示すために戻り値として false を使用しているので、直接 boolean 型の false をキャッシュしないでください。
代りに配列内に false を置いてキャッシュすることによって、この問題を回避できます。

キャッシュされたデータを取得する際に発生するオーバーヘッドを減らすために、MemCache, APC などのいくつかのキャッシュストレージは、バッチモードで複数のキャッシュされた値を取得することをサポートしています。
[yii\caching\Cache::multiGet()|multiGet()] や [yii\caching\Cache::multiAdd()|multiAdd()] などの API はこの機能を十分に引き出すために提供されています。
基礎となるキャッシュストレージがこの機能をサポートしていない場合には、シミュレートされます。

[[yii\caching\Cache]] は ArrayAccess インターフェイスを継承しているので、キャッシュコンポーネントは配列のように扱うことができます。以下はいくつかの例です:

$cache['var1'] = $value1; // $cache->set('var1', $value1); と同等
$value2 = $cache['var2']; // $value2 = $cache->get('var2'); と同等

キャッシュのキー

キャッシュに格納される各データは、一意のキーによって識別されます。
キャッシュ内にデータを格納するときはキーを指定する必要があります。
また、あとでキャッシュからデータを取得するときは、それに対応するキーを提供しなければなりません。

キャッシュのキーとしては、文字列または任意の値を使用することができます。キーが文字列でない場合は、自動的に文字列にシリアライズされます。

キャッシュのキーを定義する一般的なやり方として、全ての決定要素を配列の形で含めるという方方があります。
例えば [[yii\db\Schema]] はデータベーステーブルのスキーマ情報を以下のキーを使用してキャッシュしています。

[
 __CLASS__, // スキーマクラス名
 $this->db->dsn, // データベース接続のデータソース名
 $this->db->username, // データベース接続のログインユーザ
 $name, // テーブル名
];

見ての通り、キーは一意にデータベースのテーブルを指定するために必要なすべての情報を含んでいます。

Note: [yii\caching\Cache::multiSet()|multiSet()] または [yii\caching\Cache::multiAdd()|multiAdd()] によってキャッシュに保存される値が持つことが出来るのは、
文字列または整数のキーだけです。それらより複雑なキーを設定する必要がある場合は、
[yii\caching\Cache::set()|set()] または [yii\caching\Cache::add()|add()] によって、値を個別に保存してください。

同じキャッシュストレージが異なるアプリケーションによって使用されているときは、キャッシュのキーの競合を避けるために、各アプリケーションではユニークなキーの接頭辞を指定する必要があります。これは [[yii\caching\Cache::keyPrefix]] プロパティを設定することでできます。例えば、アプリケーションのコンフィギュレーションで以下のように書くことができます:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
 'keyPrefix' => 'myapp', // ユニークなキャッシュのキーの接頭辞
],
],

相互運用性を確保するために、英数字のみを使用する必要があります。

キャッシュの有効期限

キャッシュに格納されたデータは、何らかのキャッシュポリシー (例えば、キャッシュスペースがいっぱいになったときは最も古いデータが削除される、など) の実施で除去されない限り、永遠に残り続けます。
この動作を変えるために [yii\caching\Cache::set()|set()] を呼んでデータアイテムを保存するときに、有効期限パラメータを指定することができます。
このパラメータは、データアイテムが何秒間有効なものとしてキャッシュ内に残ることが出来るかを示します。
[[yii\caching\Cache::get()|get()]] でデータアイテムを取得する際に有効期限が切れていた場合は、キャッシュ内にデータが見つからなかったことを示す false が返されます。例えば、

// 最大で 45 秒間キャッシュ内にデータを保持する
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
 // $data は有効期限が切れているか、またはキャッシュ内に見つからない
}

バージョン 2.0.11 以降は、デフォルトの無限の有効期限に替えて特定の有効期限を指定したい場合には、キャッシュコンポーネントの構成で [[yii\caching\Cache::$defaultDuration|defaultDuration]] の値を指定することが出来ます。
これによって、特定の duration パラメータを毎回 [yii\caching\Cache::set()|set()] に渡さなくてもよくなります。

キャッシュの依存

有効期限の設定に加えて、キャッシュされたデータは、いわゆる キャッシュの依存 (キャッシュが依存している事物) の変化によって無効にすることもできます。
例えば [yii\caching\FileDependency] は、キャッシュがファイルの更新時刻に依存していることを表しています。
この依存が変化したときは、対応するファイルが更新されたことを意味します。
その結果、キャッシュ内で見つかった古いファイルのコンテントは、無効とされるべきであり [[yii\caching\Cache::get()|get()]] は false を返さなければなりません。

キャッシュの依存は [[yii\caching\Dependency]] 子孫クラスのオブジェクトとして表現されます。
[yii\caching\Cache::set()|set()] でキャッシュにデータアイテムを格納する際に、関連するキャッシュの依存のオブジェクトを一緒に渡すことができます。例えば、

// example.txt ファイルの更新時刻への依存を作成します。
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// データは 30 秒で期限切れになります。
// さらに、example.txt が変更された場合、有効期限内でも無効になります。
$cache->set($key, $data, 30, $dependency);

// キャッシュはデータの有効期限が切れているかをチェックします。
// 同時に、関連付けられた依存が変更されているかもチェックします。
// これらの条件のいずれかが満たされている場合は false を返します。
$data = $cache->get($key);

以下は利用可能なキャッシュの依存の概要です:

	

	[[yii\caching\DbDependency]]: 指定された SQL 文のクエリ結果が変更された場合、依存が変更されます。

	[[yii\caching\ExpressionDependency]]: 指定された PHP の式の結果が変更された場合、依存が変更されます。

	

	[[yii\caching\TagDependency::invalidate()]] を呼び出すことによって、指定されたタグ (複数可) を持つキャッシュされたデータアイテムを無効にすることができます。

Note: 依存を有するキャッシュについて [yii\caching\Cache::exists()|exists()] メソッドを使用することは避けてください。
このメソッドは、キャッシュされたデータに関連づけられた依存がある場合でも、依存が変化したかどうかをチェックしません。
つまり、[yii\caching\Cache::exists()|exists()] が true を返しているのに、 [[yii\caching\Cache::get()|get()]] が false を返すという場合があり得ます。

クエリキャッシュ

クエリキャッシュは、データキャッシュ上に構築された特別なキャッシュ機能で、データベースのクエリ結果をキャッシュするために提供されています。

クエリキャッシュは [[yii\db\Connection|データベース接続]] と有効な cache アプリケーションコンポーネント を必要とします。
$db を [[yii\db\Connection]] のインスタンスと仮定した場合、クエリキャッシュの基本的な使い方は以下のようになります:

$result = $db->cache(function ($db) {

 // クエリキャッシュが有効で、かつクエリ結果がキャッシュ内にある場合、
 // SQL クエリ結果がキャッシュから提供されます
 return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});

クエリキャッシュは DAO だけではなく アクティブレコード でも使用することができます。

$result = Customer::getDb()->cache(function ($db) {
 return Customer::find()->where(['id' => 1])->one();
});

Info: いくつかの DBMS (例えば MySQL [http://dev.mysql.com/doc/refman/5.1/ja/query-cache.html]) でもデータベースのサーバサイドのクエリキャッシュをサポートしています。
どちらのクエリキャッシュメカニズムも選べますが、前述した Yii のクエリキャッシュにはキャッシュの依存を柔軟に指定できるという利点があり、潜在的にはより効率的でしょう。

キャッシュのフラッシュ

 モジュール

モジュール

モジュールは、モデル、ビュー、コントローラ、およびその他の支援コンポーネントから構成される自己充足的なソフトウェアのユニットです。
モジュールが アプリケーション にインストールされている場合、エンドユーザはモジュールのコントローラにアクセスする事が出来ます。
これらのことを理由として、モジュールは小さなアプリケーションと見なされることがよくあります。
しかし、モジュールは単独では配備できず、アプリケーションの中に存在しなければならないという点で アプリケーション とは異なります。

モジュールを作成する

モジュールは、モジュールの [[yii\base\Module::basePath|ベースパス]] と呼ばれるディレクトリとして編成されます。
このディレクトリの中に、ちょうどアプリケーションの場合と同じように、controllers、models、views のようなサブディレクトリが存在して、コントローラ、モデル、ビュー、その他のコードを収納しています。
次の例は、モジュール内の中身を示すものです。

forum/
 Module.php モジュールクラスファイル
 controllers/ コントローラクラスファイルを含む
 DefaultController.php デフォルトのコントローラクラスファイル
 models/ モデルクラスファイルを含む
 views/ コントローラのビューとレイアウトのファイルを含む
 layouts/ レイアウトのビューファイルを含む
 default/ DefaultController のためのビューファイルを含む
 index.php index ビューファイル

モジュールクラス

全てのモジュールは [[yii\base\Module]] から拡張したユニークなモジュールクラスを持たなければなりません。
モジュールクラスは、モジュールの [[yii\base\Module::basePath|ベースパス]] 直下に配置されて オートロード可能 になっていなければなりません。
モジュールがアクセスされたとき、対応するモジュールクラスの単一のインスタンスが作成されます。
アプリケーションのインスタンス と同じように、モジュールのインスタンスは、モジュール内のコードがデータとコンポーネントを共有するために使用されます。

次のコードは、モジュールクラスがどのようなものかを示す例です。

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... 他の初期化コード ...
 }
}

init メソッドがモジュールのプロパティを初期化するためのコードをたくさん含む場合は、それを 構成情報 の形で保存し、init() の中で次のコードを使って読み出すことも可能です。

public function init()
{
 parent::init();
 // config.php からロードした構成情報でモジュールを初期化する
 \Yii::configure($this, require(__DIR__ . '/config.php'));
}

ここで、構成情報ファイル config.php は、アプリケーションの構成情報 の場合と同じように、次のような内容を含むことが出来ます。

<?php
return [
 'components' => [
 // コンポーネントの構成情報のリスト
],
 'params' => [
 // パラメータのリスト
],
];

モジュール内のコントローラ

モジュールの中でコントローラを作成するときは、コントローラクラスをモジュールクラスの名前空間の controllers サブ名前空間に置くことが規約です。
このことは、同時に、コントローラのクラスファイルをモジュールの [[yii\base\Module::basePath|ベースパス]] 内の controllers ディレクトリに置くべきことをも意味します。
例えば、前の項で示された forum モジュールの中で post コントローラを作成するためには、次のようにしてコントローラを宣言しなければなりません。

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 // ...
}

コントローラクラスの名前空間は、[[yii\base\Module::controllerNamespace]] プロパティを構成してカスタマイズすることが出来ます。
いくつかのコントローラがこの名前空間の外にある場合でも、[[yii\base\Module::controllerMap]] プロパティを構成することによって、それらをアクセス可能にすることが出来ます。
これは、アプリケーションでのコントローラマップ の場合と同様です。

モジュール内のビュー

モジュール内のビューは、モジュールの [[yii\base\Module::basePath|ベースパス]] 内の views ディレクトリに置かれなくてはなりません。
モジュール内のコントローラによってレンダリングされるビューは、ディレクトリ views/ControllerID の下に置きます。
ここで、ControllerID は コントローラ ID を指します。
例えば、コントローラクラスが PostController である場合、ディレクトリはモジュールの [[yii\base\Module::basePath|ベースパス]] の中の views/post となります。

モジュールは、そのモジュールのコントローラによってレンダリングされるビューに適用される レイアウト を指定することが出来ます。
レイアウトは、デフォルトでは views/layouts ディレクトリに置かれなければならず、また、[[yii\base\Module::layout]] プロパティがレイアウトの名前を指すように構成しなければなりません。
layout プロパティを構成しない場合は、アプリケーションのレイアウトが代りに使用されます。

モジュール内のコンソールコマンド

コンソール モードで使用する事が出来るコマンドをmodeコマンドをモジュール内で宣言することも可能です。

あなたのコマンドがコマンドラインユーティリティから見えるようにするためには、Yii がコンソールモードで実行されたときに
[[yii\base\Module::controllerNamespace]] を変更して、コマンドの名前空間を指し示すようにする必要があります。

それを達成する一つの方法は、モジュールの init() メソッドの中で Yii アプリケーションのインスタンスの型を調べるという方法です。

public function init()
{
 parent::init();
 if (Yii::$app instanceof \yii\console\Application) {
 $this->controllerNamespace = 'app\modules\forum\commands';
 }
}

このようにすれば、コマンドラインから次のルートを使ってあなたのコマンドを使用する事が出来るようになります。

yii <module_id>/<command>/<sub_command>

モジュールを使う

アプリケーションの中でモジュールを使うためには、アプリケーションの [[yii\base\Application::modules|modules]] プロパティのリストにそのモジュールを載せてアプリケーションを構成するだけで大丈夫です。
次のコードは、アプリケーションの構成情報 の中で forum モジュールを使うようにするものです。

[
 'modules' => [
 'forum' => [
 'class' => 'app\modules\forum\Module',
 // ... モジュールのその他の構成情報 ...
],
],
]

[[yii\base\Application::modules|modules]] プロパティは、モジュールの構成情報の配列を取ります。
各配列のキーは、アプリケーションの全てのモジュールの中でそのモジュールを特定するためのユニークな モジュール ID を表します。
そして、対応する配列の値は、そのモジュールを作成するための 構成情報 です。

ルート

アプリケーションの中のコントローラをアクセスするのと同じように、ルート がモジュールの中のコントローラを指し示すために使われます。
モジュール内のコントローラのルートは、モジュール ID で始まり、コントローラ ID、アクション ID と続くものでなければなりません。
例えば、アプリケーションが forum という名前のモジュールを使用している場合、forum/post/index というルートは、forum モジュール内の post コントローラの index アクションを表します。
ルートがモジュール ID だけを含む場合は、[[yii\base\Module::defaultRoute]] プロパティ (デフォルト値は default です) が、どのコントローラ/アクションが使用されるべきかを決定します。
これは、forum というルートは forum モジュール内の default コントローラを表すという意味です。

モジュールにアクセスする

モジュール内において、モジュール ID や、モジュールのパラメータ、モジュールのコンポーネントなどにアクセスするために、モジュールクラス のインスタンスを取得する必要があることがよくあります。
次の文を使ってそうすることが出来ます。

$module = MyModuleClass::getInstance();

ここで MyModuleClass は、当該モジュールクラスの名前を指すものです。
getInstance() メソッドは、現在リクエストされているモジュールクラスのインスタンスを返します。
モジュールがリクエストされていない場合は、このメソッドは null を返します。
モジュールクラスの新しいインスタンスを手動で作成しようとしてはいけないことに注意してください。
手動で作成したインスタンスは、リクエストに対するレスポンスとして Yii によって作成されたインスタンスとは別のものになります。

Info: モジュールを開発するとき、モジュールが固定の ID を使うと仮定してはいけません。
なぜなら、モジュールは、アプリケーションや他のモジュールの中で使うときに、任意の ID と結び付けることが出来るからです。
モジュール ID を取得するためには、上記の方法を使って最初にモジュールのインスタンスを取得し、そして $module->id によって ID を取得しなければなりません。

モジュールのインスタンスにアクセスするためには、次の二つの方法を使うことも出来ます。

// ID が "forum" である子モジュールを取得する
$module = \Yii::$app->getModule('forum');

// 現在リクエストされているコントローラが属するモジュールを取得する
$module = \Yii::$app->controller->module;

最初の方法は、モジュール ID を知っている時しか役に立ちません。一方、第二の方法は、リクエストされているコントローラについて知っている場合に使うのに最適な方法です。

いったんモジュールのインスタンスをとらえれば、モジュールに登録されたパラメータやコンポーネントにアクセスすることが可能になります。
例えば、

$maxPostCount = $module->params['maxPostCount'];

モジュールをブートストラップする

いくつかのモジュールは、全てのリクエストで毎回走らせる必要があります。[[yii\debug\Module|デバッグ]] モジュールがその一例です。
そうするためには、そのようなモジュールをアプリケーションの [[yii\base\Application::bootstrap|bootstrap]] プロパティのリストに挙げます。

例えば、次のアプリケーションの構成情報は、debug モジュールが常にロードされることを保証するものです。

[
 'bootstrap' => [
 'debug',
],

 'modules' => [
 'debug' => 'yii\debug\Module',
],
]

入れ子のモジュール

モジュールはレベルの制限無く入れ子にすることが出来ます。
つまり、モジュールは別のモジュールを含むことが出来、その含まれたモジュールもさらに別のモジュールを含むことが出来ます。
含む側を 親モジュール、含まれる側を 子モジュール と呼びます。
子モジュールは、親モジュールの [[yii\base\Module::modules|modules]] プロパティの中で宣言されなければなりません。
例えば、

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->modules = [
 'admin' => [
 // ここはもっと短い名前空間の使用を考慮すべきです
 'class' => 'app\modules\forum\modules\admin\Module',
],
];
 }
}

入れ子にされたモジュールの中にあるコントローラのルートは、全ての祖先のモジュールの ID を含まなければなりません。
例えば、forum/admin/dashboard/index というルートは、forum モジュールの子モジュールである admin モジュールの dashboard コントローラの index アクションを表します。

Info: [[yii\base\Module::getModule()|getModule()]] メソッドは、親モジュールに直接属する子モジュールだけを返します。
[[yii\base\Application::loadedModules]] プロパティがロードされた全てのモジュールのリストを保持しています。
このリストには、直接の子と孫以下の両方のモジュールが含まれ、クラス名によってインデックスされています。

ベストプラクティス

モジュールは、それぞれ密接に関係する一連の機能を含む数個のグループに分割できるような、規模の大きなアプリケーションに最も適しています。
そのような機能グループをそれぞれモジュールとして、特定の個人やチームによって開発することが出来ます。

モジュールは、また、機能グループレベルでコードを再利用するための良い方法でもあります。
ある種のよく使われる機能、例えばユーザ管理やコメント管理などは、全て、将来のプロジェクトで容易に再利用できるように、モジュールの形式で開発することが出来ます。

 配列ヘルパ

配列ヘルパ

PHP の充実した配列関数 [http://php.net/manual/ja/book.array.php] への追加として、Yii の配列ヘルパは、配列をさらに効率的に扱うことを可能にするスタティックなメソッドを提供しています。

値を取得する

配列、オブジェクト、またはその両方から成る複雑な構造から標準的な PHP を使って値を取得することは、非常に面倒くさい仕事です。
最初に isset でキーの存在をチェックしなければならず、次に、キーが存在していれば値を取得し、存在していなければ、デフォルト値を提供しなければなりません。

class User
{
 public $name = 'Alex';
}

$array = [
 'foo' => [
 'bar' => new User(),
]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;

Yii はこのための非常に便利なメソッドを提供しています。

$value = ArrayHelper::getValue($array, 'foo.bar.name');

メソッドの最初の引数は、どこから値を取得しようとしているかを指定します。
二番目の引数は、データの取得の仕方を指定します。これは、以下の一つとすることが出来ます。

	値を読み出すべき配列のキーまたはオブジェクトのプロパティの名前。

	ドットで分割された配列のキーまたはオブジェクトのプロパティ名のセット。上の例で使用した形式です。

	値を返すコールバック。

コールバックは次の形式でなければなりません。

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
 return $user->firstName . ' ' . $user->lastName;
});

三番目のオプションの引数はデフォルト値であり、指定されない場合は null となります。
以下のようにして使用します。

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');

値を取得して、その直後にそれを配列から削除したい場合は、remove メソッドを使うことが出来ます。

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');

このコードを実行した後では、$array には ['options' => [1, 2]] が含まれ、$type は A となります。
getValue メソッドとは違って、remove は単純なキー名だけをサポートすることに注意してください。

キーの存在をチェックする

ArrayHelper::keyExists は、大文字と小文字を区別しないキーの比較をサポートすることを除いて、array_key_exists [http://php.net/manual/ja/function.array-key-exists.php] と同じ動作をします。
例えば、

$data1 = [
 'userName' => 'Alex',
];

$data2 = [
 'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
 echo "username を提供してください。";
}

カラムを取得する

データ行またはオブジェクトの配列から、あるカラムの値を取得する必要があることがよくあります。
良くある例は、ID のリストの取得です。

$array = [
 ['id' => '123', 'data' => 'abc'],
 ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');

結果は ['123', '345'] となります。

追加の変形が要求されたり、値の取得方法が複雑であったりする場合は、無名関数を二番目の引数として指定することが出来ます。

$result = ArrayHelper::getColumn($array, function ($element) {
 return $element['id'];
});

配列を再インデックスする

指定されたキーに従って配列にインデックスを付けるために、index メソッドを使うことが出来ます。
入力値は、多次元配列であるか、オブジェクトの配列でなければなりません。
$key は、サブ配列のキーの名前、オブジェクトのプロパティの名前、または、キーとして使用される値を返す無名関数とすることが出来ます。

$groups 属性はキーの配列であり、入力値の配列を一つまたは複数のサブ配列にグループ化するために使用されます。

特定の要素の $key 属性またはその値が null であるとき、$groups が定義されていない場合は、その要素は破棄されて、結果には入りません。
そうではなく、$groups が指定されている場合は、配列の要素はキー無しで結果の配列に追加されます。

例えば、

$array = [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
];
$result = ArrayHelper::index($array, 'id');

結果は、id 属性の値をキーとする連想配列になります。

[
 '123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 '345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
 // 元の配列の2番目の要素は、同じ id であるため、最後の要素によって上書きされます
]

$key として無名関数を渡しても同じ結果になります。

$result = ArrayHelper::index($array, function ($element) {
 return $element['id'];
});

id を3番目の引数として渡すと、$array を id によってグループ化することが出来ます。

$result = ArrayHelper::index($array, null, 'id');

結果は、最初のレベルが id でグループ化され、第2のレベルはインデックスされていない連想配列になります。

[
 '123' => [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
],
 '345' => [// このインデックスを持つ全ての要素が結果の配列に入る
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
]
]

無名関数を配列のグループ化に使うことも出来ます。

$result = ArrayHelper::index($array, 'data', [function ($element) {
 return $element['id'];
}, 'device']);

結果は、最初のレベルが id でグループ化され、第2のレベルが device でグループ化され、第3のレベルが data でインデックスされた連想配列になります。

[
 '123' => [
 'laptop' => [
 'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
]
],
 '345' => [
 'tablet' => [
 'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']
],
 'smartphone' => [
 'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
]
]
]

マップを作成する

多次元配列またはオブジェクトの配列からマップ (キー-値 のペア) を作成するためには map メソッドを使うことが出来ます。
$from と $to のパラメータで、マップを構成するキー名またはプロパティ名を指定します。
オプションで、グループ化のためのフィールド $group に従って、マップをグループ化することも出来ます。
例えば、

$array = [
 ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
 ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
 ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
];

$result = ArrayHelper::map($array, 'id', 'name');
// 結果は次のようになります
// [
// '123' => 'aaa',
// '124' => 'bbb',
// '345' => 'ccc',
//]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// 結果は次のようになります
// [
// 'x' => [
// '123' => 'aaa',
// '124' => 'bbb',
//],
// 'y' => [
// '345' => 'ccc',
//],
//]

多次元配列の並べ替え

multisort メソッドは、オブジェクトの配列または入れ子にされた配列を、一つまたは複数のキーによって並べ替えることを手助けします。
例えば、

$data = [
 ['age' => 30, 'name' => 'Alexander'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);

並べ替えの後には、$data に次のデータが入っています。

[
 ['age' => 19, 'name' => 'Barney'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 30, 'name' => 'Alexander'],
];

並べ替えで参照するキーを指定する二番目の引数は、一つのキーであれば文字列、複数のキーであれば配列を取ることが出来ます。
さらに、次のような無名関数でも構いません。

ArrayHelper::multisort($data, function($item) {
 return isset($item['age']) ? ['age', 'name'] : 'name';
});

三番目の引数は並べ替えの順序です。
一つのキーによる並べ替えの場合は、SORT_ASC か SORT_DESC のいずれかです。
複数の値による並べ替えの場合は、並べ替えの順序の配列を渡して、値ごとに違う順序で並べ替えることが出来ます。

最後の引数は並べ替えのフラグで、PHP の sort() [http://php.net/manual/ja/function.sort.php] 関数に渡されるのと同じ値を取ることが出来ます。

配列の型を検出する

配列が添字配列であるか連想配列であるかを知ることが出来ると便利です。例を挙げましょう。

// キーは指定されていない
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// 全てのキーは文字列
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);

値を HTML エンコード / デコードする

文字列の配列の中にある特殊文字を HTML エンティティにエンコード、または、HTML エンティティからデコードするために、下記の関数を使うことが出来ます。

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);

デフォルトでは、値だけがエンコードされます。
二番目の引数を false として渡すことによって、配列のキーもエンコードすることが出来ます。
エンコードにはアプリケーションの文字セットが使用されますが、三番目の引数によってそれを変更することも出来ます。

配列をマージする

[[yii\helpers\ArrayHelper::merge()|ArrayHelper::merge()]] を使って、二つまたはそれ以上の配列を再帰的に一つの配列にマージすることが出来ます。
各配列に同じ文字列のキー値を持つ要素がある場合は、(array_merge_recursive() [http://php.net/manual/ja/function.array-merge-recursive.php] とは違って)後のものが前のものを上書きします。
両方の配列が、同じキーを持つ配列型の要素を持っている場合は、再帰的なマージが実行されます。
添字型の要素については、後の配列の要素が前の配列の要素の後に追加されます。
[[yii\helpers\UnsetArrayValue]] オブジェクトを使って前の配列にある値を非設定に指定したり、
[[yii\helpers\ReplaceArrayValue]] オブジェクトを使って再帰的なマージでなく前の値の上書きを強制したりすることが出来ます。

例えば、

$array1 = [
 'name' => 'Yii',
 'version' => '1.1',
 'ids' => [
 1,
],
 'validDomains' => [
 'example.com',
 'www.example.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
 'dev' => 'dev@example.com',
],
];

$array2 = [
 'version' => '2.0',
 'ids' => [
 2,
],
 'validDomains' => new \yii\helpers\ReplaceArrayValue([
 'yiiframework.com',
 'www.yiiframework.com',
]),
 'emails' => [
 'dev' => new \yii\helpers\UnsetArrayValue(),
],
];

$result = ArrayHelper::merge($array1, $array2);

結果は次のようになります。

[
 'name' => 'Yii',
 'version' => '2.0',
 'ids' => [
 1,
 2,
],
 'validDomains' => [
 'yiiframework.com',
 'www.yiiframework.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
],
]

オブジェクトを配列に変換する

オブジェクトまたはオブジェクトの配列を配列に変換する必要があることがよくあります。
最もよくあるのは、REST API によってデータ配列を提供するなどの目的で、アクティブレコードモデルを変換する場合です。
そうするために、次のコードを使うことが出来ます。

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
 'app\models\Post' => [
 'id',
 'title',
 // 結果配列のキー名 => プロパティの値
 'createTime' => 'created_at',
 // 結果配列のキー名 => 無名関数が返す値
 'length' => function ($post) {
 return strlen($post->content);
 },
],
]);

最初の引数が変換したいデータです。この例では、Post AR モデルを変換しようとしています。

二番目の引数は、クラスごとの変換マップです。
ここでは、Post モデルの変換マップを設定しています。
変換マップの配列が、一連のマップを含んでいます。各マップは以下のいずれかの形式を取ります。

	フィールド名 - そのままインクルードされる。

	キー/値 のペア - 配列のキー名にしたい文字列と、値を取得すべきモデルのカラムの名前。

	キー/値 のペア - 配列のキー名にしたい文字列と、値を返すコールバック。

単一のモデルに対する上記の変換の結果は以下のようになります。

[
 'id' => 123,
 'title' => 'test',
 'createTime' => '2013-01-01 12:00AM',
 'length' => 301,
]

特定のクラスについて、配列に変換するデフォルトの方法を提供するためには、そのクラスの [[yii\base\Arrayable|Arrayable]] インタフェイスを実装することが出来ます。

配列の中にあるかどうか調べる

ある要素が配列の中に存在するかどうか、また、一連の要素が配列のサブセットであるかどうか、ということを調べる必要がある場合がよくあります。
PHP は in_array() を提供していますが、これはサブセットや \Traversable なオブジェクトをサポートしていません。

この種のチェックを助けるために、[[yii\helpers\ArrayHelper]] は [[yii\helpers\ArrayHelper::isIn()|isIn()]]
および [[yii\helpers\ArrayHelper::isSubset()|isSubset()]] を
in_array() [http://php.net/manual/en/function.in-array.php] と同じシグニチャで提供しています。

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new ArrayObject(['a']));

// true
ArrayHelper::isSubset(new ArrayObject(['a', 'c']), new ArrayObject(['a', 'b', 'c']));

 リクエスト

リクエスト

アプリケーションに対するリクエストは、リクエストのパラメータ、HTTP ヘッダ、クッキーなどの情報を提供する [[yii\web\Request]] オブジェクトの形で表されます。
与えられたリクエストに対応するリクエストオブジェクトには、デフォルトでは [[yii\web\Request]] のインスタンスである request アプリケーションコンポーネント を通じてアクセスすることが出来ます。
この節では、アプリケーションの中でこのコンポーネントをどのように利用できるかを説明します。

リクエストのパラメータ

リクエストのパラメータを取得するためには、request コンポーネントの [[yii\web\Request::get()|get()]] および [[yii\web\Request::post()|post()]] メソッドを呼ぶことが出来ます。
これらは、ぞれぞれ、$_GET と $_POST の値を返します。例えば、

$request = Yii::$app->request;

$get = $request->get();
// $get = $_GET; と同等

$id = $request->get('id');
// $id = isset($_GET['id']) ? $_GET['id'] : null; と同等

$id = $request->get('id', 1);
// $id = isset($_GET['id']) ? $_GET['id'] : 1; と同等

$post = $request->post();
// $post = $_POST; と同等

$name = $request->post('name');
// $name = isset($_POST['name']) ? $_POST['name'] : null; と同等

$name = $request->post('name', '');
// $name = isset($_POST['name']) ? $_POST['name'] : ''; と同等

Info: 直接に $_GET と $_POST にアクセスしてリクエストのパラメータを読み出す代りに、上記に示されているように、request コンポーネントを通じてそれらを取得することが推奨されます。
このようにすると、ダミーのリクエストデータを持った模擬リクエストコンポーネントを作ることが出来るため、テストを書くことがより容易になります。

RESTful API を実装するときは、PUT、PATCH またはその他の リクエストメソッド によって送信されたパラメータを読み出さなければならないことがよくあります。
そういうパラメータは [[yii\web\Request::getBodyParam()]] メソッドを呼ぶことで取得することが出来ます。
例えば、

$request = Yii::$app->request;

// 全てのパラメータを返す
$params = $request->bodyParams;

// パラメータ "id" を返す
$param = $request->getBodyParam('id');

Info: GET パラメータとは異なって、POST、PUT、PATCH などで送信されたパラメータは、リクエストのボディの中で送られます。
上述のメソッドによってこれらのパラメータにアクセスすると、request コンポーネントがパラメータを解析します。
[[yii\web\Request::parsers]] プロパティを構成することによって、これらのパラメータが解析される方法をカスタマイズすることが出来ます。

リクエストメソッド

現在のリクエストに使用された HTTP メソッドは、Yii::$app->request->method という式によって取得することが出来ます。
現在のメソッドが特定のタイプであるかどうかをチェックするための、一揃いの真偽値のプロパティも提供されています。
例えば、

$request = Yii::$app->request;

if ($request->isAjax) { /* リクエストは AJAX リクエスト */ }
if ($request->isGet) { /* リクエストメソッドは GET */ }
if ($request->isPost) { /* リクエストメソッドは POST */ }
if ($request->isPut) { /* リクエストメソッドは PUT */ }

リクエストの URL

request コンポーネントは現在リクエストされている URL を調べるための方法を数多く提供しています。

リクエストされた URL が http://example.com/admin/index.php/product?id=100 であると仮定したとき、次にまとめたように、この URL のさまざまな部分を取得することが出来ます。

	[[yii\web\Request::url|url]]: /admin/index.php/product?id=100 を返します。ホスト情報の部分を省略した URL です。

	[[yii\web\Request::absoluteUrl|absoluteUrl]]: http://example.com/admin/index.php/product?id=100 を返します。
ホスト情報の部分を含んだ URL です。

	[[yii\web\Request::hostInfo|hostInfo]]: http://example.com を返します。URL のホスト情報の部分です。

	[[yii\web\Request::pathInfo|pathInfo]]: /product を返します。エントリスクリプトの後、疑問符 (クエリ文字列) の前の部分です。

	[[yii\web\Request::queryString|queryString]]: id=100 を返します。疑問符の後の部分です。

	[[yii\web\Request::baseUrl|baseUrl]]: /admin を返します。ホスト情報の後、かつ、エントリスクリプトの前の部分です。

	[[yii\web\Request::scriptUrl|scriptUrl]]: /admin/index.php を返します。パス情報とクエリ文字列を省略した URL です。

	[[yii\web\Request::serverName|serverName]]: example.com を返します。URL の中のホスト名です。

	[[yii\web\Request::serverPort|serverPort]]: 80 を返します。ウェブサーバによって使用されているポートです。

HTTP ヘッダ

[[yii\web\Request::headers]] プロパティによって返される [[yii\web\HeaderCollection|header コレクション]] を通じて、HTTP ヘッダ情報を取得することが出来ます。例えば、

// $headers は yii\web\HeaderCollection のオブジェクト
$headers = Yii::$app->request->headers;

// Accept ヘッダの値を返す
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* User-Agent ヘッダが在る */ }

request コンポーネントは、よく使用されるいくつかのヘッダにすばやくアクセスする方法を提供しています。
その中には下記のものが含まれます。

	[[yii\web\Request::userAgent|userAgent]]: User-Agent ヘッダの値を返します。

	[[yii\web\Request::contentType|contentType]]: リクエストボディのデータの MIME タイプを示す Content-Type ヘッダの値を返します。

	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: ユーザが受け入れ可能なコンテントの MIME タイプを返します。
返されるタイプは品質スコアによって順序付けられます。最もスコアの高いタイプが最初に返されます。

	返される言語は優先レベルによって順序付けられます。最初の要素が最も優先度の高い言語を表します。

あなたのアプリケーションが複数の言語をサポートしており、エンドユーザが最も優先する言語でページを表示したいと思う場合は、言語ネゴシエーションメソッド [[yii\web\Request::getPreferredLanguage()]] を使うことが出来ます。
このメソッドはアプリケーションによってサポートされている言語のリストを引数として取り、 [yii\web\Request::acceptableLanguages|acceptableLanguages] と比較して、最も適切な言語を返します。

Tip: [[yii\filters\ContentNegotiator|ContentNegotiator]] フィルタを使用して、レスポンスにおいてどのコンテントタイプと言語を使うべきかを動的に決定することも出来ます。
このフィルタは、上記で説明したプロパティとメソッドの上に、コンテントネゴシエーションを実装しています。

クライアント情報

クライアントマシンのホスト名と IP アドレスを、それぞれ、[[yii\web\Request::userHost|userHost]] と [[yii\web\Request::userIP|userIP]] によって取得することが出来ます。例えば、

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

 表形式インプットでデータを収集する

表形式インプットでデータを収集する

時として、一つのフォームで同じ種類の複数のモデルを扱わなければならないことがあります。
例えば、それぞれが「名前-値」の形で保存され、Setting アクティブレコード モデルとして表される複数の設定項目を扱うフォームです。
この種のフォームは「表形式インプット」と呼ばれることもよくあります。
これとは対照的な、異なる種類のさまざまなモデルを扱うことについては、複数のモデルを持つ複雑なフォーム の節で扱います。

以下に、表形式インプットを Yii で実装する方法を示します。

カバーすべき三つの異なる状況があり、それぞれ少しずつ異なる処理をしなければなりません。

	特定の数のデータベースレコードを更新する

	不特定の数の新しいレコードを作成する

	一つのページでレコードを更新、作成、および、削除する

前に説明した単一モデルのフォームとは対照的に、モデルの配列を扱うことになります。
この配列がビューに渡されて、各モデルのためのインプットフィールドが表のような形式で表示されます。
そして、複数のモデルを一度にロードしたり検証したりするために [[yii\base\Model]] のヘルパメソッドを使用します。

	[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] - 送信されたデータをモデルの配列にロードします。

	[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] - モデルの配列を検証します。

特定の数のレコードを更新する

コントローラのアクションから始めましょう。

<?php

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use app\models\Setting;

class SettingsController extends Controller
{
 // ...

 public function actionUpdate()
 {
 $settings = Setting::find()->indexBy('id')->all();

 if (Model::loadMultiple($settings, Yii::$app->request->post()) && Model::validateMultiple($settings)) {
 foreach ($settings as $setting) {
 $setting->save(false);
 }
 return $this->redirect('index');
 }

 return $this->render('update', ['settings' => $settings]);
 }
}

上記のコードでは、データベースからモデルを読み出すときに [[yii\db\ActiveQuery::indexBy()|indexBy()]] を使って、モデルのプライマリキーでインデックスされた配列にデータを投入しています。
このインデックスが、後で、フォームフィールドを特定するために使われます。
[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] が POST から来るフォームデータを複数のモデルに代入し、[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] が全てのモデルを一度に検証します。
保存するときには、validateMultiple() を使ってモデルの検証を済ませていますので、[[yii\db\ActiveRecord::save()|save()]] のパラメータに false を渡して、二度目の検証を実行しないようにしています。

次に、update ビューの中にあるフォームです。

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {
 echo $form->field($setting, "[$index]value")->label($setting->name);
}

ActiveForm::end();

ここで全ての設定項目について、それぞれ、項目名を示すラベルと、項目の値を入れたインプットをレンダリングしています。
インプットの名前に適切なインデックスを追加することが肝腎です。
というのは、loadMultiple がそれを見て、どのモデルにどの値を代入するかを決定するからです。

不特定の数の新しいレコードを作成する

新しいレコードを作成するのは、モデルのインスタンスを作成する部分を除いて、更新の場合と同じです。

public function actionCreate()
{
 $count = count(Yii::$app->request->post('Setting', []));
 $settings = [new Setting()];
 for($i = 1; $i < $count; $i++) {
 $settings[] = new Setting();
 }

 // ...
}

ここでは、デフォルトで一個のモデルを含む $settings 配列を初期値として作成し、少なくとも一個のテキストフィールドが常にビューに表示されるようにしています。
そして、受信したインプットの行数に合せて、配列にモデルを追加しています。

ビューでは javascript を使ってインプットの行を動的に追加することが出来ます。

更新、作成、削除を一つのページに組み合わせる

Note: この節はまだ執筆中です。

まだ内容がありません。

(未定)

 ブートストラップ

ブートストラップ

ブートストラップとは、アプリケーションが入ってくるリクエストの解決と処理を開始する前の、環境を準備する過程を指すものです。
ブートストラップは二つの場所、すなわち、エントリスクリプト と アプリケーションで行われます。

エントリスクリプト では、さまざまなライブラリのためのクラスオートローダが登録されます。
この中には、Composer の autoload.php によるオートローダと、Yii の Yii クラスファイルによるオートローダが含まれます。
エントリスクリプトは、次に、アプリケーションの 構成情報 をロードして、アプリケーション のインスタンスを作成します。

アプリケーションのコンストラクタでは、次のようなブートストラップの仕事が行われます。

	[[yii\base\Application::preInit()|preInit()]] が呼ばれます。
このメソッドは、いくつかの優先度の高いアプリケーションプロパティ、例えば [[yii\base\Application::basePath|basePath]] などを構成します。

	[[yii\base\Application::errorHandler|エラーハンドラ]] を登録します。

	与えられたアプリケーションの構成情報を使って、アプリケーションのプロパティを初期化します。

	[[yii\base\Application::init()|init()]] が呼ばれます。
そして init() が [[yii\base\Application::bootstrap()|bootstrap()]] を呼んで、ブートストラップコンポーネントを走らせます。
	エクステンションマニフェストファイル vendor/yiisoft/extensions.php をインクルードします。

	エクステンションによって宣言された ブートストラップコンポーネント を作成して実行します。

	アプリケーションの bootstrap プロパティ に宣言されている アプリケーションコンポーネント および/または モジュール を作成して実行します。

ブートストラップの仕事は 全て のリクエストを処理する前に、毎回しなければなりませんので、この過程を軽いものに保って可能な限り最適化することは非常に重要なことです。

あまりに多くのブートストラップコンポーネントを登録しないように努めてください。
ブートストラップコンポーネントが必要になるのは、リクエスト処理のライフサイクル全体に関与する必要がある場合だけです。
例えば、モジュールが追加の URL 解析規則を登録する必要がある場合は、モジュールを bootstrap プロパティ のリストに挙げなければなりません。
なぜなら、URL 規則を使ってリクエストが解決される前に、新しい URL 規則を有効にしなければならないからです。

本番運用モードにおいては、PHP OPCache [http://php.net/manual/ja/book.opcache.php] や APC [http://php.net/manual/ja/book.apc.php] など、バイトコードキャッシュを有効にして、PHP ファイルをインクルードして解析するのに要する時間を最小化してください。

大規模なアプリケーションには、多数の小さな構成情報ファイルに分割された、非常に複雑なアプリケーション 構成情報 を持つものがあります。
そのような場合には、構成情報配列全体をキャッシュしておき、エントリスクリプトでアプリケーションのインスタンスを作成する前に構成情報をロードするときには、配列全体を直接にキャッシュからロードするという方法を考慮してください。

 ページネーション

ページネーション

一つのページに表示するにはデータの数が多すぎるという場合に、データを複数のページに分割して、それぞれのページでは一部分だけを表示する、という戦略がよく使われます。
この戦略が ページネーション として知られるものです。

Yii は [[yii\data\Pagination]] オブジェクトを使って、ページネーションのスキームに関する情報を表します。
具体的に言えば、

	[[yii\data\Pagination::$totalCount|totalCount]] データアイテムの総数を指定します。
通常、データアイテムの総数は、一つのページを表示するのに必要なデータアイテムの数より、ずっと大きなものになることに注意してください。

	[[yii\data\Pagination::$pageSize|pageSize]] 各ページが含むアイテムの数を指定します。
デフォルト値は 20 です。

	[[yii\data\Pagination::$page|page]] 現在のページ番号 (0 から始まる) を示します。
デフォルト値は 0 であり、最初のページを意味します。

これらの情報を全て定義した [[yii\data\Pagination]] オブジェクトを使って、データの一部分を取得して表示することが出来ます。
例えば、データプロバイダからデータを取得する場合であれば、ページネーションによって提供される値によって、それに対応する OFFSET と LIMIT の句を DB クエリに指定することが出来ます。
下記に例を挙げます。

use yii\data\Pagination;

// status = 1 である全ての記事を取得する DB クエリを構築する
$query = Article::find()->where(['status' => 1]);

// 記事の総数を取得する (ただし、記事のデータはまだ取得しない)
$count = $query->count();

// 記事の総数を使ってページネーションオブジェクトを作成する
$pagination = new Pagination(['totalCount' => $count]);

// ページネーションを使ってクエリの OFFSET と LIMIT を修正して記事を取得する
$articles = $query->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

上記の例で返される記事のページ番号はどうなるでしょう?
それは page という名前のクエリパラメータがリクエストに含まれるかどうかによって決ります。
デフォルトでは、ページネーションオブジェクトは [[yii\data\Pagination::$page|page]] に page パラメータの値をセットしようと試みます。
そして、このパラメータが提供されていない場合には、デフォルト値である 0 が使用されます。

ページネーションをサポートする UI 要素の構築を容易にするために、Yii はページボタンのリストを表示する [[yii\widgets\LinkPager]] ウィジェットを提供しています。
これは、ユーザがページボタンをクリックして、どのページを表示すべきかを指示することが出来るものです。
このウィジェットは、ページネーションオブジェクトを受け取って、現在のページ番号が何であるかを知り、何個のページボタンを表示すべきかを知ります。
例えば、

use yii\widgets\LinkPager;

echo LinkPager::widget([
 'pagination' => $pagination,
]);

UI 要素を手動で構築したい場合は、[[yii\data\Pagination::createUrl()]] を使って、いろんなページに跳ぶ URL を作成することが出来ます。
このメソッドは page パラメータを要求し、その page パラメータを含む正しくフォーマットされた URL を作成します。
例えば、

// 作成される URL が使用すべきルートを指定する
// 指定しない場合は、現在リクエストされているルートが使用される
$pagination->route = 'article/index';

// /index.php?r=article%2Findex&page=100 を表示
echo $pagination->createUrl(100);

// /index.php?r=article%2Findex&page=101 を表示
echo $pagination->createUrl(101);

Tip: page クエリパラメータの名前をカスタマイズするためには、ページネーションオブジェクトを作成する際に [[yii\data\Pagination::pageParam|pageParam]] プロパティを構成します。

 テーマ

テーマ

テーマは、元のビューレンダリングのコードに触れる必要なしに、ビュー のセットを別のセットに置き換えるための方法です。
テーマを使うとアプリケーションのルックアンドフィールを体系的に変更することが出来ます。

テーマを使うためには、view アプリケーションコンポーネントの [[yii\base\View::theme|theme]] プロパティを構成しなければなりません。
このプロパティが、ビューファイルが置換される方法を管理する [[yii\base\Theme]] オブジェクトを構成します。
指定しなければならない [[yii\base\Theme]] のプロパティは主として以下のものです。

	[[yii\base\Theme::basePath]]: テーマのリソース (CSS、JS、画像など) を含むベースディレクトリを指定します。

	[[yii\base\Theme::baseUrl]]: テーマのリソースのベース URL を指定します。

	詳細は後述する項で説明します。

例えば、SiteController で $this->render('about') を呼び出すと、ビューファイル @app/views/site/about.php をレンダリングすることになります。
しかし、下記のようにアプリケーション構成情報でテーマを有効にすると、代りに、ビューファイル @app/themes/basic/site/about.php がレンダリングされます。

return [
 'components' => [
 'view' => [
 'theme' => [
 'basePath' => '@app/themes/basic',
 'baseUrl' => '@web/themes/basic',
 'pathMap' => [
 '@app/views' => '@app/themes/basic',
],
],
],
],
];

Info: テーマではパスエイリアスがサポートされています。
ビューの置換を行う際に、パスエイリアスは実際のファイルパスまたは URL に変換されます。

[[yii\base\View::theme]] プロパティを通じて [[yii\base\Theme]] オブジェクトにアクセスすることが出来ます。
例えば、ビューファイルの中では $this がビューオブジェクトを指すので、次のようなコードを書くことが出来ます。

$theme = $this->theme;

// $theme->baseUrl . '/img/logo.gif' を返す
$url = $theme->getUrl('img/logo.gif');

// $theme->basePath . '/img/logo.gif' を返す
$file = $theme->getPath('img/logo.gif');

[yii\base\Theme::pathMap] プロパティが、ビューファイルがどのように置換されるべきかを制御します。
このプロパティは「キー・値」ペアの配列を取ります。
キーは置き換えられる元のビューのパスであり、値は対応するテーマのビューのパスです。
置換は部分一致に基づいて行われます。
あるビューのパスが [[yii\base\Theme::pathMap|pathMap]] 配列のキーのどれかで始っていると、その一致している部分が対応する配列の値によって置き換えられます。
上記の構成例を使う場合、@app/views/site/about.php は @app/views というキーに部分一致するため、@app/themes/basic/site/about.php に置き換えられることになります。

モジュールにテーマを適用する

モジュールにテーマを適用するためには、[yii\base\Theme::pathMap] を次のように構成します。

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/modules' => '@app/themes/basic/modules', // <-- !!!
],

これによって、@app/modules/blog/views/comment/index.php に @app/themes/basic/modules/blog/views/comment/index.php というテーマを適用することが出来ます。

ウィジェットにテーマを適用する

ウィジェットにテーマを適用するためには、[yii\base\Theme::pathMap] を次のように構成します。

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/widgets' => '@app/themes/basic/widgets', // <-- !!!
],

これによって、@app/widgets/currency/views/index.php に @app/themes/basic/widgets/currency/index.php というテーマを適用することが出来ます。

テーマの継承

場合によっては、基本的なルックアンドフィールを含むアプリケーションの基本テーマを定義しておいて、現在の祝日に基づいてルックアンドフィールを少し変更したい、ということがあるかもしれません。
テーマの継承を使ってこの目的を達することが出来ます。
テーマの継承は、一つのビューパスを複数のターゲットに割り付けることによって設定することが出来ます。
例えば、

'pathMap' => [
 '@app/views' => [
 '@app/themes/christmas',
 '@app/themes/basic',
],
]

この場合、ビュー @app/views/site/index.php には、どちらのテーマファイルが存在するかに従って、@app/themes/christmas/site/index.php か @app/themes/basic/site/index.php か、どちらかのテーマが適用されます。
テーマファイルが両方とも存在する場合は、最初のものが優先されます。
実際の場面では、ほとんどのテーマビューファイルを @app/themes/basic に保管し、その中のいくつかを @app/themes/christmas でカスタマイズすることになるでしょう。

 ビュー

ビュー

ビューは MVC [http://ja.wikipedia.org/wiki/Model_View_Controller] アーキテクチャの一部を成すものです。
ビューはエンドユーザにデータを表示することに責任を持つコードです。
ウェブアプリケーションにおいては、ビューは、通常、主として HTML コードと表示目的の PHP コードを含む PHP スクリプトファイルである、ビューテンプレート の形式で作成されます。
そして、ビューテンプレートを管理する [[yii\web\View|ビュー]] アプリケーションコンポーネント が、ビューの構築とレンダリングを助けるためによく使われるメソッドを提供します。
なお、簡潔さを重視して、ビューテンプレートまたはビューテンプレートファイルを単にビューと呼ぶことがよくあります。

ビューを作成する

前述のように、ビューは HTML と PHP コードが混ざった単なる PHP スクリプトです。
次に示すのは、ログインフォームを表示するビューです。
ご覧のように、PHP コードがタイトルやフォームなど動的なコンテントを生成するのに使われ、HTML コードがそれらを編成して表示可能な HTML ページを作っています。

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'ログイン';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>次の項目を入力してログインしてください:</p>

<?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('ログイン') ?>
<?php ActiveForm::end(); ?>

ビューの中では、このビューテンプレートを管理しレンダリングしている [[yii\web\View|ビューコンポーネント]] を参照する $this にアクセスすることが出来ます。

$this 以外に、上記の例の $model のように、事前に定義される変数をビューの中に置くことが出来ます。
このような変数は、ビューのレンダリング をトリガする コントローラ などのオブジェクトによってビューに プッシュ されるデータを表します。

Tip: 上の例では、事前に定義される変数は、IDE に認識されるように、ビューの先頭のコメントブロックの中にリストされています。
これは、ビューにドキュメントを付けるのにも良い方法です。

セキュリティ

HTML ページを生成するビューを作成するときは、エンドユーザから受け取るデータを表示する前にエンコード および/または フィルタすることが重要です。
そうしなければ、あなたのアプリケーションは クロスサイトスクリプティング [http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%86%E3%82%A3%E3%83%B3%E3%82%B0] 攻撃をこうむるおそれがあります。

平文テキストを表示するためには、まず [[yii\helpers\Html::encode()]] を呼んでエンコードします。
例えば、次のコードはユーザの名前を表示する前にエンコードしています。

<?php
use yii\helpers\Html;
?>

<div class="username">
 <?= Html::encode($user->name) ?>
</div>

HTML コンテントを表示するためには、[[yii\helpers\HtmlPurifier]] を使って、最初にコンテントをフィルタします。
例えば、次のコードは、投稿のコンテントを表示する前にフィルタしています。

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
 <?= HtmlPurifier::process($post->text) ?>
</div>

Tip: HTMLPurifier は、出力を安全なものにすることにおいては素晴らしい仕事をしますが、速くはありません。
アプリケーションが高いパフォーマンスを要求する場合は、フィルター結果を キャッシュ することを考慮すべきです。

ビューを編成する

コントローラ や モデル と同じように、ビューを編成するための規約があります。.

	コントローラによって表示されるビューは、デフォルトでは、ディレクトリ @app/views/ControllerID の下に置かれるべきものです。
ここで、ControllerID は コントローラ ID を指します。
例えば、コントローラクラスが PostController である場合、ディレクトリは @app/views/post となります。
PostCommentController の場合は、ディレクトリは @app/views/post-comment です。
また、コントローラがモジュールに属する場合は、ディレクトリは [[yii\base\Module::basePath|モジュールディレクトリ]] の下の views/ControllerID です。

	ウィジェット で表示されるビューは、デフォルトでは、WidgetPath/views ディレクトリの下に置かれるべきものです。
ここで、WidgetPath は、ウィジェットのクラスファイルを含んでいるディレクトリを指します。

	他のオブジェクトによって表示されるビューについても、ウィジェットの場合と同じ規約に従うことが推奨されます。

これらのデフォルトのビューディレクトリは、コントローラやウィジェットの [[yii\base\ViewContextInterface::getViewPath()]] メソッドをオーバーライドすることでカスタマイズすることが可能です。

ビューをレンダリングする

コントローラ の中でも、ウィジェット の中でも、または、その他のどんな場所でも、ビューをレンダリングするメソッドを呼ぶことによってビューをレンダリングすることが出来ます。
これらのメソッドは、下記に示されるような類似のシグニチャを共有します。

/**
 * @param string $view ビュー名またはファイルパス (実際のレンダリングメソッドに依存する)
 * @param array $params ビューに引き渡されるデータ
 * @return string レンダリングの結果
 */
methodName($view, $params = [])

コントローラでのレンダリング

コントローラ の中では、ビューをレンダリングするために次のコントローラメソッドを呼ぶことが出来ます。

	[[yii\base\Controller::render()|render()]]: 名前付きビュー をレンダリングし、その結果に レイアウト を適用する。

	[[yii\base\Controller::renderPartial()|renderPartial()]]: 名前付きビュー をレイアウトなしでレンダリングする。

	[[yii\web\Controller::renderAjax()|renderAjax()]]: 名前付きビュー をレイアウトなしでレンダリングし、登録されている全ての JS/CSS スクリプトおよびファイルを注入する。
通常、AJAX ウェブリクエストに対するレスポンスにおいて使用される。

	[[yii\base\Controller::renderFile()|renderFile()]]: ビューファイルのパスまたは エイリアス の形式で指定されたビューをレンダリングする。

	[[yii\base\Controller::renderContent()|renderContent()]]: 静的な文字列をレンダリングして、現在適用可能な レイアウト に埋め込む。このメソッドは バージョン 2.0.1 以降で使用可能。

例えば、

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 // "view" という名前のビューをレンダリングし、レイアウトを適用する
 return $this->render('view', [
 'model' => $model,
]);
 }
}

ウィジェットでのレンダリング

ウィジェット の中では、ビューをレンダリングするために、次のウィジェットメソッドを使用することが出来ます。

	[[yii\base\Widget::render()|render()]]: 名前付きビュー をレンダリングする。

	[[yii\base\Widget::renderFile()|renderFile()]]: ビューファイルのパスまたは エイリアス の形式で指定されたビューをレンダリングする。

例えば、

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
 public $items = [];

 public function run()
 {
 // "list" という名前のビューをレンダリングする
 return $this->render('list', [
 'items' => $this->items,
]);
 }
}

ビューでのレンダリング

[[yii\base\View|ビューコンポーネント]] によって提供される下記のメソッドのどれかを使うと、ビューの中で、別のビューをレンダリングすることが出来ます。

	[[yii\base\View::render()|render()]]: 名前付きビュー をレンダリングする。

	[[yii\web\View::renderAjax()|renderAjax()]]: 名前付きビュー をレンダリングし、登録されている全ての JS/CSS スクリプトおよびファイルを注入する。
通常、AJAX ウェブリクエストに対するレスポンスにおいて使用される。

	[[yii\base\View::renderFile()|renderFile()]]: ビューファイルのパスまたは エイリアス の形式で指定されたビューをレンダリングする。

例えば、ビューの中の次のコードは、現在レンダリングされているビューと同じディレクトリにある _overview.php というビューファイルをレンダリングします。
ビューでは $this が [[yii\base\View|ビュー]] コンポーネントを参照することを思い出してください。

<?= $this->render('_overview') ?>

他の場所でのレンダリング

場所がどこであれ、Yii::$app->view という式によって [[yii\base\View|ビュー]] アプリケーションコンポーネントにアクセスすることが出来ますから、前述の [[yii\base\View|ビュー]] コンポーネントメソッドを使ってビューをレンダリングすることが出来ます。
例えば、

// ビューファイル "@app/views/site/license.php" を表示
echo \Yii::$app->view->renderFile('@app/views/site/license.php');

名前付きビュー

ビューをレンダリングするとき、ビューを指定するのには、ビューの名前か、ビューファイルのパス/エイリアスか、どちらかを使うことが出来ます。
たいていの場合は、より簡潔で柔軟な前者を使います。
名前を使って指定されるビューを 名前付きビュー と呼びます。

ビューの名前は、以下の規則に従って、対応するビューファイルのパスに解決されます。

	ビュー名はファイル拡張子を省略することが出来ます。その場合、.php が拡張子として使われます。
例えば、about というビュー名は about.php というファイル名に対応します。

	ビュー名が二つのスラッシュ (//) で始まる場合は、対応するビューファイルのパスは @app/views/ViewName となります。
つまり、ビューファイルは [[yii\base\Application::viewPath|アプリケーションのビューパス]] の下で探されます。
例えば、//site/about は @app/views/site/about.php へと解決されます。

	ビュー名が一つのスラッシュ (/) で始まる場合は、ビューファイルのパスは、ビュー名の前に、現在アクティブな モジュール の [[yii\base\Module::viewPath|ビューパス]] を置くことによって形成されます。
アクティブなモジュールが無い場合は、@app/views/ViewName が使用されます。
例えば、/user/create は、現在アクティブなモジュールが user である場合は、@app/modules/user/views/user/create.php へと解決されます。
アクティブなモジュールが無い場合は、ビューファイルのパスは @app/views/user/create.php となります。

	ビューが [[yii\base\View::context|コンテキスト]] を伴ってレンダリングされ、そのコンテキストが [[yii\base\ViewContextInterface]] を実装している場合は、ビューファイルのパスは、コンテキストの [[yii\base\ViewContextInterface::getViewPath()|ビューパス]] をビュー名の前に置くことによって形成されます。
これは、主として、コントローラとウィジェットの中でレンダリングされるビューに当てはまります。
例えば、コンテキストが SiteController コントローラである場合、about は @app/views/site/about.php へと解決されます。

	あるビューが別のビューの中でレンダリングされる場合は、後者のビューファイルを含んでいるディレクトリが前者のビュー名の前に置かれて、実際のビューファイルのパスが形成されます。
例えば、item は、@app/views/post/index.php というビューの中でレンダリングされる場合、@app/views/post/item へと解決されます。

上記の規則によって、コントローラ app\controllers\PostController の中で $this->render('view') を呼ぶと、実際には、ビューファイル @app/views/post/view.php がレンダリングされ、一方、そのビューの中で $this->render('_overview') を呼ぶと、ビューファイル @app/views/post/_overview.php がレンダリングされることになります。

ビューの中でデータにアクセスする

ビューの中でデータにアクセスするためのアプローチが二つあります。「プッシュ」と「プル」です。

ビューをレンダリングするメソッドに二番目のパラメータとしてデータを渡すのが「プッシュ」のアプローチです。
データは、「名前-値」のペアの配列として表わされなければなりません。
ビューがレンダリングされるときに、PHP の extract() 関数がこの配列に対して呼び出され、ビューの中で使う変数が抽出されます。
例えば、次のコードはコントローラの中でビューをレンダリングしていますが、report ビューに二つの変数、すなわち、$foo = 1 と $bar = 2 をプッシュしています。

echo $this->render('report', [
 'foo' => 1,
 'bar' => 2,
]);

「プル」のアプローチは、[[yii\base\View|ビューコンポーネント]] またはビューからアクセス出来るその他のオブジェクト (例えば Yii::$app) から積極的にデータを読み出すものです。
下記のコード例のように、ビューの中では $this->context という式でコントローラオブジェクトを取得することが出来ます。
その結果、report ビューの中で、コントローラの全てのプロパティやメソッドにアクセスすることが出来ます。
次の例ではコントローラ ID にアクセスしています。

The controller ID is: <?= $this->context->id ?>

通常は「プッシュ」アプローチが、ビューでデータにアクセスする方法として推奨されます。
なぜなら、ビューのコンテキストオブジェクトに対する依存がより少ないからです。
その短所は、常にデータ配列を手作業で作成する必要がある、ということです。
ビューが共有されてさまざまな場所でレンダリングされる場合、その作業が面倒くさくなり、また、間違いも生じやすくなります。

ビューの間でデータを共有する

[[yii\base\View|ビューコンポーネント]] が提供する [[yii\base\View::params|params]] プロパティを使うと、ビューの間でデータを共有することが出来ます。

例えば、about というビューで、次のようなコードを使って、パン屑リストの現在の区分を指定することが出来ます。

$this->params['breadcrumbs'][] = 'About Us';

そして、レイアウト ファイル (これも一つのビューです) の中で、[[yii\base\View::params|params]] によって渡されたデータを使って、パン屑リストを表示することが出来ます。

<?= yii\widgets\Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>

レイアウト

レイアウトは、複数のビューの共通部分をあらわす特殊なタイプのビューです。
例えば、たいていのウェブアプリケーションでは、ページは共通のヘッダとフッタを持っています。
すべてのビューで同じヘッダとフッタを繰り返すことも出来ますが、もっと良い方法は、そういうことはレイアウトの中で一度だけして、コンテントビューのレンダリング結果をレイアウトの中の適切な場所に埋め込むことです。

レイアウトを作成する

レイアウトもまたビューですので、通常のビューと同様な方法で作成することが出来ます。
デフォルトでは、レイアウトは @app/views/layouts ディレクトリに保存されます。
モジュール の中で使用されるレイアウトについては、[[yii\base\Module::basePath|モジュールディレクトリ]] の下の views/layouts ディレクトリに保存されるべきものとなります。
デフォルトのレイアウトディレクトリは、アプリケーションまたはモジュールの [[yii\base\Module::layoutPath]] プロパティを構成することでカスタマイズすることが出来ます。

次の例は、レイアウトがどのようなものであるかを示すものです。説明のために、レイアウトの中のコードを大幅に単純化していることに注意してください。
実際には、ヘッドのタグやメインメニューなど、もっと多くのコンテントを追加する必要があるでしょう。

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <?= Html::csrfMetaTags() ?>
 <title><?= Html::encode($this->title) ?></title>
 <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
 <header>My Company</header>
 <?= $content ?>
 <footer>© 2014 by My Company</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

ご覧のように、レイアウトはすべてのページに共通な HTML タグを生成しています。
<body> セクションの中でレイアウトが $content という変数をエコーしていますが、これは、コンテントビューのレンダリング結果を表すものであり、[[yii\base\Controller::render()]] が呼ばれるときに、レイアウトにプッシュされるものです。

上記のコードに示されているように、たいていのレイアウトは次に挙げるメソッドを呼び出さなければなりません。
これらのメソッドは、主としてレンダリングの過程に関するイベントをトリガするもので、他の場所で登録されたスクリプトやタグが、メソッドが呼ばれた場所に正しく注入されるようにするためのものです。

	これは、ページの開始を示す [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]] イベントをトリガします。

	これは、ページの終了を示す [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]] イベントをトリガします。

	[[yii\web\View::head()|head()]]: このメソッドが HTML ページの <head> セクションの中で呼ばれなければなりません。
このメソッドは、ページのレンダリングが完了したときに、登録された head の HTML コード (リンクタグ、メタタグなど) に置き換えられるプレースホルダを生成します。

	[[yii\web\View::beginBody()|beginBody()]]: このメソッドが <body> セクションの冒頭で呼ばれなければなりません。
このメソッドは [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] イベントをトリガし、body の開始位置をターゲットとする登録された HTML コード (JavaScript など) によって置き換えられるプレースホルダを生成します。

	[[yii\web\View::endBody()|endBody()]]: このメソッドが <body> セクションの末尾で呼ばれるなければなりません。
このメソッドは [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]] イベントをトリガし、body の終了位置をターゲットとする登録された HTML コード (JavaScript など) によって置き換えられるプレースホルダを生成します。

レイアウトでデータにアクセスする

レイアウトの中では、事前定義された二つの変数、すなわち、$this と $content にアクセスすることが出来ます。
前者は、通常のビューにおいてと同じく、[[yii\base\View|ビュー]] コンポーネントを参照します。
一方、後者は、コントローラの中で [[yii\base\Controller::render()|render()]] メソッドを呼ぶことによってレンダリングされる、コンテントビューのレンダリング結果を含むものです。

レイアウトの中でその他のデータにアクセスする必要があるときは、ビューの中でデータにアクセスする の項で説明されている「プル」の方法を使う必要があります。
コンテントビューからレイアウトにデータを渡す必要があるときは、ビューの間でデータを共有する の項で説明されている方法を使うことが出来ます。

レイアウトを使う

コントローラでのレンダリング の項で説明されているように、コントローラの中で [[yii\base\Controller::render()|render()]] メソッドを呼んでビューをレンダリングすると、レンダリング結果にレイアウトが適用されます。
デフォルトでは、@app/views/layouts/main.php というレイアウトが使用されます。

[[yii\base\Application::layout]] または [[yii\base\Controller::layout]] のどちらかを構成することによって、異なるレイアウトを使うことが出来ます。
前者は全てのコントローラによって使用されるレイアウトを決定するものですが、後者は個々のコントローラについて前者をオーバーライドするものです。
例えば、次のコードは、post コントローラがビューをレンダリングするときに @app/views/layouts/post.php をレイアウトとして使うようにするものです。
その他のコントローラは、layout プロパティに触れられていないと仮定すると、引き続きデフォルトの @app/views/layouts/main.php をレイアウトとして使います。

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public $layout = 'post';

 // ...
}

モジュールに属するコントローラについては、モジュールの [[yii\base\Module::layout|layout]] プロパティを構成して、モジュール内のコントローラに特定のレイアウトを使用することも出来ます。

layout プロパティは異なるレベル (コントローラ、モジュール、アプリケーション) で構成されうるものですので、Yii は舞台裏で二つのステップを踏んで、特定のコントローラで実際に使われるレイアウトファイルが何であるかを決定します。

最初のステップで、Yii はレイアウトの値とコンテキストモジュールを決定します。

	コントローラの [[yii\base\Controller::layout]] プロパティが null でないときは、それをレイアウトの値として使い、コントローラの [[yii\base\Controller::module|モジュール]] をコンテキストモジュールとして使う。

	[[yii\base\Controller::layout|layout]] が null のときは、コントローラの祖先となっている全てのモジュール (アプリケーション自体も含む) を探して、[[yii\base\Module::layout|layout]] プロパティが null でない最初のモジュールを見つける。
見つかったモジュールとその [[yii\base\Module::layout|layout]] の値をコンテキストモジュールと選ばれたレイアウトの値とする。
そのようなモジュールが見つからなかったときは、レイアウトは適用されないということを意味する。

第二のステップでは、最初のステップで決定されたレイアウトの値とコンテキストモジュールに従って、実際のレイアウトファイルを決定します。
レイアウトの値は下記のいずれかであり得ます。

	パスエイリアス (例えば、@app/views/layouts/main)。

	絶対パス (例えば、/main): すなわち、スラッシュで始まるレイアウトの値の場合。
実際のレイアウトファイルはアプリケーションの [[yii\base\Application::layoutPath|レイアウトパス]] (デフォルトでは @app/views/layouts) の下で探される。

	相対パス (例えば、main): 実際のレイアウトファイルはコンテキストモジュールの [[yii\base\Module::layoutPath|レイアウトパス]] (デフォルトでは [[yii\base\Module::basePath|モジュールディレクトリ]] の下の views/layouts ディレクトリ) の下で探される。

	真偽値 false: レイアウトは適用されない。

レイアウトの値がファイル拡張子を含んでいない場合は、デフォルト値である .php を使います。

入れ子のレイアウト

ときとして、あるレイアウトの中に別のレイアウトを入れたい場合があるでしょう。
例えば、ウェブサイトの別々のセクションにおいて、違うレイアウトを使いたいけれども、それらのレイアウトは全て、全体としての HTML5 ページ構造を生成する同一の基本レイアウトを共有している、という場合です。
この目的を達することは、次のように、子レイアウトの中で [[yii\base\View::beginContent()|beginContent()]] と [[yii\base\View::endContent()|endContent()]] を呼ぶことで可能になります。

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

... 子レイアウトのコンテントをここに ...

<?php $this->endContent(); ?>

上のコードが示すように、子レイアウトのコンテントは [[yii\base\View::beginContent()|beginContent()]] と [[yii\base\View::endContent()|endContent()]] によって囲まれなければなりません。
[[yii\base\View::beginContent()|beginContent()]] に渡されるパラメータは、親レイアウトが何であるかを指定するものです。
レイアウトのファイルまたはエイリアスのどちらかを使うことが出来ます。

上記のアプローチを使って、2レベル以上のレイアウトを入れ子にすることも出来ます。

ブロックを使う

ブロックを使うと、ある場所でビューコンテントを定義して、別の場所でそれを表示することが可能になります。
ブロックはたいていはレイアウトと一緒に使われます。
例えば、ブロックをコンテントビューで定義して、それをレイアウトで表示する、ということが出来ます。

[[yii\base\View::beginBlock()|beginBlock()]] と [[yii\base\View::endBlock()|endBlock()]] を呼んでブロックを定義します。
すると、そのブロックを $view->blocks[$blockID] によってアクセス出来るようになります。
ここで $blockID は、定義したときにブロックに割り当てたユニークな ID を指します。

次の例は、どのようにブロックを使えば、レイアウトの特定の部分をコンテントビューでカスタマイズすることが出来るかを示すものです。

最初に、コンテントビューで、一つまたは複数のブロックを定義します。

...

<?php $this->beginBlock('block1'); ?>

... block1 のコンテント ...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

... block3 のコンテント ...

<?php $this->endBlock(); ?>

次に、レイアウトビューで、得ることが出来ればブロックをレンダリングし、ブロックが定義されていないときは何らかのデフォルトのコンテントを表示します。

...
<?php if (isset($this->blocks['block1'])): ?>
 <?= $this->blocks['block1'] ?>
<?php else: ?>
 ... block1 のデフォルトのコンテント ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
 <?= $this->blocks['block2'] ?>
<?php else: ?>
 ... block2 のデフォルトのコンテント ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
 <?= $this->blocks['block3'] ?>
<?php else: ?>
 ... block3 のデフォルトのコンテント ...
<?php endif; ?>
...

ビューコンポーネントを使う

[[yii\base\View|ビューコンポーネント]] はビューに関連する多くの機能を提供します。
ビューコンポーネントは、[[yii\base\View]] またはその子クラスの個別のインスタンスを作成することによっても取得できますが、たいていの場合は、view アプリケーションコンポーネントを主として使うことになるでしょう。
このコンポーネントは アプリケーションの構成情報 の中で、次のようにして構成することが出来ます。

[
 // ...
 'components' => [
 'view' => [
 'class' => 'app\components\View',
],
 // ...
],
]

ビューコンポーネントは、次に挙げるビュー関連の有用な機能を提供します。それぞれについては、独立の節で更に詳細に説明されます。

	テーマ: ウェブサイトのテーマを開発し変更することを可能にします。

	フラグメントキャッシュ: ウェブページの中の断片をキャッシュすることを可能にします。

	クライアントスクリプトの取り扱い: CSS と JavaScript の登録とレンダリングをサポートします。

	アセットバンドルの取り扱い: アセットバンドル の登録とレンダリングをサポートします。

	代替のテンプレートエンジン: Twig [http://twig.sensiolabs.org/]、Smarty [http://www.smarty.net/] など、他のテンプレートエンジンを使用することを可能にします。

次に挙げるマイナーではあっても有用な諸機能は、ウェブページを開発するときに頻繁に使用するでしょう。

ページタイトルを設定する

どんなウェブページにもタイトルが無ければなりません。通常、タイトルタグは layout の中で表示されます。
しかし、実際においては、多くの場合、タイトルはレイアウトではなくコンテントビューで決められます。
この問題を解決するために、[[yii\web\View]] は、タイトル情報をコンテントビューからレイアウトに渡すための [[yii\web\View::title|title]] プロパティを提供しています。

この機能を利用するためには、全てのコンテントビューにおいて、次のようにタイトルを設定します。

<?php
$this->title = 'My page title';
?>

そして、レイアウトビューで、<head> セクションに次のコードを忘れずに書くようにします。

<title><?= Html::encode($this->title) ?></title>

メタタグを登録する

ウェブページは、通常、いろいろな関係者によって必要とされるさまざまなメタタグを生成する必要があります。
ページタイトルと同じように、メタタグは <head> セクションに出現して、通常はレイアウトの中で生成されます。

どのようなメタタグを生成するかをコンテントビューの中で指定したい場合は、下記のように、[[yii\web\View::registerMetaTag()]] をコンテントビューの呼ぶことが出来ます。

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>

上記のコードは、ビューコンポーネントによって “keywords” メタタグを登録するものです。登録されたメタタグは、レイアウトがレンダリングを完了した後でレンダリングされます。
すなわち、レイアウトの中で [[yii\web\View::head()]] を呼び出した場所に、次の HTML コードが生成されて挿入されます。

<meta name="keywords" content="yii, framework, php">

[[yii\web\View::registerMetaTag()]] を複数回呼び出した場合は、メタタグが同じものか否かに関係なく、複数のメタタグが登録されることに注意してください。

ある型のメタタグのインスタンスが一つだけになることを保証したい場合は、このメソッドを呼ぶときに第二のパラメータとしてキーを指定することが出来ます。
例えば、次のコードでは、二つの “description” メタタグを登録していますが、二番目のものだけがレンダリングされることになります。

$this->registerMetaTag(['name' => 'description', 'content' => '俺が Yii で作ったクールなウェブサイトだぜぃ!!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => '面白いアライグマに関するウェブサイトです。'], 'description');

リンクタグを登録する

メタタグ と同じように、リンクタグも多くの場合において有用なものです。
例えば、favicon をカスタマイズしたり、RSS フィードを指し示したり、OpenID を別のサーバに委任したり、等々。
リンクタグも、[[yii\web\View::registerLinkTag()]] を使って、メタタグと同じような方法で取り扱うことが出来ます。
例えば、コンテントビューにおいて、次のようにしてリンクタグを登録することが出来ます。

$this->registerLinkTag([
 'title' => 'Yii ライブニューズ',
 'rel' => 'alternate',
 'type' => 'application/rss+xml',
 'href' => 'http://www.yiiframework.com/rss.xml/',
]);

上記のコードは、次の結果になります。

<link title="Yii ライブニューズ" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">

[[yii\web\View::registerMetaTag()|registerMetaTag()]] と同じように、[[yii\web\View::registerLinkTag()|registerLinkTag()]] を呼ぶときにキーを指定すると、同じリンクタグを繰り返して生成するのを避けることが出来ます。

ビューのイベント

[[yii\base\View|ビューコンポーネント]] はビューをレンダリングする過程においていくつかのイベントをトリガします。
これらのイベントに反応することによって、ビューにコンテントを注入したり、エンドユーザに送信される前にレンダリング結果を加工したりすることが出来ます。

	このイベントのハンドラは、[[yii\base\ViewEvent::isValid]] を false にセットして、レンダリングのプロセスをキャンセルすることが出来ます。

	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: ファイルのレンダリングの後、[[yii\base\View::afterRender()]] を呼ぶことによってトリガされます。
このイベントのハンドラは、レンダリング結果をプロパティ [[yii\base\ViewEvent::output]] を通じて取得して、それを修正してレンダリング結果を変更することが出来ます。

	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: レイアウトの中で [[yii\base\View::beginPage()]] を呼ぶことによってトリガされます。

	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: レイアウトの中で [[yii\base\View::endPage()]] を呼ぶことによってトリガされます。

	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: レイアウトの中で [[yii\web\View::beginBody()]] を呼ぶことによってトリガされます。

	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: レイアウトの中で [[yii\web\View::endBody()]] を呼ぶことによってトリガされます。

例えば、次のコードはページの body の最後に現在の日付を注入するものです。

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
 echo date('Y-m-d');
});

静的なページをレンダリングする

静的なページというのは、主たるコンテントのほとんどが静的なもので、コントローラからプッシュされる動的なデータにアクセスする必要がないページを指します。

静的なページは、そのコードをビューに置き、そして、コントローラで次のようなコードを使うと表示することが出来ます。

public function actionAbout()
{
 return $this->render('about');
}

ウェブサイトが多くの静的なページを含んでいる場合、同じようなコードを何度も繰り返すのは非常に面倒くさいでしょう。
この問題を解決するために、[[yii\web\ViewAction]] という スタンドアロンアクション をコントローラに導入することが出来ます。
例えば、

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'page' => [
 'class' => 'yii\web\ViewAction',
],
];
 }
}

このようにすると、ディレクトリ @app/views/site/pages の下に about という名前のビューを作成したときに、次の URL によってこのビューを表示することが出来るようになります。

http://localhost/index.php?r=site%2Fpage&view=about

view という GET パラメータが、どのビューがリクエストされているかを [[yii\web\ViewAction]] に教えます。
そこで、アクションはこのビューをディレクトリ @app/views/site/pages の下で探します。
[[yii\web\ViewAction::viewPrefix]] を構成して、ビューを探すディレクトリを変更することが出来ます。

ベストプラクティス

ビューはエンドユーザが望む形式でモデルを表現することに対して責任を持ちます。一般的に、ビューは

	主として表示目的のコードを含むべきです。例えば、HTML、または、データをたどって書式化してレンダリングする簡単な PHP コードなど。

	DB クエリを実行するコードは含むべきではありません。そのようなコードはモデルの中で実行されるべきです。

	$_GET や $_POST のようなリクエストデータに直接アクセスするべきではありません。それはコントローラの仕事です。
リクエストデータが必要な場合は、コントローラからビューにプッシュされるべきです。

	モデルのプロパティを読み出すことが出来ます。しかし、それを修正するべきではありません。

ビューを管理しやすいものにするために、複雑すぎるビューや、冗長なコードをあまりに多く含むビューを作ることは避けましょう。
この目的を達するために、次のテクニックを使うことが出来ます。

	共通の表示セクション (ページのヘッダやフッタなど) を表すために レイアウト を使う。

	複雑なビューはいくつかの小さなビューに分割する。既に説明したレンダリングのメソッドを使えば、小さなビューをレンダリングして大きなビューを組み上げることが出来る。

	ビューの構成要素として ウィジェット を使う。

	ビューでデータを変換し書式化するためのヘルパクラスを作成して使う。

 クライアントスクリプトを扱う

クライアントスクリプトを扱う

今日のウェブアプリケーションでは、静的な HTML ページがレンダリングされてブラウザに送信されるだけでなく、
JavaScript によって、既存の要素を操作したり、新しいコンテントを AJAX でロードしたりして、ブラウザに表示されるページを修正します。
この節では、JavaScript と CSS をウェブサイトに追加したり、それらを動的に調整するために Yii によって提供されているメソッドを説明します。

スクリプトを登録する

[[yii\web\View]] オブジェクトを扱う際には、フロントエンドスクリプトを動的に登録することが出来ます。
このための専用のメソッドが二つあります。

	インラインスクリプトのための [[yii\web\View::registerJs()|registerJs()]]

	外部スクリプトのための [[yii\web\View::registerJsFile()|registerJsFile()]]

インラインスクリプトを登録する

インラインスクリプトは、設定や、動的に生成されるコードのために有用なものです。
また、ウィジェット に含まれる再利用可能なフロントエンドコードによって生成されるコード断片もインラインスクリプトです。
インラインスクリプトを追加するためのメソッド [[yii\web\View::registerJs()|registerJs()]] は、次のようにして使うことが出来ます。

$this->registerJs(
 "$('#myButton').on('click', function() { alert('ボタンがクリックされました'); });",
 View::POS_READY,
 'my-button-handler'
);

最初の引数は、ページに挿入したい実際の JS コードです。これが <script> タグに包まれて挿入されます。
二番目の引数は、スクリプトがページのどの位置に挿入されるべきかを決定します。
取りうる値は以下のとおりです。

	[[yii\web\View::POS_HEAD|View::POS_HEAD]] - head セクション。

	[[yii\web\View::POS_BEGIN|View::POS_BEGIN]] - 開始の <body> の直後。

	[[yii\web\View::POS_END|View::POS_END]] - 終了の </body> の直前。

	[[yii\web\View::POS_READY|View::POS_READY]] - ドキュメントの ready イベント [http://learn.jquery.com/using-jquery-core/document-ready/] でコードを実行するための指定。
これを指定すると、[[yii\web\JqueryAsset|jQuery]] が自動的に登録され、コードは適切な jQuery コードの中に包まれます。
これがデフォルトの位置指定です。

	[[yii\web\View::POS_LOAD|View::POS_LOAD]] - ドキュメントの load イベント [http://learn.jquery.com/using-jquery-core/document-ready/] でコードを実行するための指定。
上記と同じく、これを指定すると、[[yii\web\JqueryAsset|jQuery]] が自動的に登録されます。

最後の引数は、スクリプトのコードブロックを一意に特定するために使われるスクリプトのユニークな ID です。
同じ ID のスクリプトが既にある場合は、新しいものを追加するのでなく、それを置き換えます。
ID を指定しない場合は、JS コードそれ自身が ID として扱われます。
この ID によって、同じコードが複数回登録されるのを防止します。

スクリプトファイルを登録する

[[yii\web\View::registerJsFile()|registerJsFile()]] の引数は、[[yii\web\View::registerCssFile()|registerCssFile()]] の引数と同様なものです。
以下に示す例では、main.js ファイルを、[[yii\web\JqueryAsset]] への依存関係とともに、登録します。
これは、main.js ファイルは jquery.js の後に追加される、ということを意味します。
このような依存関係の仕様が無ければ、main.js と jquery.js の間の相対的な順序は未定義となり、コードは動作しなくなるでしょう。

外部スクリプトは次のようにして追加することが出来ます。

$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::className()]]
);

これによって、アプリケーションの base URL の下に配置されている /js/main.js スクリプトを読み込むタグが追加されます。

ただし、外部 JS ファイルを登録するのには、 [[yii\web\View::registerJsFile()|registerJsFile()]] を使わずに、アセットバンドル を使うことが強く推奨されます。
なぜなら、そうする方が、柔軟性も高く、依存関係の構成も粒度を細かく出来るからです。
また、アセットバンドルを使えば、複数の JS ファイルを結合して圧縮すること
(アクセスの多いウェブサイトではそうすることが望まれます) が可能になります。

CSS を登録する

Javascript と同様に、[[yii\web\View::registerCss()|registerCss()]]
または [[yii\web\View::registerCssFile()|registerCssFile()]] を使って CSS を登録することが出来ます。
前者は CSS のコードブロックを登録し、後者は外部 CSS ファイルを登録するものです。

インライン CSS を登録する

$this->registerCss("body { background: #f00; }");

上記のコードによって、結果として、下記の出力がページの <head> セクションに追加されます。

<style>
body { background: #f00; }
</style>

style タグに追加の属性を指定したい場合は、名前-値 の配列を二番目の引数として渡します。
最後の引数は、スタイルのブロックを一意に特定するために使われるユニークな ID です。
同じスタイルがコードの別の箇所で重複して登録されたとしても、このスタイルのブロックが一度だけ追加されることを保証するものです。

CSS ファイルを登録する

CSS ファイルは次のようにして登録することが出来ます。

$this->registerCssFile("@web/css/themes/black-and-white.css", [
 'depends' => [\yii\bootstrap\BootstrapAsset::className()],
 'media' => 'print',
], 'css-print-theme');

上記のコードは /css/themes/black-and-white.css という CSS ファイルに対するリンクをページの <head> セクションに追加します。

	最初の引数が、登録される CSS ファイルを指定します。
この例における @web in this example is an アプリケーションのベース URL に対するエイリアス です。

	二番目の引数は、結果として出力される <link> タグの HTML 属性を指定するものです。
ただし、depends というオプションは特別な処理を受けます。
これは、この CSS ファイルが依存するアセットバンドルを指定するものです。
この例の場合は、[[yii\bootstrap\BootstrapAsset|BootstrapAsset]] が依存するアセットバンドルです。
これは、この CSS ファイルが [[yii\bootstrap\BootstrapAsset|BootstrapAsset]] に属する CSS ファイルの後に追加されることを意味します。

	最後の引数はこの CSS ファイルを特定する ID を指定するものです。
省略された場合は、CSS ファイルの URL が代りに ID として使用されます。

外部 CSS ファイルを登録するのには、 [[yii\web\View::registerCssFile()|registerCssFile()]] を使わずに、アセットバンドル を使うことが強く推奨されます。
アセットバンドルを使えば、複数の CSS ファイルを結合して圧縮すること
(アクセスの多いウェブサイトではそうすることが望まれます) が可能になります。
また、アプリケーションの全てのアセットの依存関係を一ヶ所で構成することが出来るため、
より大きな柔軟性を得ることが出来ます。

アセットバンドルを登録する

既に述べたように、CSS ファイルと JavaScript ファイルを直接に登録する代りにアセットバンドルを使うことが推奨されます。
アセットバンドルを定義する方法の詳細は、ガイドの アセット の節で知ることが出来ます。
既に定義されているアセットバンドルの使い方は、次のように非常に単純明快です。

\frontend\assets\AppAsset::register($this);

上記のコードでは、ビューファイルのコンテキストにおいて、AppAsset バンドルが ($this で表される) 現在のビューに対して登録されています。
ウィジェットの中からアセットバンドルを登録するときは、ウィジェットの [[yii\base\Widget::$view|$view]]
を代りに渡します ($this->view)。

動的な Javascript を生成する

ビューファイルでは、HTML コードが直接に書き出されのではなく、ビューの変数に依存して、PHP のコードによって生成されることがよくあります。
生成された HTML を Javascript によって操作するためには、JS コードも同様に動的な部分を含まなければなりません。
例えば、jQuery セレクタの ID などがそうです。
、ビューの変数にIn view files often the HTML code is not written out directl
PHP の変数を JS コードに挿入するためには、変数の値を適切にエスケープする必要があります。
JS コードを専用の JS ファイルの中に置くのではなく、HTML に挿入する場合は特にそうです。
Yii は、この目的のために、[[yii\helpers\Json|Json]] ヘルパの [[yii\helpers\Json::htmlEncode()|htmlEncode()]] メソッドを提供しています。
その使用方法は、以下の例の中で示されています。

グローバルな JavaScript の構成情報を登録する

この例では、配列を使って、グローバルな構成情報のパラメータをアプリケーションの
PHP のパートから JS のフロントエンドコードに渡します。

$options = [
 'appName' => Yii::$app->name,
 'baseUrl' => Yii::$app->request->baseUrl,
 'language' => Yii::$app->language,
 // ...
];
$this->registerJs(
 "var yiiOptions = ".\yii\helpers\Json::htmlEncode($options).";",
 View::POS_HEAD,
 'yiiOptions'
);

上記のコードは、次のような JavaScript の変数定義を含む <script> タグを登録します。

var yiiOptions = {"appName":"My Yii Application","baseUrl":"/basic/web","language":"en"};

このようにすれば、あなたの Javascript コードで、これらの構成情報に yiiOptions.baseUrl や yiiOptions.language
のようにしてアクセスすることが出来るようになります。.

翻訳されたメッセージを渡す

あなたの JavaScript が何らかのイベントに反応してメッセージを表示する必要がある、という状況に遭遇するかも知れません。
複数の言語で動作するアプリケーションでは、この文字列は、現在のアプリケーシの言語に翻訳されなければなりません。
これを達成する一つの方法は、Yii によって提供されている [メッセージ翻訳機能] (tutorial-i18n.md#message-translation)
を使って、その結果を JavaScript コードに渡すことです。

$message = \yii\helpers\Json::htmlEncode(
 \Yii::t('app', 'Button clicked!')
);
$this->registerJs(<<<JS
 $('#myButton').on('click', function() { alert($message); });",
JS
);

上記のサンプルコードは、可読性を高めるために、PHP の ヒアドキュメント構文 [http://php.net/manual/ja/language.types.string.php#language.types.string.syntax.heredoc] を使っています。
また、ヒアドキュメントは、たいていの IDE で、より良い構文ハイライトが可能にしてくれるので、
インライン JavaScript、特に一行に収まらないものを書くときに推奨される方法です。
変数 $message は PHP で生成され、[[yii\helpers\Json::htmlEncode|Json::htmlEncode]] のおかげで、適切な JS 構文の文字列を含むものになります。
それを JavaScript コードに挿入して、alert() の関数呼び出しに動的な文字列を渡すことが出来ます。

Note: ヒアドキュメントを使う場合は、JS コード中の変数名に注意してください。
$ で始まる変数は、PHP の変数として解釈され、その値によって置き換えられる可能性があります。
ただし、$(または $. という形式の jQuery 関数は PHP 変数として解釈される心配は無く、安全に使うことが出来ます。

yii.js スクリプト

Note: このセクションはまだ書かれていません。
このセクションは、yii.js によって提供される以下の機能についての説明を含むはずのものです。

	Yii JavaScript モジュール

	CSRF パラメータの処理

	data-confirm ハンドラ

	data-method ハンドラ

	スクリプトのフィルタリング

	リダイレクトの処理

 コントローラ

コントローラ

コントローラは MVC [http://ja.wikipedia.org/wiki/Model_View_Controller] アーキテクチャの一部を成すものです。
それは [[yii\base\Controller]] を拡張したクラスのオブジェクトであり、リクエストの処理とレスポンスの生成について責任を負います。
具体的には、アプリケーション から制御を引き継いだ後、コントローラは入ってきたリクエストのデータを分析し、それを モデル に引き渡して、モデルが生成した結果を ビュー に投入し、最終的に外に出て行くレスポンスを生成します。

アクション

コントローラは、エンドユーザがアドレスを指定して実行をリクエストできる最も基本的なユニットである アクション から構成されます。
コントローラは一つまたは複数のアクションを持つことが出来ます。

次の例は、view と create という二つのアクションを持つ post コントローラを示すものです。

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 return $this->render('view', [
 'model' => $model,
]);
 }

 public function actionCreate()
 {
 $model = new Post;

 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('create', [
 'model' => $model,
]);
 }
 }
}

view アクション (actionView() メソッドで定義されます) において、コードは最初に、リクエストされたモデルの ID に従って モデル を読み出します。
モデルの読み出しが成功したときは、view という名前の ビュー を使ってモデルを表示します。
失敗したときは例外を投げます。

create アクション (actionCreate() メソッドで定義されます) においても、コードは似たようなものです。
最初に、リクエストデータを使って モデル の新しいインスタンスにデータを投入することを試み、そして、モデルを保存することを試みます。
両方が成功したときは、新しく作成されたモデルの ID を使って view アクションにブラウザをリダイレクトします。
どちらかが失敗したときは、ユーザが必要なデータを入力できるようにするための create ビューを表示します。

ルート

エンドユーザは、いわゆる ルート によって、アクションのアドレスを指定します。
ルートは、次の部分からなる文字列です。

	モジュール ID: この部分は、コントローラがアプリケーションではない モジュール に属する場合にのみ存在します。

	[コントローラ ID]((#controller-ids): 同じアプリケーション (または、コントローラがモジュールに属する場合は、同じモジュール) に属する全てのコントローラの中から、コントローラを一意に特定する文字列。

	アクション ID: 同じコントローラに属する全てのアクションの中から、アクションを一意に特定する文字列。

ルートは次の形式を取ります。

ControllerID/ActionID

または、コントローラがモジュールに属する場合は、次の形式を取ります。

ModuleID/ControllerID/ActionID

ですから、ユーザが http://hostname/index.php?r=site/index という URL でリクエストをした場合は、site コントローラの中の index アクションが実行されます。
ルートがどのようにしてアクションとして解決されるかについての詳細は、ルーティングと URL 生成 の節を参照してください。

コントローラを作成する

[[yii\web\Application|ウェブアプリケーション]] では、コントローラは [[yii\web\Controller]] またはその子クラスから派生させなければなりません。
同様に、[[yii\console\Application|コンソールアプリケーション]] では、コントローラは [[yii\console\Controller]] またはその子クラスから派生させなければなりません。
次のコードは site コントローラを定義するものです。

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}

コントローラ ID

通常、コントローラは特定のタイプのリソースに関するリクエストを処理するように設計されます。
この理由により、たいていは、処理するリソースのタイプを示す名詞をコントローラの ID として使います。
例えば、記事データを処理するコントローラの ID としては、article を使うことが出来ます。

デフォルトでは、コントローラ ID は、小文字の英字、数字、アンダースコア、ダッシュ、および、フォワードスラッシュのみを含むべきものです。
例えば、article と post-comment はともに有効なコントローラ ID ですが、article?、PostComment、admin\post はそうではありません。

コントローラ ID は、サブディレクトリの接頭辞を含んでも構いません。
例えば、admin/article は、[[yii\base\Application::controllerNamespace|コントローラ名前空間]] の下の admin サブディレクトリにある article コントローラを表します。
サブディレクトリの接頭辞として有効な文字は、小文字または大文字の英字、数字、アンダースコア、そして、フォワードスラッシュです。
フォワードスラッシュは、複数レベルのサブディレクトリの区切り文字として使われます (例えば、panels/admin)。

コントローラクラスの命名規則

コントローラクラスの名前は下記の手順に従ってコントローラ ID から導出することが出来ます。

	ハイフンで区切られた各単語の最初の文字を大文字に変える。
コントローラ ID がスラッシュを含む場合、この規則は ID の最後のスラッシュの後ろの部分にのみ適用されることに注意。

	ハイフンを削除し、フォワードスラッシュを全てバックワードスラッシュに置き換える。

	接尾辞 Controller を追加する。

	[[yii\base\Application::controllerNamespace|コントローラ名前空間]] を頭に付ける。

以下は、[[yii\base\Application::controllerNamespace|コントローラ名前空間]] がデフォルト値 app\controllers を取っていると仮定したときの、いくつかの例です。

	article は app\controllers\ArticleController になる。

	post-comment は app\controllers\PostCommentController になる。

	admin/post-comment は app\controllers\admin\PostCommentController になる。

	adminPanels/post-comment は app\controllers\adminPanels\PostCommentController になる。

コントローラクラスは オートロード可能 でなければなりません。
この理由により、上記の例の aritcle コントローラクラスは エイリアス が @app/controllers/ArticleController.php であるファイルに保存されるべきものとなります。
一方、admin/post-comment コントローラは @app/controllers/admin/PostCommentController.php というエイリアスのファイルに保存されるべきものとなります。

Info: 最後の例である admin/post-comment は、どうすれば [[yii\base\Application::controllerNamespace|コントローラ名前空間]] のサブディレクトリにコントローラを置くことが出来るかを示しています。
この方法は、コントローラをいくつかのカテゴリに分けて編成したい、けれども モジュール は使いたくない、という場合に役立ちます。

コントローラマップ

[[yii\base\Application::controllerMap|コントローラマップ]] を構成すると、上で述べたコントローラ ID とクラス名の制約を乗り越えることが出来ます。
これは、主として、クラス名に対する制御が及ばないサードパーティのコントローラを使おうとする場合に有用です。

[[yii\base\Application::controllerMap|コントローラマップ]] は アプリケーションの構成情報 の中で、次のように構成することが出来ます。

[
 'controllerMap' => [
 // クラス名を使って "account" コントローラを宣言する
 'account' => 'app\controllers\UserController',

 // 構成情報配列を使って "article" コントローラを宣言する
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

デフォルトコントローラ

全てのアプリケーションは、それぞれ、[[yii\base\Application::defaultRoute]] プロパティによって指定されるデフォルトコントローラを持ちます。
リクエストが ルート を指定していない場合、このプロパティによって指定されたルートが使われます。
[[yii\web\Application|ウェブアプリケーション]] では、この値は 'site' であり、一方、[[yii\console\Application|コンソールアプリケーション]] では、help です。
従って、URL が http://hostname/index.php である場合は、site コントローラがリクエストを処理することになります。

次のように アプリケーションの構成情報 を構成して、デフォルトコントローラを変更することが出来ます。

[
 'defaultRoute' => 'main',
]

アクションを作成する

アクションは、コントローラクラスの中にいわゆる アクションメソッド を定義するだけで簡単に作成することが出来ます。
アクションメソッドとは、action という語で始まる名前を持つ public メソッドのことです。
アクションメソッドの返り値がエンドユーザに送信されるレスポンスデータを表します。
次のコードは、index と hello-world という二つのアクションを定義するものです。

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index');
 }

 public function actionHelloWorld()
 {
 return 'Hello World';
 }
}

アクション ID

アクションは、たいてい、あるリソースについて特定の操作を実行するように設計されます。
この理由により、アクション ID は、通常、view、update などのような動詞になります。

デフォルトでは、アクション ID は、小文字の英字、数字、アンダースコア、そして、ハイフンのみを含むべきものです。
アクション ID の中のハイフンは単語を分けるために使われます。
例えば、view、update2、comment-post は全て有効なアクション ID ですが、view?、Update はそうではありません。

アクションは二つの方法、すなわち、インラインアクションまたはスタンドアロンアクションとして作成することが出来ます。
インラインアクションはコントローラクラスのメソッドとして定義されるものであり、一方、スタンドアロンアクションは [[yii\base\Action]] またはその子クラスを拡張するクラスです。
インラインアクションは作成するのにより少ない労力を要するため、通常は、アクションを再利用する意図がない場合に推奨されます。
もう一方のスタンドアロンアクションは、主として、さまざまなコントローラの中で使われることや、エクステンション として再配布されることを目的として作成されます。

インラインアクション

インラインアクションは、たった今説明したように、アクションメソッドの形で定義されるアクションを指します。

アクションメソッドの名前は、次の手順に従って、アクション ID から導出されます。

	アクション ID に含まれる各単語の最初の文字を大文字に変換する。

	ハイフンを削除する。

	接頭辞 action を付ける。

例えば、index は actionIndex となり、hello-world は actionHelloWorld となります。

Note: アクションメソッドの名前は、大文字と小文字を区別 します。
ActionIndex という名前のメソッドがあっても、それはアクションメソッドとは見なされず、結果として、index アクションに対するリクエストは例外に帰結します。
アクションメソッドが public でなければならない事にも注意してください。
private や protected なメソッドがインラインアクションを定義することはありません。

インラインアクションは作成するのにほとんど労力を要さないため、たいていのアクションはインラインアクションとして定義されます。
しかし、同じアクションを別の場所で再利用する計画を持っていたり、また、アクションを再配布したいと思っていたりする場合は、アクションを スタンドアロンアクション として定義することを検討すべきです。

スタンドアロンアクション

スタンドアロンアクションは、[[yii\base\Action]] またはその子クラスを拡張するアクションクラスの形で定義されるものです。
例えば、Yii のリリースに [[yii\web\ViewAction]] と [[yii\web\ErrorAction]] が含まれていますが、これらは両方ともスタンドアロンアクションです。

スタンドアロンアクションを使用するためには、下記のように、コントローラの [[yii\base\Controller::actions()]] メソッドをオーバーライドして、アクションマップ の中でスタンドアロンアクションを宣言しなければなりません。

public function actions()
{
 return [
 // クラス名を使って "error" アクションを宣言する
 'error' => 'yii\web\ErrorAction',

 // 構成情報配列を使って "view" アクションを宣言する
 'view' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => '',
],
];
}

ご覧のように、actions() メソッドは、キーがアクション ID であり、値が対応するアクションのクラス名または 構成情報 である配列を返さなければなりません。
インラインアクションと違って、スタンドアロンアクションのアクション ID は、actions() メソッドにおいて宣言される限りにおいて、任意の文字を含むことが出来ます。

スタンドアロンアクションクラスを作成するためには、[[yii\base\Action]] またはその子クラスを拡張して、run() という名前の public メソッドを実装しなければなりません。
run() メソッドの役割はアクションメソッドのそれと似たようなものです。例えば、

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
 public function run()
 {
 return "Hello World";
 }
}

アクションの結果

アクションメソッド、または、スタンドアロンアクションの run() メソッドの返り値は、重要な意味を持ちます。
それは、対応するアクションの結果を表すものです。

返り値は、エンドユーザにレスポンスとして送信される レスポンス オブジェクトとすることが出来ます。

	[[yii\web\Application|ウェブアプリケーション]] では、返り値を [[yii\web\Response::data]] に割り当てられる任意のデータとすることも出来ます。このデータは、後に、レスポンスの本文を表す文字列へと変換されます。

	[[yii\console\Application|コンソールアプリケーション]] では、返り値をコマンド実行の [[yii\console\Response::exitStatus|終了ステータス]] を示す整数とすることも出来ます。

これまでに示した例においては、アクションの結果はすべて文字列であり、エンドユーザに送信されるレスポンスの本文として扱われるものでした。
次の例では、アクションがレスポンスオブジェクトを返すことによって、ユーザのブラウザを新しい URL にリダイレクトすることが出来る様子が示されています
([[yii\web\Controller::redirect()|redirect()]] メソッドの返り値はレスポンスオブジェクトです)。

public function actionForward()
{
 // ユーザのブラウザを http://example.com にリダイレクトする
 return $this->redirect('http://example.com');
}

アクションパラメータ

インラインアクションのアクションメソッドと、スタンドアロンアクションの run() メソッドは、アクションパラメータ と呼ばれるパラメータを取ることが出来ます。
パラメータの値はリクエストから取得されます。
[[yii\web\Application|ウェブアプリケーション]] では、各アクションパラメータの値は $_GET からパラメータ名をキーとして読み出されます。
[[yii\console\Application|コンソールアプリケーション]] では、アクションパラメータはコマンドライン引数に対応します。

次の例では、view アクション (インラインアクションです) は、二つのパラメータ、すなわち、$id と $version を宣言しています。

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public function actionView($id, $version = null)
 {
 // ...
 }
}

アクションパラメータには、次のように、さまざまなリクエストに応じて異なる値が投入されます。

	http://hostname/index.php?r=post/view&id=123: $id パラメータには '123' という値が入れられます。
一方、version というクエリパラメータは無いので、$version は null のままになります。

	http://hostname/index.php?r=post/view&id=123&version=2: $id および $version パラメータに、それぞれ、'123' と '2' が入ります。

	http://hostname/index.php?r=post/view: 必須の $id パラメータがリクエストで提供されていないため、 [[yii\web\BadRequestHttpException]] 例外が投げられます。

	http://hostname/index.php?r=post/view&id[]=123: $id パラメータが予期しない配列値 ['123'] を受け取ろうとするため、[[yii\web\BadRequestHttpException]] 例外が投げられます。

アクションパラメータに配列値を受け取らせたい場合は、次のように、パラメータに array の型ヒントを付けなければなりません。

public function actionView(array $id, $version = null)
{
 // ...
}

このようにすると、リクエストが http://hostname/index.php?r=post/view&id[]=123 である場合は、$id パラメータは ['123'] という値を受け取ります。
リクエストが http://hostname/index.php?r=post/view&id=123 である場合も、スカラ値 '123' が自動的に配列に変換されるため、$id パラメータは引き続き同じ配列値を受け取ります。

上記の例は主としてウェブアプリケーションでのアクションパラメータの動作を示すものです。
コンソールアプリケーションについては、コンソールコマンド の節で詳細を参照してください。

デフォルトアクション

すべてのコントローラは、それぞれ、[[yii\base\Controller::defaultAction]] によって指定されるデフォルトアクションを持ちます。
ルート がコントローラ ID のみを含む場合は、指定されたコントローラのデフォルトアクションがリクエストされたことを意味します。

デフォルトでは、デフォルトアクションは index と設定されます。
このデフォルト値を変更したい場合は、以下のように、コントローラクラスでこのプロパティをオーバーライドするだけです。

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $defaultAction = 'home';

 public function actionHome()
 {
 return $this->render('home');
 }
}

コントローラのライフサイクル

リクエストを処理するときに、アプリケーション はリクエストされた ルート に基いてコントローラを作成します。
そして、次に、コントローラはリクエストに応じるために以下のライフサイクルを経過します。

	コントローラが作成され構成された後、[[yii\base\Controller::init()]] メソッドが呼ばれる。

	コントローラは、リクエストされたアクション ID に基いて、アクションオブジェクトを作成する。
	アクション ID が指定されていないときは、[[yii\base\Controller::defaultAction|デフォルトアクション ID]] が使われる。

	アクション ID が [[yii\base\Controller::actions()|アクションマップ]] の中に見つかった場合は、スタンドアロンアクションが作成される。

	アクション ID に合致するアクションメソッドが見つかった場合は、インラインアクションが作成される。

	上記以外の場合は、[[yii\base\InvalidRouteException]] 例外が投げられる。

	コントローラは、アプリケーション、(コントローラがモジュールに属する場合は) モジュール、そしてコントローラの beforeAction() メソッドをこの順で呼び出す。
	どれか一つの呼び出しが false を返した場合は、残りのまだ呼ばれていない beforeAction() メソッドはスキップされ、アクションの実行はキャンセルされる。

	デフォルトでは、それぞれの beforeAction() メソッドは、ハンドラをアタッチすることが可能な beforeAction イベントをトリガする。

	コントローラがアクションを実行する。
	アクションパラメータが解析されて、リクエストデータからデータが投入される。

	コントローラは、コントローラ、(コントローラがモジュールに属する場合は) モジュール、そしてアプリケーションの afterAction() メソッドをこの順で呼び出す。
	デフォルトでは、それぞれの afterAction() メソッドは、ハンドラをアタッチすることが可能な afterAction イベントをトリガする。

	アプリケーションはアクションの結果を受け取り、それを レスポンス に割り当てる。

ベストプラクティス

良く設計されたアプリケーションでは、コントローラはたいてい非常に軽いものになり、それぞれのアクションは数行のコードしか含まないものになります。
あなたのコントローラが少々複雑になっている場合、そのことは、通常、コントローラをリファクタして、コードの一部を他のクラスに移動すべきことを示すものです。

いくつかのベストプラクティスを特に挙げるなら、コントローラは、

	リクエスト データにアクセスすることが出来ます。

	リクエストデータを使って モデル や他のサービスコンポーネントのメソッドを呼ぶことが出来ます。

	ビュー を使ってレスポンスを構成することが出来ます。

	リクエストされたデータの処理をするべきではありません - データは モデルのレイヤ において処理されるべきです。

	HTML を埋め込むなどの表示に関わるコードは避けるべきです - 表示は ビュー で行う方が良いです。

 バージョン管理

バージョン管理

良い API はバージョン管理 されています。
すなわち、一つのバージョンを絶え間なく変更するのではなく、変更と新機能は API の新しいバージョンにおいて実装されます。
クライアント側とサーバ側の両方のコードを完全に制御できるウェブアプリケーションとは違って、API はあなたの制御が及ばないクライアントによって使用されることを想定したものです。
このため、API の後方互換性 (BC) は、可能な限り保たれなければなりません。
BC を損なうかも知れない変更が必要な場合は、それを API の新しいバージョンにおいて導入し、バージョン番号を上げるべきです。
そうすれば、既存のクライアントは、API の古いけれども動作するバージョンを使い続けることが出来ますし、新しいまたはアップグレードされたクライアントは、新しい API バージョンで新しい機能を使うことが出来ます。

Tip: API のバージョン番号の設計に関する詳細情報は Semantic Versioning [http://semver.org/] を参照してください。

API のバージョン管理を実装する方法としてよく使われるのは、バージョン番号を API の URL に埋め込む方法です。
例えば、http://example.com/v1/users が API バージョン 1 の /users エンドポイントを指す、というものです。

API のバージョン管理のもう一つの方法は、最近流行しているものですが、バージョン番号を HTTP リクエストヘッダに付ける方法です。
これは、典型的には、Accept ヘッダによって行われます。

// パラメータによって
Accept: application/json; version=v1
// ベンダーのコンテントタイプによって
Accept: application/vnd.company.myapp-v1+json

どちらの方法にも長所と短所があり、それぞれのアプローチに対して多くの議論があります。
下記では、この二つの方法をミックスした API バージョン管理の実際的な戦略を紹介します。

	API 実装の各メジャーバージョンを独立したモジュールに置き、モジュールの ID はメジャーバージョン番号 (例えば v1 や v2) とします。
当然ながら、API の URL はメジャーバージョン番号を含むことになります。

	各メジャーバージョンの中では (従って対応するモジュールの中では) Accept HTTP リクエストヘッダを使ってマイナーバージョン番号を決定し、マイナーバージョンに応じたレスポンスのための条件分岐コードを書きます。

メジャーバージョンを提供する各モジュールは、それぞれ、指定されたバージョンのためのリソースとコントローラのクラスを含んでいなければなりません。
コードの責任範囲をより良く分離するために、共通の基底のリソースとコントローラのクラスを保持して、それをバージョンごとの個別のモジュールでサブクラス化することが出来ます。
サブクラスの中で、Model::fields() のような具体的なコードを実装します。

あなたのコードを次のように編成することが出来ます。

api/
 common/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 modules/
 v1/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php
 v2/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php

アプリケーションの構成情報は次のようなものになります。

return [
 'modules' => [
 'v1' => [
 'class' => 'app\modules\v1\Module',
],
 'v2' => [
 'class' => 'app\modules\v2\Module',
],
],
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user', 'v1/post']],
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user', 'v2/post']],
],
],
],
];

上記のコードの結果として、http://example.com/v1/users はバージョン 1 のユーザ一覧を返し、http://example.com/v2/users はバージョン 2 のユーザ一覧を返すことになります。

モジュール化のおかげで、異なるメジャーバージョンのためのコードを綺麗に分離することが出来ます。
しかし、モジュール化しても、共通の基底クラスやその他の共有リソースを通じて、モジュール間でコードを再利用することは引き続いて可能です。

マイナーバージョン番号を扱うためには、[[yii\filters\ContentNegotiator|contentNegotiator]] ビヘイビアによって提供されるコンテントネゴシエーションの機能を利用することが出来ます。
contentNegotiator ビヘイビアは、どのコンテントタイプをサポートするかを決定するときに、[[yii\web\Response::acceptParams]] プロパティをセットします。

例えば、リクエストが HTTP ヘッダ Accept: application/json; version=v1 を伴って送信された場合、コンテントネゴシエーションの後では、[[yii\web\Response::acceptParams]] に ['version' => 'v1'] という値が含まれています。

acceptParams のバージョン情報に基づいて、アクション、リソースクラス、シリアライザなどの個所で条件付きのコードを書いて、適切な機能を提供することが出来ます。

マイナーバージョンは、定義上、後方互換性を保つことを要求するものですので、コードの中でバージョンチェックをする個所はそれほど多くないものと期待されます。
そうでない場合は、たいていは、新しいメジャーバージョンを作成する必要がある、ということです。

 フラグメントキャッシュ

フラグメントキャッシュ

フラグメントキャッシュは、ウェブページの断片をキャッシュすることを言います。例えば、ページ内の表に年間販売の概要が表示されている場合、リクエスト毎にこの表を生成するのにかかる時間を削減するために、キャッシュにこの表を格納することができます。フラグメントキャッシュは データキャッシュ 上に構築されています。

フラグメントキャッシュを使用するには ビュー で以下の構文を使用します:

if ($this->beginCache($id)) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

つまり、コンテント生成ロジックを [[yii\base\View::beginCache()|beginCache()]] と [[yii\base\View::endCache()|endCache()]] の呼び出しのペアで囲みます。
コンテントがキャッシュ内で見つかった場合、[[yii\base\View::beginCache()|beginCache()]] はキャッシュされたコンテントをレンダリングして false を返し、結果として、コンテント生成ロジックがスキップされます。
それ以外の場合はコンテント生成ロジックが呼ばれ、そして [[yii\base\View::endCache()|endCache()]] が呼ばれたときに、生成されたコンテントがキャプチャされ、キャッシュに格納されます。

データキャッシュ と同様に、キャッシュされるコンテントを識別するためにユニークな $id が必要になります。

キャッシュのオプション

[[yii\base\View::beginCache()|beginCache()]] メソッドの 2 番目のパラメータとしてオプションの配列を渡すことによって、フラグメントキャッシュに関する追加のオプションを指定することができます。
裏で、このオプションの配列は、実際にフラグメントキャッシュ機能を実装している [[yii\widgets\FragmentCache]] ウィジェットを構成するために使用されます。

持続時間

おそらくフラグメントキャッシュで通常よく使われるであろうオプションは [[yii\widgets\FragmentCache::duration|duration]] でしょう。
このオプションはコンテントがどれだけの時間キャッシュ内において有効であるかを指定します。以下のコードは最大で 1 時間コンテントの断片をキャッシュします:

if ($this->beginCache($id, ['duration' => 3600])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

このオプションがセットされていない場合は、デフォルトである 60 が使われます。
すなわち、キャッシュされたコンテントの有効期限は 60 秒後に切れることになります。

依存

データキャッシュ と同様に、キャッシュされたコンテントの断片は依存を持つことができます。
例えば、表示されている投稿の内容は、投稿が変更されたか否かに依存します。

依存を指定するには [[yii\widgets\FragmentCache::dependency|dependency]] オプションに [[yii\caching\Dependency]] オブジェクトを指定するか、または依存オブジェクトを作成するための構成情報配列を指定します。
以下のコードはコンテントの断片が updated_at カラムの値の変化に依存していることを指定しています:

$dependency = [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

バリエーション

キャッシュされるコンテントには、何らかのパラメータによってバリエーションを持たせることが出来ます。
例えば、複数の言語をサポートしているウェブアプリケーションでは、ビューコードの同じ部分が言語によってさまざまに異なるコンテントを生成することが可能です。
従って、現在のアプリケーションの言語に応じて、キャッシュされるコンテントのバリエーションを持つ必要があります。

キャッシュのバリエーションを指定するには [[yii\widgets\FragmentCache::variations|variations]] オプションに配列で、それぞれが特定のバリエーションの要素を表すスカラー値をセットします。
例えば、言語によってキャッシュされるコンテントのバリエーションを持つためには、以下のコードを使うことができます:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

キャッシュを ON/OFF する

時として、ある条件が満たされた場合にのみフラグメントキャッシュを有効にしたい場合があるでしょう。
たとえば、フォームが表示されているページでは、フォームをキャッシュしたいのは最初の (GET リクエストによる) リクエストの場合だけです。
その後の (POST リクエストによる) フォームの表示では、フォームにユーザ入力が含まれている可能性があるため、キャッシュをすべきではありません。
これを行うには、以下のように [[yii\widgets\FragmentCache::enabled|enabled]] オプションをセットします:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

キャッシュのネスト

フラグメントキャッシュはネストすることができます。
つまり、キャッシュされる断片を、それ自体もキャッシュされる別の断片に入れることができます。
例えば、内側のフラグメントキャッシュにはコメントがキャッシュされており、外側のフラグメントキャッシュには記事内容と一緒にコメントもキャッシュされている、という形です。
以下のコードは 2 つのフラグメントキャッシュをネストする方法を示すものです。

if ($this->beginCache($id1)) {

 // ...コンテント生成ロジック...

 if ($this->beginCache($id2, $options2)) {

 // ...コンテント生成ロジック...

 $this->endCache();
 }

 // ...コンテント生成ロジック...

 $this->endCache();
}

ネストされたキャッシュには、異なるキャッシュオプションを設定することができます。
たとえば、上記の例における内側のキャッシュと外側のキャッシュに対して、異なる持続期間の値を設定する事が可能です。
これによって、外側のキャッシュでキャッシュされたデータが無効になった場合でも、内側のキャッシュが有効な内側の断片を提供することが可能になります。
しかし、その逆は真ではありません。
外側のキャッシュが有効であると判断された場合には、内側のキャッシュが無効になった後でも、外側のキャッシュが古くなったコンテントのコピーを提供し続けます。
従って、ネストされたキャッシュの持続時間や依存の設定を間違うと、無効になった内側のキャッシュデータが外側のキャッシュに残り続けることになるので、注意が必要です。

ダイナミックコンテント

フラグメントキャッシュを使用する際、出力全体が比較的静的で、一ヶ所ないし数ヶ所だけが例外的に動的であるというような状況に遭遇するでしょう。
例えば、ページのヘッダがメインメニューバーと現在のユーザ名を一緒に表示している場合です。
もう一つの問題は、キャッシュされるコンテントに、リクエスト毎に実行しなければいけない PHP のコード (例えば、アセットバンドルを登録するためのコード) が含まれている場合です。
この両方の問題は、いわゆる ダイナミックコンテント 機能によって解決することができます。

ダイナミックコンテントは、それがフラグメントキャッシュの中に含まれていても、キャッシュすべきではない出力の部分を意味します。
このコンテントを常に動的にするためには、外側のコンテントがキャッシュから提供されている場合でも、すべてのリクエストに対して、何らかの PHP コードを実行することにより生成しなければいけません。

ダイナミックコンテントを目的の場所に挿入するには、以下のように、キャッシュされる断片内で [[yii\base\View::renderDynamic()]] を呼び出します。

if ($this->beginCache($id1)) {

 // ...コンテント生成ロジック...

 echo $this->renderDynamic('return Yii::$app->user->identity->name;');

 // ...コンテント生成ロジック...

 $this->endCache();
}

[[yii\base\View::renderDynamic()|renderDynamic()]] メソッドはパラメータとして PHP コードを取ります。
この PHP コードの戻り値が、ダイナミックコンテントとして扱われます。
囲んでいる断片がキャッシュから提供されるか否かにかかわらず、同じ PHP コードがすべてのリクエストに対して実行されます。

 権限付与

権限付与

権限付与は、ユーザが何かをするのに十分な許可を有しているか否かを確認するプロセスです。
Yii は二つの権限付与の方法を提供しています。すなわち、アクセス制御フィルタ (ACF) と、ロールベースアクセス制御 (RBAC) です。

アクセス制御フィルタ (ACF)

アクセス制御フィルタ (ACF) は、[[yii\filters\AccessControl]] として実装される単純な権限付与の方法であり、何らかの単純なアクセス制御だけを必要とするアプリケーションで使うのに最も適したものです。
その名前が示すように、ACF は、コントローラまたはモジュールで使用することが出来るアクション フィルタ です。
ACF は、ユーザがアクションの実行をリクエストしたときに、一連の [[yii\filters\AccessControl::rules|アクセス規則]] をチェックして、現在のユーザがそのアクションにアクセスする許可を持つかどうかを決定します。

下記のコードは、site コントローラで ACF を使う方法を示すものです。

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }
 // ...
}

上記のコードにおいて、ACF は site コントローラにビヘイビアとしてアタッチされています。
これがアクションフィルタを使用する典型的な方法です。
only オプションは、ACF が login、logout、signup のアクションにのみ適用されるべきであることを指定しています。
site コントローラの他の全てのアクションには ACF の影響は及びません。
rules オプションは [[yii\filters\AccessRule|アクセス規則]] を指定するものであり、以下のように読むことが出来ます。

	全てのゲストユーザ (まだ認証されていないユーザ) に、’login’ と ‘singup’ のアクションにアクセスすることを許可します。
roles オプションに疑問符 ? が含まれていますが、これは「ゲスト」を表す特殊なトークンです。

	認証されたユーザに、’logout’ アクションにアクセスすることを許可します。
@ という文字はもう一つの特殊なトークンで、「認証されたユーザ」を表すものです。

ACF が権限のチェックを実行するときには、規則を一つずつ上から下へ、適用されるものを見つけるまで調べます。
そして、適用される規則の allow の値が、ユーザが権限を有するか否かを判断するのに使われます。
適用される規則が一つもなかった場合は、ユーザが権限をもたないことを意味し、ACF はアクションの継続を中止します。

ユーザが現在のアクションにアクセスする権限を持っていないと判定した場合は、デフォルトでは、ACF は以下の手段を取ります。

	ユーザがゲストである場合は、[[yii\web\User::loginRequired()]] を呼び出して、ユーザのブラウザをログインページにリダイレクトします。

	ユーザが既に認証されている場合は、[[yii\web\ForbiddenHttpException]] を投げます。

この動作は、次のように、[[yii\filters\AccessControl::denyCallback]] プロパティを構成することによって、カスタマイズすることが出来ます。

[
 'class' => AccessControl::className(),
 ...
 'denyCallback' => function ($rule, $action) {
 throw new \Exception('このページにアクセスする権限がありません。');
 }
]

[[yii\filters\AccessRule|アクセス規則]] は多くのオプションをサポートしています。
以下はサポートされているオプションの要約です。
[[yii\filters\AccessRule]] を拡張して、あなた自身のカスタマイズしたアクセス規則のクラスを作ることも出来ます。

	

	これはアクション ID の配列でなければなりません。
比較は大文字と小文字を区別します。
このオプションが空であるか指定されていない場合は、規則が全てのアクションに適用されることを意味します。

	これはコントローラ ID の配列でなければなりません。
コントローラがモジュールに属する場合は、モジュール ID をコントローラ ID の前に付けます。
比較は大文字と小文字を区別します。
このオプションが空であるか指定されていない場合は、規則が全てのコントローラに適用されることを意味します。

	二つの特別なロールが認識されます。
これらは、[[yii\web\User::isGuest]] によって判断されます。

	?: ゲストユーザ (まだ認証されていないユーザ) を意味します。

	@: 認証されたユーザを意味します。

その他のロール名を使うと、[[yii\web\User::can()]] の呼び出しが惹起されますが、そのためには、RBAC (次の節で説明します) を有効にする必要があります。
このオプションが空であるか指定されていない場合は、規則が全てのロールに適用されることを意味します。

	[[yii\filters\AccessRule::ips|ips]]: どの [[yii\web\Request::userIP|クライアントの IP アドレス]] にこの規則が適用されるかを指定します。
IP アドレスは、最後にワイルドカード * を含むことが出来て、同じプレフィクスを持つ IP アドレスに合致させることが出来ます。
例えば、‘192.168.*‘ は、‘192.168.’ のセグメントに属する全ての IP アドレスに合致します。
このオプションが空であるか指定されていない場合は、規則が全ての IP アドレスに適用されることを意味します。

	[[yii\filters\AccessRule::verbs|verbs]]: どのリクエストメソッド (HTTP 動詞、例えば GET や POST) にこの規則が適用されるかを指定します。
比較は大文字と小文字を区別しません。

	[[yii\filters\AccessRule::matchCallback|matchCallback]]: この規則が適用されるべきか否かを決定するために呼び出されるべき PHP コーラブルを指定します。

	[[yii\filters\AccessRule::denyCallback|denyCallback]]: この規則がアクセスを禁止する場合に呼び出されるべき PHP コーラブルを指定します。

下記は、matchCallback オプションを利用する方法を示す例です。
このオプションによって、任意のアクセス制御ロジックを書くことが可能になります。

use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['special-callback'],
 'rules' => [
 [
 'actions' => ['special-callback'],
 'allow' => true,
 'matchCallback' => function ($rule, $action) {
 return date('d-m') === '31-10';
 }
],
],
],
];
 }

 // matchCallback が呼ばれる。このページは毎年10月31日だけアクセス出来ます。
 public function actionSpecialCallback()
 {
 return $this->render('happy-halloween');
 }
}

ロールベースアクセス制御 (RBAC)

ロールベースアクセス制御 (RBAC) は、単純でありながら強力な集中型のアクセス制御を提供します。
RBAC と他のもっと伝統的なアクセス制御スキーマとの比較に関する詳細については、Wiki 記事 [http://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%BC%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B9%E3%82%A2%E3%82%AF%E3%82%BB%E3%82%B9%E5%88%B6%E5%BE%A1] を参照してください。

Yii は、NIST RBAC モデル [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf] に従って、一般的階層型 RBAC を実装しています。
RBAC の機能は、[[yii\rbac\ManagerInterface|authManager]] アプリケーションコンポーネント を通じて提供されます。

RBAC を使用することには、二つの作業が含まれます。
最初の作業は、RBAC 権限付与データを作り上げることであり、第二の作業は、権限付与データを使って必要とされる場所でアクセスチェックを実行することです。

説明を容易にするために、まず、いくつかの基本的な RBAC の概念を導入します。

基本的な概念

ロール (役割) は、許可 (例えば、記事を作成する、記事を更新するなど) のコレクションです。
一つのロールを一人または複数のユーザに割り当てることが出来ます。
ユーザが特定の許可を有しているか否かをチェックするためには、その許可を含むロールがユーザに割り当てられているか否かをチェックすればよいのです。

各ロールまたは許可に関連付けられた 規則 が存在し得ます。
規則とは、アクセスチェックの際に、対応するロールや許可が現在のユーザに適用されるか否かを決定するために実行されるコード断片のことです。
例えば、「記事更新」の許可は、現在のユーザが記事の作成者であるかどうかをチェックする規則を持つことが出来ます。
そして、アクセスチェックのときに、ユーザが記事の作成者でない場合は、彼/彼女は「記事更新」の許可を持っていないと見なすことが出来ます。

ロールおよび許可は、ともに、階層的に構成することが出来ます。
具体的に言えば、一つのロールは他のロールと許可を含むことが出来、許可は他の許可を含むことが出来ます。
Yii は、一般的な 半順序 階層を実装していますが、これはその特殊形として 木 階層を含むものです。
ロールは許可を含むことが出来ますが、許可はロールを含むことが出来ません。

RBAC を構成する

権限付与データを定義してアクセスチェックを実行する前に、[[yii\base\Application::authManager|authManager]] アプリケーションコンポーネントを構成する必要があります。
Yii は二種類の権限付与マネージャを提供しています。すなわち、[[yii\rbac\PhpManager]] と [[yii\rbac\DbManager]] です。
前者は権限付与データを保存するのに PHP スクリプトファイルを使いますが、後者は権限付与データをデータベースに保存します。
あなたのアプリケーションが非常に動的なロールと許可の管理を必要とするのでなければ、前者を使うことを考慮するのが良いでしょう。

PhpManager を使用する

次のコードは、アプリケーションの構成情報で [[yii\rbac\PhpManager]] クラスを使って authManager を構成する方法を示すものです。

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

これで authManager は \Yii::$app->authManager によってアクセスすることが出来るようになります。

デフォルトでは、[[yii\rbac\PhpManager]] は RBAC データを @app/rbac/ ディレクトリの下のファイルに保存します。
権限の階層をオンラインで変更する必要がある場合は、必ず、ウェブサーバのプロセスがこのディレクトリとその中の全てのファイルに対する書き込み権限を有するようにしてください。

DbManager を使用する

次のコードは、アプリケーションの構成情報で [[yii\rbac\DbManager]] クラスを使って authManager を構成する方法を示すものです。

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
],
 // ...
],
];

Note: yii2-basic-app テンプレートを使おうとする場合は、config/web.php に加えて、config/console.php 構成ファイルにおいても uathManager を宣言する必要があります。
yii2-advanced-app の場合は、authManager は common/config/main.php で一度だけ宣言されなければなりません。

DbManager は四つのデータベーステーブルを使ってデータを保存します。

	[[yii\rbac\DbManager::$itemTable|itemTable]]: 権限アイテムを保存するためのテーブル。デフォルトは “auth_item”。

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: 権限アイテムの階層を保存するためのテーブル。デフォルトは “auth_item_child”。

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: 権限アイテムの割り当てを保存するためのテーブル。デフォルトは “auth_assignment”。

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: 規則を保存するためのテーブル。デフォルトは “auth_rule”。

先に進む前にこれらのテーブルをデータベースに作成する必要があります。
そのためには、@yii/rbac/migrations に保存されているマイグレーションを使うことが出来ます。

yii migrate --migrationPath=@yii/rbac/migrations

異なる名前空間のマイグレーションを扱う方法の詳細については
分離されたマイグレーション の節を参照して下さい。

これで authManager は \Yii::$app->authManager によってアクセスすることが出来るようになります。

権限付与データを構築する

権限付与データを構築する作業は、つまるところ、以下のタスクに他なりません。

	ロールと許可を定義する

	ロールと許可の関係を定義する

	規則を定義する

	規則をロールと許可に結び付ける

	ロールをユーザに割り当てる

権限付与に要求される柔軟性の程度によって、上記のタスクのやりかたも異なってきます。

権限の階層が全く変化せず、決った数のユーザしか存在しない場合は、authManager が提供する API によって権限付与データを一回だけ初期設定する コンソールコマンド を作ることが出来ます。

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = Yii::$app->authManager;

 // "createPost" という許可を追加
 $createPost = $auth->createPermission('createPost');
 $createPost->description = '記事を投稿';
 $auth->add($createPost);

 // "updatePost" という許可を追加
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = '記事を更新';
 $auth->add($updatePost);

 // "author" というロールを追加し、このロールに "createPost" 許可を与える
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // "admin" というロールを追加し、このロールに "updatePost" 許可を与える
 // 同時に、"author" ロールの持つ許可も与える
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // ロールをユーザに割り当てる。1 と 2 は IdentityInterface::getId() によって返される ID
 // IdentityInterface::getId() は、通常は User モデルの中で実装される
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }
}

Note: アドバンストテンプレートを使おうとするときは、RbacController を console/controllers
ディレクトリの中に置いて、名前空間を console\controllers に変更する必要があります。

yii rbac/init によってコマンドを実行した後には、次の権限階層が得られます。

[image: 単純な RBAC 階層]

投稿者 (author) は記事を投稿することが出来、管理者 (admin) は記事を更新することに加えて投稿者が出来る全てのことが出来ます。

あなたのアプリケーションがユーザ自身によるユーザ登録を許している場合は、新しく登録されたユーザに一度はロールを割り当てる必要があります。
例えば、アドバンストプロジェクトテンプレートにおいては、登録したユーザの全てを「投稿者」にするために、frontend\models\SignupForm::signup() を次のように修正しなければなりません。

public function signup()
{
 if ($this->validate()) {
 $user = new User();
 $user->username = $this->username;
 $user->email = $this->email;
 $user->setPassword($this->password);
 $user->generateAuthKey();
 $user->save(false);

 // 次の三行が追加されたものです
 $auth = Yii::$app->authManager;
 $authorRole = $auth->getRole('author');
 $auth->assign($authorRole, $user->getId());

 return $user;
 }

 return null;
}

動的に更新される権限付与データを持つ複雑なアクセス制御を必要とするアプリケーションについては、authManager が提供する API を使って、特別なユーザインタフェイス (つまり、管理パネル) を開発する必要があるでしょう。

規則を使う

既に述べたように、規則がロールと許可に制約を追加します。
規則は [[yii\rbac\Rule]] を拡張したクラスであり、[[yii\rbac\Rule::execute()|execute()]] メソッドを実装しなければなりません。
前に作った権限階層においては、投稿者は自分自身の記事を編集することが出来ませんでした。これを修正しましょう。
最初に、ユーザが記事の投稿者であることを確認する規則が必要です。

namespace app\rbac;

use yii\rbac\Rule;

/**
 * authorID がパラメータで渡されたユーザと一致するかチェックする
 */
class AuthorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|int $user ユーザ ID
 * @param Item $item この規則が関連付けられているロールまたは許可
 * @param array $params ManagerInterface::checkAccess() に渡されたパラメータ
 * @return bool 関連付けられたロールまたは許可を認めるか否かを示す値
 */
 public function execute($user, $item, $params)
 {
 return isset($params['post']) ? $params['post']->createdBy == $user : false;
 }
}

上の規則は、post が $user によって作成されたかどうかをチェックします。
次に、前に使ったコマンドの中で、updateOwnPost という特別な許可を作成します。

$auth = Yii::$app->authManager;

// 規則を追加する
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// "updateOwnPost" という許可を作成し、それに規則を関連付ける
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = '自分の記事を更新';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" は "updatePost" から使われる
$auth->addChild($updateOwnPost, $updatePost);

// "author" に自分の記事を更新することを許可する
$auth->addChild($author, $updateOwnPost);

これで、次のような権限階層になります。

[image: 規則を持つ RBAC 階層]

アクセスチェック

権限付与データが準備できてしまえば、アクセスチェックは [[yii\rbac\ManagerInterface::checkAccess()]] メソッドを呼ぶだけの簡単な仕事です。
たいていのアクセスチェックは現在のユーザに関するものですから、Yii は、便利なように、[[yii\web\User::can()]] というショートカットメソッドを提供しています。
これは、次のようにして使うことが出来ます。

if (\Yii::$app->user->can('createPost')) {
 // 記事を作成する
}

現在のユーザが ID=1 である Jane であるとすると、createPost からスタートして Jane まで到達しようと試みます。

[image: アクセスチェック]

ユーザが記事を更新することが出来るかどうかをチェックするためには、前に説明した AuthorRule によって要求される追加のパラメータを渡す必要があります。

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
 // 記事を更新する
}

現在のユーザが John であるとすると、次の経路をたどります。

[image: アクセスチェック]

updatePost からスタートして、updateOwnPost を通過します。
通過するためには、AuthorRule が execute メソッドで true を返さなければなりません。
execute メソッドは can メソッドの呼び出しから $params を受け取りますので、その値は ['post' => $post] です。
すべて OK であれば、John に割り当てられている author に到達します。

Jane の場合は、彼女が管理者であるため、少し簡単になります。

[image: アクセスチェック]

コントローラ内で権限付与を実装するのには、いくつかの方法があります。
追加と削除に対するアクセス権を分離する細分化された許可が必要な場合は、それぞれのアクションに対してアクセス権をチェックする必要があります。
各アクションメソッドの中で上記の条件を使用するか、または [[yii\filters\AccessControl]] を使います。

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 [
 'allow' => true,
 'actions' => ['index'],
 'roles' => ['managePost'],
],
 [
 'allow' => true,
 'actions' => ['view'],
 'roles' => ['viewPost'],
],
 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['createPost'],
],
 [
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
],
 [
 'allow' => true,
 'actions' => ['delete'],
 'roles' => ['deletePost'],
],
],
],
];
}

全ての CRUD 操作がまとめて管理される場合は、managePost のような単一の許可を使い、
[[yii\web\Controller::beforeAction()]] の中でそれをチェックするのが良いアイデアです。

デフォルトロールを使う

デフォルトロールというのは、全て のユーザに 黙示的 に割り当てられるロールです。
[[yii\rbac\ManagerInterface::assign()]] を呼び出す必要はなく、権限付与データはその割り当て情報を含みません。

デフォルトロールは、通常、そのロールが当該ユーザに適用されるかどうかを決定する規則と関連付けられます。

デフォルトロールは、たいていは、何らかのロールの割り当てを既に持っているアプリケーションにおいて使われます。
例えば、アプリケーションによっては、ユーザのテーブルに “group” というカラムを持って、個々のユーザが属する特権グループを表している場合があります。
それぞれの特権グループを RBAC ロールに対応付けることが出来るのであれば、デフォルトロールの機能を使って、それぞれのユーザに RBAC ロールを自動的に割り当てることが出来ます。
どのようにすればこれが出来るのか、例を使って説明しましょう。

ユーザのテーブルに group というカラムがあって、1 は管理者グループ、2 は投稿者グループを示していると仮定しましょう。
これら二つのグループの権限を表すために、それぞれ、admin と author という RBAC ロールを作ることにします。
このとき、次のように RBAC データをセットアップすることが出来ます。

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * ユーザのグループが合致するかどうかをチェックする
 */
class UserGroupRule extends Rule
{
 public $name = 'userGroup';

 public function execute($user, $item, $params)
 {
 if (!Yii::$app->user->isGuest) {
 $group = Yii::$app->user->identity->group;
 if ($item->name === 'admin') {
 return $group == 1;
 } elseif ($item->name === 'author') {
 return $group == 1 || $group == 2;
 }
 }
 return false;
 }
}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... $author の子として許可を追加 ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... $admin の子として許可を追加 ...

上記において、”author” が “admin” の子として追加されているため、規則クラスの execute() メソッドを実装する時には、この階層関係にも配慮しなければならないことに注意してください。
このために、ロール名が “author” である場合には、execute() メソッドは、ユーザのグループが 1 または 2 である (ユーザが “admin” グループまたは “author” グループに属している) ときに true を返しています。

次に、authManager の構成情報で、この二つのロールを [[yii\rbac\BaseManager::$defaultRoles]] としてリストします。

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['admin', 'author'],
],
 // ...
],
];

このようにすると、アクセスチェックを実行すると、admin と author の両方のロールは、それらと関連付けられた規則を評価することによってチェックされるようになります。
規則が true を返せば、そのロールが現在のユーザに適用されることになります。
上述の規則の実装に基づいて言えば、ユーザの group の値が 1 であれば admin ロールがユーザに適用され、group の値が 2 であれば author ロールが適用されるということを意味します。

 ページキャッシュ

ページキャッシュ

ページキャッシュはサーバサイドでページ全体のコンテントをキャッシュすることを言います。あとで、同じページに再度リクエストがあった場合、その内容を一から再び生成させるのではなく、キャッシュから提供するようにします。

ページキャッシュは [[yii\filters\PageCache]] という アクションフィルタ によってサポートされています。これは、コントローラクラスで以下のように使用することができます：

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['index'],
 'duration' => 60,
 'variations' => [
 \Yii::$app->language,
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT COUNT(*) FROM post',
],
],
];
}

上記のコードは、ページキャッシュが index アクションのみで使用され、そのページのコンテントは最大 60 秒間キャッシュされ、現在のアプリケーションの言語によるバリエーションを持ち、投稿の総数に変化があった場合キャッシュされたページが無効になる、ということを示しています。

見てわかるように、ページキャッシュは フラグメントキャッシュ ととてもよく似ています。それらは両方とも duration、dependencies、variations、そして enabled などのオプションをサポートしています。主な違いとしては、ページキャッシュは アクションフィルタ として、フラグメントキャッシュは ウィジェット として実装されているということです。

フラグメントキャッシュ も、ダイナミックコンテント も、ページキャッシュと併用することができます。

 ビヘイビア

ビヘイビア

ビヘイビアは [[yii\base\Behavior]] 、あるいはその子クラスのインスタンスです。ビヘイビアは
ミックスイン [http://en.wikipedia.org/wiki/Mixin] としても知られ、既存の [[yii\base\Component|component]] クラスの
機能を、クラスの継承を変更せずに拡張することができます。コンポーネントにビヘイビアをアタッチすると、その
コンポーネントにはビヘイビアのメソッドとプロパティが “注入” され、それらのメソッドとプロパティは、
コンポーネントクラス自体に定義されているかのようにアクセスできるようになります。また、ビヘイビアは、
コンポーネントによってトリガされた イベント に応答することができるので、
ビヘイビアでコンポーネントの通常のコード実行をカスタマイズすることができます。

ビヘイビアの定義

ビヘイビアを定義するには、 [[yii\base\Behavior]] あるいは子クラスを継承するクラスを作成します。たとえば:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
 public $prop1;

 private $_prop2;

 public function getProp2()
 {
 return $this->_prop2;
 }

 public function setProp2($value)
 {
 $this->_prop2 = $value;
 }

 public function foo()
 {
 // ...
 }
}

上のコードは、 app\components\MyBehavior という、2つのプロパティ – prop1 と prop2 – と
foo() メソッドを持つビヘイビアクラスを定義します。prop2 プロパティは、 getProp2() getter メソッドと setProp2() setter メソッドで定義されることに着目してください。
[[yii\base\Behavior]] は [[yii\base\Object]] を継承しているので、getter と​​ setter による プロパティ 定義をサポートします。

このクラスはビヘイビアなので、コンポーネントにアタッチされると、そのコンポーネントは prop1 と prop2 プロパティ、それと foo() メソッドを持つようになります。

Tip: ビヘイビア内から、[[yii\base\Behavior::owner]] プロパティを介して、ビヘイビアをアタッチしたコンポーネントにアクセスすることができます。

Note: ビヘイビアの [[yii\base\Behavior::__get()]] および/または [[yii\base\Behavior::__set()]] メソッドをオーバーライドする場合は、同時に [[yii\base\Behavior::canGetProperty()]] および/または [[yii\base\Behavior::canSetProperty()]] もオーバーライドする必要があります。

コンポーネントイベントのハンドリング

ビヘイビアが、アタッチされたコンポーネントがトリガするイベントに応答する必要がある場合は、
[[yii\base\Behavior::events()]] メソッドをオーバーライドしましょう。たとえば:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

[[yii\base\Behavior::events()]] メソッドは、イベントとそれに対応するハンドラのリストを返します。
上の例では [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] イベントがあること、
そのハンドラ定義である beforeValidate() を宣言しています。イベントハンドラを指定するときは、以下の表記方法が使えます:

	ビヘイビアクラスのメソッド名を参照する文字列 (上の例など)

	オブジェクトまたはクラス名と文字列のメソッド名 (括弧なし) 例 [$object, 'methodName']

	無名関数

イベントハンドラのシグネチャは次のようにしてください。$event はイベントのパラメータを参照します。イベントの詳細については
イベント セクションを参照してください。

function ($event) {
}

ビヘイビアのアタッチ

[[yii\base\Component|コンポーネント]] へのビヘイビアのアタッチは、静的にも動的にも可能です。実際は、前者のほうがより一般的ですが。

ビヘイビアを静的にアタッチするには、ビヘイビアをアタッチしたいコンポーネントクラスの [[yii\base\Component::behaviors()|behaviors()]] メソッドをオーバーライドします。
[[yii\base\Component::behaviors()|behaviors()]] メソッドは、ビヘイビアの 構成 のリストを返さなければなりません。
各ビヘイビアの構成内容は、ビヘイビアのクラス名でも、構成情報配列でもかまいません。

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
 public function behaviors()
 {
 return [
 // 無名ビヘイビア ビヘイビアクラス名のみ
 MyBehavior::className(),

 // 名前付きビヘイビア ビヘイビアクラス名のみ
 'myBehavior2' => MyBehavior::className(),

 // 無名ビヘイビア 構成情報配列
 [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],

 // 名前付きビヘイビア 構成情報配列
 'myBehavior4' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]
];
 }
}

ビヘイビア構成に対応する配列のキーを指定することによって、ビヘイビアに名前を関連付けることができます。この場合、ビヘイビアは 名前付きビヘイビア と呼ばれます。上の例では、2つの名前付きビヘイビア​​
myBehavior2 と myBehavior4 があります。ビヘイビアが名前と関連付けられていない場合は、 無名ビヘイビア と呼ばれます。

ビヘイビアを動的にアタッチするには、ビヘイビアをアタッチしようとしているコンポーネントの [[yii\base\Component::attachBehavior()]] メソッドを呼びます:

use app\components\MyBehavior;

// ビヘイビアオブジェクトをアタッチ
$component->attachBehavior('myBehavior1', new MyBehavior);

// ビヘイビアクラスをアタッチ
$component->attachBehavior('myBehavior2', MyBehavior::className());

// 構成情報配列をアタッチ
$component->attachBehavior('myBehavior3', [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]);

[[yii\base\Component::attachBehaviors()]] メソッドを使うと、いちどに複数のビヘイビアをアタッチできます:

$component->attachBehaviors([
 'myBehavior1' => new MyBehavior, // 名前付きビヘイビア
 MyBehavior::className(), // 無名ビヘイビア
]);

次のように、 構成情報 を通じてビヘイビアをアタッチすることもできます:

[
 'as myBehavior2' => MyBehavior::className(),

 'as myBehavior3' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],
]

詳しくは 構成情報 セクションを参照してください。

ビヘイビアの使用

ビヘイビアを使用するには、まず上記の方法に従って [[yii\base\Component|コンポーネント]] にアタッチします。ビヘイビアがコンポーネントにアタッチされれば、その使用方法はシンプルです。

あなたは、アタッチされているコンポーネントを介して、ビヘイビアの パブリック メンバ変数、または getter や setter によって定義されたプロパティにアクセスすることができます:

// "prop1" はビヘイビアクラス内で定義されたプロパティ
echo $component->prop1;
$component->prop1 = $value;

また同様に、ビヘイビアの パブリック メソッドも呼ぶことができます:

// foo() はビヘイビアクラス内で定義されたパブリックメソッド
$component->foo();

ご覧のように、 $component は prop1 と foo() を定義していないにもかかわらず、
アタッチされたビヘイビアによって、それらをコンポーネント定義の一部であるかのように使うことができるのです。

もし2つのビヘイビアが同じプロパティやメソッドを定義し、かつ両方とも同じコンポーネントにアタッチされている場合は、
プロパティやメソッドのアクセス時に、最初に コンポーネントにアタッチされたビヘイビアが優先されます。

ビヘイビアはコンポーネントにアタッチされるとき、名前と関連付けられているかもしれません。その場合、
その名前を使用してビヘイビアオブジェクトにアクセスすることができます:

$behavior = $component->getBehavior('myBehavior');

また、コンポーネントにアタッチされた全てのビヘイビアを取得することもできます:

$behaviors = $component->getBehaviors();

ビヘイビアのデタッチ

ビヘイビアをデタッチするには、ビヘイビアに付けられた名前とともに [[yii\base\Component::detachBehavior()]] を呼び出します:

$component->detachBehavior('myBehavior1');

全ての ビヘイビアをデタッチすることもできます:

$component->detachBehaviors();

TimestampBehavior の利用

しめくくりに、[[yii\behaviors\TimestampBehavior]] を見てみましょう。このビヘイビアは、
insert()、update() または save() のメソッドを通じて [[yii\db\ActiveRecord|アクティブレコード]] モデルが保存されるときに、
タイムスタンプ属性の自動的な更新をサポートします。

まず、使用しようと考えている [[yii\db\ActiveRecord|アクティブレコード]] クラスに、このビヘイビアをアタッチします:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
 // ...

 public function behaviors()
 {
 return [
 [
 'class' => TimestampBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
 ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
],
 // UNIX タイムスタンプではなく datetime を使う場合は
 // 'value' => new Expression('NOW()'),
],
];
 }
}

上のビヘイビア構成は、レコードが:

	挿入されるとき、ビヘイビアは現在の UNIX タイムスタンプを created_at と updated_at 属性に割り当てます

	更新されるとき、ビヘイビアは現在の UNIX タイムスタンプを updated_at 属性に割り当てます

Note: 上記の実装が MySQL データベースで動作するようにするためには、created_at と updated_at のカラムを UNIX タイムスタンプ になるように int(11) として宣言してください。

このコードが所定の位置にあれば、例えば User オブジェクトがあって、それを保存しようとしたら、そこで、
created_at と updated_at が自動的に現在の UNIX タイムスタンプで埋められます。

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at; // 現在のタイムスタンプが表示される

[[yii\behaviors\TimestampBehavior|TimestampBehavior]] は、また、指定された属性に現在のタイムスタンプを割り当てて
それをデータベースに保存する、便利なメソッド [[yii\behaviors\TimestampBehavior::touch()|touch()]] を提供しています。

$user->touch('login_time');

その他のビヘイビア

その他にも、内蔵または外部ライブラリによって利用できるビヘイビアがいくつかあります。

	[[yii\behaviors\BlameableBehavior]] - 指定された属性に現在のユーザ ID を自動的に設定します。

	[[yii\behaviors\SluggableBehavior]] - 指定された属性に、URL のスラグとして使用できる値を自動的に設定します。

	[[yii\behaviors\AttributeBehavior]] - 特定のイベントが発生したときに、ActiveRecord オブジェクトの一つまたは複数の属性に、指定された値を自動的に設定します。

	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] - ActiveRecord をソフト・デリートおよびソフト・リストアする、すなわち、レコードの削除を示すフラグまたはステータスを設定するメソッドを提供します。

	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] - レコードの順序を整数のフィールドによって管理することが出来るように、順序変更メソッドを提供します。

ビヘイビアとトレイトの比較

ビヘイビアは、主となるクラスにそのプロパティやメソッドを「注入する」という点で トレイト [http://www.php.net/traits]
に似ていますが、これらは多くの面で異なります。以下に説明するように、それらは互いに長所と短所を持っています。
それらは代替手段というよりも、むしろ相互補完関係のようなものです。

ビヘイビアを使う理由

ビヘイビアは通常のクラスのように、継承をサポートしています。いっぽうトレイトは、
言語サポートされたコピー&ペーストとみなすことができます。トレイトは継承をサポートしません。

ビヘイビアは、コンポーネントクラスの変更を必要とせず、コンポーネントに動的にアタッチまたはデタッチすることが可能です。トレイトを使用するには、トレイトを使ってクラスのコードを書き換える必要があります。

ビヘイビアは構成可能ですがトレイトは不可能です。

ビヘイビアは、イベントに応答することで、コンポーネントのコード実行をカスタマイズできます。

同じコンポーネントにアタッチされた異なるビヘイビア間で名前の競合がある場合、その競合は自動的に、
先にコンポーネントにアタッチされたものを優先することで解消されます。
別のトレイトが起こした名前競合の場合、影響を受けるプロパティやメソッドの名前変更による、手動での解決が必要です。

トレイトを使う理由

ビヘイビアは時間もメモリも食うオブジェクトなので、トレイトはビヘイビアよりはるかに効率的です。

トレイトは言語構造であるため、IDE との相性に優れています。

 あなた自身のアプリケーション構造を作成する

あなた自身のアプリケーション構造を作成する

Note: この節はまだ執筆中です。

ベーシック [https://github.com/yiisoft/yii2-app-basic] と アドバンスト [https://github.com/yiisoft/yii2-app-advanced] のプロジェクトテンプレートは、あなたの要求をほとんどカバーする優れたものですが、あなたのプロジェクトを開始するためのあなた自身のテンプレートを作成したいこともあるでしょう。

Yii におけるプロジェクトテンプレートは、composer.json ファイルを含み、Composer パッケージとして登録されたレポジトリであるに過ぎません。
どのようなレポジトリでも、Composer パッケージとして特定し、create-project Composer コマンドによってインストール可能なものにすることが出来ます。

テンプレート全体を最初から構築するのは少々大変ですので、内蔵のテンプレートの一つを基礎として使うのが良いでしょう。
ここでは、ベーシックテンプレートを使いましょう。

ベーシックテンプレートをクローンする

最初のステップは、ベーシック Yii テンプレートの Git レポジトリをクローンすることです。

git clone git@github.com:yiisoft/yii2-app-basic.git

そして、レポジトリがあなたのコンピュータにダウンロードされるのを待ちます。
テンプレートに加えられた変更がレポジトリにプッシュバックされることはありませんので、ダウンロードしたものから .git ディレクトリとその中身を全て削除して構いません。

ファイルを修正する

次に、あなたのテンプレートに合うように composer.json を修正します。
name、description、keywords、homepage、license および support の値を、あなたの新しいテンプレートを説明するものに変更します。
また、require、require-dev、suggest や、その他のオプションも、あなたのテンプレートの要求に合うように調整します。

Note: composer.json ファイルで、extra の下の writable パラメータを使って、アプリケーションがテンプレートを使って作成された後に設定されるべきファイル単位のアクセス権限を指定してください。

次に、あなたが好むデフォルトの状態に合うように、アプリケーションの構造と内容を実際に修正します。
最後に、あなたのテンプレートに適用できるように、README ファイルを更新します。

パッケージを作る

テンプレートが定義できたら、それを基に Git レポジトリを作成して、ファイルをそこにプッシュします。
あなたのテンプレートをオープンソース化するつもりなら、レポジトリをホストするのには Github [http://github.com] が最適の場所です。
テンプレートを共同作業に使わないつもりであれば、どんな Git レポジトリサイトでも構いません。

次に、Composer のためにパッケージを登録する必要があります。
パブリックなテンプレートであれば、パッケージは Packagist [https://packagist.org/] に登録すべきです。
プライベートなテンプレートは、パッケージの登録が少々トリッキーです。
その説明については Composer ドキュメント [https://getcomposer.org/doc/05-repositories.md#hosting-your-own] を参照してください。

テンプレートを使う

Yii の新しいプロジェクトテンプレートを作成するのに必要なことは以上です。
これで、あなたのテンプレートを使ってプロジェクトを作成することが出来ます。

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist --stability=dev mysoft/yii2-app-coolone new-project

 Yii 2.0 決定版ガイド

Yii 2.0 決定版ガイド

このチュートリアルは Yii ドキュメント許諾条件 [http://www.yiiframework.com/doc/terms/] の下にリリースされています。

All Rights Reserved.

2014 (c) Yii Software LLC.

前書き

	Yii について

	バージョン 1.1 からのアップグレード

始めよう

	Yii をインストールする

	アプリケーションを走らせる

	こんにちは、と言う

	フォームを扱う

	データベースを扱う

	Gii でコードを生成する

	先を見通す

アプリケーションの構造

	概要

	エントリスクリプト

	アプリケーション

	アプリケーションコンポーネント

	コントローラ

	モデル

	ビュー

	モジュール

	フィルタ

	ウィジェット

	アセット

	エクステンション

リクエストの処理

	概要

	ブートストラップ

	ルーティングと URL 生成

	リクエスト

	レスポンス

	セッションとクッキー

	エラー処理

	ロギング

鍵となる概念

	コンポーネント

	プロパティ

	イベント

	ビヘイビア

	構成情報

	エイリアス

	クラスのオートロード

	サービスロケータ

	依存注入コンテナ

データベースの取り扱い

	データアクセスオブジェクト: データベースへの接続、基本的なクエリ、トランザクション、および、スキーマ操作

	クエリビルダ: シンプルな抽象レイヤを使ってデータベースに対してクエリを行う

	アクティブレコード: アクティブレコード ORM、レコードの読み出しと操作、リレーションの定義

	マイグレーション: チーム開発環境においてデータベースにバージョンコントロールを適用

	Sphinx [https://github.com/yiisoft/yii2-sphinx/blob/master/docs/guide-ja/README.md]

	Redis [https://github.com/yiisoft/yii2-redis/blob/master/docs/guide-ja/README.md]

	MongoDB [https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide-ja/README.md]

	ElasticSearch [https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide-ja/README.md]

ユーザからのデータ取得

	フォームを作成する

	入力を検証する

	ファイルをアップロードする

	表形式インプットのデータ収集

	複数のモデルのデータを取得する

データの表示

	データのフォーマット

	ページネーション

	並べ替え

	データプロバイダ

	データウィジェット

	クライアントスクリプトを扱う

	テーマ

セキュリティ

	概要

	認証

	権限付与

	パスワードを扱う

	暗号化

	認証クライアント [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide-ja/README.md]

	ベストプラクティス

キャッシュ

	概要

	データキャッシュ

	フラグメントキャッシュ

	ページキャッシュ

	HTTP キャッシュ

RESTful ウェブサービス

	クイックスタート

	リソース

	コントローラ

	ルーティング

	レスポンス形式の設定

	認証

	レート制限

	バージョン管理

	エラー処理

開発ツール

	デバッグツールバーとデバッガ [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide-ja/README.md]

	Gii を使ってコードを生成する [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ja/README.md]

テスト

	概要

	テスト環境の構築

	単体テスト

	機能テスト

	受入テスト

	フィクスチャ

スペシャルトピック

	アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md]

	アプリケーションを一から構築する

	コンソールコマンド

	コアバリデータ

	国際化

	メール送信

	パフォーマンスチューニング

	共有ホスティング環境

	テンプレートエンジン

	サードパーティのコードを扱う

ウィジェット

	GridView [http://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [http://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [http://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [http://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [http://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [http://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [http://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap ウィジェット [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide-ja/README.md]

	jQuery UI ウィジェット [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide-ja/README.md]

ヘルパ

	概要

	配列ヘルパ

	Html ヘルパ

	Url ヘルパ

 フォームを作成する

フォームを作成する

アクティブレコードに基づくフォーム : ActiveForm

Yii においてフォームを使用するときは、主として [[yii\widgets\ActiveForm]] による方法を使います。
フォームがモデルに基づくものである場合はこの方法を選ぶべきです。
これに加えて、[[yii\helpers\Html]] にはいくつかの有用なメソッドがあり、どんなフォームでも、ボタンやヘルプテキストを追加するのには、通常、それらのメソッドを使います。

フォームは、クライアント側で表示されるものですが、たいていの場合、対応する モデル を持ち、それを使ってサーバ側でフォームの入力を検証します
(入力の検証の詳細については、入力を検証する の節を参照してください)。
モデルに基づくフォームを作成する場合、最初のステップは、モデルそのものを定義することです。
モデルは、データベースの何らかのデータを表現するために アクティブレコード から派生させたクラスか、あるいは、任意の入力、例えばログインフォームの入力を保持するための ([[yii\base\Model]] から派生させた) 汎用的な Model クラスか、どちらかにすることが出来ます。
以下の例においては、ログインフォームのために汎用的なモデルを使う方法を示します。

<?php

class LoginForm extends \yii\base\Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // 検証規則をここで定義
];
 }

コントローラにおいて、このモデルのインスタンスをビューに渡し、ビューでは [[yii\widgets\ActiveForm|ActiveForm]] ウィジェットがフォームを表示するのに使われます。

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'login-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <div class="col-lg-offset-1 col-lg-11">
 <?= Html::submitButton('ログイン', ['class' => 'btn btn-primary']) ?>
 </div>
 </div>
<?php ActiveForm::end() ?>

begin() と end() で囲む

上記のコードでは、[[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] がフォームのインスタンスを作成するとともに、フォームの開始をマークしています。
[[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] と [[yii\widgets\ActiveForm::end()|ActiveForm::end()]] の間に置かれた全てのコンテントが HTML の <form> タグによって囲まれます。
どのウィジェットでも同じですが、ウィジェットをどのように構成すべきかに関するオプションを指定するために、begin メソッドに配列を渡すことが出来ます。
この例では、追加の CSS クラスと要素を特定するための ID が渡されて、<form> の開始タグに適用されています。
利用できるオプションの全ては [[yii\widgets\ActiveForm]] の API ドキュメントに記されていますので参照してください。

ActiveField .

フォームの中では、フォームの要素を作成するために、ActiveForm ウィジェットの [[yii\widgets\ActiveForm::field()|ActiveForm::field()]] メソッドが呼ばれています。
このメソッドは、フォームの要素だけでなく、そのラベルも作成し、適用できる JavaScript の検証メソッドがあれば、それも追加します。
[[yii\widgets\ActiveForm::field()|ActiveForm::field()]] メソッドは、[[yii\widgets\ActiveField]] のインスタンスを返します。
このメソッドの呼び出し結果を直接にエコーすると、結果は通常の (text の) インプットになります。
このメソッドの呼び出しに追加の [[yii\widgets\ActiveField|ActiveField]] のメソッドをチェーンして、出力結果をカスタマイズすることが出来ます。

// パスワードのインプット
<?= $form->field($model, 'password')->passwordInput() ?>
// ヒントとカスタマイズしたラベルを追加
<?= $form->field($model, 'username')->textInput()->hint('お名前を入力してください')->label('お名前') ?>
// HTML5 のメールインプット要素を作成
<?= $form->field($model, 'email')->input('email') ?>

これで、フォームのフィールドによって定義された [[yii\widgets\ActiveField::$template|テンプレート]] に従って、<label>、<input> など、全てのタグが生成されます。
インプットフィールドの名前は、モデルの [[yii\base\Model::formName()|フォーム名]] と属性から自動的に決定されます。
例えば、上記の例における username 属性のインプットフィールドの名前は LoginForm[username] となります。
この命名規則の結果として、ログインフォームの全ての属性が配列として、サーバ側においては $_POST['LoginForm'] に格納されて利用できることになります。

Tip: 一つのフォームに一つのモデルだけがある場合、インプットの名前を単純化したいときは、
モデルの [[yii\base\Model::formName()|formName()]] メソッドをオーバーライドして空文字列を返すようにして、配列の部分をスキップすることが出来ます。
この方法を使えば、GridView で使われるフィルターモデルで、もっと見栄えの良い URL を生成させることが出来ます。

モデルの属性を指定するために、もっと洗練された方法を使うことも出来ます。
例えば、複数のファイルをアップロードしたり、複数の項目を選択したりする場合に、属性の名前に [] を付けて、属性が配列の値を取り得ることを指定することが出来ます。

// 複数のファイルのアップロードを許可する
echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple']);

// 複数の項目をチェックすることを許可する
echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' => 'Item B', 'c' => 'Item C']);

送信ボタンなどのフォーム要素に名前をつけるときには注意が必要です。
jQuery ドキュメント [https://api.jquery.com/submit/] によれば、衝突を生じさせ得る予約された名前がいくつかあります。

フォームおよびフォームの子要素は、フォームのプロパティと衝突するインプット名や id、たとえば submit、length、method などを使ってはなりません。
名前の衝突は訳の分らない失敗を生じさせることがあります。
命名規則の完全なリストを知り、この問題についてあなたのマークアップをチェックするためには、DOMLint [http://kangax.github.io/domlint/] を参照してください。

フォームに HTML タグを追加するためには、素の HTML を使うか、または、上記の例の [[yii\helpers\Html::submitButton()|Html::submitButton()]] のように、[[yii\helpers\Html|Html]] ヘルパクラスのメソッドを使うことが出来ます。

Tip: あなたのアプリケーションで Twitter Bootstrap CSS を使っている場合は、[[yii\widgets\ActiveForm]] の代りに [[yii\bootstrap\ActiveForm]] を使うのが良いでしょう。
後者は前者の拡張であり、bootstrap CSS フレームワークで使用するための追加のスタイルをサポートしています。

Tip: 必須フィールドをアスタリスク付きのスタイルにするために、次の CSS を使うことが出来ます。

div.required label.control-label:after {
 content: " *";
 color: red;
}

リストを作る

三種類のリストがあります:

	ドロップダウンリスト

	ラジオリスト

	チェックボックスリスト

リストを作るためには、項目の配列を準備しなければなりません。これは、手作業でやることも出来ます。

$items = [
 1 => '項目 1',
 2 => '項目 2'
]

または、DB から取得することも出来ます。

$items = Category::find()
 ->select(['id', 'label'])
 ->indexBy('id')
 ->column();

このような $items が、いろんなリストウィジェットによって処理されるべきものとなります。
フォームのフィールドの値(および現在アクティブな項目)は、$model の属性の現在の値に従って自動的に設定されます。

ドロップダウンリストを作る

ActiveField の [[\yii\widgets\ActiveField::dropDownList()]] メソッドを使って、ドロップダウンリストを作ることが出来ます。

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->dropdownList([
 1 => '項目 1',
 2 => '項目 2'
],
 ['prompt'=>'カテゴリーを選択してください']
);

ラジオリストを作る

ActiveField の [[\yii\widgets\ActiveField::radioList()]] メソッドを使ってラジオリストを作ることが出来ます。

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->radioList([
 1 => 'ラジオ 1',
 2 => 'ラジオ 2'
]);

チェックボックスリストを作る

ActiveField の [[\yii\widgets\ActiveField::checkboxList()]] メソッドを使ってチェックボックスリストを作ることが出来ます。

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->checkboxList([
 1 => 'チェックボックス 1',
 2 => 'チェックボックス 2'
]);

Pjax を使う

[[yii\widgets\Pjax|Pjax]] ウィジェットを使うと、ページ全体をリロードせずに、ページの一部分だけを更新することが出来ます。
これを使うと、送信後にフォームだけを更新して、その中身を入れ替えることが出来ます。

[[yii\widgets\Pjax::$formSelector|$formSelector]] を構成すると、どのフォームの送信が pjax を起動するかを指定することが出来ます。
それが指定されていない場合は、Pjax に囲まれたコンテントの中にあって data-pjax 属性を持つすべてのフォームが pjax リクエストを起動することになります。

use yii\widgets\Pjax;
use yii\widgets\ActiveForm;

Pjax::begin([
 // Pjax のオプション
]);
 $form = ActiveForm::begin([
 'options' => ['data' => ['pjax' => true]],
 // ActiveForm の追加のオプション
]);

 // ActiveForm のコンテント

 ActiveForm::end();
Pjax::end();

Tip: [[yii\widgets\Pjax|Pjax]] ウィジェット内部のリンクに注意してください。
と言うのは、リンクに対するレスポンスもウィジェット内部でレンダリングされるからです。
これを防ぐためには、data-pjax="0" という HTML 属性を使用します。

送信ボタンの値とファイルのアップロード

jQuery.serializeArray() については、
ファイル [https://github.com/jquery/jquery/issues/2321] および
送信ボタンの値 [https://github.com/jquery/jquery/issues/2321]
を扱うときに問題があることが知られています。
この問題は解決される見込みがなく、関数自体も HTML5 で導入された FormData クラスによって置き換えられるべきものとして、廃止予定となっています。

このことは、すなわち、ajax または [[yii\widgets\Pjax|Pjax]] ウィジェットを使う場合、ファイルと送信ボタンの値に対する唯一の公式なサポートは、
FormData クラスに対する ブラウザのサポート [https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility] に依存しているということを意味します。

さらに読むべき文書

次の節 入力を検証する は、送信されたフォームデータのサーバ側でのバリデーションと、ajax バリデーションおよびクライアント側バリデーションを扱います。

フォームのもっと複雑な使用方法については、以下の節を読んで下さい。

	表形式インプットのデータ収集 - 同じ種類の複数のモデルのデータを収集する。

	複数のモデルのデータを取得する - 同じフォームの中で複数の異なるモデルを扱う。

	ファイルをアップロードする - フォームを使ってファイルをアップロードする方法。

 国際化

国際化

国際化 (I18N) とは、工学的な変更を伴わずにさまざまな言語と地域に順応できるように、ソフトウェアアプリケーションを設計するプロセスを指します。
潜在的なユーザが世界中にいるウェブアプリケーションにとっては、このことは特に重要な意味を持ちます。
Yii は、全ての領域にわたる国際化機能を提供し、メッセージの翻訳、ビューの翻訳、日付と数字の書式設定をサポートします。

ロケールと言語

ロケール

ロケールとは、ユーザの言語、国、そして、ユーザが彼らのユーザインタフェイスにおいて目にすることを期待するすべての変異形式を定義する一連のパラメータです。
ロケールは、通常、言語 ID と地域 ID から成るロケール ID によって定義されます。

例えば、en-US という ID は、「英語とアメリカ合衆国」というロケールを意味します。

Yii アプリケーションで使用される全てのロケール ID は、一貫性のために、ll-CC の形式に正規化されなければなりません。
ここで ll は ISO-639 [http://www.loc.gov/standards/iso639-2/] に従った小文字二つまたは三つの言語コードであり、CC は ISO-3166 [http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html] に従った二文字の国コードです。
ロケールに関する更なる詳細は ICU プロジェクトのドキュメント project [http://userguide.icu-project.org/locale#TOC-The-Locale-Concept] に述べられています。

言語

Yii では、”言語” という用語でロケールに言及することがしばしばあります。

Yii のアプリケーションでは二つの言語を使用します。すなわち、

	[[yii\base\Application::$sourceLanguage|ソース言語]] : ソースコード中のテキストメッセージが書かれている言語。

	[[yii\base\Application::$language|ターゲット言語]] : コンテントをエンドユーザに表示するのに使用されるべき言語。

いわゆるメッセージ翻訳サービスは、主として、テキストメッセージをソース言語からターゲット言語に翻訳するものです。

構成

アプリケーションの言語は、アプリケーションの構成情報で次のように構成することが出来ます。

return [
 // ターゲット言語を日本語に設定
 'language' => 'ja-JP',

 // ソース言語を英語に設定
 'sourceLanguage' => 'en-US',

];

[[yii\base\Application::$sourceLanguage|ソース言語]] のデフォルト値は en-US であり、合衆国の英語を意味します。
このデフォルト値は変えないことが 推奨 されます。
なぜなら、通常は、英語から他の言語への翻訳者を見つける方が、非英語から非英語への翻訳者を見つけるより、はるかに簡単だからです。

[[yii\base\Application::$language|ターゲット言語]] は、エンドユーザの言語選択など、さまざまな要因に基づいて、動的に設定しなければならないことがよくあります。
アプリケーションの構成情報で構成するかわりに、次の文を使ってターゲット言語を変更することが出来ます。

// ターゲット言語を中国語に変更
\Yii::$app->language = 'zh-CN';

Tip: ソース言語がコードの部分によって異なる場合は、メッセージソースごとにソース言語をオーバーライドすることが出来ます。
これについては、次の説で説明します。

メッセージ翻訳

ソース言語からターゲット言語へ

メッセージ翻訳サービスは、テキストメッセージをある言語 (通常は [[yii\base\Application::$sourceLanguage|ソース言語]]) から別の言語 (通常は [[yii\base\Application::$language|ターゲット言語]]) に翻訳するものです。

翻訳は、元のメッセージと翻訳されたメッセージを格納するメッセージソースの中から、翻訳対象となったメッセージを探すことにより行われます。
メッセージが見つかれば、対応する翻訳されたメッセージが返されます。
メッセージが見つからなければ、元のメッセージが翻訳されずに返されます。

実装の仕方

メッセージ翻訳サービスを使用するためには、主として次の作業をする必要があります。

	翻訳する必要のある全てのテキストメッセージを [[Yii::t()]] メソッドの呼び出しの中に包む。

	メッセージ翻訳サービスが翻訳されたメッセージを探すことが出来る一つまたは複数のメッセージソースを構成する。

	翻訳者にメッセージを翻訳させて、それをメッセージソースに格納する。

1. テキストメッセージを包む

[[Yii::t()]] メソッドは次のように使います。

echo \Yii::t('app', 'This is a string to translate!');

ここで、二番目のパラメータが翻訳されるべきテキストメッセージを示し、最初のパラメータはメッセージを分類するのに使用されるカテゴリ名を示します。

2. 一つまたは複数のメッセージソースを構成する

[[Yii::t()]] メソッドは i18n アプリケーションコンポーネント の translate メソッドを呼んで実際の翻訳作業を実行します。
このコンポーネントはアプリケーションの構成情報の中で次のようにして構成することが出来ます。

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 //'basePath' => '@app/messages',
 //'sourceLanguage' => 'en-US',
 'fileMap' => [
 'app' => 'app.php',
 'app/error' => 'error.php',
],
],
],
],
],

上記のコードにおいては、[[yii\i18n\PhpMessageSource]] によってサポートされるメッセージソースが構成されています。

シンボル * によるカテゴリのワイルドカード

app* は、app で始まる全てのメッセージカテゴリがこのメッセージソースを使って翻訳されるべきであることを示しています。

3. 翻訳者にメッセージを翻訳させて、それをメッセージソースに格納する

[[yii\i18n\PhpMessageSource]] クラスは、単純な PHP 配列を持つ複数の PHP ファイルを使用してメッセージ翻訳を格納します。
それらのファイルが、「ソース言語」のメッセージと「ターゲット言語」の翻訳とのマップを含みます。

Info: それらのファイルを message コマンド を使用して自動的に生成することが出来ます。
この節で後で紹介します。

PHP ファイルは、それぞれ、一つのカテゴリのメッセージに対応します。
デフォルトでは、ファイル名はカテゴリ名と同じでなければなりません。
app/messages/nl-NL/main.ph の例を示します。

<?php

/**
* Translation map for nl-NL
*/
return [
 'welcome' => 'welkom'
];

ファイルのマッピング

ただし、[[yii\i18n\PhpMessageSource::fileMap|fileMap]] を構成して、別の命名方法によってカテゴリを PHP ファイルにマップすることも可能です。

上記の例では、(ja-JP がターゲット言語であると仮定すると) app/error のカテゴリは @app/messages/ja-JP/error.php という PHP ファイルにマップされます。
fileMap を構成しなければ、このカテゴリは @app/messages/ja-JP/app/error.php にマップされることになります。

他のストレージタイプ

翻訳メッセージを格納するのには、PHP ファイル以外に、次のメッセージソースを使うことも可能です。

	[[yii\i18n\GettextMessageSource]] - 翻訳メッセージを保持するのに GNU Gettext の MO ファイルまたは PO ファイルを使用する

	[[yii\i18n\DbMessageSource]] - 翻訳メッセージを保存するのにデータベーステーブルを使用する

メッセージのフォーマット

メッセージを翻訳するときには、プレースホルダを埋め込んで、動的なパラメータ値で実行時に置き換えさせることが出来ます。
更には、パラメータ値をターゲット言語に応じてフォーマットさせるための特別なプレースホルダの構文を使うことも出来ます。
この項では、メッセージをフォーマットする様々な方法を説明します。

Note: 以下においては、メッセージフォーマットの理解を助けるために、原文にはない日本語への翻訳例 (とその出力結果) をコードサンプルに追加しています。

メッセージパラメータ

翻訳対象となるメッセージには、一つまたは複数のパラメータ (プレースホルダとも呼びます) を埋め込んで、与えられたパラメータ値で置き換えられるようにすることが出来ます。
様々なパラメータ値のセットを与えることによって、翻訳されるメッセージを動的に変化させることが出来ます。
次の例では、'Hello, {username}!' というメッセージの中のプレースホルダ {username} が 'Alexander' と 'Qiang' にそれぞれ置き換えられます。

$username = 'Alexander';
// username が "Alexander" になった翻訳メッセージを表示
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

$username = 'Qiang';
// username が "Qiang" になった翻訳メッセージを表示
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

プレースホルダを持つメッセージを翻訳する時には、プレースホルダはそのままにしておかなければなりません。
これは、プレースホルダは Yii::t() を呼んでメッセージを翻訳する時に、実際の値に置き換えられるものだからです。

// 日本語翻訳: '{username} さん、こんにちは!'

プレースホルダには、名前付きプレースホルダ と 序数プレースホルダ のどちらかを使用する事が出来ます。
ただし、一つのメッセージに両方を使うことは出来ません。

上記の例は名前付きプレースホルダの使い方を示すものです。
すなわち、各プレースホルダは {name} という形式で書かれていますが、それに対して、キーが(波括弧なしの)プレースホルダ名であり、値がそのプレースホルダを置き換える値である連想配列を渡す訳です。

序数プレースホルダは、0 ベースの整数の序数をプレースホルダ名として使います。
このプレースホルダは、Yii::t() の呼び出しに出現する順序に従って、パラメータ値によって置き換えられます。
次の例では、序数プレースホルダ {0}、{1} および {2} は、それぞれ、$price、$count および $subtotal の値によって置き換えられます。

$price = 100;
$count = 2;
$subtotal = 200;
echo \Yii::t('app', 'Price: {0}, Count: {1}, Subtotal: {2}', [$price, $count, $subtotal]);

// 日本語翻訳: '価格: {0}, 数量: {1}, 小計: {2}'

序数プレースホルダが一つだけの場合は、値を配列に入れずにそのまま指定することができます。

echo \Yii::t('app', 'Price: {0}', $price);

Tip: たいていの場合は名前付きプレースホルダを使うべきです。
と言うのは、翻訳者にとっては、パラメータ名がある方が、翻訳すべきメッセージ全体をより良く理解できるからです。

パラメータのフォーマット

メッセージのプレースホルダにフォーマットの規則を追加して指定し、パラメータ値がプレースホルダを置き換える前に適切にフォーマットされるようにすることが出来ます。
次の例では、price のパラメータ値の型は数値として扱われ、通貨の形式でフォーマットされます。

$price = 100;
echo \Yii::t('app', 'Price: {0,number,currency}', $price);

Note: パラメータのフォーマットには、intl PHP 拡張 [http://www.php.net/manual/ja/intro.intl.php] のインストールが必要です。

プレースホルダにフォーマット規則を指定するためには、短い構文または完全な構文のどちらかを使うことが出来ます。

短い形式: {name,type}
完全な形式: {name,type,style}

Note: {、}、'、# などの特殊な文字を使用する必要がある場合は、その部分の文字列を ' で囲んでください。

echo Yii::t('app', "Example of string with ''-escaped characters'': '{' '}' '{test}' {count,plural,other{''count'' value is # '#{}'}}", ['count' => 3]);
+```

このようなプレースホルダを指定する方法についての完全な説明は、[ICU ドキュメント](http://icu-project.org/apiref/icu4c/classMessageFormat.html) を参照してください。

以下では、よくある使用方法をいくつか示します。

数値

```php
$sum = 12345;
echo \Yii::t('app', 'Balance: {0,number}', $sum);

// 日本語翻訳: '差引残高: {0,number}'
// 日本語出力: '差引残高: 12,345'





オプションのパラメータとして、integer、currency、percent のスタイルを指定することが出来ます。

$sum = 12345;
echo \Yii::t('app', 'Balance: {0,number,currency}', $sum);

// 日本語翻訳: '差引残高: {0,number,currency}'
// 日本語出力: '差引残高: ￥12,345'





または、数値をフォーマットするカスタムパターンを指定することも出来ます。

$sum = 12345;
echo \Yii::t('app', 'Balance: {0,number,,000,000000}', $sum);

// 日本語翻訳: '差引残高: {0,number,,000,000000}'
// 日本語出力: '差引残高: 000,012345'





カスタムフォーマットで使用される文字については、ICU API リファレンス [http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html] の “Special Pattern Characters” のセクションに記述されています。

数値は常に翻訳先のロケールに従ってフォーマットされます。
つまり、ロケールを変更せずに、小数点や桁区切りを変更することは出来ません。
それらをカスタマイズしたい場合は [[yii\i18n\Formatter::asDecimal()]] や [[yii\i18n\Formatter::asCurrency()]] を使うことが出来ます。


日付 

パラメータ値は日付としてフォーマットされます。例えば、

echo \Yii::t('app', 'Today is {0,date}', time());

// 日本語翻訳: '今日は {0,date} です。'
// 日本語出力: '今日は 2015/01/07 です。'





オプションのパラメータとして、short、medium、long、そして full のスタイルを指定することが出来ます。

echo \Yii::t('app', 'Today is {0,date,short}', time());

// 日本語翻訳: '今日は {0,date,short} です。'
// 日本語出力: '今日は 2015/01/07 です。'





日付の値をフォーマットするカスタムパターンを指定することも出来ます。

echo \Yii::t('app', 'Today is {0,date,yyyy-MM-dd}', time());

// 日本語翻訳: '今日は {0,date,yyyy-MM-dd} です。'
// 日本語出力: '今日は 2015-01-07 です。'





書式のリファレンス [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].




時刻 

パラメータ値は時刻としてフォーマットされます。例えば、

echo \Yii::t('app', 'It is {0,time}', time());

// 日本語翻訳: '現在 {0,time} です。'
// 日本語出力: '現在 22:37:47 です。'





オプションのパラメータとして、short、medium、long、そして full のスタイルを指定することが出来ます。

echo \Yii::t('app', 'It is {0,time,short}', time());

// 日本語翻訳: '現在 {0,time,short} です。'
// 日本語出力: '現在 22:37 です。'





時刻の値をフォーマットするカスタムパターンを指定することも出来ます。

echo \Yii::t('app', 'It is {0,date,HH:mm}', time());

// 日本語翻訳: '現在 {0,time,HH:mm} です。'
// 日本語出力: '現在 22:37 です。'





書式のリファレンス [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].




綴り 

パラメータ値は数値として取り扱われ、綴りとしてフォーマットされます。例えば、

// 出力例 : "42 is spelled as forty-two"
echo \Yii::t('app', '{n,number} is spelled as {n,spellout}', ['n' => 42]);

// 日本語翻訳: '{n,number} は、文字で綴ると {n,spellout} です。'
// 日本語出力: '42 は、文字で綴ると 四十二 です。'





デフォルトでは、数値は基数として綴られます。それを変更することは可能です。

// 出力例 : "I am forty-seventh agent"
echo \Yii::t('app', 'I am {n,spellout,%spellout-ordinal} agent', ['n' => 47]);

// 日本語翻訳: '私は{n,spellout,%spellout-ordinal}の工作員です。'
// 日本語出力: '私は第四十七の工作員です。'





‘spellout,’ と ‘%’ の間に空白を入れてはならないことに注意してください。

あなたが使用しているロケールで利用可能なオプションのリストについては、http://intl.rmcreative.ru/ の “Numbering schemas, Spellout” を参照してください。




序数 

パラメータ値は数値として取り扱われ、順序を表す文字列としてフォーマットされます。例えば、

// 出力: "You are the 42nd visitor here!"
echo \Yii::t('app', 'You are the {n,ordinal} visitor here!', ['n' => 42]);





序数については、スペイン語などの言語では、さらに多くのフォーマットがサポートされています。

// 出力: "471ª"
echo \Yii::t('app', '{n,ordinal,%digits-ordinal-feminine}', ['n' => 471]);





‘ordinal,’ と ‘%’ の間に空白を入れてはならないことに注意してください。

あなたが使用しているロケールで利用可能なオプションのリストについては、http://intl.rmcreative.ru/ の “Numbering schemas, Ordinal” を参照してください。


Note: 上記のソースメッセージを、プレースホルダのスタイルを守って日本語に翻訳すると、’あなたはこのサイトの{n,ordinal}の訪問者です’ となります。
しかし、その出力結果は、’あなたはこのサイトの第42の訪問者です’ となり、意味は通じますが、日本語としては若干不自然なものになります。

プレースホルダのスタイル自体も、翻訳の対象として、より適切なものに変更することが可能であることに注意してください。

この場合も、’あなたはこのサイトの{n,plural,=1{最初} other{#番目}}の訪問者です’ のように翻訳するほうが適切でしょう。







継続時間 

パラメータ値は秒数として取り扱われ、継続時間を表す文字列としてフォーマットされます。例えば、

// 出力: "You are here for 47 sec. already!"
echo \Yii::t('app', 'You are here for {n,duration} already!', ['n' => 47]);





継続時間については、さらに多くのフォーマットがサポートされています。

// 出力: '130:53:47'
echo \Yii::t('app', '{n,duration,%in-numerals}', ['n' => 471227]);





‘duration,’ と ‘%’ の間に空白を入れてはならないことに注意してください。

あなたが使用しているロケールで利用可能なオプションのリストについては、http://intl.rmcreative.ru/ の “Numbering schemas, Duration” を参照してください。


Note: このソースメッセージを ‘あなたはこのサイトに既に{n,duration}の間滞在しています’ と翻訳した場合の出力結果は、’あなたはこのサイトに既に47の間滞在しています’ となります。
これも、プレースホルダのスタイルも含めて全体を翻訳し直す方が良いでしょう。
どうも、ICU ライブラリは、ja_JP の数値関連の書式指定においては、割と貧弱な実装にとどまっている印象です。





複数形 

言語によって、複数形の語形変化はさまざまに異なります。
Yii は、さまざまな形式の複数形語形変化に対応したメッセージ翻訳のための便利な方法を提供しています。
それは、非常に複雑な規則に対しても、十分に機能するものです。
語形変化の規則を直接に処理する代りに、特定の状況における語形変化した言葉の翻訳を提供するだけで十分です。

// $n = 0 の場合の出力: "There are no cats!"
// $n = 1 の場合の出力: "There is one cat!"
// $n = 42 の場合の出: "There are 42 cats!"
echo \Yii::t('app', 'There {n,plural,=0{are no cats} =1{is one cat} other{are # cats}}!', ['n' => $n]);





上記の複数形規則の引数において、= はぴったりその値であることを意味します。
従って、=0 はぴったりゼロ、=1 はぴったり 1 を表します。
other はそれ以外の数を表します。
# は ターゲット言語に従ってフォーマットされた n の値によって置き換えられます。

複数形の規則が非常に複雑な言語もあります。
例えば、次のロシア語の例では、=1 が n = 1 にぴったりと一致するのに対して、one が 21 や 101 などに一致します。

Здесь {n,plural,=0{котов нет} =1{есть один кот} one{# кот} few{# кота} many{# котов} other{# кота}}!





これら other、few、many などの特別な引数の名前は言語によって異なります。
特定のロケールに対してどんな引数を指定すべきかを学ぶためには、http://intl.rmcreative.ru/ の “Plural Rules, Cardinal” を参照してください。
あるいは、その代りに、unicode.org の規則のリファレンス [http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html] を参照することも出来ます。


Note: 上記のロシア語のメッセージのサンプルは、主として翻訳メッセージとして使用されるものです。
アプリケーションの [[yii\base\Application::$sourceLanguage|ソース言語]] を ru-RU にしてロシア語から他の言語に翻訳するという設定にしない限り、オリジナルのメッセージとしては使用されることはありません。

Yii::t() の呼び出しにおいて、オリジナルのメッセージに対する翻訳が見つからない場合は、[[yii\base\Application::$sourceLanguage|ソース言語]] の複数形規則がオリジナルのメッセージに対して適用されます。




文字列が以下のようなものである場合のために offset というパラメータがあります。

$likeCount = 2;
echo Yii::t('app', 'You {likeCount,plural,
    offset: 1
    =0{did not like this}
    =1{liked this}
    one{and one other person liked this}
    other{and # others liked this}
}', [
    'likeCount' => $likeCount
]);

// 出力: 'You and one other person liked this'






Note: 上記のソースメッセージの日本語翻訳は以下のようなものになります。

‘猫は{n, plural, =0{いません} other{#匹います}}。’

日本語では単数形と複数形を区別しませんので、たいていの場合、=0 と other を指定するだけで事足ります。
横着をして、{n, plural, ...} を {n, number} に置き換えても、多分、大きな問題は生じないでしょう。







序数選択肢 
  
    
    
    エクステンション
    
    

    
 
  
  

    
      
          
            
  
エクステンション

エクステンションは、Yii のアプリケーションで使われることに限定して設計され、そのまますぐに使える機能を提供する再配布可能なソフトウェアパッケージです。
例えば、yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug] エクステンションは、あなたのアプリケーションにおいて、全てのページの末尾に便利なデバッグツールバーを追加して、ページが生成される過程をより容易に把握できるように手助けしてくれます。
エクステンションを使うと、あなたの開発プロセスを加速することが出来ます。
また、あなたのコードをエクステンションとしてパッケージ化すると、あなたの優れた仕事を他の人たちと共有することが出来ます。


Info: 「エクステンション」という用語は Yii に限定されたソフトウェアパッケージを指すものとして使用します。
Yii がなくても使用できる汎用のソフトウェアパッケージを指すためには、「パッケージ」または「ライブラリ」という用語を使うことにします。



エクステンションを使う 

エクステンションを使うためには、先ずはそれをインストールする必要があります。
ほとんどのエクステンションは Composer [https://getcomposer.org/] のパッケージとして配布されていて、次の二つの簡単なステップをふめばインストールすることが出来ます。


	アプリケーションの composer.json ファイルを修正して、どのエクステンション (Composer パッケージ) をインストールしたいかを指定する。

	composer install コマンドを走らせて指定したエクステンションをインストールする。



Composer [https://getcomposer.org/] を持っていない場合は、それをインストールする必要があることに注意してください。

デフォルトでは、Composer はオープンソース Composer パッケージの最大のレポジトリである Packagist [https://packagist.org/] に登録されたパッケージをインストールします。
エクステンションは Packagist で探すことが出来ます。
また、自分自身のレポジトリを作成 [https://getcomposer.org/doc/05-repositories.md#repository] して、それを使うように Composer を構成することも出来ます。
これは、あなたがプライベートなエクステンションを開発していて、それを自分のプロジェクト間でのみ共有したい場合に役に立つ方法です。

Composer によってインストールされるエクステンションは BasePath/vendor ディレクトリに保存されます。
ここで BasePath は、アプリケーションの ベースパス を指します。
Composer は依存関係を管理するものですから、あるパッケージをインストールするときには、それが依存する全てのパッケージも同時にインストールします。

例えば、yiisoft/yii2-imagine エクステンションをインストールするためには、あなたの composer.json を次のように修正します。

{
    // ...

    "require": {
        // ... 他の依存パッケージ

        "yiisoft/yii2-imagine": "~2.0.0"
    }
}





インストール完了後には、BasePath/vendor の下に yiisoft/yii2-imagine ディレクトリが作られている筈です。
それと同時に、imagine/imagine という別のディレクトリも作られて、依存するパッケージがそこにインストールされている筈です。


Info: yiisoft/yii2-imagine は Yii 開発チームによって開発され保守されるコアエクステンションの一つです。
全てのコアエクステンションは Packagist [https://packagist.org/] でホストされ、yiisoft/yii2-xyz のように名付けられます。
ここで xyz はエクステンションによってさまざまに変ります。


これであなたはインストールされたエクステンションをあなたのアプリケーションの一部であるかのように使うことが出来ます。
次の例は、yiisoft/yii2-imagine エクステンションによって提供される yii\imagine\Image クラスをどのようにして使うことが出来るかを示すものです。

use Yii;
use yii\imagine\Image;

// サムネール画像を生成する
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
    ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);






Info: エクステンションのクラスは Yii クラスオートローダ によってオートロードされます。



エクステンションを手作業でインストールする 

あまり無いことですが、いくつかまたは全てのエクステンションを Composer に頼らずに手作業でインストールしたい場合があるかもしれません。
そうするためには、次のようにしなければなりません。


	エクステンションのアーカイブファイルをダウンロードして、vendor ディレクトリに解凍する。

	もし有れば、エクステンションによって提供されているクラスオートローダをインストールする。

	指示に従って、依存するエクステンションを全てダウンロードしインストールする。



エクステンションがクラスオートローダを持っていなくても、PSR-4 標準 [http://www.php-fig.org/psr/psr-4/] に従っている場合は、Yii によって提供されているクラスオートローダを使ってエクステンションのクラスをオートロードすることが出来ます。
必要なことは、エクステンションのルートディレクトリのための ルートエイリアス を宣言することだけです。
例えば、エクステンションを vendor/mycompany/myext というディレクトリにインストールしたと仮定します。
そして、エクステンションのクラスは myext 名前空間の下にあるとします。
その場合、アプリケーションの構成情報に下記のコードを含めます。

[
    'aliases' => [
        '@myext' => '@vendor/mycompany/myext',
    ],
]










エクステンションを作成する 

あなたの優れたコードを他の人々と共有する必要があると感じたときは、エクステンションを作成することを考慮するのが良いでしょう。
エクステンションは、ヘルパクラス、ウィジェット、モジュールなど、どのようなコードでも含むことが出来ます。

エクステンションは、Composer パッケージ [https://getcomposer.org/] の形式で作成することが推奨されます。
そうすれば、直前の項で説明したように、いっそう容易に他のユーザによってインストールされ、使用されることが出来ます。

以下は、エクステンションを Composer のパッケージとして作成するために踏む基本的なステップです。


	エクステンションのためのプロジェクトを作成して、github.com [https://github.com] などの VCS レポジトリ上でホストします。
エクステンションに関する開発と保守の作業はこのレポジトリ上でしなければなりません。

	プロジェクトのルートディレクトリに、Composer によって要求される composer.json という名前のファイルを作成します。
詳細については、次の項を参照してください。

	エクステンションを Packagist [https://packagist.org/] などの Composer レポジトリに登録します。
そうすると、他のユーザがエクステンションを見つけて Composer を使ってインストールすることが出来るようになります。




composer.json 

全ての Composer パッケージは、ルートディレクトリに composer.json というファイルを持たなければなりません。
このファイルはパッケージに関するメタデータを含むものです。
このファイルに関する完全な仕様は Composer Manual [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup] に記載されています。
次の例は、yiisoft/yii2-imagine エクステンションのための composer.json ファイルを示すものです。

{
    // パッケージ名
    "name": "yiisoft/yii2-imagine",

    // パッケージタイプ
    "type": "yii2-extension",

    "description": "The Imagine integration for the Yii framework",
    "keywords": ["yii2", "imagine", "image", "helper"],
    "license": "BSD-3-Clause",
    "support": {
        "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
        "forum": "http://www.yiiframework.com/forum/",
        "wiki": "http://www.yiiframework.com/wiki/",
        "irc": "irc://irc.freenode.net/yii",
        "source": "https://github.com/yiisoft/yii2"
    },
    "authors": [
        {
            "name": "Antonio Ramirez",
            "email": "amigo.cobos@gmail.com"
        }
    ],

    // 依存パッケージ
    "require": {
        "yiisoft/yii2": "~2.0.0",
        "imagine/imagine": "v0.5.0"
    },

    // クラスのオートロードの仕様
    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}






パッケージ名 

全ての Composer パッケージは、他の全てパッケージと異なる一意に特定できる名前を持たなければなりません。
パッケージ名の形式は vendorName/projectName です。
例えば、yiisoft/yii2-imagine というパッケージ名の中では、ベンダー名とプロジェクト名は、それぞれ、yiisoft と yii2-imagine です。

ベンダー名として yiisoft を使ってはいけません。これは Yii のコアコードに使うために予約されています。

プロジェクト名には、Yii 2 エクステンションを表す yii2- を前置することを推奨します。例えば、myname/yii2-mywidget です。
このようにすると、ユーザはパッケージが Yii 2 エクステンションであることをより容易に知ることが出来ます。




パッケージタイプ 

パッケージがインストールされたときに Yii のエクステンションとして認識されるように、エクステンションのパッケージタイプを yii2-extension と指定することは重要なことです。

ユーザが composer install を走らせてエクステンションをインストールすると、vendor/yiisoft/extensions.php というファイルが自動的に更新されて、新しいエクステンションに関する情報を含むようになります。
Yii のアプリケーションは、このファイルによって、どんなエクステンションがインストールされているかを知ることが出来ます
(その情報には、[[yii\base\Application::extensions]] を通じてアクセスすることが出来ます)。




依存パッケージ 

あなたのエクステンションは Yii に依存します (当然ですね)。
ですから、composer.json の require エントリのリストにそれ (yiisoft/yii2) を挙げなければなりません。
あなたのエクステンションがその他のエクステンションやサードパーティのライブラリに依存する場合は、それらもリストに挙げなければなりません。
それぞれの依存パッケージについて、適切なバージョン制約 (例えば 1.* や @stable) を指定することも忘れてはなりません。
あなたのエクステンションを安定バージョンとしてリリースする場合は、安定した依存パッケージを使ってください。

たいていの JavaScript/CSS パッケージは、Composer ではなく、Bower [http://bower.io/] および/または NPM [https://www.npmjs.org/] を使って管理されています。
Yii は Composer アセットプラグイン [https://github.com/francoispluchino/composer-asset-plugin] を使って、この種のパッケージを Composer によって管理することを可能にしています。
あなたのエクステンションが Bower パッケージに依存している場合でも、次のように、composer.json に依存パッケージをリストアップすることが簡単に出来ます。

{
    // 依存パッケージ
    "require": {
        "bower-asset/jquery": ">=1.11.*"
    }
}





上記のコードは、エクステンションが jquery Bower パッケージに依存することを述べています。
一般に、composer.json の中でBower パッケージを指すためには bower-asset/PackageName を使うことが出来ます。
そして、NPM パッケージを指すためには npm-asset/PackageName を使うことが出来ます。
Composer が Bower または NPM のパッケージをインストールする場合は、デフォルトでは、それぞれ、@vendor/bower/PackageName および @vendor/npm/Packages というディレクトリの下にパッケージの内容がインストールされます。
この二つのディレクトリは、@bower/PackageName および @npm/PackageName という短いエイリアスを使って参照することも可能です。

アセット管理に関する詳細については、アセット の節を参照してください。




クラスのオートロード 

エクステンションのクラスが Yii のクラスオートローダまたは Composer のクラスオートローダによってオートロードされるように、下記に示すように、composer.json ファイルの autoload エントリを指定しなければなりません。

{
    // ....

    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}





一つまたは複数のルート名前空間と、それに対応するファイルパスをリストに挙げることが出来ます。

エクステンションがアプリケーションにインストールされると、Yii は列挙されたルート名前空間の一つ一つに対して、名前空間に対応するディレクトリを指す エイリアス を作成します。
例えば、上記の autoload の宣言は、@yii/imagine という名前のエイリアスに対応することになります。






推奨されるプラクティス 

エクステンションは他の人々によって使われることを意図したものですから、多くの場合、追加の開発努力が必要になります。
以下に、高品質のエクステンションを作成するときによく用いられ、また推奨されるプラクティスのいくつかを紹介します。


名前空間 

名前の衝突を避けて、エクステンションの中のクラスをオートロード可能にするために、名前空間を使うべきであり、エクステンションの中のクラスには PSR-4 標準 [http://www.php-fig.org/psr/psr-4/] または PSR-0 標準 [http://www.php-fig.org/psr/psr-0/] に従った名前を付けるべきです。

あなたのクラスの名前空間は vendorName\extensionName で始まるべきです。
ここで extensionName は、yii2- という接頭辞を含むべきでないことを除けば、パッケージ名におけるプロジェクト名と同じものです。
例えば、yiisoft/yii2-imagine エクステンションでは、yii\imagine をエクステンションのクラスの名前空間として使っています。

yii、yii2 または yiisoft をベンダー名として使ってはいけません。これらの名前は、Yii のコアコードに使うために予約されています。




ブートストラップクラス 

場合によっては、アプリケーションが ブートストラップ の段階にある間に、エクステンションに何らかのコードを実行させたい場合があるでしょう。
例えば、エクステンションをアプリケーションの beginRequest イベントに反応させて、何らかの環境設定を調整したいことがあります。
エクステンションのユーザに対して、エクステンションの中にあるイベントハンドラを beginRequest イベントに明示的にアタッチするように指示することも出来ますが、より良い方法は、それを自動的に行うことです。

この目的を達するためには、[[yii\base\BootstrapInterface]] を実装する、いわゆる ブートストラップクラス を作成します。
例えば、

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
    public function bootstrap($app)
    {
        $app->on(Application::EVENT_BEFORE_REQUEST, function () {
             // ここで何かをする
        });
    }
}





そして、次のように、このクラスを composer.json ファイルのリストに挙げます。

{
    // ...

    "extra": {
        "bootstrap": "myname\\mywidget\\MyBootstrapClass"
    }
}





このエクステンションがアプリケーションにインストールされると、すべてのリクエストのブートストラップの過程において、毎回、Yii が自動的にブートストラップクラスのインスタンスを作成し、その [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] メソッドを呼びます。




データベースを扱う 

あなたのエクステンションはデータベースにアクセスする必要があるかも知れません。
エクステンションを使うアプリケーションが常に Yii::$db を DB 接続として使用すると仮定してはいけません。
その代りに、DB アクセスを必要とするクラスのために db プロパティを宣言すべきです。
このプロパティによって、エクステンションのユーザは、エクステンションにどの DB 接続を使わせるかをカスタマイズすることが出来るようになります。
その一例として、[[yii\caching\DbCache]] クラスを参照して、それがどのように db プロパティを宣言して使っているかを見ることが出来ます。

あなたのエクステンションが特定の DB テーブルを作成したり、DB スキーマを変更したりする必要がある場合は、次のようにするべきです。


	DB スキーマを操作するために、平文の SQL ファイルを使うのではなく、マイグレーション を提供する。

	マイグレーションがさまざまな DBMS に適用可能なものになるように試みる。

	マイグレーションの中では アクティブレコード の使用を避ける。






アセットを使う 

あなたのエクステンションがウィジェットかモジュールである場合は、動作するために何らかの アセット が必要である可能性が高いでしょう。
例えば、モジュールは、画像、JavaScript、そして CSS を含むページを表示することがあるでしょう。
アプリケーションにインストールされるときに、エクステンションの全てのファイルは同じディレクトリの下に配置されますが、そのディレクトリはウェブからはアクセス出来ないものです。
そのため、次のどちらかの方法を使って、アセットファイルをウェブから直接アクセス出来るようにしなければなりません。


	アセットファイルをウェブからアクセス出来る特定のフォルダに手作業でコピーするように、エクステンションのユーザに要求する。

	アセットバンドル を宣言し、アセット発行メカニズムに頼って、アセットバンドルにリストされているファイルをウェブからアクセス出来るフォルダに自動的にコピーする。



あなたのエクステンションが他の人々にとって一層使いやすいものになるように、第二の方法をとることを推奨します。
アセットの取り扱い一般に関する詳細は アセット の節を参照してください。




国際化と地域化 

あなたのエクステンションは、さまざまな言語をサポートするアプリケーションによって使われるかもしれません。
従って、あなたのエクステンションがエンドユーザにコンテントを表示するものである場合は、それを 国際化 するように努めるべきです。
具体的には、


	エクステンションがエンドユーザに向けたメッセージを表示する場合は、翻訳することが出来るようにメッセージを Yii::t() で囲むべきです。
開発者に向けられたメッセージ (内部的な例外のメッセージなど) は翻訳される必要はありません。

	エクステンションが数値や日付などを表示する場合は、[[yii\i18n\Formatter]] を適切な書式化の規則とともに使って書式設定すべきです。



詳細については、国際化 の節を参照してください。




テスト 

あなたは、あなたのエクステンションが他の人々に問題をもたらすことなく完璧に動作することを望むでしょう。
この目的を達するためには、あなたのエクステンションを公開する前にテストすべきです。

手作業のテストに頼るのではなく、あなたのエクステンションのコードをカバーするさまざまなテストケースを作成することが推奨されます。
あなたのエクステンションの新しいバージョンを公開する前には、毎回、それらのテストケースを走らせるだけで、全てが良い状態にあることを確認することが出来ます。
Yii はテストのサポートを提供しており、それよって、単体テスト、機能テスト、承認テストを書くことが一層簡単に出来るようになっています。
詳細については、テスト の節を参照してください。




バージョン管理 

エクステンションのリリースごとにバージョン番号 (例えば 1.0.1) を付けるべきです。
どのようなバージョン番号を付けるべきかを決定するときは、セマンティックバージョニング [http://semver.org] のプラクティスに従うことを推奨します。




リリース(公開) 

他の人々にあなたのエクステンションを知ってもらうためには、それをリリース(公開)する必要があります。

エクステンションをリリースするのが初めての場合は、Packagist [https://packagist.org/] などの Composer レポジトリにエクステンションを登録するべきです。
その後は、あなたがしなければならない仕事は、エクステンションの VCS レポジトリでリリースタグ (例えば v1.0.1) を作成することと、Composer レポジトリに新しいリリースについて通知するだけのことになります。
そうすれば、人々が新しいリリースを見出すことが出来るようになり、Composer レポジトリを通じてエクステンションをインストールしたりアップデートしたりするようになります。

エクステンションのリリースには、コードファイル以外に、人々があなたのエクステンションについて知ったり、エクステンションを使ったりするのを助けるために、下記のものを含めることを考慮すべきです。


	パッケージのルートディレクトリに readme ファイル: あなたのエクステンションが何をするものか、そして、どのようにインストールして使うものかを説明するものです。
Markdown [http://daringfireball.net/projects/markdown/] 形式で書いて、readme.md という名前にすることを推奨します。

	パッケージのルートディレクトリに changelog ファイル: それぞれのリリースで何が変ったかを一覧表示するものです。
このファイルは Markdown 形式で書いて changelog.md と名付けることが出来ます。

	パッケージのルートディレクトリに upgrade ファイル: エクステンションの古いリリースからのアップグレード方法について説明するものです。
このファイルは Markdown 形式で書いて upgrade.md と名付けることが出来ます。

	チュートリアル、デモ、スクリーンショットなど: あなたのエクステンションが readme ファイルでは十分にカバーできないほど多くの機能を提供するものである場合は、これらが必要になります。

	API ドキュメント: あなたのコードは、他の人々が読んで理解することがより一層容易に出来るように、十分な解説を含むべきです。
Object のクラスファイル [https://github.com/yiisoft/yii2/blob/master/framework/base/Object.php] を参照すると、コードに解説を加える方法を学ぶことが出来ます。




Info: コードのコメントを Markdown 形式で書くことが出来ます。
yiisoft/yii2-apidoc エクステンションが、コードのコメントに基づいて綺麗な API ドキュメントを生成するツールを提供しています。



Info: これは要求ではありませんが、あなたのエクステンションも一定のコーディングスタイルを守るのが良いと思います。
コアフレームワークコードスタイル [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style] を参照してください。









コアエクステンション 

Yii は下記のコアエクステンションを提供しています。これらは Yii 開発チームによって開発され保守されているものです。
全て Packagist [https://packagist.org/] に登録され、エクステンションを使う の項で説明したように、簡単にインストールすることが出来ます。


	yiisoft/yii2-apidoc [https://github.com/yiisoft/yii2-apidoc]:
拡張可能で高性能な API ドキュメント生成機能を提供します。コアフレームワークの API ドキュメントを生成するためにも使われています。

	yiisoft/yii2-authclient [https://github.com/yiisoft/yii2-authclient]:
Facebook OAuth2 クライアント、GitHub OAuth2 クライアントなど、よく使われる一連の auth クライアントを提供します。

	yiisoft/yii2-bootstrap [https://github.com/yiisoft/yii2-bootstrap]:
Bootstrap [http://getbootstrap.com/] のコンポーネントとプラグインをカプセル化した一連のウィジェットを提供します。

	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception]:
Codeception [http://codeception.com/] に基づくテストのサポートを提供します。

	yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug]:
Yii アプリケーションのデバッグのサポートを提供します。
このエクステンションが使われると、全てのページの末尾にデバッガツールバーが表示されます。
このエクステンションは、より詳細なデバッグ情報を表示する一連のスタンドアロンページも提供します。

	yiisoft/yii2-elasticsearch [https://github.com/yiisoft/yii2-elasticsearch]:
Elasticsearch [http://www.elasticsearch.org/] の使用に対するサポートを提供します。
基本的なクエリ/サーチのサポートを含むだけでなく、Elasticsearch にアクティブレコードを保存することを可能にする アクティブレコード パターンをも実装しています。

	yiisoft/yii2-faker [https://github.com/yiisoft/yii2-faker]:
ダミーデータを作る Faker [https://github.com/fzaninotto/Faker] を使うためのサポートを提供します。

	yiisoft/yii2-gii [https://github.com/yiisoft/yii2-gii]:
拡張性が非常に高いウェブベースのコードジェネレータを提供します。これを使って、モデル、フォーム、モジュール、CRUD などを迅速に生成することが出来ます。

	yiisoft/yii2-httpclient [https://github.com/yiisoft/yii2-httpclient]:
provides an HTTP client.

	yiisoft/yii2-imagine [https://github.com/yiisoft/yii2-imagine]:
Imagine [http://imagine.readthedocs.org/] に基づいて、使われることの多い画像操作機能を提供します。

	yiisoft/yii2-jui [https://github.com/yiisoft/yii2-jui]:
JQuery UI [http://jqueryui.com/] のインタラクションとウィジェットをカプセル化した一連のウィジェットを提供します。

	yiisoft/yii2-mongodb [https://github.com/yiisoft/yii2-mongodb]:
MongoDB [http://www.mongodb.org/] の使用に対するサポートを提供します。
基本的なクエリ、アクティブレコード、マイグレーション、キャッシュ、コード生成などの機能を含みます。

	yiisoft/yii2-redis [https://github.com/yiisoft/yii2-redis]:
redis [http://redis.io/] の使用に対するサポートを提供します。
基本的なクエリ、アクティブレコード、キャッシュなどの機能を含みます。

	yiisoft/yii2-smarty [https://github.com/yiisoft/yii2-smarty]:
Smarty [http://www.smarty.net/] に基づいたテンプレートエンジンを提供します。

	yiisoft/yii2-sphinx [https://github.com/yiisoft/yii2-sphinx]:
Sphinx [http://sphinxsearch.com] の使用に対するサポートを提供します。
基本的なクエリ、アクティブレコード、コード生成などの機能を含みます。

	yiisoft/yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer]:
swiftmailer [http://swiftmailer.org/] に基づいたメール送信機能を提供します。

	yiisoft/yii2-twig [https://github.com/yiisoft/yii2-twig]:
Twig [http://twig.sensiolabs.org/] に基づいたテンプレートエンジンを提供します。









          

      

      

    

  

  
    
    
    データベースアクセスオブジェクト
    
    

    
 
  
  

    
      
          
            
  
データベースアクセスオブジェクト

PDO [http://www.php.net/manual/ja/book.pdo.php] の上に構築された Yii DAO (データベースアクセスオブジェクト) は、リレーショナルデータベースにアクセスするためのオブジェクト指向 API を提供するものです。
これは、データベースにアクセスする他のもっと高度な方法、例えば クエリビルダ や アクティブレコード の基礎でもあります。

Yii DAO を使うときは、主として素の SQL と PHP 配列を扱う必要があります。
結果として、Yii DAO はデータベースにアクセスする方法としては最も効率的なものになります。
しかし、SQL の構文はデータベースによってさまざまに異なる場合がありますので、Yii DAO を使用するということは、特定のデータベースに依存しないアプリケーションを作るためには追加の労力が必要になる、ということをも同時に意味します。

Yii は下記の DBMS のサポートを内蔵しています。


	MySQL [http://www.mysql.com/]

	MariaDB [https://mariadb.com/]

	SQLite [http://sqlite.org/]

	PostgreSQL [http://www.postgresql.org/]: バージョン 8.4 以上。

	CUBRID [http://www.cubrid.org/]: バージョン 9.3 以上。

	Oracle [http://www.oracle.com/us/products/database/overview/index.html]

	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: バージョン 2008 以上。




Note: PHP 7 用の pdo_oci の新しいバージョンは、現在、ソースコードとしてのみ存在します。
コミュニティによる説明 [https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268] に従ってコンパイルするか、
または、PDO エミュレーションレイヤ [https://github.com/taq/pdooci] を使って下さい。



DB 接続を作成する 

データベースにアクセスするために、まずは、データベースに接続するために [[yii\db\Connection]] のインスタンスを作成する必要があります。

$db = new yii\db\Connection([
    'dsn' => 'mysql:host=localhost;dbname=example',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);





DB 接続は、たいていは、さまざまな場所でアクセスする必要がありますので、次のように、アプリケーションコンポーネント の形式で構成するのが通例です。

return [
    // ...
    'components' => [
        // ...
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=example',
            'username' => 'root',
            'password' => '',
            'charset' => 'utf8',
        ],
    ],
    // ...
];





こうすると Yii::$app->db という式で DB 接続にアクセスすることが出来るようになります。


Tip: あなたのアプリケーションが複数のデータベースにアクセスする必要がある場合は、複数の DB アプリケーションコンポーネントを構成することが出来ます。


DB 接続を構成するときは、つねに [[yii\db\Connection::dsn|dsn]] プロパティによってデータソース名 (DSN) を指定しなければなりません。
DSN の形式はデータベースによってさまざまに異なります。
詳細は PHP マニュアル [http://www.php.net/manual/ja/function.PDO-construct.php] を参照して下さい。
下記にいくつかの例を挙げます。


	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase

	SQLite: sqlite:/path/to/database/file

	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase

	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000

	MS SQL Server (sqlsrv ドライバ経由): sqlsrv:Server=localhost;Database=mydatabase

	MS SQL Server (dblib ドライバ経由): dblib:host=localhost;dbname=mydatabase

	MS SQL Server (mssql ドライバ経由): mssql:host=localhost;dbname=mydatabase

	Oracle: oci:dbname=//localhost:1521/mydatabase



ODBC 経由でデータベースに接続しようとする場合は、[[yii\db\Connection::driverName]] プロパティを構成して、Yii に実際のデータベースのタイプを知らせなければならないことに注意してください。
例えば、

'db' => [
    'class' => 'yii\db\Connection',
    'driverName' => 'mysql',
    'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
    'username' => 'root',
    'password' => '',
],





[[yii\db\Connection::dsn|dsn]] プロパティに加えて、たいていは [[yii\db\Connection::username|username]] と [[yii\db\Connection::password|password]] も構成しなければなりません。
構成可能なプロパティの全てのリストは [[yii\db\Connection]] を参照して下さい。


Info: DB 接続のインスタンスを作成するとき、実際のデータベース接続は、最初の SQL を実行するか、[[yii\db\Connection::open()|open()]] メソッドを明示的に呼ぶかするまでは確立されません。



Tip: 時として、何らかの環境変数を初期化するために、データベース接続を確立した直後に何かクエリを実行したい場合があるでしょう (例えば、タイムゾーンや文字セットを設定するなどです)。
そうするために、データベース接続の [[yii\db\Connection::EVENT_AFTER_OPEN|afterOpen]] イベントに対するイベントハンドラを登録することが出来ます。
以下のように、アプリケーションの構成情報に直接にハンドラを登録してください。

'db' => [
    // ...
    'on afterOpen' => function($event) {
        // $event->sender は DB 接続を指す
        $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
    }
]











SQL クエリを実行する 

いったんデータベース接続のインスタンスを得てしまえば、次の手順に従って SQL クエリを実行することが出来ます。


	素の SQL クエリで [[yii\db\Command]] を作成する。

	パラメータをバインドする (オプション)。

	[[yii\db\Command]] の SQL 実行メソッドの一つを呼ぶ。



次に、データベースからデータを読み出すさまざまな方法を例示します。

// 行のセットを返す。各行は、カラム名と値の連想配列。
// クエリが結果を返さなかった場合は空の配列が返される。
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
            ->queryAll();

// 一つの行 (最初の行) を返す。
// クエリの結果が無かった場合は false が返される。
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
           ->queryOne();

// 一つのカラム (最初のカラム) を返す。
// クエリが結果を返さなかった場合は空の配列が返される。
$titles = Yii::$app->db->createCommand('SELECT title FROM post')
             ->queryColumn();

// スカラ値を返す。
// クエリの結果が無かった場合は false が返される。
$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
             ->queryScalar();






Note: 精度を保つために、対応するデータベースカラムの型が数値である場合でも、データベースから取得されたデータは、全て文字列として表現されます。



パラメータをバインドする 

パラメータを持つ SQL から DB コマンドを作成するときは、SQL インジェクション攻撃を防止するために、ほとんど全ての場合においてパラメータをバインドする手法を用いるべきです。
例えば、

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValue(':id', $_GET['id'])
           ->bindValue(':status', 1)
           ->queryOne();





SQL 文において、一つまたは複数のパラメータプレースホルダ (例えば、上記のサンプルにおける :id) を埋め込むことが出来ます。
パラメータプレースホルダは、コロンから始まる文字列でなければなりません。
そして、次に掲げるパラメータをバインドするメソッドの一つを使って、パラメータの値をバインドします。


	

	

	[[yii\db\Command::bindParam()|bindParam()]]: [yii\db\Command::bindValue()|bindValue()] と似ていますが、パラメータを参照渡しでバインドすることもサポートしています。



次の例はパラメータをバインドする方法の選択肢を示すものです。

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValues($params)
           ->queryOne();
           
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
           ->queryOne();





パラメータバインディングは プリペアドステートメント [http://php.net/manual/ja/mysqli.quickstart.prepared-statements.php] によって実装されています。
パラメータバインディングには、SQL インジェクション攻撃を防止する以外にも、SQL 文を一度だけ準備して異なるパラメータで複数回実行することにより、パフォーマンスを向上させる効果もあります。
例えば、

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
// ...





[[yii\db\Command::bindParam()|bindParam()]] はパラメータを参照渡しでバインドすることをサポートしていますので、上記のコードは次のように書くことも出来ます。

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
              ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();





クエリの実行の前にプレースホルダを変数 $id にバインドし、そして、後に続く各回の実行の前にその変数の値を変更していること (これは、たいてい、ループで行います) に着目してください。
このやり方でクエリを実行すると、パラメータの値が違うごとに新しいクエリを実行するのに比べて、はるかに効率を良くすることが出来ます。




SELECT しないクエリを実行する 

今までのセクションで紹介した queryXyz() メソッドは、すべて、データベースからデータを取得する SELECT クエリを扱うものでした。
データを返さないクエリのためには、代りに [[yii\db\Command::execute()]] メソッドを呼ばなければなりません。
例えば、

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')
   ->execute();





[[yii\db\Command::execute()]] メソッドは SQL の実行によって影響を受けた行の数を返します。

INSERT、UPDATE および DELETE クエリのためには、素の SQL を書く代りに、それぞれ、[[yii\db\Command::insert()|insert()]]、[[yii\db\Command::update()|update()]]、[[yii\db\Command::delete()|delete()]] を呼んで、対応する SQL を構築することが出来ます。
これらのメソッドは、テーブルとカラムの名前を適切に引用符で囲み、パラメータの値をバインドします。
例えば、

// INSERT (テーブル名, カラムの値)
Yii::$app->db->createCommand()->insert('user', [
    'name' => 'Sam',
    'age' => 30,
])->execute();

// UPDATE (テーブル名, カラムの値, 条件)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (テーブル名, 条件)
Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();





[[yii\db\Command::batchInsert()|batchInsert()]] を呼んで複数の行を一気に挿入することも出来ます。
この方法は、一度に一行を挿入するよりはるかに効率的です。

// テーブル名, カラム名, カラムの値
Yii::$app->db->createCommand()->batchInsert('user', ['name', 'age'], [
    ['Tom', 30],
    ['Jane', 20],
    ['Linda', 25],
])->execute();





上述のメソッド群はクエリを生成するだけであり、実際にそれを実行するためには、常に [[yii\db\Command::execute()|execute()]]
を呼び出す必要があることに注意してください。






テーブルとカラムの名前を引用符で囲む 

特定のデータベースに依存しないコードを書くときには、テーブルとカラムの名前を適切に引用符で囲むことが、たいてい、頭痛の種になります。
データベースによって名前を引用符で囲む規則がさまざまに異なるからです。
この問題を克服するために、次のように、Yii によって導入された引用符の構文を使用することが出来ます。


	[[カラム名]]: 引用符で囲まれるカラム名を二重角括弧で包む。

	{{テーブル名}}: 引用符で囲まれるテーブル名を二重波括弧で包む。



Yii DAO は、このような構文を、DBMS 固有の文法に従って、適切な引用符で囲まれたカラム名とテーブル名に自動的に変換します。
例えば、

// MySQL では SELECT COUNT(`id`) FROM `employee` という SQL が実行される
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
            ->queryScalar();






テーブル接頭辞を使う 

あなたの DB テーブル名のほとんどが何か共通の接頭辞を持っている場合は、Yii DAO によってサポートされているテーブル接頭辞の機能を使うことが出来ます。

最初に、アプリケーションの構成情報で、[[yii\db\Connection::tablePrefix]] プロパティによって、テーブル接頭辞を指定します。

return [
    // ...
    'components' => [
        // ...
        'db' => [
            // ...
            'tablePrefix' => 'tbl_',
        ],
    ],
];





そして、あなたのコードの中で、そのテーブル接頭辞を名前に持つテーブルを参照しなければならないときには、いつでも {{%テーブル名}} という構文を使います。
パーセント記号は DB 接続を構成したときに指定したテーブル接頭辞に自動的に置き換えられます。
例えば、

// MySQL では SELECT COUNT(`id`) FROM `tbl_employee` という SQL が実行される
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
            ->queryScalar();










トランザクションを実行する 

一続きになった複数の関連するクエリを実行するときは、データの整合性と一貫性を保証するために、一連のクエリをトランザクションで囲む必要がある場合があります。
一連のクエリのどの一つが失敗した場合でも、データベースは、何一つクエリが実行されなかったかのような状態へとロールバックされます。

次のコードはトランザクションの典型的な使用方法を示すものです。

Yii::$app->db->transaction(function($db) {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... その他の SQL 文を実行 ...
});





上記のコードは、次のものと等価です。こちらの方が、エラー処理のコードをより細かく制御することが出来ます。

$db = Yii::$app->db;
$transaction = $db->beginTransaction();

try {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... その他の SQL 文を実行 ...

    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}





[[yii\db\Connection::beginTransaction()|beginTransaction()]] メソッドを呼ぶことによって、新しいトランザクションが開始されます。
トランザクションは、変数 $transaction に保存された [[yii\db\Transaction]] オブジェクトとして表現されます。
そして、実行されるクエリが try...catch... ブロックで囲まれます。
全てのクエリの実行が成功した場合には、トランザクションをコミットするために [[yii\db\Transaction::commit()|commit()]] が呼ばれます。
そうでなく、例外がトリガされてキャッチされた場合は、[[yii\db\Transaction::rollBack()|rollBack()]]
が呼ばれて、トランザクションの中で失敗したクエリに先行するクエリによって行なわれた変更が、ロールバックされます。
そして、throw $e が、まるでそれをキャッチしなかったかのように、例外を再スローしますので、通常のエラー処理プロセスがその例外の面倒を見ることになります。


Note: 上記のコードでは、PHP 5.x と PHP 7.x との互換性のために、二つの
catch ブロックを持っています。\Exception は PHP 7.0 以降では、
\Throwable インターフェイス [http://php.net/manual/ja/class.throwable.php] を実装しています。
従って、あなたのアプリケーションが PHP 7.0 以上しか使わない場合は、\Exception の部分を省略することが出来ます。



分離レベルを指定する 

Yii は、トランザクションの 分離レベル [http://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B6%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E5%88%86%E9%9B%A2%E3%83%AC%E3%83%99%E3%83%AB] の設定もサポートしています。
デフォルトでは、新しいトランザクションを開始したときは、データベースシステムによって設定された分離レベルを使用します。
デフォルトの分離レベルは、次のようにしてオーバーライドすることが出来ます。

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {
    ....
}, $isolationLevel);
 
// あるいは

$transaction = Yii::$app->db->beginTransaction($isolationLevel);





Yii は、最もよく使われる分離レベルのために、四つの定数を提供しています。


	[[\yii\db\Transaction::READ_UNCOMMITTED]] - 最も弱いレベル。ダーティーリード、非再現リード、ファントムが発生しうる。

	[[\yii\db\Transaction::READ_COMMITTED]] - ダーティーリードを回避。

	[[\yii\db\Transaction::REPEATABLE_READ]] - ダーティーリードと非再現リードを回避。

	[[\yii\db\Transaction::SERIALIZABLE]] - 最も強いレベル。上記の問題を全て回避。



分離レベルを指定するためには、上記の定数を使う以外に、あなたが使っている DBMS によってサポートされている有効な構文の文字列を使うことも出来ます。
例えば、PostreSQL では、SERIALIZABLE READ ONLY DEFERRABLE を使うことが出来ます。

DBMS によっては、接続全体に対してのみ分離レベルの設定を許容しているものがあることに注意してください。
その場合、すべての後続のトランザクションは、指定しなくても、それと同じ分離レベルで実行されます。
従って、この機能を使用するときは、矛盾する設定を避けるために、全てのトランザクションについて分離レベルを明示的に指定しなければなりません。
このチュートリアルを書いている時点では、この制約の影響を受ける DBMS は MSSQL と SQLite だけです。


Note: SQLite は、二つの分離レベルしかサポートしていません。すなわち、READ UNCOMMITTED と SERIALIZABLE しか使えません。
他のレベルを使おうとすると、例外が投げられます。



Note: PostgreSQL は、トランザクションを開始する前に分離レベルを指定することを許容していません。
すなわち、トランザクションを開始するときに、分離レベルを直接に指定することは出来ません。
この場合、トランザクションを開始した後に [[yii\db\Transaction::setIsolationLevel()]] を呼び出す必要があります。





トランザクションを入れ子にする 

あなたの DBMS が Savepoint をサポートしている場合は、次のように、複数のトランザクションを入れ子にすることが出来ます。

Yii::$app->db->transaction(function ($db) {
    // 外側のトランザクション
    
    $db->transaction(function ($db) {
        // 内側のトランザクション
    });
});





あるいは、

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {
    $db->createCommand($sql1)->execute();

    $innerTransaction = $db->beginTransaction();
    try {
        $db->createCommand($sql2)->execute();
        $innerTransaction->commit();
    } catch (\Exception $e) {
        $innerTransaction->rollBack();
        throw $e;
    } catch(\Throwable $e) {
        $transaction->rollBack();
        throw $e;
    }

    $outerTransaction->commit();
} catch (\Exception $e) {
    $outerTransaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}










レプリケーションと読み書きの分離 

多くの DBMS は、データベースの可用性とサーバのレスポンスタイムを向上させるために、データベースレプリケーション [http://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%97%E3%83%AA%E3%82%B1%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3#.E3.83.87.E3.83.BC.E3.82.BF.E3.83.99.E3.83.BC.E3.82.B9] をサポートしています。
データベースレプリケーションによって、データはいわゆる マスタサーバ から スレーブサーバ に複製されます。
データの書き込みと更新はすべてマスタサーバ上で実行されなければなりませんが、データの読み出しはスレーブサーバ上でも可能です。

データベースレプリケーションを活用して読み書きの分離を達成するために、[[yii\db\Connection]] コンポーネントを下記のように構成することが出来ます。

[
    'class' => 'yii\db\Connection',

    // マスタの構成
    'dsn' => 'マスタサーバの DSN',
    'username' => 'master',
    'password' => '',

    // スレーブの共通の構成
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // 短かめの接続タイムアウトを使う
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // スレーブの構成のリスト
    'slaves' => [
        ['dsn' => 'スレーブサーバ 1 の DSN'],
        ['dsn' => 'スレーブサーバ 2 の DSN'],
        ['dsn' => 'スレーブサーバ 3 の DSN'],
        ['dsn' => 'スレーブサーバ 4 の DSN'],
    ],
]





上記の構成は、一つのマスタと複数のスレーブを指定するものです。
読み出しのクエリを実行するためには、スレーブの一つが接続されて使用され、書き込みのクエリを実行するためには、マスタが使われます。
そのような読み書きの分離が、この構成によって、自動的に達成されます。例えば、

// 上記の構成を使って Connection のインスタンスを作成する
$db = Yii::createObject($config);

// スレーブの一つに対してクエリを実行する
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// マスタに対してクエリを実行する
Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();






Info: [[yii\db\Command::execute()]] を呼ぶことで実行されるクエリは、書き込みのクエリと見なされ、[[yii\db\Command]] の “query” メソッドのうちの一つによって実行されるその他すべてのクエリは、読み出しクエリと見なされます。
現在アクティブなスレーブ接続は Yii::$app->db->slave によって取得することが出来ます。


Connection コンポーネントは、スレーブ間のロードバランス調整とフェイルオーバーをサポートしています。
読み出しクエリを最初に実行するときに、Connection コンポーネントはランダムにスレーブを選んで接続を試みます。
そのスレーブが「死んでいる」ことが分かったときは、他のスレーブを試します。
スレーブが一つも使用できないときは、マスタに接続します。
[[yii\db\Connection::serverStatusCache|サーバステータスキャッシュ]] を構成することによって、「死んでいる」サーバを記憶し、[[yii\db\Connection::serverRetryInterval|一定期間]] はそのサーバへの接続を再試行しないようにすることが出来ます。


Info: 上記の構成では、すべてのスレーブに対して 10 秒の接続タイムアウトが指定されています。
これは、10 秒以内に接続できなければ、そのスレーブは「死んでいる」と見なされることを意味します。
このパラメータは、実際の環境に基づいて調整することが出来ます。


複数のマスタと複数のスレーブという構成にすることも可能です。例えば、

[
    'class' => 'yii\db\Connection',

    // マスタの共通の構成
    'masterConfig' => [
        'username' => 'master',
        'password' => '',
        'attributes' => [
            // 短かめの接続タイムアウトを使う
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // マスタの構成のリスト
    'masters' => [
        ['dsn' => 'マスタサーバ 1 の DSN'],
        ['dsn' => 'マスタサーバ 2 の DSN'],
    ],

    // スレーブの共通の構成
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // 短かめの接続タイムアウトを使う
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // スレーブの構成のリスト
    'slaves' => [
        ['dsn' => 'スレーブサーバ 1 の DSN'],
        ['dsn' => 'スレーブサーバ 2 の DSN'],
        ['dsn' => 'スレーブサーバ 3 の DSN'],
        ['dsn' => 'スレーブサーバ 4 の DSN'],
    ],
]





上記の構成は、二つのマスタと四つのスレーブを指定しています。
Connection コンポーネントは、スレーブ間での場合と同じように、マスタ間でのロードバランス調整とフェイルオーバーをサポートしています。
一つ違うのは、マスタが一つも利用できないときは例外が投げられる、という点です。


Note: [[yii\db\Connection::masters|masters]] プロパティを使って一つまたは複数のマスタを構成する場合は、データベース接続を定義する Connection オブジェクト自体のその他のプロパティ (例えば、dsn、username、password) は全て無視されます。


デフォルトでは、トランザクションはマスタ接続を使用します。そして、トランザクション内では、全ての DB 操作はマスタ接続を使用します。
例えば、

$db = Yii::$app->db;
// トランザクションはマスタ接続で開始される
$transaction = $db->beginTransaction();

try {
    // クエリは両方ともマスタに対して実行される
    $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
    $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}





スレーブ接続を使ってトランザクションを開始したいときは、次のように、明示的にそうする必要があります。

$transaction = Yii::$app->db->slave->beginTransaction();





時として、読み出しクエリの実行にマスタ接続を使うことを強制したい場合があります。
これは、useMaster() メソッドを使うによって達成できます。

$rows = Yii::$app->db->useMaster(function ($db) {
    return Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});





直接に Yii::$app->db->enableSlaves を false に設定して、全てのクエリをマスタ接続に向けることも出来ます。




データベーススキーマを扱う 

Yii DAO は、新しいテーブルを作ったり、テーブルからカラムを削除したりなど、データベーススキーマを操作することを可能にする一揃いのメソッドを提供しています。
以下がそのソッドのリストです。


	

	

	

	

	

	

	

	

	

	

	

	

	

	



これらのメソッドは次のようにして使うことが出来ます。

// CREATE TABLE
Yii::$app->db->createCommand()->createTable('post', [
    'id' => 'pk',
    'title' => 'string',
    'text' => 'text',
]);





上記の配列は、生成されるカラムの名前と型を記述しています。
Yii はカラムの型のために一連の抽象データ型を提供しているため、データベースの違いを意識せずにスキーマを定義することが可能です。
これらの抽象データ型は、テーブルが作成されるデータベースに依存する DBMS 固有の型定義に変換されます。
詳しい情報は [yii\db\Command::createTable()|createTable()] メソッドの API ドキュメントを参照してください。

データベースのスキーマを変更するだけでなく、テーブルに関する定義情報を DB 接続の [[yii\db\Connection::getTableSchema()|getTableSchema()]] メソッドによって取得することも出来ます。
例えば、

$table = Yii::$app->db->getTableSchema('post');





このメソッドは、テーブルのカラム、プライマリキー、外部キーなどの情報を含む [[yii\db\TableSchema]] オブジェクトを返します。
これらの情報は、主として クエリビルダ や アクティブレコード によって利用されて、特定のデータベースに依存しないコードを書くことを助けてくれています。







          

      

      

    

  

  
    
    
    フィルタ
    
    

    
 
  
  

    
      
          
            
  
フィルタ

フィルタは、コントローラアクション の前 および/または 後に走るオブジェクトです。
例えば、アクセスコントロールフィルタはアクションの前に走って、アクションが特定のエンドユーザだけにアクセスを許可するものであることを保証します。
また、コンテント圧縮フィルタはアクションの後に走って、レスポンスのコンテントをエンドユーザに送出する前に圧縮します。

一つのフィルタは、前フィルタ (アクションの 前 に適用されるフィルタのロジック) および/または 後フィルタ (アクションの 後 に適用されるロジック) から構成することが出来ます。


フィルタを使用する 

フィルタは、本質的には特別な種類の ビヘイビア です。
したがって、フィルタを使うことは ビヘイビアを使う ことと同じです。
下記のように、[[yii\base\Controller::behaviors()|behaviors()]] メソッドをオーバーライドすることによって、コントローラの中でフィルタを宣言することが出来ます。

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index', 'view'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





デフォルトでは、コントローラクラスの中で宣言されたフィルタは、そのコントローラの 全て のアクションに適用されます。
しかし、[[yii\base\ActionFilter::only|only]] プロパティを構成することによって、フィルタがどのアクションに適用されるべきかを明示的に指定することも出来ます。
上記の例では、 HttpCache フィルタは、index と view のアクションに対してのみ適用されています。
また、[[yii\base\ActionFilter::except|except]] プロパティを構成して、いくつかのアクションをフィルタされないように除外することも可能です。

コントローラのほかに、モジュール または アプリケーション でもフィルタを宣言することが出来ます。
そのようにした場合、[[yii\base\ActionFilter::only|only]] と [[yii\base\ActionFilter::except|except]] のプロパティを上で説明したように構成しない限り、そのフィルタは、モジュールまたはアプリケーションに属する 全て のコントローラアクションに適用されます。


Note: モジュールやアプリケーションでフィルタを宣言する場合、[[yii\base\ActionFilter::only|only]] と [[yii\base\ActionFilter::except|except]] のプロパティでは、アクション ID ではなく、ルート を使わなければなりません。
なぜなら、モジュールやアプリケーションのスコープでは、アクション ID だけでは完全にアクションを指定することが出来ないからです。


一つのアクションに複数のフィルタが構成されている場合、フィルタは下記で説明されている規則に従って適用されます。


	前フィルタ
	アプリケーションで宣言されたフィルタを behaviors() にリストされた順に適用する。

	モジュールで宣言されたフィルタを behaviors() にリストされた順に適用する。

	コントローラで宣言されたフィルタを behaviors() にリストされた順に適用する。

	フィルタのどれかがアクションをキャンセルすると、そのフィルタの後のフィルタ (前フィルタと後フィルタの両方) は適用されない。





	前フィルタを通過したら、アクションを走らせる。

	後フィルタ
	コントローラで宣言されたフィルタを behaviors() にリストされた逆順で適用する。

	モジュールで宣言されたフィルタを behaviors() にリストされた逆順で適用する。

	アプリケーションで宣言されたフィルタを behaviors() にリストされた逆順で適用する。










フィルタを作成する 

新しいアクションフィルタを作成するためには、[[yii\base\ActionFilter]] を拡張して、[[yii\base\ActionFilter::beforeAction()|beforeAction()]] および/または [[yii\base\ActionFilter::afterAction()|afterAction()]] メソッドをオーバーライドします。
前者はアクションが走る前に実行され、後者は走った後に実行されます。
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] の返り値が、アクションが実行されるべきか否かを決定します。
返り値が false である場合、このフィルタの後に続くフィルタはスキップされ、アクションは実行を中止されます。

次の例は、アクションの実行時間をログに記録するフィルタを示すものです。

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
    private $_startTime;

    public function beforeAction($action)
    {
        $this->_startTime = microtime(true);
        return parent::beforeAction($action);
    }

    public function afterAction($action, $result)
    {
        $time = microtime(true) - $this->_startTime;
        Yii::trace("アクション '{$action->uniqueId}' は $time 秒を消費。");
        return parent::afterAction($action, $result);
    }
}








コアのフィルタ 

Yii はよく使われる一連のフィルタを提供しており、それらは、主として yii\filters 名前空間の下にあります。
以下では、それらのフィルタを簡単に紹介します。


[[yii\filters\AccessControl|AccessControl]] 

AccessControl は、一組の [[yii\filters\AccessControl::rules|規則]] に基づいて、シンプルなアクセスコントロールを提供するものです。
具体的に言うと、アクションが実行される前に、AccessControl はリストされた規則を調べて、現在のコンテキスト変数 (例えば、ユーザの IP アドレスや、ユーザのログイン状態など) に最初に合致するものを見つけます。
そして、合致した規則によって、リクエストされたアクションの実行を許可するか拒否するかを決定します。
合致する規則がなかった場合は、アクセスは拒否されます。

次の例は、認証されたユーザに対しては create と update のアクションへのアクセスを許可し、その他のすべてのユーザにはこれら二つのアクションに対するアクセスを拒否する仕方を示すものです。

use yii\filters\AccessControl;

public function behaviors()
{
    return [
        'access' => [
            'class' => AccessControl::className(),
            'only' => ['create', 'update'],
            'rules' => [
                // 認証されたユーザに許可する
                [
                    'allow' => true,
                    'roles' => ['@'],
                ],
                // その他はすべてデフォルトにより拒否される
            ],
        ],
    ];
}





アクセスコントロール一般についての詳細は 権限 の節を参照してください。




認証メソッドフィルタ 

認証メソッドフィルタは、HTTP Basic 認証 [http://ja.wikipedia.org/wiki/Basic%E8%AA%8D%E8%A8%BC]、
OAuth 2 [http://oauth.net/2/] など、様々なメソッドを使ってユーザを認証するために使われるものです。
これらのフィルタクラスはすべて yii\filters\auth 名前空間の下にあります。

次の例は、[[yii\filters\auth\HttpBasicAuth]] の使い方を示すもので、HTTP Basic 認証に基づくアクセストークンを使ってユーザを認証しています。
これを動作させるためには、あなたの [[yii\web\User::identityClass|ユーザアイデンティティクラス]]
が [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]] メソッドを実装していなければならないことに注意してください。

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    return [
        'basicAuth' => [
            'class' => HttpBasicAuth::className(),
        ],
    ];
}





認証メソッドフィルタは RESTful API を実装するときに使われるのが通例です。
詳細については、RESTful の 認証 の節を参照してください。




[[yii\filters\ContentNegotiator|ContentNegotiator]] 

ContentNegotiator は、レスポンス形式のネゴシエーションとアプリケーション言語のネゴシエーションをサポートします。
このフィルタは GET パラメータと Accept HTTP ヘッダを調べることによって、レスポンス形式 および/または 言語を決定しようとします。

次の例では、ContentNegotiator はレスポンス形式として JSON と XML をサポートし、(合衆国の)英語とドイツ語を言語としてサポートするように構成されています。

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
    return [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ];
}





レスポンス形式と言語は アプリケーションのライフサイクル のもっと早い段階で決定される必要があることがよくあります。
このため、ContentNegotiator はフィルタの他に、ブートストラップコンポーネント としても使うことができるように設計されています。
例えば、次のように、ContentNegotiator を アプリケーションの構成情報 の中で構成することが出来ます。

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
    'bootstrap' => [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ],
];






Info: 望ましいコンテントタイプと言語がリクエストから決定できない場合は、[[formats]] および [[languages]] に挙げられている最初の形式と言語が使用されます。





[[yii\filters\HttpCache|HttpCache]] 

HttpCache は Last-Modified および Etag の HTTP ヘッダを利用して、クライアント側のキャッシュを実装するものです。

use yii\filters\HttpCache;

public function behaviors()
{
    return [
        [
            'class' => HttpCache::className(),
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





HttpCache に関する詳細は HTTP キャッシュ の節を参照してください。




[[yii\filters\PageCache|PageCache]] 

PageCache はサーバ側におけるページ全体のキャッシュを実装するものです。
次の例では、PageCache が index アクションに適用されて、最大 60 秒間、または、post テーブルのエントリ数が変化するまでの間、ページ全体をキャッシュしています。
さらに、このページキャッシュは、選択されたアプリケーションの言語に従って、違うバージョンのページを保存するようにしています。

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
    return [
        'pageCache' => [
            'class' => PageCache::className(),
            'only' => ['index'],
            'duration' => 60,
            'dependency' => [
                'class' => DbDependency::className(),
                'sql' => 'SELECT COUNT(*) FROM post',
            ],
            'variations' => [
                \Yii::$app->language,
            ]
        ],
    ];
}





PageCache の使用に関する詳細は ページキャッシュ の節を参照してください。




[[yii\filters\RateLimiter|RateLimiter]] 

RateLimiter は リーキーバケットアルゴリズム [http://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%82%AD%E3%83%BC%E3%83%90%E3%82%B1%E3%83%83%E3%83%88] に基づいてレート制限のアルゴリズムを実装するものです。
主として RESTful API を実装するときに使用されます。
このフィルタの使用に関する詳細は レート制限 の節を参照してください。




[[yii\filters\VerbFilter|VerbFilter]] 

VerbFilter は、HTTP リクエストメソッド (HTTP 動詞) がリクエストされたアクションによって許可されているかどうかをチェックするものです。
許可されていない場合は、HTTP 405 例外を投げます。
次の例では、VerbFilter が宣言されて、CRUD アクションに対して許可されるメソッドの典型的なセットを指定しています。

use yii\filters\VerbFilter;

public function behaviors()
{
    return [
        'verbs' => [
            'class' => VerbFilter::className(),
            'actions' => [
                'index'  => ['get'],
                'view'   => ['get'],
                'create' => ['get', 'post'],
                'update' => ['get', 'put', 'post'],
                'delete' => ['post', 'delete'],
            ],
        ],
    ];
}








[[yii\filters\Cors|Cors]] 

クロスオリジンリソース共有 CORS [https://developer.mozilla.org/ja/docs/HTTP_access_control] とは、ウェブページにおいて、さまざまなリソース (例えば、フォントや JavaScript など) を、それを生成するドメイン以外のドメインからリクエストすることを可能にするメカニズムです。
特に言えば、JavaScript の AJAX 呼出しが使用することが出来る XMLHttpRequest メカニズムです。
このような「クロスドメイン｣のリクエストは、このメカニズムに拠らなければ、同一生成元のセキュリティポリシーによって、ウェブブラウザから禁止されるはずのものです。
CORS は、ブラウザとサーバが交信して、クロスドメインのリクエストを許可するか否かを決定する方法を定義するものです。

[[yii\filters\Cors|Cors フィルタ]] は、CORS ヘッダが常に送信されることを保証するために、Authentication / Authorization のフィルタよりも前に定義されなければなりません。

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
        ],
    ], parent::behaviors());
}





あなたの API の [[yii\rest\ActiveController]] クラスに CORS フィルタを追加したい場合は、REST コントローラ の節も参照して下さい。

Cors のフィルタリングは [[yii\filters\Cors::$cors|$cors]] プロパティを使ってチューニングすることが出来ます。


	cors['Origin']: 許可される生成元を定義するのに使われる配列。
['*'] (すべて) または ['http://www.myserver.net'、'http://www.myotherserver.com'] などが設定可能。デフォルトは ['*']。

	cors['Access-Control-Request-Method']: 許可される HTTP 動詞の配列。
たとえば、['GET', 'OPTIONS', 'HEAD']。デフォルトは ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS']。

	cors['Access-Control-Request-Headers']: 許可されるヘッダの配列。
全てのヘッダを意味する ['*'] または特定のヘッダを示す ['X-Request-With'] が設定可能。デフォルトは ['*']。

	cors['Access-Control-Allow-Credentials']: 現在のリクエストをクレデンシャルを使ってすることが出来るかどうかを定義。
true、false または null (設定なし) が設定可能。デフォルトは null。

	cors['Access-Control-Max-Age']: プリフライトリクエストの寿命を定義。デフォルトは 86400。



次の例は、生成元 http://www.myserver.net に対する GET、HEAD および OPTIONS のメソッドによる CORS を許可するものです。

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
        ],
    ], parent::behaviors());
}





デフォルトのパラメータをアクション単位でオーバーライドして CORS ヘッダをチューニングすることも可能です。
例えば、login アクションに Access-Control-Allow-Credentials を追加することは、次のようにすれば出来ます。

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
            'actions' => [
                'login' => [
                    'Access-Control-Allow-Credentials' => true,
                ]
            ]
        ],
    ], parent::behaviors());
}













          

      

      

    

  

  
    
    
    認証
    
    

    
 
  
  

    
      
          
            
  
認証

ウェブアプリケーションとは異なり、RESTful API は通常はステートレスです。
これは、セッションやクッキーは使用すべきでないことを意味します。
従って、ユーザの認証ステータスをセッションやクッキーで保持することが出来ないため、全てのリクエストに何らかの認証情報を付加する必要があります。
通常使われるのは、ユーザを認証するための秘密のアクセストークンを全てのリクエストとともに送信する方法です。
アクセストークンはユーザを一意に特定して認証することが出来るものですので、API リクエストは、中間者攻撃 (man-in-the-middle attack) を防止するために、常に HTTPS 経由で送信されなければなりません。

アクセストークンを送信するには、いくつかの異なる方法があります。


	HTTP Basic 認証 [http://ja.wikipedia.org/wiki/Basic%E8%AA%8D%E8%A8%BC]: アクセストークンはユーザ名として送信されます。
この方法は、アクセストークンを API コンシューマ側で安全に保存することが出来る場合、例えば API コンシューマがサーバ上で走るプログラムである場合などにのみ使用されるべきです。

	クエリパラメータ: アクセストークンは API の URL、例えば、https://example.com/users?access-token=xxxxxxxx でクエリパラメータとして送信されます。
ほとんどのウェブサーバはクエリパラメータをサーバのログに記録するため、この手法は、アクセストークンを HTTP ヘッダを使って送信することができない JSONP リクエストに応答するために主として使用されるべきです。

	OAuth 2 [http://oauth.net/2/]: OAuth2 プロトコルに従って、アクセストークンはコンシューマによって権限付与サーバから取得され、HTTP Bearer Tokens [http://tools.ietf.org/html/rfc6750] 経由で API サーバに送信されます。



Yii は上記の全ての認証方法をサポートしています。新しい認証方法を作成することも簡単に出来ます。

あなたの API に対して認証を有効にするためには、次のステップを実行します。


	user アプリケーションコンポーネント を構成します。
	[[yii\web\User::enableSession|enableSession]] プロパティを false に設定します。

	[[yii\web\User::loginUrl|loginUrl]] プロパティを null に設定し、ログインページにリダイレクトする代りに HTTP 403 エラーを表示します。





	REST コントローラクラスにおいて、authenticator ビヘイビアを構成することによって、どの認証方法を使用するかを指定します。

	[[yii\web\User::identityClass|ユーザアイデンティティクラス]] において [[yii\web\IdentityInterface::findIdentityByAccessToken()]] を実装します。



ステップ 1 は必須ではありませんが、ステートレスであるべき RESTful API のために推奨されます。
[[yii\web\User::enableSession|enableSession]] が false である場合、ユーザの認証ステータスがセッションを使ってリクエストをまたいで存続することはありません。
その代りに、すべてのリクエストに対して認証が実行されます。このことは、ステップ 2 と 3 によって達成されます。


Tip: RESTful API をアプリケーションの形式で開発する場合は、アプリケーションの構成情報で user アプリケーションコンポーネント(structure-application-components.md) の [[yii\web\User::enableSession|enableSession]] プロパティを構成することが出来ます。
RESTful API をモジュールとして開発する場合は、次のように、モジュールの init() メソッドに一行を追加することが出来ます。

public function init()
{
    parent::init();
    \Yii::$app->user->enableSession = false;
}








例えば、HTTP Basic 認証を使う場合は、authenticator ビヘイビアを次のように構成することが出来ます。

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['authenticator'] = [
        'class' => HttpBasicAuth::className(),
    ];
    return $behaviors;
}





上で説明した三つの認証方法を全てサポートしたい場合は、次のように CompositeAuth を使うことが出来ます。

use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\HttpBearerAuth;
use yii\filters\auth\QueryParamAuth;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['authenticator'] = [
        'class' => CompositeAuth::className(),
        'authMethods' => [
            HttpBasicAuth::className(),
            HttpBearerAuth::className(),
            QueryParamAuth::className(),
        ],
    ];
    return $behaviors;
}





authMethods の各要素は、認証方法クラスの名前であるか、構成情報配列でなければなりません。

findIdentityByAccessToken() の実装はアプリケーション固有のものです。
例えば、各ユーザが一つだけアクセストークンを持ち得るような単純なシナリオでは、アクセストークンをユーザのテーブルの access_token カラムに保存することが出来ます。
そうすれば、次のように、findIdentityByAccessToken() メソッドを User クラスにおいて簡単に実装することが出来ます。

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
    public static function findIdentityByAccessToken($token, $type = null)
    {
        return static::findOne(['access_token' => $token]);
    }
}





上記のように認証が有効化された後は、全ての API リクエストに対して、リクエストされたコントローラが beforeAction() の段階でユーザを認証することを試みます。

認証が成功すると、コントローラはその他のチェック (レート制限、権限付与など) をしてから、アクションを実行します。
認証されたユーザのアイデンティティは Yii::$app->user->identity によって取得することが出来ます。

認証が失敗したときは、HTTP ステータス 401 およびその他の適切なヘッダ (HTTP Basic 認証に対する WWW-Authenticate ヘッダなど) を持つレスポンスが送り返されます。


権限付与 

ユーザが認証された後、おそらくは、リクエストされたリソースに対してリクエストされたアクションを実行する許可を彼または彼女が持っているかどうかをチェックしたいでしょう。
権限付与 と呼ばれるこのプロセスについては、権限付与 のセクションで詳細に説明されています。

あなたのコントローラが [[yii\rest\ActiveController]] から拡張したものである場合は、[[yii\rest\ActiveController::checkAccess()|checkAccess()]] メソッドをオーバーライドして権限付与のチェックを実行することが出来ます。
このメソッドが [[yii\rest\ActiveController]] によって提供されている内蔵のアクションから呼び出されます。







          

      

      

    

  

  
    
    
    概要
    
    

    
 
  
  

    
      
          
            
  
概要

Yii のアプリケーションがリクエストを処理するときは、毎回、同じようなワークフローになります。


	ユーザが エントリスクリプト web/index.php にリクエストをします。

	エントリスクリプトは、アプリケーションの 構成情報 をロードして、リクエストを処理するための アプリケーション のインスタンスを作成します。

	アプリケーションは、リクエスト アプリケーションコンポーネントの助けを借りて、リクエストされた ルート を解決します。

	アプリケーションはリクエストを処理するための コントローラ のインスタンスを作成します。

	コントローラは アクション のインスタンスを作成して、アクションのためのフィルタを実行します。

	フィルタのどれかが失敗すると、アクションはキャンセルされます。

	すべてのフィルタを無事に通ったら、アクションが実行されます。

	アクションはデータモデルを、おそらくはデータベースから、ロードします。

	アクションはデータモデルをビューに提供して、ビューをレンダリングします。

	レンダリングの結果は レスポンス アプリケーションコンポーネントに返されます。

	レスポンスコンポーネントがレンダリングの結果をユーザのブラウザに送信します。



次の図は、アプリケーションがどのようにしてリクエストを処理するかを示すものです。

[image: リクエストのライフサイクル]

この節では、これらのステップのいくつかについて、どのように動作するかを詳細に説明します。





          

      

      

    

  

  
    
    
    アセット
    
    

    
 
  
  

    
      
          
            
  
アセット

Yii では、アセットは、ウェブページで参照できるファイルを意味します。
アセットは CSS ファイルであったり、JavaScript ファイルであったり、画像やビデオのファイルであったりします。
アセットはウェブでアクセス可能なディレクトリに配置され、ウェブサーバによって直接に提供されます。

たいていの場合、アセットはプログラム的に管理する方が望ましいものです。
例えば、ページの中で [[yii\jui\DatePicker]] ウィジェットを使うとき、このウィジェットは必要な CSS と JavaScript のファイルを自動的にインクルードします。
あなたに対して、手作業で必要なファイルを探してインクルードするように要求したりはしません。
そして、このウィジェットを新しいバージョンにアップグレードしたときは、自動的に新しいバージョンのアセットファイルが使用されるようになります。
このチュートリアルでは、Yii によって提供される強力なアセット管理機能について説明します。


アセットバンドル 

Yii はアセットを アセットバンドル を単位として管理します。アセットバンドルは、簡単に言えば、あるディレクトリの下に集められた一群のアセットです。
ビュー の中でアセットバンドルを登録すると、バンドルの中の CSS や JavaScript のファイルがレンダリングされるウェブページに挿入されます。




アセットバンドルを定義する 

アセットバンドルは [[yii\web\AssetBundle]] から拡張された PHP クラスとして定義されます。
バンドルの名前は、対応する PHP クラスの完全修飾名 (先頭のバックスラッシュを除く) です。
アセットバンドルクラスは オートロード可能 でなければなりません。
アセットバンドルクラスは、通常、アセットがどこに置かれているか、バンドルがどういう CSS や JavaScript のファイルを含んでいるか、そして、バンドルが他のバンドルにどのように依存しているかを定義します。

以下のコードは ベーシックプロジェクトテンプレート によって使用されているメインのアセットバンドルを定義するものです。

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.css',
    ];
    public $js = [
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





上の AppAsset クラスは、アセットファイルが @webroot ディレクトリの下に配置されており、それが URL @web に対応することを定義しています。
バンドルは一つだけ CSS ファイル css/site.css を含み、JavaScript ファイルは含みません。
バンドルは、他の二つのバンドル、すなわち [[yii\web\YiiAsset]] と [[yii\bootstrap\BootstrapAsset]] に依存しています。
以下、[[yii\web\AssetBundle]] のプロパティに関して、更に詳細に説明します。


	ルートディレクトリがウェブからアクセス可能でない場合に、このプロパティをセットしなければなりません。
そうでない場合は、代りに、[yii\web\AssetBundle::basePath|basePath] と [[yii\web\AssetBundle::baseUrl|baseUrl]] のプロパティをセットしなければなりません。
パスエイリアス をここで使うことが出来ます。

	[yii\web\AssetBundle::sourcePath|sourcePath] プロパティをセットした場合は、アセットマネージャ がバンドルに含まれるファイルをウェブからアクセス可能なディレクトリに発行して、その結果、このプロパティを上書きします。
アセットファイルが既にウェブからアクセス可能なディレクトリにあり、アセットの発行が必要でない場合に、このプロパティをセットしなければなりません。
パスエイリアス をここで使うことが出来ます。

	[[yii\web\AssetBundle::baseUrl|baseUrl]]: [yii\web\AssetBundle::basePath|basePath] ディレクトリに対応する URL を指定します。
[yii\web\AssetBundle::basePath|basePath] と同じように、[yii\web\AssetBundle::sourcePath|sourcePath] プロパティをセットした場合は、アセットマネージャ がアセットを発行して、その結果、このプロパティを上書きします。
パスエイリアス をここで使うことが出来ます。

	[[yii\web\AssetBundle::js|js]]: このバンドルに含まれる JavaScript ファイルをリストする配列です。
ディレクトリの区切りとしてフォワードスラッシュ “/” だけを使わなければならないことに注意してください。
それぞれの JavaScript ファイルは、以下の二つの形式のどちらかによって指定することが出来ます。
	ローカルの JavaScript ファイルを表す相対パス (例えば js/main.js)。
実際のファイルのパスは、この相対パスの前に [[yii\web\AssetManager::basePath]] を付けることによって決定されます。
また、実際の URL は、この相対パスの前に [[yii\web\AssetManager::baseUrl]] を付けることによって決定されます。

	外部の JavaScript ファイルを表す絶対 URL。
例えば、http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js や //ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js など。





	[[yii\web\AssetBundle::css|css]]: このバンドルに含まれる CSS ファイルをリストする配列です。
この配列の形式は、[[yii\web\AssetBundle::js|js]] の形式と同じです。

	[[yii\web\AssetBundle::depends|depends]]: このバンドルが依存しているアセットバンドルの名前をリストする配列です
(バンドルの依存関係については、すぐ後で説明します)。

	[[yii\web\AssetBundle::jsOptions|jsOptions]]: このバンドルにある 全て の JavaScript ファイルについて、それを登録するときに呼ばれる [[yii\web\View::registerJsFile()]] メソッドに渡されるオプションを指定します。

	[[yii\web\AssetBundle::publishOptions|publishOptions]]: ソースのアセットファイルをウェブディレクトリに発行するときに呼ばれる [[yii\web\AssetManager::publish()]] メソッドに渡されるオプションを指定します。
これは [yii\web\AssetBundle::sourcePath|sourcePath] プロパティを指定した場合にだけ使用されます。




アセットの配置場所 

アセットは、配置場所を基準にして、次のように分類することが出来ます。


	ソースアセット: アセットファイルは、ウェブ経由で直接にアクセスすることが出来ない PHP ソースコードと一緒に配置されています。
ページの中でソースアセットを使用するためには、ウェブディレクトリにコピーして、いわゆる発行されたアセットに変換しなければなりません。
このプロセスは、すぐ後で詳しく説明しますが、アセット発行 と呼ばれます。

	発行されたアセット: アセットファイルはウェブディレクトリに配置されており、したがってウェブ経由で直接にアクセスすることが出来ます。

	外部アセット: アセットファイルは、あなたのウェブアプリケーションをホストしているのとは別のウェブサーバ上に配置されています。



アセットバンドルクラスを定義するときに、[yii\web\AssetBundle::sourcePath|sourcePath] プロパティを指定した場合は、相対パスを使ってリストに挙げられたアセットは全てソースアセットであると見なされます。
このプロパティを指定しなかった場合は、アセットは発行されたアセットであることになります
(したがって、[yii\web\AssetBundle::basePath|basePath] と [[yii\web\AssetBundle::baseUrl|baseUrl]] を指定して、アセットがどこに配置されているかを Yii に知らせなければなりません)。

アプリケーションに属するアセットは、不要なアセット発行プロセスを避けるために、ウェブディレクトリに置くことが推奨されます。
前述の例において AppAsset が [yii\web\AssetBundle::sourcePath|sourcePath] ではなく [yii\web\AssetBundle::basePath|basePath] を指定しているのは、これが理由です。

エクステンション の場合は、アセットがソースコードと一緒にウェブからアクセス出来ないディレクトリに配置されているため、アセットバンドルクラスを定義するときには [yii\web\AssetBundle::sourcePath|sourcePath] プロパティを指定しなければなりません。


Note: @webroot/assets を [[yii\web\AssetBundle::sourcePath|ソースパス]] として使ってはいけません。
このディレクトリは、デフォルトでは、[[yii\web\AssetManager|アセットマネージャ]] がソースの配置場所から発行されたアセットファイルを保存する場所として使われます。
このディレクトリの中のファイルはすべて一時的なものと見なされており、削除されることがあります。





アセットの依存関係 

ウェブページに複数の CSS や JavaScript ファイルをインクルードするときは、オーバーライドの問題を避けるために、一定の順序に従わなければなりません。
例えば、ウェブページで jQuery UI ウィジェットを使おうとするときは、jQuery JavaScript ファイルが jQuery UI JavaScript ファイルより前にインクルードされることを保証しなければなりません。
このような順序付けをアセット間の依存関係と呼びます。

アセットの依存関係は、主として、[[yii\web\AssetBundle::depends]] プロパティによって指定されます。
AppAsset の例では、このアセットバンドルは他の二つのアセットバンドル、すなわち、[[yii\web\YiiAsset]] と [[yii\bootstrap\BootstrapAsset]] に依存しています。
このことは、AppAsset の CSS と JavaScript ファイルが、依存している二つのアセットバンドルにあるファイルの 後に インクルードされることを意味します。

アセットの依存関係は中継されます。つまり、バンドル A が B に依存し、B が C に依存していると、A は C にも依存していることになります。




アセットのオプション 

[[yii\web\AssetBundle::cssOptions|cssOptions]] および [[yii\web\AssetBundle::jsOptions|jsOptions]] のプロパティを指定して、CSS と JavaScript ファイルがページにインクルードされる方法をカスタマイズすることが出来ます。
これらのプロパティの値は、ビュー が CSS と JavaScript ファイルをインクルードするために、[[yii\web\View::registerCssFile()]] および [[yii\web\View::registerJsFile()]] メソッドを呼ぶときに、それぞれ、オプションとして引き渡されます。


Note: バンドルクラスでセットしたオプションは、バンドルの中の 全て の CSS/JavaScript ファイルに適用されます。
いろいろなファイルに別々のオプションを使用したい場合は、別々のアセットバンドルを作成して、個々のバンドルの中では、一組のオプションを使うようにしなければなりません。


例えば、IE9 以下のブラウザに対して CSS ファイルを条件的にインクルードするために、次のオプションを使うことが出来ます。

public $cssOptions = ['condition' => 'lte IE9'];





こうすると、バンドルの中の CSS ファイルは下記の HTML タグを使ってインクルードされるようになります。

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->





生成された CSS のリンクタグを <noscript> の中に包むためには、次のように cssOptions を構成することが出来ます。

public $cssOptions = ['noscript' => true];





JavaScript ファイルをページの head セクションにインクルードするためには、次のオプションを使います
(デフォルトでは、JavaScript ファイルは body セクションの最後にインクルードされます)。

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];





デフォルトでは、アセットバンドルが発行されるときは、[[yii\web\AssetBundle::sourcePath]] で指定されたディレクトリの中にある全てのコンテントが発行されます。
[[yii\web\AssetBundle::publishOptions|publishOptions]] プロパティを構成することによって、この振る舞いをカスタマイズすることが出来ます。
例えば、[[yii\web\AssetBundle::sourcePath]] の一個または数個のサブディレクトリだけを発行するために、アセットバンドルクラスの中で下記のようにすることが出来ます。

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle 
{
    public $sourcePath = '@bower/font-awesome'; 
    public $css = [ 
        'css/font-awesome.min.css', 
    ]; 
    public $publishOptions = [
        'only' => [
            'fonts/',
            'css/',
        ]
    ];
}  





上記の例は、“fontawesome” パッケージ [http://fontawesome.io/] のためのアセットバンドルを定義するものです。
発行オプション only を指定して、fonts と css サブディレクトリだけが発行されるようにしています。




Bower と NPM のアセット 

ほとんどの JavaScript/CSS パッケージは、Bower [http://bower.io/] および/または NPM [https://www.npmjs.org/] によって管理されています。
あなたのアプリケーションやエクステンションがそのようなパッケージを使っている場合は、以下のステップに従って、ライブラリの中のアセットを管理することが推奨されます。


	アプリケーションまたはエクステンションの composer.json ファイルを修正して、パッケージを require のエントリに入れます。
ライブラリを参照するのに、bower-asset/PackageName (Bower パッケージ) または npm-asset/PackageName (NPM パッケージ) を使わなければなりません。

	アセットバンドルクラスを作成して、アプリケーションまたはエクステンションで使う予定の JavaScript/CSS ファイルをリストに挙げます。
[yii\web\AssetBundle::sourcePath|sourcePath] プロパティは、@bower/PackageName または @npm/PackageName としなければなりません。
これは、Composer が Bower または NPM パッケージを、このエイリアスに対応するディレクトリにインストールするためです。




Note: パッケージの中には、全ての配布ファイルをサブディレクトリに置くものがあります。
その場合には、そのサブディレクトリを [yii\web\AssetBundle::sourcePath|sourcePath] の値として指定しなければなりません。
例えば、[[yii\web\JqueryAsset]] は @bower/jquery ではなく @bower/jquery/dist を使います。







アセットバンドルを使う 

アセットバンドルを使うためには、[[yii\web\AssetBundle::register()]] メソッドを呼んでアセットバンドルを ビュー に登録します。
例えば、次のようにしてビューテンプレートの中でアセットバンドルを登録することが出来ます。

use app\assets\AppAsset;
AppAsset::register($this);  // $this はビューオブジェクトを表す






Info: [[yii\web\AssetBundle::register()]] メソッドは、[yii\web\AssetBundle::basePath|basePath] や [[yii\web\AssetBundle::baseUrl|baseUrl]] など、発行されたアセットに関する情報を含むアセットバンドルオブジェクトを返します。


他の場所でアセットバンドルを登録しようとするときは、必要とされるビューオブジェクトを提供しなければなりません。
例えば、ウィジェット クラスの中でアセットバンドルを登録するためには、$this->view によってビューオブジェクトを取得することが出来ます。

アセットバンドルがビューに登録されるとき、舞台裏では、依存している全てのアセットバンドルが Yii によって登録されます。
そして、アセットバンドルがウェブからはアクセス出来ないディレクトリに配置されている場合は、アセットバンドルがウェブディレクトリに発行されます。
その後、ビューがページをレンダリングするときに、登録されたバンドルのリストに挙げられている CSS と JavaScript ファイルのための <link> タグと <script> タグが生成されます。
これらのタグの順序は、登録されたバンドル間の依存関係、および、[[yii\web\AssetBundle::css]] と [[yii\web\AssetBundle::js]] のプロパティのリストに挙げられたアセットの順序によって決定されます。


動的なアセットバンドル 

アセットバンドルは、通常の PHP クラスですので、内部のパラメータを動的に調整することに関係する追加のロジックを持つことが出来ます。
例えば、洗練された JavaScript ライブラリには、国際化の機能を、サポートする言語ごとに独立したソースファイルにパッケージして提供しているものもあります。
その場合、ライブラリの翻訳を動作させるためには、特定の ‘.js’ ファイルをページに追加しなければなりません。
このことを [[yii\web\AssetBundle::init()]] メソッドをオーバーライドすることによって実現することが出来ます。

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle
{
    public $sourcePath = '/path/to/sophisticated/src';
    public $js = [
        'sophisticated.js' // 常に使用されるファイル
    ];

    public function init()
    {
        parent::init();
        $this->js[] = 'i18n/' . Yii::$app->language . '.js'; // 動的に追加されるファイル
    }
}





個々のアセットバンドルは、 [[yii\web\AssetBundle::register()]] によって返されるインスタンスによって調整することも出来ます。
例えば、

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // 動的に追加されるファイル






Note: アセットバンドルの動的な調整はサポートされてはいますが、推奨はされません。
予期しない副作用を引き起こしやすいので、可能であれば避けるべきです。





アセットバンドルをカスタマイズする 

Yii は、[[yii\web\AssetManager]] によって実装されている assetManager という名前のアプリケーションコンポーネントを通じてアセットバンドルを管理します。
[[yii\web\AssetManager::bundles]] プロパティを構成することによって、アセットバンドルの振る舞いをカスタマイズすることが出来ます。
例えば、デフォルトの [[yii\web\JqueryAsset]] アセットバンドルはインストールされた jQuery の Bower パッケージにある jquery.js ファイルを使用します。
あなたは、可用性とパフォーマンスを向上させるために、Google によってホストされたバージョンを使いたいと思うかも知れません。
次のように、アプリケーションの構成情報で assetManager を構成することによって、それが達成できます。

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => [
                    'sourcePath' => null,   // バンドルを発行しない
                    'js' => [
                        '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
                    ]
                ],
            ],
        ],
    ],
];





複数のアセットバンドルも同様に [[yii\web\AssetManager::bundles]] によって構成することが出来ます。
配列のキーは、アセットバンドルのクラス名 (最初のバックスラッシュを除く) とし、配列の値は、対応する 構成情報配列 とします。


Tip: アセットバンドルの中で使うアセットを条件的に選択することが出来ます。
次の例は、開発環境では jquery.js を使い、そうでなければ jquery.min.js を使う方法を示すものです。

'yii\web\JqueryAsset' => [
    'js' => [
        YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
    ]
],








無効にしたいアセットバンドルの名前に false を結びつけることによって、一つまたは複数のアセットバンドルを無効にすることが出来ます。
無効にされたアセットバンドルをビューに登録した場合は、依存するバンドルは一つも登録されません。
また、ビューがページをレンダリングするときも、バンドルの中のアセットは一つもインクルードされません。
例えば、[[yii\web\JqueryAsset]] を無効化するために、次の構成情報を使用することが出来ます。

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => false,
            ],
        ],
    ],
];





[[yii\web\AssetManager::bundles]] を false にセットすることによって、全て のバンドルを無効にすることも出来ます。

[[yii\web\AssetManager::bundles]] によってなされたカスタマイズはアセットバンドルの生成時、すなわち、オブジェクトのコンストラクタの段階で適用される、
ということを心に留めてください。
従って、[[yii\web\AssetManager::bundles]] のレベルで設定されたマッピングは、それ以後にバンドルのオブジェクトに対してなされる修正によって上書きされます。
具体的に言えば、[[yii\web\AssetBundle::init()]] メソッドの中での修正や、登録されたバンドルオブジェクトに対する修正は、AssetManager の構成よりも優先されます。
以下に、[[yii\web\AssetManager::bundles]] によって設定されたマッピングが効力を持たない例を示します。

// プログラムのソースコード

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class LanguageAssetBundle extends AssetBundle
{
    // ...

    public function init()
    {
        parent::init();
        $this->baseUrl = '@web/i18n/' . Yii::$app->language; // AssetManager` では処理出来ない!
    }
}
// ...

$bundle = \app\assets\LargeFileAssetBundle::register(Yii::$app->view);
$bundle->baseUrl = YII_DEBUG ? '@web/large-files': '@web/large-files/minified'; // AssetManager` では処理出来ない!


// アプリケーション構成

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'app\assets\LanguageAssetBundle' => [
                    'baseUrl' => 'http://some.cdn.com/files/i18n/en' // 効力を持たない!
                ],
                'app\assets\LargeFileAssetBundle' => [
                    'baseUrl' => 'http://some.cdn.com/files/large-files' // 効力を持たない!
                ],
            ],
        ],
    ],
];








アセットマッピング 

時として、複数のアセットバンドルで使われている 正しくない/互換でない アセットファイルパスを「修正」したい場合があります。
例えば、バンドル A がバージョン 1.11.1 の jquery.min.js を使い、バンドル B がバージョン 2.1.1 の jquery.js を使っているような場合です。
それぞれのバンドルをカスタマイズすることで問題を修正することも出来ますが、それよりも簡単な方法は、アセットマップ 機能を使って、正しくないアセットを望ましいアセットに割り付けることです。
そうするためには、以下のように [[yii\web\AssetManager::assetMap]] プロパティを構成します。

return [
    // ...
    'components' => [
        'assetManager' => [
            'assetMap' => [
                'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
            ],
        ],
    ],
];





[[yii\web\AssetManager::assetMap|assetMap]] のキーは修正したいアセットの名前であり、値は望ましいアセットのパスです。
アセットバンドルをビューに登録するとき、[[yii\web\AssetBundle::css|css]] と [[yii\web\AssetBundle::js|js]] の配列に含まれるすべてのアセットファイルの相対パスがこのマップと突き合わせて調べられます。
キーのどれかがアセットファイルのパス (利用できる場合は、[[yii\web\AssetBundle::sourcePath]] が前置されます) の最後の部分と一致した場合は、対応する値によってアセットが置き換えられ、ビューに登録されます。
例えば、my/path/to/jquery.js というアセットファイルは jquery.js というキーにマッチします。


Note: 相対パスを使って指定されたアセットだけがアセットマッピングの対象になります。
そして、置き換える側のアセットのパスは、絶対 URL であるか、[[yii\web\AssetManager::basePath]] からの相対パスであるかの、どちらかでなければなりません。





アセット発行 

既に述べたように、アセットバンドルがウェブからアクセス出来ないディレクトリに配置されている場合は、バンドルがビューに登録されるときに、アセットがウェブディレクトリにコピーされます。
このプロセスは アセット発行 と呼ばれ、[[yii\web\AssetManager|アセットマネージャ]] によって自動的に実行されます。

デフォルトでは、アセットが発行されるディレクトリは @webroot/assets であり、@web/assets という URL に対応するものです。
この場所は、[[yii\web\AssetManager::basePath|basePath]] と [[yii\web\AssetManager::baseUrl|baseUrl]] のプロパティを構成してカスタマイズすることが出来ます。

ファイルをコピーすることでアセットを発行する代りに、OS とウェブサーバが許容するなら、シンボリックリンクを使うことを考慮しても良いでしょう。
この機能は [[yii\web\AssetManager::linkAssets|linkAssets]] を true にセットすることで有効にすることが出来ます。

return [
    // ...
    'components' => [
        'assetManager' => [
            'linkAssets' => true,
        ],
    ],
];





上記の構成によって、アセットマネージャはアセットバンドルを発行するときにソースパスへのシンボリックリンクを作成するようになります。
この方がファイルのコピーより速く、また、発行されたアセットが常に最新であることを保証することも出来ます。






よく使われるアセットバンドル 

コアの Yii コードは多くのアセットバンドルを定義しています。
その中で、下記のバンドルはよく使われるものであり、あなたのアプリケーションやエクステンションのコードでも参照することが出来るものです。


	[[yii\web\YiiAsset]]: 主として yii.js ファイルをインクルードするためのバンドルです。
このファイルはモジュール化された JavaScript のコードを編成するメカニズムを実装しています。
また、data-method と data-confirm の属性に対する特別なサポートや、その他の有用な機能を提供します。
yii.js に関する詳細な情報は クライアントスクリプトの節 にあります。

	[[yii\web\JqueryAsset]]: jQuery の bower パッケージから jquery.js ファイルをインクルードします。

	[[yii\bootstrap\BootstrapAsset]]: Twitter Bootstrap フレームワークから CSS ファイルをインクルードします。

	[[yii\bootstrap\BootstrapPluginAsset]]: Bootstrap JavaScript プラグインをサポートするために、Twitter Bootstrap フレームワークから JavaScript ファイルをインクルードします。

	[[yii\jui\JuiAsset]]: jQuery UI ライブラリから CSS と JavaScript のファイルをインクルードします。



あなたのコードが、jQuery や jQuery UI または Bootstrap に依存する場合は、自分自身のバージョンを作るのではなく、これらの定義済みのアセットバンドルを使用すべきです。
これらのバンドルのデフォルトの設定があなたの必要を満たさない時は、アセットバンドルをカスタマイズする の項で説明したように、それをカスタマイズすることが出来ます。




アセット変換 

直接に CSS および/または JavaScript のコードを書く代りに、何らかの拡張構文を使って書いたものを特別なツールを使って CSS/JavaScript に変換する、ということを開発者はしばしば行います。
例えば、CSS コードのためには、LESS [http://lesscss.org/] や SCSS [http://sass-lang.com/] を使うことが出来ます。
また、JavaScript のためには、TypeScript [http://www.typescriptlang.org/] を使うことが出来ます。

拡張構文を使ったアセットファイルをアセットバンドルの中の [[yii\web\AssetBundle::css|css]] と [[yii\web\AssetBundle::js|js]] のリストに挙げることが出来ます。
例えば、

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.less',
    ];
    public $js = [
        'js/site.ts',
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





このようなアセットバンドルをビューに登録すると、[[yii\web\AssetManager|アセットマネージャ]] が自動的にプリプロセッサツールを走らせて、認識できた拡張構文のアセットを CSS/JavaScript に変換します。
最終的にビューがページをレンダリングするときには、ビューは元の拡張構文のアセットではなく、変換後の CSS/JavaScript ファイルをページにインクルードします。

Yii はファイル名の拡張子を使って、アセットが使っている拡張構文を識別します。デフォルトでは、下記の構文とファイル名拡張子を認識します。


	LESS [http://lesscss.org/]: .less

	SCSS [http://sass-lang.com/]: .scss

	Stylus [http://learnboost.github.io/stylus/]: .styl

	CoffeeScript [http://coffeescript.org/]: .coffee

	TypeScript [http://www.typescriptlang.org/]: .ts



Yii はインストールされたプリプロセッサツールに頼ってアセットを変換します。
例えば、LESS [http://lesscss.org/] を使うためには、lessc プリプロセッサコマンドをインストールしなければなりません。

下記のように [[yii\web\AssetManager::converter]] を構成することで、プリプロセッサコマンドとサポートされる拡張構文をカスタマイズすることが出来ます。

return [
    'components' => [
        'assetManager' => [
            'converter' => [
                'class' => 'yii\web\AssetConverter',
                'commands' => [
                    'less' => ['css', 'lessc {from} {to} --no-color'],
                    'ts' => ['js', 'tsc --out {to} {from}'],
                ],
            ],
        ],
    ],
];





上記においては、サポートされる拡張構文が [[yii\web\AssetConverter::commands]] プロパティによって定義されています。
配列のキーはファイルの拡張子 (先頭のドットは省く) であり、配列の値は結果として作られるアセットファイルの拡張子とアセット変換を実行するためのコマンドです。
コマンドの中の {from} と {to} のトークンは、ソースのアセットファイルのパスとターゲットのアセットファイルのパスに置き換えられます。


Info: 上記で説明した方法の他にも、拡張構文のアセットを扱う方法はあります。
例えば、grunt [http://gruntjs.com/] のようなビルドツールを使って、拡張構文のアセットをモニターし、自動的に変換することが出来ます。
この場合は、元のファイルではなく、結果として作られる CSS/JavaScript ファイルをアセットバンドルのリストに挙げなければなりません。





アセットを結合して圧縮する 

ウェブページは数多くの CSS および/または JavaScript ファイルをインクルードすることがあり得ます。
HTTP リクエストの数とこれらのファイルの全体としてのダウンロードサイズを削減するためによく用いられる方法は、複数の CSS/JavaScript ファイルを結合して圧縮し、一つまたはごく少数のファイルにまとめることです。
そして、ウェブページでは元のファイルをインクルードする代りに、圧縮されたファイルをインクルードする訳です。


Info: アセットの結合と圧縮は、通常はアプリケーションが本番モードにある場合に必要になります。
開発モードにおいては、たいていは元の CSS/JavaScript ファイルを使う方がデバッグのために好都合です。


次に、既存のアプリケーションコードを修正する必要なしに、アセットファイルを結合して圧縮する方法を紹介します。


	アプリケーションの中で、結合して圧縮する予定のアセットバンドルを全て探し出す。

	これらのバンドルを一個か数個のグループにまとめる。どのバンドルも一つのグループにしか属することが出来ないことに注意。

	各グループの CSS ファイルを一つのファイルに結合/圧縮する。JavaScript ファイルに対しても同様にこれを行う。

	各グループに対して新しいアセットバンドルを定義する。
	[[yii\web\AssetBundle::css|css]] と [[yii\web\AssetBundle::js|js]] のプロパティに、それぞれ、結合された CSS ファイルと JavaScript ファイルをセットする。

	各グループに属する元のアセットバンドルをカスタマイズして、[[yii\web\AssetBundle::css|css]] と [[yii\web\AssetBundle::js|js]] のプロパティを空にし、[[yii\web\AssetBundle::depends|depends]] プロパティにグループのために作られた新しいバンドルを指定する。







この方法を使うと、ビューでアセットバンドルを登録したときに、元のバンドルが属するグループのための新しいアセットバンドルが自動的に登録されるようになります。
そして、結果として、結合/圧縮されたアセットファイルが、元のファイルの代りに、ページにインクルードされます。


一例 

上記の方法をさらに説明するために一つの例を挙げましょう。

あなたのアプリケーションが二つのページ、X と Y を持つと仮定します。
ページ X はアセットバンドル A、B、C を使用し、ページ Y はアセットバンドル B、C、D を使用します。

これらのアセットバンドルを分割する方法は二つあります。一つは単一のグループを使用して全てのアセットバンドルを含める方法です。
もう一つは、A をグループ X に入れ、D をグループ Y に入れ、そして、B と C をグループ S に入れる方法です。どちらが良いでしょう? 場合によります。
最初の方法の利点は、二つのページが同一の結合された CSS と JavaScript のファイルを共有するため、HTTP キャッシュの効果が高くなることです。
その一方で、単一のグループが全てのバンドルを含むために、結合された CSS と JavaScript のファイルはより大きくなり、従って最初のファイル転送時間はより長くなります。
この例では話を簡単にするために、最初の方法、すなわち、全てのバンドルを含む単一のグループを使用することにします。


Info: アセットバンドルをグループに分けることは些細な仕事ではありません。
通常、そのためには、いろいろなページのさまざまなアセットの現実世界での転送量を分析することが必要になります。
とりあえず、最初は、簡単にするために、単一のグループから始めて良いでしょう。


既存のツール (例えば Closure Compiler [https://developers.google.com/closure/compiler/] や YUI Compressor [https://github.com/yui/yuicompressor/]) を使って、全てのバンドルにある CSS と JavaScript のファイルを結合して圧縮します。
ファイルは、バンドル間の依存関係を満たす順序に従って結合しなければならないことに注意してください。
例えば、バンドル A が B に依存し、B が C と D の両方に依存している場合は、アセットファイルの結合順は、最初に C と D、次に B、そして最後に A としなければなりません。

結合と圧縮が完了すると、一つの CSS ファイルと一つの JavaScript ファイルが得られます。
それらは、all-xyz.css および all-xyz.js と命名されたとしましょう。
ここで xyz は、ファイル名をユニークにして HTTP キャッシュの問題を避けるために使用されるタイムスタンプまたはハッシュを表します。

いよいよ最終ステップです。
アプリケーションの構成情報の中で、[[yii\web\AssetManager|アセットマネージャ]] を次のように構成します。

return [
    'components' => [
        'assetManager' => [
            'bundles' => [
                'all' => [
                    'class' => 'yii\web\AssetBundle',
                    'basePath' => '@webroot/assets',
                    'baseUrl' => '@web/assets',
                    'css' => ['all-xyz.css'],
                    'js' => ['all-xyz.js'],
                ],
                'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
            ],
        ],
    ],
];





アセットバンドルをカスタマイズする の項で説明したように、上記の構成によって元のバンドルは全てデフォルトの振る舞いを変更されます。
具体的にいえば、バンドル A、B、C、D は、もはやアセットファイルを一つも持っていません。
この4つは、それぞれ、結合された all-xyz.css と all-xyz.js ファイルを持つ all バンドルに依存するようになりました。
結果として、ページ X では、バンドル A、B、C から元のソースファイルをインクルードする代りに、これら二つの結合されたファイルだけがインクルードされます。
同じことはページ Y でも起ります。

最後にもう一つ、上記の方法をさらにスムーズに運用するためのトリックがあります。
アプリケーションの構成情報ファイルを直接修正する代りに、バンドルのカスタマイズ用の配列を独立したファイルに置いて、条件によってそのファイルをアプリケーションの構成情報にインクルードすることが出来ます。
例えば、

return [
    'components' => [
        'assetManager' => [
            'bundles' => require(__DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php')),  
        ],
    ],
];





つまり、アセットバンドルの構成情報配列は、本番モードのものは assets-prod.php に保存し、開発モードのものは assets-dev.php に保存するという訳です。


Note: このアセット結合のメカニズムは、登録されるアセットバンドルのプロパティをオーバーライドできるという [[yii\web\AssetManager::bundles]] の機能に基づいています。
しかし、既に上で述べたように、この機能は、[[yii\web\AssetBundle::init()]] メソッドの中やバンドルが登録された後で実行されるアセットバンドルの修正をカバーしていません。
そのような動的なバンドルの使用は、アセット結合をする際には避けなければなりません。





asset コマンドを使う 

Yii は、たった今説明した方法を自動化するための asset という名前のコンソールコマンドを提供しています。

このコマンドを使うためには、最初に構成情報ファイルを作成して、どのアセットバンドルが結合されるか、そして、それらがどのようにグループ化されるかを記述しなければなりません。
asset/template サブコマンドを使って最初にテンプレートを生成し、それをあなたの要求に合うように修正することが出来ます。

yii asset/template assets.php





上記のコマンドは、カレントディレクトリに assets.php というファイルを生成します。このファイルの内容は以下のようなものです。

<?php
/**
 * "yii asset" コンソールコマンドのための構成情報ファイル
 * コンソール環境では、'@webroot' や '@web' のように、存在しないパスエイリアスがあり得ることに注意してください。
 * これらの欠落したパスエイリアスは手作業で定義してください。
 */
return [
    // JavaScript ファイルの圧縮のためのコマンド/コールバックを調整。
    'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
    // CSS ファイルの圧縮のためのコマンド/コールバックを調整。
    'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
    // 圧縮後にアセットのソースを削除するかどうか。
    'deleteSource' => false,
    // 圧縮するアセットバンドルのリスト。
    'bundles' => [
        // 'yii\web\YiiAsset',
        // 'yii\web\JqueryAsset',
    ],
    // 圧縮出力用のアセットバンドル。
    'targets' => [
        'all' => [
            'class' => 'yii\web\AssetBundle',
            'basePath' => '@webroot/assets',
            'baseUrl' => '@web/assets',
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
        ],
    ],
    // アセットマネージャの構成情報
    'assetManager' => [
    ],
];





このファイルを修正して、どのバンドルを結合するつもりであるかを bundles オプションで指定しなければなりません。
targets オプションでは、バンドルがどのようにグループに分割されるかを指定しなければなりません。
既に述べたように、一つまたは複数のグループを定義することが出来ます。


Note: パスエイリアス @webroot および @web はコンソールアプリケーションでは利用できませんので、これらは構成情報の中で明示的に定義しなければなりません。


JavaScript ファイルは結合され、圧縮されて js/all-{hash}.js に保存されます。ここで {hash} は、結果として作られたファイルのハッシュで置き換えられるものです。

jsCompressor と cssCompressor のオプションは、JavaScript と CSS の結合/圧縮を実行するコンソールコマンドまたは PHP コールバックを指定するものです。
デフォルトでは、Yii は JavaScript ファイルの結合に Closure Compiler [https://developers.google.com/closure/compiler/] を使い、CSS ファイルの結合に YUI Compressor [https://github.com/yui/yuicompressor/] を使用します。
あなたの好みのツールを使うためには、手作業でツールをインストールしたり、オプションを修正したりしなければなりません。

この構成情報ファイルを使い、asset コマンドを走らせて、アセットファイルを結合して圧縮し、同時に、新しいアセットバンドルの構成情報ファイル assets-prod.php を生成することが出来ます。

yii asset assets.php config/assets-prod.php





直前の項で説明したように、この生成された構成情報ファイルをアプリケーションの構成情報にインクルードすることが出来ます。


Note: アプリケーションのアセットバンドルを [[yii\web\AssetManager::bundles]] または [[yii\web\AssetManager::assetMap]] によってカスタマイズしており、
そのカスタマイズを圧縮のソースファイルにも適用したい場合は、それらのオプションを asset コマンドの構成ファイルの assetManager のセクションに含めなければいけません。



Note: 圧縮のソースを指定する場合は、パラメータが動的に (例えば init() メソッドの中や登録後に) 修正されるアセットバンドルを避けなければなりません。
なぜなら、パラメータの動的な修正は、圧縮後は正しく働かない可能性があるからです。



Info: asset コマンドを使うことは、アセットの結合・圧縮のプロセスを自動化する唯一の選択肢ではありません。
優秀なタスク実行ツールである grunt [http://gruntjs.com/] を使っても、同じ目的を達することが出来ます。





アセットバンドルをグループ化する 

直前の項において、全てのアセットバンドルを一つに結合して、アプリケーションで参照されるアセットファイルに対する HTTP リクエストを最小化する方法を説明しました。
現実には、それが常に望ましいわけではありません。
例えば、あなたのアプリケーションがフロントエンドとバックエンドを持っており、それぞれが異なる一群の JavaScript と CSS ファイルを使う場合を想像してください。
この場合、両方の側の全てのアセットバンドルを一つに結合するのは合理的ではありません。
何故なら、フロントエンドのためのアセットバンドルはバックエンドでは使用されませんから、フロントエンドのページがリクエストされているときにバックエンドのアセットを送信するのはネットワーク帯域の浪費です。

上記の問題を解決するために、アセットバンドルをグループ化して、グループごとにアセットバンドルを結合することが出来ます。
下記の構成情報は、アセットバンドルをグループ化する方法を示すものです。

return [
    ...
    // 出力されるバンドルをグループ化する
    'targets' => [
        'allShared' => [
            'js' => 'js/all-shared-{hash}.js',
            'css' => 'css/all-shared-{hash}.css',
            'depends' => [
                // バックエンドとフロントエンドで共有される全てのアセットを含める
                'yii\web\YiiAsset',
                'app\assets\SharedAsset',
            ],
        ],
        'allBackEnd' => [
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
            'depends' => [
                // バックエンドだけのアセットを含める
                'app\assets\AdminAsset'
            ],
        ],
        'allFrontEnd' => [
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
            'depends' => [], // 残りの全てのアセットを含める
        ],
    ],
    ...
];





ご覧のように、アセットバンドルは三つのグループ、すなわち、allShared、allBackEnd および allFrontEnd に分けられています。
そして、それぞれが適切な一群のアセットバンドルに依存しています。
例えば、allBackEnd は app\assets\AdminAsset に依存しています。
この構成情報によって asset コマンドを実行すると、上記の定義に従ってアセットバンドルが結合されます。


Info: ターゲットバンドルのうちの一つについて depends の構成を空のままにしておくことが出来ます。
そのようにすると、他のターゲットバンドルが依存しないために残された全てのアセットバンドルが、このターゲットバンドルに含まれるようになります。










          

      

      

    

  

  
    
    
    データウィジェット
    
    

    
 
  
  

    
      
          
            
  
データウィジェット

Yii はデータを表示するために使うことが出来る一連の ウィジェット を提供しています。
DetailView は、単一のレコードのデータを表示するのに使うことが出来ます。
それに対して、ListView と GridView は、複数のデータレコードをリストまたはテーブルで表示することが出来るもので、ページネーション、並べ替え、フィルタリングなどの機能を提供するものです。


DetailView [bookmark: detail-view]

DetailView は単一のデータ [[yii\widgets\DetailView::$model|モデル]] の詳細を表示します。

モデルを標準的な書式で表示する場合 (例えば、全てのモデル属性をそれぞれテーブルの一行として表示する場合) に最も適しています。
モデルは [[\yii\base\Model]] またはそのサブクラス、例えば アクティブレコード のインスタンスか、連想配列かのどちらかにすることが出来ます。

DetailView は [[yii\widgets\DetailView::$attributes]] プロパティを使って、モデルのどの属性が表示されるべきか、また、どういうフォーマットで表示されるべきかを決定します。
利用できるフォーマットのオプションについては、フォーマッタの節 を参照してください。

次に DetailView の典型的な用例を示します。

echo DetailView::widget([
    'model' => $model,
    'attributes' => [
        'title',                                           // title 属性 (平文テキストで)
        'description:html',                                // description 属性は HTML としてフォーマットされる
        [                                                  // モデルの所有者の名前
            'label' => '所有者',
            'value' => $model->owner->name,
            'contentOptions' => ['class' => 'bg-red'],     // 値のタグをカスタマイズする HTML 属性
            'captionOptions' => ['tooltip' => 'Tooltip'],  // ラベルのタグをカスタマイズする HTML 属性
        ],
        'created_at:datetime',                             // 作成日時は datetime としてフォーマットされる
    ],
]);





[[yii\widgets\GridView|GridView]] が一組のモデルを処理するのとは異なって、
[[yii\widgets\DetailView|DetailView]] は一つのモデルしか処理しないということを覚えておいてください。
表示すべきモデルはビューの変数としてアクセスできる $model 一つだけですから、たいていの場合、クロージャを使用する必要はありません。

しかし、クロージャが役に立つ場合もあります。例えば、visible が指定されており、それが false と評価される場合には
value の計算を避けたい場合です。

echo DetailView::widget([
    'model' => $model,
    'attributes' => [
        [
            'attribute' => 'owner',
            'value' => function ($model) {
                return $model->owner->name;
            },
            'visible' => \Yii::$app->user->can('posts.owner.view'),
        ],
    ],
]);








ListView [bookmark: list-view]

[[yii\widgets\ListView|ListView]] ウィジェットは、データプロバイダ からのデータを表示するのに使用されます。
各データモデルは指定された [[yii\widgets\ListView::$itemView|ビューファイル]] を使って表示されます。
ListView は、特に何もしなくても、ページネーション、並べ替え、フィルタリングなどの機能を提供してくれますので、エンドユーザに情報を表示するためにも、データ管理 UI を作成するためにも、非常に便利なウィジェットです。

典型的な使用方法は以下の通りです。

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
]);





_post ビューは次のような内容を含むことが出来ます。

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="post">
    <h2><?= Html::encode($model->title) ?></h2>

    <?= HtmlPurifier::process($model->text) ?>    
</div>





上記のビューファイルでは、現在のデータモデルを $model としてアクセスすることが出来ます。
追加で次のものを利用することも出来ます。


	$key: mixed - データアイテムと関連付けられたキーの値。

	$index: integer - データプロバイダによって返されるアイテムの配列の 0 から始まるインデックス。

	$widget: ListView - ウィジェットのインスタンス。



追加のデータを各ビューに渡す必要がある場合は、次のように、[[yii\widgets\ListView::$viewParams|$viewParams]] を使って「キー - 値」のペアを渡すことが出来ます。

echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
    'viewParams' => [
        'fullView' => true,
        'context' => 'main-page',
        // ...
    ],
]);





このようにすると、これらをビューで変数として利用できるようになります。




GridView [bookmark: grid-view]

データグリッドすなわち [[yii\grid\GridView|GridView]] は Yii の最も強力なウィジェットの一つです。
これは、システムの管理セクションを素速く作らねばならない時に、この上なく便利なものです。
このウィジェットは データプロバイダ からデータを受けて、テーブルの形式で、行ごとに一組の [[yii\grid\GridView::columns|カラム]] を使ってデータを表示します。

テーブルの各行が一つのデータアイテムを表します。そして、一つのカラムは通常はアイテムの一属性を表します
(カラムの中に、複数の属性を組み合わせた複雑な式に対応するものや、静的なテキストを表すものを含めることも出来ます)。

GridView を使うために必要な最小限のコードは次のようなものです。

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo GridView::widget([
    'dataProvider' => $dataProvider,
]);





上記のコードは、最初にデータプロバイダを作成し、次に GridView を使って、データプロバイダから受け取る全ての行の全ての属性を表示するものです。
表示されるテーブルには、特に何も設定しなくても、並べ替えとページネーションの機能が装備されます。


グリッドのカラム

グリッドのテーブルのカラムは [[yii\grid\Column]] クラスとして表現され、GridView の構成情報の [[yii\grid\GridView::columns|columns]] プロパティで構成されます。
カラムは、タイプや設定の違いに応じて、データをさまざまな形で表現することが出来ます。
デフォルトのクラスは [[yii\grid\DataColumn]] です。これは、モデルの一つの属性を表現し、その属性による並べ替えとフィルタリングを可能にするものです。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'],
        // $dataProvider に含まれるデータによって定義される単純なカラム
        // モデルのカラムのデータが使われる
        'id',
        'username',
        // 複雑なカラム定義
        [
            'class' => 'yii\grid\DataColumn', // 省略可。これがデフォルト値。
            'value' => function ($data) {
                return $data->name; // 配列データの場合は $data['name']。例えば、SqlDataProvider を使う場合。
            },
        ],
    ],
]);





構成情報の [[yii\grid\GridView::columns|columns]] の部分が指定されない場合は、Yii は、データプロバイダのモデルの表示可能な全てのカラムを表示しようとすることに注意してください。




カラムクラス

グリッドのカラムは、いろいろなカラムクラスを使うことでカスタマイズすることが出来ます。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\SerialColumn', // <-- ここ
            // ここで追加のプロパティを構成することが出来ます
        ],





Yii によって提供されるカラムクラスを以下で見ていきますが、それらに加えて、あなた自身のカラムクラスを作成することも出来ます。

全てのカラムクラスは [[yii\grid\Column]] を拡張するものですので、グリッドのカラムを構成するときに設定できる共通のオプションがいくつかあります。


	[[yii\grid\Column::header|header]] によって、ヘッダ行のコンテントを設定することが出来ます。



	[[yii\grid\Column::footer|footer]] によって、フッタ行のコンテントを設定することが出来ます。



	[[yii\grid\Column::visible|visible]] はカラムの可視性を定義します。



	[[yii\grid\Column::content|content]] によって、行のデータを返す有効な PHP コールバックを渡すことが出来ます。書式は以下の通りです。

function ($model, $key, $index, $column) {
    return '文字列';
}









下記のオプションに配列を渡して、コンテナ要素のさまざまな HTML オプションを指定することが出来ます。


	[[yii\grid\Column::headerOptions|headerOptions]]

	[[yii\grid\Column::footerOptions|footerOptions]]

	[[yii\grid\Column::filterOptions|filterOptions]]

	[[yii\grid\Column::contentOptions|contentOptions]]




データカラム 

[[yii\grid\DataColumn|データカラム]] は、データの表示と並べ替えに使用されます。
これがデフォルトのカラムタイプですので、これを使用するときはクラスの指定を省略することが出来ます。

データカラムの主要な設定項目は、その [[yii\grid\DataColumn::format|format]] プロパティです。
その値が、デフォルトでは [[\yii\i18n\Formatter|Formatter]] である formatter アプリケーションコンポーネント のメソッドに対応します。

echo GridView::widget([
    'columns' => [
        [
            'attribute' => 'name',
            'format' => 'text'
        ],
        [
            'attribute' => 'birthday',
            'format' => ['date', 'php:Y-m-d']
        ],
    ],
]);





上記において、text は [[\yii\i18n\Formatter::asText()]] に対応し、カラムの値が最初の引数として渡されます。
二番目のカラムの定義では、date が [[\yii\i18n\Formatter::asDate()]] に対応します。
カラムの値が、ここでも、最初の引数として渡され、’php:Y-m-d’ が二番目の引数の値として渡されます。

利用できるフォーマッタの一覧については、データのフォーマット の節を参照してください。

データカラムを構成するためには、ショートカット形式を使うことも出来ます。
それについては、[[yii\grid\GridView::columns|columns]] の API ドキュメントで説明されています。




アクションカラム

[[yii\grid\ActionColumn|アクションカラム]] は、各行について、更新や削除などのアクションボタンを表示します。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\ActionColumn',
            // ここで追加のプロパティを構成することが出来ます
        ],





構成が可能なプロパティは、以下の通りです。


	[[yii\grid\ActionColumn::controller|controller]] は、アクションを処理すべきコントローラの ID です。
設定されていない場合は、現在アクティブなコントローラが使われます。



	[[yii\grid\ActionColumn::template|template]] は、アクションカラムの各セルを構成するのに使用されるテンプレートを定義します。
波括弧に囲まれたトークンは、コントローラのアクション ID として扱われます (アクションカラムのコンテキストでは ボタンの名前 とも呼ばれます)。
これらは、[[yii\grid\ActionColumn::$buttons|buttons]] によって定義される、対応するボタン表示コールバックによって置き換えられます。
例えば、{view} というトークンは、buttons['view'] のコールバックの結果によって置き換えられます。
コールバックが見つからない場合は、トークンは空文字列によって置き換えられます。
デフォルトのテンプレートは {view} {update} {delete} です。



	[[yii\grid\ActionColumn::buttons|buttons]] はボタン表示コールバックの配列です。
配列のキーはボタンの名前 (波括弧を除く) であり、値は対応するボタン表示コールバックです。
コールバックは下記のシグニチャを使わなければなりません。

function ($url, $model, $key) {
    // ボタンの HTML コードを返す
}





上記のコードで、$url はカラムがボタンのために生成する URL、$model は現在の行に表示されるモデルオブジェクト、そして $key はデータプロバイダの配列の中にあるモデルのキーです。



	[[yii\grid\ActionColumn::urlCreator|urlCreator]] は、指定されたモデルの情報を使って、ボタンの URL を生成するコールバックです。
コールバックのシグニチャは [[yii\grid\ActionColumn::createUrl()]] のそれと同じでなければなりません。
このプロパティが設定されていないときは、ボタンの URL は [[yii\grid\ActionColumn::createUrl()]] を使って生成されます。



	[[yii\grid\ActionColumn::visibleButtons|visibleButtons]] は、各ボタンの可視性の条件を定義する配列です。
配列のキーはボタンの名前 (波括弧を除く) であり、値は真偽値 true/false または無名関数です。
ボタンの名前がこの配列の中で指定されていない場合は、デフォルトで、ボタンが表示されます。
コールバックは次のシグニチャを使わなければなりません。

function ($model, $key, $index) {
    return $model->status === 'editable';
}





または、真偽値を渡すことも出来ます。

[
    'update' => \Yii::$app->user->can('update')
]












チェックボックスカラム

[[yii\grid\CheckboxColumn|チェックボックスカラム]] はチェックボックスのカラムを表示します。

GridView に CheckboxColumn を追加するためには、以下のようにして、[[yii\grid\GridView::$columns|columns]] 構成情報にカラムを追加します。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        // ...
        [
            'class' => 'yii\grid\CheckboxColumn',
            // ここで追加のプロパティを構成することが出来ます
        ],
    ],





ユーザはチェックボックスをクリックして、グリッドの行を選択することが出来ます。
選択された行は、次の JavaScript コードを呼んで取得することが出来ます。

var keys = $('#grid').yiiGridView('getSelectedRows');
// keys は選択された行と関連付けられたキーの配列








シリアルカラム

[[yii\grid\SerialColumn|シリアルカラム]] は、1 から始まる行番号を表示します。

使い方は、次のように、とても簡単です。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'], // <-- ここ
        // ...










データを並べ替える


Note: このセクションはまだ執筆中です。


	https://github.com/yiisoft/yii2/issues/1576









データをフィルタリングする

データをフィルタリングするためには、GridView は検索基準を表す モデル を必要とします。
検索基準は、通常は、グリッドビューのテーブルのフィルタのフィールドから取得されます。
アクティブレコード を使用している場合は、必要な機能を提供する検索用のモデルクラスを作成するのが一般的なプラクティスです (あなたに代って Gii が生成してくれます)。
このクラスが、グリッドビューのテーブルに表示されるフィルタコントロールのための検証規則を定義し、
検索基準に従って修正されたクエリを持つデータプロバイダを返す search() メソッドを提供します。

Post モデルに対して検索機能を追加するために、次の例のようにして、PostSearch モデルを作成することが出来ます。

<?php

namespace app\models;

use Yii;
use yii\base\Model;
use yii\data\ActiveDataProvider;

class PostSearch extends Post
{
    public function rules()
    {
        // rules() にあるフィールドだけが検索可能
        return [
            [['id'], 'integer'],
            [['title', 'creation_date'], 'safe'],
        ];
    }

    public function scenarios()
    {
        // 親クラスの scenarios() の実装をバイパスする
        return Model::scenarios();
    }

    public function search($params)
    {
        $query = Post::find();

        $dataProvider = new ActiveDataProvider([
            'query' => $query,
        ]);

        // 検索フォームのデータをロードして検証する
        if (!($this->load($params) && $this->validate())) {
            return $dataProvider;
        }

        // フィルタを追加してクエリを修正する
        $query->andFilterWhere(['id' => $this->id]);
        $query->andFilterWhere(['like', 'title', $this->title])
              ->andFilterWhere(['like', 'creation_date', $this->creation_date]);

        return $dataProvider;
    }
}






Tip: フィルタのクエリを構築する方法を学ぶためには、クエリビルダ、
中でも特に フィルタ条件 を参照してください。


この search() メソッドをコントローラで使用して、GridView のためのデータプロバイダを取得することが出来ます。

$searchModel = new PostSearch();
$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [
    'dataProvider' => $dataProvider,
    'searchModel' => $searchModel,
]);





そしてビューでは、$dataProvider と $searchModel を GridView に与えます。

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'filterModel' => $searchModel,
    'columns' => [
        // ...
    ],
]);








独立したフィルタ・フォーム

たいていの場合はグリッドビューのヘッダのフィルタで十分でしょう。
しかし、独立したフィルタのフォームが必要な場合でも、簡単に追加することができます。
まず、以下の内容を持つパーシャル・ビュー _search.php を作成します。

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\PostSearch */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="post-search">
    <?php $form = ActiveForm::begin([
        'action' => ['index'],
        'method' => 'get',
    ]); ?>

    <?= $form->field($model, 'title') ?>

    <?= $form->field($model, 'creation_date') ?>

    <div class="form-group">
        <?= Html::submitButton('Search', ['class' => 'btn btn-primary']) ?>
        <?= Html::submitButton('Reset', ['class' => 'btn btn-default']) ?>
    </div>

    <?php ActiveForm::end(); ?>
</div>





そして、これを以下のように index.php ビューにインクルードします。

<?= $this->render('_search', ['model' => $searchModel]) ?>






Note: Gii を使って CRUD コードを生成する場合、デフォルトで、独立したフィルタ・フォーム (_search.php) が生成されます。
ただし、index.php ビューの中ではコメントアウトされています。
コメントを外せば、すぐに使うことが出来ます。


独立したフィルタ・フォームは、グリッドビューに表示されないフィールドによってフィルタをかけたり、
または日付の範囲のような特殊なフィルタ条件を使う必要があったりする場合に便利です。
日付の範囲によってフィルタする場合は、DB には存在しない createdFrom と createdTo という属性を検索用のモデルに追加すること良いでしょう。

class PostSearch extends Post
{
    /**
     * @var string
     */
    public $createdFrom;

    /**
     * @var string
     */
    public $createdTo;
}





そして、search() メソッドでクエリの条件を次のように拡張します。

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])
      ->andFilterWhere(['<=', 'creation_date', $this->createdTo]);





そして、フィルタ・フォームに、日付の範囲を示すフィールドを追加します。

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>








モデルのリレーションを扱う

GridView でアクティブレコードを表示するときに、リレーションのカラムの値、例えば、単に投稿者の id というのではなく、投稿者の名前を表示するという場合に遭遇するかも知れません。
Post モデルが author という名前のリレーションを持っていて、その投稿者のモデルが name という属性を持っているなら、[[yii\grid\GridView::$columns]] の属性名を author.name と定義します。
そうすれば、GridView が投稿者の名前を表示するようになります。
ただし、並べ替えとフィルタリングは、デフォルトでは有効になりません。
これらの機能を追加するためには、前の項で導入した PostSearch モデルを修正しなければなりません。

リレーションのカラムによる並べ替えを有効にするためには、リレーションのテーブルを結合し、データプロバイダの Sort コンポーネントに並べ替えの規則を追加します。

$query = Post::find();
$dataProvider = new ActiveDataProvider([
    'query' => $query,
]);

// リレーション `author` を結合します。これはテーブル `users` に対するリレーションであり、
// テーブルエイリアスを `author` とします。
$query->joinWith(['author' => function($query) { $query->from(['author' => 'users']); }]);
// バージョン 2.0.7 以降では、上の行は $query->joinWith('author AS author'); として単純化することが出来ます。
// リレーションのカラムによる並べ替えを有効にします。
$dataProvider->sort->attributes['author.name'] = [
    'asc' => ['author.name' => SORT_ASC],
    'desc' => ['author.name' => SORT_DESC],
];

// ...





フィルタリングも上記と同じ joinWith の呼び出しを必要とします。また、次のように、attributes と rules の中で、検索可能なカラムを追加で定義する必要があります。

public function attributes()
{
    // 検索可能な属性にリレーションのフィールドを追加する
    return array_merge(parent::attributes(), ['author.name']);
}

public function rules()
{
    return [
        [['id'], 'integer'],
        [['title', 'creation_date', 'author.name'], 'safe'],
    ];
}





search() メソッドでは、次のように、もう一つのフィルタ条件を追加するだけです。

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.name')]);






Info: 上の例では、リレーション名とテーブルエイリアスに同じ文字列を使用しています。
しかし、エイリアスとリレーション名が異なる場合は、どこでエイリアスを使い、どこでリレーション名を使うかに注意を払わなければなりません。
これに関する簡単な規則は、データベースクエリを構築するために使われる全ての場所でエイリアスを使い、attributes() や rules() など、その他の全ての定義においてリレーション名を使う、というものです。

例えば、投稿者のリレーションテーブルに au というエイリアスを使う場合は、joinWith の文は以下のようになります。

$query->joinWith(['author au']);





リレーションの定義においてエイリアスが定義されている場合は、単に $query->joinWith(['author']); として呼び出すことも可能です。

フィルタ条件においてはエイリアスが使われなければなりませんが、属性の名前はリレーション名のままで変りません。

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('author.name')]);





並べ替えの定義についても同じことです。

$dataProvider->sort->attributes['author.name'] = [
     'asc' => ['au.name' => SORT_ASC],
     'desc' => ['au.name' => SORT_DESC],
];





さらに、並べ替えの [[yii\data\Sort::defaultOrder|defaultOrder]] を指定するときも、エイリアスではなくリレーション名を使う必要があります。

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];









Info: joinWith およびバックグラウンドで実行されるクエリの詳細については、アクティブレコード - リレーションを使ってテーブルを結合する を参照してください。



SQL ビューを使って、データのフィルタリング・並べ替え・表示をする

もう一つ別に、もっと高速で便利な手法があります。SQL ビューです。
例えば、ユーザとユーザのプロファイルを一緒にグリッドビューに表示する必要がある場合、次のような SQL ビューを作成することが出来ます。

CREATE OR REPLACE VIEW vw_user_info AS
    SELECT user.*, user_profile.lastname, user_profile.firstname
    FROM user, user_profile
    WHERE user.id = user_profile.user_id





そして、このビューを表す ActiveRecord を作成します。

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord
{

    /**
     * @inheritdoc
     */
    public static function tableName()
    {
        return 'vw_user_info';
    }

    public static function primaryKey()
    {
        return ['id'];
    }

    /**
     * @inheritdoc
     */
    public function rules()
    {
        return [
            // ここで規則を定義
        ];
    }

    /**
     * @inheritdoc
     */
    public static function attributeLabels()
    {
        return [
            // ここで属性のラベルを定義
        ];
    }


}





このようにした後は、この UserView アクティブレコードを検索用のモデルとともに使うことが出来ます。
並べ替えやフィルタリングの属性を追加で定義する必要はありません。
全ての属性がそのままで動作します。
この手法にはいくつかの長所と短所があることに注意してください。


	並べ替えとフィルタリングの条件をいろいろと定義する必要はありません。全てそのままで動きます。

	データサイズが小さく、実行される SQL クエリの数が少ない (通常なら全てのリレーションについて一つずつ必要になる追加のクエリが要らない) ため、非常に高速になり得ます。

	これは SQL ビューにかぶせた単純な UI に過ぎないもので、エンティティに含まれるドメインロジックを欠いています。
従って、isActive や isDeleted などのような UI に影響するメソッドがある場合は、それらをこのクラスの中に複製する必要があります。








一つのページに複数のグリッドビュー

一つのページで二つ以上のグリッドビューを使うことが出来ますが、お互いが干渉しないように、追加の構成がいくつか必要になります。
グリッドビューの複数のインスタンスを使う場合は、並べ替えとページネーションのリンクが違うパラメータ名を持って生成されるように構成して、それぞれのグリッドビューが独立した並べ替えとページネーションを持つことが出来るようにしなければなりません。
そのためには、データプロバイダの [[yii\data\BaseDataProvider::$sort|sort]] と [[yii\data\BaseDataProvider::$pagination|pagination]] インスタンスの [[yii\data\Sort::sortParam|sortParam]] と [[yii\data\Pagination::pageParam|pageParam]] を設定します。

Post と User のリストを表示するために、二つのプロバイダ、$userProvider と $postProvider を準備済みであると仮定します。

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';
$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';
$postProvider->sort->sortParam = 'post-sort';

echo '<h1>ユーザ</h1>';
echo GridView::widget([
    'dataProvider' => $userProvider,
]);

echo '<h1>投稿</h1>';
echo GridView::widget([
    'dataProvider' => $postProvider,
]);








GridView を Pjax とともに使う

[[yii\widgets\Pjax|Pjax]] ウィジェットを使うと、ページ全体をリロードせずに、ページの一部分だけを更新することが出来ます。
これを使うと、フィルタを使うときに、[[yii\grid\GridView|GridView]] の中身だけを更新することが出来ます。

use yii\widgets\Pjax;
use yii\grid\GridView;

Pjax::begin([
    // PJax のオプション
]);
    Gridview::widget([
        // GridView のオプション
    ]);
Pjax::end();





[[yii\widgets\Pjax|Pjax]] は、[[yii\widgets\Pjax::$linkSelector|Pjax::$linkSelector]] の指定に従って、リンクに対しても動作します。
これは [[yii\grid\ActionColumn|ActionColumn]] を使う場合には問題となり得ます。
この問題を防止するためには、[[yii\grid\ActionColumn::$buttons|ActionColumn::$buttons]]
プロパティを編集して data-pjax="0" という HTML 属性を追加します。


Gii における Pjax を伴う GridView

バージョン 2.0.5 以降、Gii では $enablePjax というオプションがウェブインターフェイスまたはコマンドラインで使用可能になっています。

yii gii/crud --controllerClass="backend\\controllers\PostController" \
  --modelClass="common\\models\\Post" \
  --enablePjax=1





これによって、[[yii\grid\GridView|GridView]] または [[yii\widgets\ListView|ListView]]
を囲む [[yii\widgets\Pjax|Pjax]] ウィジェットが生成されます。








さらに読むべき文書


	Arno Slatius による Rendering Data in Yii 2 with GridView and ListView [http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/]。









          

      

      

    

  

  
    
    
    ウィジェット
    
    

    
 
  
  

    
      
          
            
  
ウィジェット

ウィジェットは、ビュー で使用される再利用可能な構成ブロックで、複雑かつ構成可能なユーザインタフェイス要素をオブジェクト指向のやり方で作成するためのものです。
例えば、日付選択ウィジェットを使うと、入力として日付を選択することを可能にする素敵なデイトピッカーを生成することが出来ます。
このとき、あなたがしなければならないことは、次のようなコードをビューに挿入することだけです:

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>





数多くのウィジェットが Yii にバンドルされています。
例えば、[[yii\widgets\ActiveForm|アクティブフォーム]] や、[[yii\widgets\Menu|メニュー]]、jQuery UI ウィジェット、Twitter Bootstrap ウィジェット などです。
下記では、ウィジェットに関する基本的な知識の手引きをします。
特定のウィジェットの使い方について学ぶ必要がある場合は、クラス API ドキュメントを参照してください。


ウィジェットを使う 

ウィジェットは主として ビュー で使われます。
ビューでウィジェットを使うためには、[[yii\base\Widget::widget()]] メソッドを使うことが出来ます。
このメソッドは、ウィジェットを初期化するための 構成情報 配列を受け取り、ウィジェットのレンダリング結果を返します。
例えば、下記のコードは、日本語を使い、入力を $model の from_date 属性に保存するように構成された日付選択ウィジェットを挿入するものです。

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget([
    'model' => $model,
    'attribute' => 'from_date',
    'language' => 'ja',
    'clientOptions' => [
        'dateFormat' => 'yy-mm-dd',
    ],
]) ?>





ウィジェットの中には、コンテントのブロックを受け取ることが出来るものもあります。
その場合、コンテントのブロックは [[yii\base\Widget::begin()]] と [[yii\base\Widget::end()]] の呼び出しで囲むようにしなければなりません。
例えば、次のコードは [[yii\widgets\ActiveForm]] ウィジェットを使ってログインフォームを生成するものです。
このウィジェットは、begin() と end() が呼ばれる場所で、それぞれ、開始と終了の <form> タグを生成します。
その間に置かれたものは全てそのままレンダリングされます。

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

    <?= $form->field($model, 'username') ?>

    <?= $form->field($model, 'password')->passwordInput() ?>

    <div class="form-group">
        <?= Html::submitButton('ログイン') ?>
    </div>

<?php ActiveForm::end(); ?>





[[yii\base\Widget::widget()]] がウィジェットのレンダリング結果を返すのとは違って、[[yii\base\Widget::begin()]] メソッドがウィジェットのインスタンスを返すことに注意してください。
返されたウィジェットのインスタンスを使って、ウィジェットのコンテントを構築することが出来ます。


Note: いくつかのウィジェットは、[[yii\base\Widget::end()]] が呼ばれるときに内包されるコンテンツを調整するため、出力バッファリング [http://php.net/manual/ja/book.outcontrol.php] を使用します。
この理由から、[[yii\base\Widget::begin()]] と [[yii\base\Widget::end()]] の呼び出しは、同じビューファイルの中で発生するものと想定されています。
この規則に従わない場合は、予期しない出力結果が生じ得ます。



グローバルなデフォルトを構成する

あるタイプのウィジェットのグローバルなデフォルトを DI コンテナによって構成することが出来ます。

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);





詳細については 依存注入コンテナのガイドの “実際の使いかた” の節 を参照してください。






ウィジェットを作成する 

ウィジェットを作成するためには、[[yii\base\Widget]] を拡張して、[[yii\base\Widget::init()]] および/または [[yii\base\Widget::run()]] メソッドをオーバーライドします。
通常、init() メソッドはウィジェットのプロパティを正規化するコードを含むべきものであり、run() メソッドはウィジェットのレンダリング結果を生成するコードを含むべきものです。
レンダリング結果は、直接に “echo” しても、run() の返り値として文字列として返しても構いません。

次の例では、HelloWidget が message プロパティとして割り当てられたコンテントを HTML エンコードして表示します。
プロパティがセットされていない場合は、デフォルトとして “Hello World” を表示します。

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public $message;

    public function init()
    {
        parent::init();
        if ($this->message === null) {
            $this->message = 'Hello World';
        }
    }

    public function run()
    {
        return Html::encode($this->message);
    }
}





このウィジェットを使うために必要なことは、次のコードをビューに挿入するだけのことです。

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'おはよう']) ?>





下記は HelloWidget の変種で、begin() と end() の間に包まれたコンテントを受け取り、それを HTML エンコードして表示するものです。

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public function init()
    {
        parent::init();
        ob_start();
    }

    public function run()
    {
        $content = ob_get_clean();
        return Html::encode($content);
    }
}





ご覧のように、init() の中で PHP の出力バッファが開始され、init() と run() の呼び出しの間の全ての出力がキャプチャされ、run() の中で処理されて返されます。


Info: [[yii\base\Widget::begin()]] を呼ぶと、ウィジェットの新しいインスタンスが作成され、ウィジェットのコンストラクタの最後で init() メソッドが呼ばれます。
[[yii\base\Widget::end()]] を呼ぶと、run() メソッドが呼ばれて、その返り値が end() によって echo されます。


次のコードは、この HelloWidget の新しい変種をどのように使うかを示すものです:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

    ... タグを含みうるコンテント ...

<?php HelloWidget::end(); ?>





場合によっては、ウィジェットが大きな固まりのコンテントを表示する必要があるかもしれません。
コンテントを run() メソッドの中に埋め込むことも出来ますが、より良い方法は、コンテントを ビュー の中に置いて、[[yii\base\Widget::render()]] を呼んでレンダリングすることです。
例えば、

public function run()
{
    return $this->render('hello');
}





デフォルトでは、ウィジェット用のビューは WidgetPath/views ディレクトリの中のファイルに保存すべきものです。
ここで WidgetPath はウィジェットのクラスファイルを含むディレクトリを指します。
したがって、上記の例では、ウィジェットクラスが @app/components に配置されていると仮定すると、@app/components/views/hello.php というビューファイルがレンダリングされることになります。
[[yii\base\Widget::getViewPath()]] メソッドをオーバーライドして、ウィジェットのビューファイルを含むディレクトリをカスタマイズすることが出来ます。




ベストプラクティス 

ウィジェットはビューのコードを再利用するためのオブジェクト指向の方法です。

ウィジェットを作成するときでも、MVC パターンに従うべきです。
一般的に言うと、ロジックはウィジェットクラスに保持し、表現は ビュー に保持すべきです。

ウィジェットは自己完結的に設計されるべきです。
言い換えると、ウィジェットを使うときに、他に何もしないでもビューに挿入することが出来るようにすべきです。
この要求は、ウィジェットが CSS、JavaScript、画像などの外部リソースを必要とする場合は、扱いにくい問題になり得ます。
幸いなことに、Yii はこの問題を解決するのに利用することが出来る アセットバンドル のサポートを提供しています。

ウィジェットがビューコードだけを含む場合は、ビュー と非常に似たものになります。
実際のところ、この場合、両者の唯一の違いは、ウィジェットが再配布可能なクラスである一方で、ビューはアプリケーション内に保持することが望ましい素の PHP スクリプトである、というぐらいの事です。







          

      

      

    

  

  
    
    
    複数のモデルのデータを取得する
    
    

    
 
  
  

    
      
          
            
  
複数のモデルのデータを取得する

複雑なデータを扱う場合には、複数の異なるモデルを使用してユーザの入力を収集する必要があることがあり得ます。
例えば、ユーザのログイン情報は user テーブルに保存されているけれども、ユーザのプロファイル情報は profile テーブルに保存されているという場合を考えて見ると、ユーザに関して入力されたデータを User モデルと Profile モデルによって収集しなければならないでしょう。
Yii のモデルとフォームのサポートを使えば、単一のモデルを扱うのとそれほど違いのない方法によってこの問題を解決することが出来ます。

下記において、User と Profile の二つのモデルのデータを収集することが出来るフォームをどのようにして作成することが出来るかを示します。

最初に、ユーザとプロファイルのデータを収集するためのコントローラアクションは、次のように書くことが出来ます。

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
    public function actionUpdate($id)
    {
        $user = User::findOne($id);
        if (!$user) {
            throw new NotFoundHttpException("ユーザが見つかりませんでした。");
        }
        
        $profile = Profile::findOne($id);
        
        if (!$profile) {
            throw new NotFoundHttpException("ユーザのプロファイルがありません。");
        }
        
        $user->scenario = 'update';
        $profile->scenario = 'update';
        
        if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
            $isValid = $user->validate();
            $isValid = $profile->validate() && $isValid;
            if ($isValid) {
                $user->save(false);
                $profile->save(false);
                return $this->redirect(['user/view', 'id' => $id]);
            }
        }
        
        return $this->render('update', [
            'user' => $user,
            'profile' => $profile,
        ]);
    }
}





この update アクションでは、最初に、更新の対象になる $user と $profile のモデルをデータベースからロードします。
次に [[yii\base\Model::load()]] を呼んで、これら二つのモデルにユーザ入力を代入します。
代入が成功すれば、二つのモデルを検証して保存します。
そうでない場合は、次の内容を持つ update ビューをレンダリングします。

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'user-update-form',
    'options' => ['class' => 'form-horizontal'],
]) ?>
    <?= $form->field($user, 'username') ?>

    ...other input fields...
    
    <?= $form->field($profile, 'website') ?>

    <?= Html::submitButton('更新', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>





ご覧のように、update ビューでは、二つのモデル、すなわち $user と $profile を使ってインプットフィールドをレンダリングすることになります。





          

      

      

    

  

  
    
    
    クイックスタート
    
    

    
 
  
  

    
      
          
            
  
クイックスタート

Yii は、RESTful ウェブサービス API を実装する仕事を簡単にするために、一揃いのツールを提供しています。
具体的に言えば、RESTful API に関する次の機能をサポートしています。


	アクティブレコード のための共通 API をサポートした迅速なプロトタイプ作成

	レスポンス形式のネゴシエーション (デフォルトで JSON と XML をサポート)

	出力フィールドの選択をサポートした、カスタマイズ可能なオブジェクトのシリアライゼーション

	コレクションデータとバリデーションエラーの適切な書式設定

	HATEOAS [http://en.wikipedia.org/wiki/HATEOAS] のサポート

	HTTP 動詞を適切にチェックする効率的なルーティング

	OPTIONS および HEAD 動詞のサポートを内蔵

	認証と権限付与

	データキャッシュと HTTP キャッシュ

	レート制限



以下においては、例を使って、どのようにして最小限のコーディング労力で一組の RESTful API を構築することが出来るかを説明します。

ユーザのデータを RESTful API によって公開したいと仮定しましょう。
ユーザのデータは user という DB テーブルに保存されており、それにアクセスするための アクティブレコード クラス app\models\User が既に作成済みであるとします。


コントローラを作成する 

最初に、コントローラ クラス app\controllers\UserController を次のようにして作成します。

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
    public $modelClass = 'app\models\User';
}





このコントローラクラスは、よく使用される一揃いの RESTful アクションを実装した [[yii\rest\ActiveController]] を拡張するものです。
[[yii\rest\ActiveController::modelClass|modelClass]] を app\models\User と指定することによって、データの取得と操作にどのモデルが使用できるかをコントローラに教えてやります。
The controller class extends from [[yii\rest\ActiveController]], which implements a common set of RESTful actions.
By specifying [[yii\rest\ActiveController::modelClass|modelClass]]
as app\models\User, the controller knows which model can be used for fetching and manipulating data.




URL 規則を構成する 

次に、アプリケーションの構成情報において、urlManager コンポーネントの構成情報を修正します。

'urlManager' => [
    'enablePrettyUrl' => true,
    'enableStrictParsing' => true,
    'showScriptName' => false,
    'rules' => [
        ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
    ],
]





上記の構成情報は、主として、user コントローラの URL 規則を追加して、ユーザのデータが綺麗な URL と意味のある HTTP 動詞によってアクセスおよび操作できるようにするものです。


Info: Yii はコントローラの名前を自動的に複数形にしてエンドポイントとして使用します (下の「試してみる」(#trying-it-out) を参照してください)。
この振る舞いは [[yii\rest\UrlRule::$pluralize]] プロパティを使って構成することが可能です。





JSON の入力を可能にする 

API が JSON 形式で入力データを受け取ることが出来るように、request アプリケーションコンポーネント の [[yii\web\Request::$parsers|parsers]] プロパティを構成して、JSON 入力のために [[yii\web\JsonParser]] を使うようにします。

'request' => [
    'parsers' => [
        'application/json' => 'yii\web\JsonParser',
    ]
]






Info: 上記の構成はオプションです。
上記のように構成しない場合は、API は application/x-www-form-urlencoded と multipart/form-data だけを入力形式として認識します。





試してみる 

上記で示した最小限の労力によって、ユーザのデータにアクセスする RESTful API を作成する仕事は既に完成しています。
作成した API は次のものを含みます。


	GET /users: 全てのユーザをページごとに一覧する

	HEAD /users: ユーザ一覧の概要を示す

	POST /users: 新しいユーザを作成する

	GET /users/123: ユーザ 123 の詳細を返す

	HEAD /users/123: ユーザ 123 の概要を示す

	PATCH /users/123 と PUT /users/123: ユーザ 123 を更新する

	DELETE /users/123: ユーザ 123 を削除する

	OPTIONS /users: エンドポイント /users に関してサポートされている動詞を示す

	OPTIONS /users/123: エンドポイント /users/123 に関してサポートされている動詞を示す



作成した API は、次のように、curl コマンドでアクセスすることが出来ます。

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self, 
      <http://localhost/users?page=2>; rel=next, 
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
    {
        "id": 1,
        ...
    },
    {
        "id": 2,
        ...
    },
    ...
]





受入れ可能なコンテントタイプを application/xml に変更してみてください。
すると、結果が XML 形式で返されます。

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self, 
      <http://localhost/users?page=2>; rel=next, 
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>
    <item>
        <id>1</id>
        ...
    </item>
    <item>
        <id>2</id>
        ...
    </item>
    ...
</response>





次のコマンドは、JSON 形式でユーザのデータを持つ POST リクエストを送信して、新しいユーザを作成します。

$ curl -i -H "Accept:application/json" -H "Content-Type:application/json" -XPOST "http://localhost/users" -d '{"username": "example", "email": "user@example.com"}'

HTTP/1.1 201 Created
...
Location: http://localhost/users/1
Content-Length: 99
Content-Type: application/json; charset=UTF-8

{"id":1,"username":"example","email":"user@example.com","created_at":1414674789,"updated_at":1414674789}






Tip: URL http://localhost/users を入力すれば、ウェブブラウザ経由で API にアクセスすることも出来ます。
ただし、特殊なリクエストヘッダを送信するためには、何らかのブラウザプラグインが必要になるでしょう。


ご覧のように、レスポンスヘッダの中には、総ユーザ数やページ数などの情報が書かれています。
また、データの他のページへナビゲートすることを可能にするリンクもあります。
例えば、http://localhost/users?page=2 にアクセスすれば、ユーザのデータの次のページを取得することが出来ます。

fields と expand パラメータを使えば、どのフィールドが結果に含まれるべきかを指定することも出来ます。
例えば、URL http://localhost/users?fields=id,email は、id と email のフィールドだけを返します。


Info: 気がついたかも知れませんが、http://localhost/users の結果は、いくつかの公開すべきでないフィールド、例えば password_hash や auth_key を含んでいます。
当然ながら、これらが API の結果に出現することは避けたいでしょう。
リソース の節で説明されているように、これらのフィールドを除外することは出来ますし、また、除外しなければなりません。





まとめ 

Yii の RESTful API フレームワークを使う場合は、API エンドポイントをコントローラアクションの形式で実装します。
そして、コントローラを使って、単一タイプのリソースに対するエンドポイントを実装するアクションを編成します。

リソースは [[yii\base\Model]] クラスを拡張するデータモデルとして表現されます。
データベース (リレーショナルまたは NoSQL) を扱っている場合は、[[yii\db\ActiveRecord|ActiveRecord]] を使ってリソースを表現することが推奨されます。

[[yii\rest\UrlRule]] を使って API エンドポイントへのルーティングを簡単にすることが出来ます。

これは要求されてはいませんが、RESTful API は、保守を容易にするために、ウェブのフロントエンドやバックエンドとは別の独立したアプリケーションとして開発することが推奨されます。







          

      

      

    

  

  
    
    
    認証
    
    

    
 
  
  

    
      
          
            
  
認証

認証は、ユーザが誰であるかを確認するプロセスです。
通常は、識別子 (ユーザ名やメールアドレスなど) と秘密のトークン (パスワードやアクセストークンなど) を使って、ユーザがそうであると主張する通りのユーザであるか否かを判断します。
認証がログイン機能の基礎となります。

Yii はさまざまなコンポーネントを結び付けてログインをサポートする認証フレームワークを提供しています。
このフレームワークを使用するために、あなたは主として次の仕事をする必要があります。


	[[yii\web\User|user]] アプリケーションコンポーネントを構成する。

	[[yii\web\IdentityInterface]] インタフェイスを実装するクラスを作成する。




[[yii\web\User]] を構成する 

[[yii\web\User|user]] アプリケーションコンポーネントがユーザの認証状態を管理します。
実際の認証ロジックを含む [[yii\web\User::identityClass|ユーザ識別情報クラス]] は、あなたが指定しなければなりません。
下記のアプリケーション構成情報においては、[[yii\web\User|user]] の [[yii\web\User::identityClass|ユーザ識別情報クラス]] は app\models\User であると構成されています。
app\models\User の実装については、次の項で説明します。

return [
    'components' => [
        'user' => [
            'identityClass' => 'app\models\User',
        ],
    ],
];








[[yii\web\IdentityInterface]] を実装する 

[[yii\web\User::identityClass|ユーザ識別情報クラス]] が実装しなければならない [[yii\web\IdentityInterface]] は次のメソッドを含んでいます。


	[[yii\web\IdentityInterface::findIdentity()|findIdentity()]]: 指定されたユーザ ID を使ってユーザ識別情報クラスのインスタンスを探します。
セッションを通じてログイン状態を保持する必要がある場合に、このメソッドが使用されます。

	単一の秘密のトークンでユーザを認証する必要がある場合 (ステートレスな RESTful アプリケーションなどの場合) に、このメソッドが使用されます。

	[[yii\web\IdentityInterface::getId()|getId()]]: ユーザ識別情報クラスのインスタンスによって表されるユーザの ID を返します。

	このキーがログインクッキーに保存され、後でサーバ側のキーと比較されて、ログインクッキーが有効であることが確認されます。

	



特定のメソッドが必要でない場合は、中身を空にして実装しても構いません。
例えば、あなたのアプリケーションが純粋なステートレス RESTful アプリケーションであるなら、実装する必要があるのは [yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()] と [[yii\web\IdentityInterface::getId()|getId()]] だけであり、他のメソッドは全て中身を空にしておくことが出来ます。

次の例では、[[yii\web\User::identityClass|ユーザ識別情報クラス]] は、user データベーステーブルと関連付けられた アクティブレコード クラスとして実装されています。

<?php

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
    public static function tableName()
    {
        return 'user';
    }

    /**
     * 与えられた ID によってユーザ識別情報を探す
     *
     * @param string|int $id 探すための ID
     * @return IdentityInterface|null 与えられた ID に合致する Identity オブジェクト
     */
    public static function findIdentity($id)
    {
        return static::findOne($id);
    }

    /**
     * 与えられたトークンによってユーザ識別情報を探す
     *
     * @param string $token 探すためのトークン
     * @return IdentityInterface|null 与えられたトークンに合致する Identity オブジェクト
     */
    public static function findIdentityByAccessToken($token, $type = null)
    {
        return static::findOne(['access_token' => $token]);
    }

    /**
     * @return int|string 現在のユーザの ID
     */
    public function getId()
    {
        return $this->id;
    }

    /**
     * @return string 現在のユーザの認証キー
     */
    public function getAuthKey()
    {
        return $this->auth_key;
    }

    /**
     * @param string $authKey
     * @return bool 認証キーが現在のユーザに対して有効か否か
     */
    public function validateAuthKey($authKey)
    {
        return $this->getAuthKey() === $authKey;
    }
}





前述のように、getAuthKey() と validateAuthKey() は、あなたのアプリケーションがクッキーベースのログイン機能を使用する場合にのみ実装する必要があります。
この場合、次のコードを使って、各ユーザに対して認証キーを生成して、user テーブルに保存しておくことが出来ます。

class User extends ActiveRecord implements IdentityInterface
{
    ......

    public function beforeSave($insert)
    {
        if (parent::beforeSave($insert)) {
            if ($this->isNewRecord) {
                $this->auth_key = \Yii::$app->security->generateRandomString();
            }
            return true;
        }
        return false;
    }
}






Note: ユーザ識別情報クラスである User と [[yii\web\User]] を混同してはいけません。
前者は認証のロジックを実装するクラスであり、普通は、ユーザの認証情報を保存する何らかの持続的ストレージと関連付けられた アクティブレコード クラスとして実装されます。
後者はユーザの認証状態の管理に責任を持つアプリケーションコンポーネントです。





[[yii\web\User]] を使う 

[[yii\web\User]] は、主として、user アプリケーションコンポーネントの形で使います。

現在のユーザの識別情報は、Yii::$app->user->identity という式を使って取得することが出来ます。
これは、現在ログインしているユーザの [[yii\web\User::identityClass|ユーザ識別情報クラス]] のインスタンスを返すか、現在のユーザが認証されていない (つまりゲストである) 場合は null を返します。
次のコードは、[[yii\web\User]] からその他の認証関連の情報を取得する方法を示すものです。

// 現在のユーザの識別情報。ユーザが認証されていない場合は null
$identity = Yii::$app->user->identity;

// 現在のユーザの ID。ユーザが認証されていない場合は null
$id = Yii::$app->user->id;

// 現在のユーザがゲストである (認証されていない) かどうか
$isGuest = Yii::$app->user->isGuest;





ユーザをログインさせるためには、次のコードを使うことが出来ます。

// 指定された username を持つユーザ識別情報を探す
// 必要ならパスワードをチェックしてもよいことに注意
$identity = User::findOne(['username' => $username]);

// ユーザをログインさせる
Yii::$app->user->login($identity);





[[yii\web\User::login()]] メソッドは現在のユーザの識別情報を [[yii\web\User]] にセットします。
セッションが [[yii\web\User::enableSession|有効]] にされている場合は、ユーザの認証状態がセッション全体を通じて保持されるように、ユーザ識別情報がセッションに保管されます。
クッキーベースのログイン (つまり “remember me”、「次回は自動ログイン」) が [[yii\web\User::enableAutoLogin|有効]] にされている場合は、ユーザ識別情報をクッキーにも保存して、クッキーが有効である限りは、ユーザの認証状態をクッキーから復元することが可能になります。

クッキーベースのログインを有効にするためには、アプリケーションの構成情報で [[yii\web\User::enableAutoLogin]] を true に構成する必要があります。
また、[[yii\web\User::login()]] メソッドを呼ぶときには、有効期間のパラメータを与える必要があります。

ユーザをログアウトさせるためには、単に次のように logout() を呼びます。

Yii::$app->user->logout();





ユーザのログアウトはセッションが有効にされている場合にだけ意味があることに注意してください。
logout() メソッドは、ユーザ認証状態をメモリとセッションの両方から消去します。
そして、デフォルトでは、ユーザのセッションデータの 全て を破壊します。
セッションデータを保持したい場合は、代りに、Yii::$app->user->logout(false) を呼ばなければなりません。




認証のイベント 

[[yii\web\User]] クラスは、ログインとログアウトのプロセスで、いくつかのイベントを発生させます。


	[[yii\web\User::EVENT_BEFORE_LOGIN|EVENT_BEFORE_LOGIN]]: [[yii\web\User::login()]] の開始時に発生します。
イベントハンドラがイベントの [[yii\web\UserEvent::isValid|isValid]] プロパティを false にセットした場合は、ログインのプロセスがキャンセルされます。

	

	[[yii\web\User::EVENT_BEFORE_LOGOUT|EVENT_BEFORE_LOGOUT]]: [[yii\web\User::logout()]] の開始時に発生します。
イベントハンドラがイベントの [[yii\web\UserEvent::isValid|isValid]] プロパティを false にセットした場合は、ログアウトのプロセスがキャンセルされます。

	



これらのイベントに反応して、ログイン監査、オンラインユーザ統計などの機能を実装することが出来ます。
例えば、[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN] のハンドラの中で、user テーブルにログインの日時と IP アドレスを記録することが出来ます。







          

      

      

    

  

  
    
    
    HTTP キャッシュ
    
    

    
 
  
  

    
      
          
            
  
HTTP キャッシュ

これまでの節で説明したサーバーサイドのキャッシュに加えて、ウェブアプリケーションは、同じページコンテントを生成し送信する時間を節約するために、クライアントサイドでもキャッシュを利用することができます。

クライアントサイドのキャッシュを使用するには、レンダリング結果をキャッシュできるように、コントローラアクションのフィルタとして [[yii\filters\HttpCache]] を設定します。
[[yii\filters\HttpCache]] は GET と HEAD リクエストに対してのみ動作し、それらのリクエストに対する 3 種類のキャッシュ関連の HTTP ヘッダを扱うことができます:


	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]




Last-Modified ヘッダ 

Last-Modified ヘッダは、クライアントがキャッシュした時からページが変更されたかどうかを示すために、タイムスタンプを使用しています。

Last-Modified ヘッダの送信を有効にするには [[yii\filters\HttpCache::lastModified]] プロパティを構成します。
このプロパティは、ページの更新時刻に関する UNIX タイムスタンプを返す PHP のコーラブルでなければなりません。
この PHP コーラブルのシグニチャは以下のとおりです。

/**
 * @param Action $action 現在扱っているアクションオブジェクト
 * @param array $params "params" プロパティの値
 * @return int ページの更新時刻を表す UNIX タイムスタンプ
 */
function ($action, $params)





以下は Last-Modified ヘッダを使用する例です:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('post')->max('updated_at');
            },
        ],
    ];
}





上記のコードは index アクションでのみ HTTP キャッシュを有効にすべきことを記述しています。
Last-Modified は、投稿の最終更新時刻に基づいて生成される必要があります。
ブラウザが初めて index ページにアクセスしたときは、ページはサーバ上で生成されブラウザに送信されます。
もしブラウザが再度同じページにアクセスし、その期間中に投稿に変更がない場合は、サーバはページを再生成せず、ブラウザはクライアントサイドにキャッシュしたものを使用します。
その結果、サーバサイドのレンダリング処理とページコンテントの送信は両方ともスキップされます。




ETag ヘッダ 

“Entity Tag” (略して ETag) ヘッダはページコンテントを表すためのハッシュです。
ページが変更された場合ハッシュも同様に変更されます。
サーバサイドで生成されたハッシュとクライアントサイドで保持しているハッシュを比較することによって、ページが変更されたかどうか、そして再送信するべきかどうかを決定します。

ETag ヘッダの送信を有効にするには [[yii\filters\HttpCache::etagSeed]] プロパティを設定します。
プロパティは ETag のハッシュを生成するためのシードを返す PHP のコーラブルで、以下のようなシグネチャを持たなければなりません。

/**
 * @param Action $action 現在扱っているアクションオブジェクト
 * @param array $params "params" プロパティの値
 * @return string ETag のハッシュを生成するためのシードとして使用する文字列
 */
function ($action, $params)





以下は ETag ヘッダを使用している例です:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['view'],
            'etagSeed' => function ($action, $params) {
                $post = $this->findModel(\Yii::$app->request->get('id'));
                return serialize([$post->title, $post->content]);
            },
        ],
    ];
}





上記のコードは view アクションでのみ HTTP キャッシュを有効にすべきことを記述しています。
Etag HTTP ヘッダは、リクエストされた投稿のタイトルとコンテントに基づいて生成されなければなりません。
ブラウザが初めて view ページにアクセスしたときは、ページがサーバ上で生成されブラウザに送信されます。
ブラウザが再度同じページにアクセスし、投稿のタイトルやコンテントに変更がない場合には、サーバはページを再生成せず、ブラウザはクライアントサイドにキャッシュしたものを使用します。
その結果、サーバサイドのレンダリング処理とページコンテント送信は両方ともスキップされます。

ETag は Last-Modified ヘッダよりも複雑 かつ/または より正確なキャッシング方式を可能にします。例えば、サイトが別のテーマに切り替わった場合には ETag を無効化する、といったことができます。

ETag はリクエスト毎に再評価する必要があるため、負荷の高い生成方法を使うと HttpCache の本来の目的を損なって不必要なオーバーヘッドが生じる場合があります。
ページのコンテントが変更されたときにキャッシュを無効化するための式は単純なものを指定するようにして下さい。


Note: RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4] に準拠して Etag と Last-Modified ヘッダの両方を設定した場合、HttpCache はその両方とも送信します。また、もし If-None-Match ヘッダと If-Modified-Since ヘッダの両方を送信した場合は前者のみが尊重されます。





Cache-Control ヘッダ 

Cache-Control ヘッダはページのための一般的なキャッシュポリシーを指定します。
[[yii\filters\HttpCache::cacheControlHeader]] プロパティにヘッダの値を設定することで、それを送ることができます。デフォルトでは、以下のヘッダが送信されます:

Cache-Control: public, max-age=3600








セッションキャッシュリミッタ

ページでセッションを使用している場合、PHP はいくつかのキャッシュ関連の HTTP ヘッダ (PHP の INI 設定ファイル内で指定されている session.cache_limiter など) を自動的に送信します。
これらのヘッダが HttpCache が実現しようとしているキャッシュ機能を妨害したり無効にしたりすることがあります。
この問題を防止するために、HttpCache はこれらのヘッダの送信をデフォルトで自動的に無効化します。
この動作を変更したい場合は [[yii\filters\HttpCache::sessionCacheLimiter]] プロパティを設定します。
このプロパティには public、private、private_no_expire、そして nocache などの文字列の値を使用することができます。
これらの値についての説明は session_cache_limiter() [http://www.php.net/manual/ja/function.session-cache-limiter.php] を参照してください。




SEO への影響 

検索エンジンのボットはキャッシュヘッダを尊重する傾向があります。
クローラの中には、一定期間内に処理するドメインごとのページ数に制限を持っているものもあるため、キャッシュヘッダを導入して、処理の必要があるページ数を減らしてやると、サイトのインデックスの作成を促進できるかも知れません。







          

      

      

    

  

  
    
    
    アプリケーション
    
    

    
 
  
  

    
      
          
            
  
アプリケーション

アプリケーションは Yii アプリケーションシステム全体の構造とライフサイクルを統制するオブジェクトです。
全ての Yii アプリケーションシステムは、それぞれ、単一のアプリケーションオブジェクトを持ちます。
アプリケーションオブジェクトは、エントリスクリプト において作成され、\Yii::$app という式でグローバルにアクセスすることが出来るオブジェクトです。


Info: ガイドの中で「アプリケーション」という言葉は、文脈に応じて、アプリケーションオブジェクトを意味したり、アプリケーションシステムを意味したりします。


二種類のアプリケーション、すなわち、[[yii\web\Application|ウェブアプリケーション]] と [[yii\console\Application|コンソールアプリケーション]] があります。
名前が示すように、前者は主にウェブのリクエストを処理し、後者はコンソールコマンドのリクエストを処理します。


アプリケーションの構成情報 

エントリスクリプト は、アプリケーションを作成するときに、下記のように、構成情報 を読み込んで、それをアプリケーションに適用します。

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// アプリケーションの構成情報を読み込む
$config = require(__DIR__ . '/../config/web.php');

// アプリケーションのインスタンスを作成し、構成情報を適用する
(new yii\web\Application($config))->run();





通常の 構成情報 と同じように、アプリケーションの構成情報は、アプリケーションオブジェクトのプロパティをどのように初期化するかを指定するものです。
アプリケーションの構成情報は、たいていは非常に複雑なものですから、通常は、上記の例の web.php ファイルのように、構成情報ファイル に保管されます。




アプリケーションのプロパティ 

アプリケーションの構成情報で構成すべき重要なアプリケーションのプロパティは数多くあります。
それらのプロパティの典型的なものは、アプリケーションが走る環境を記述するものです。
例えば、アプリケーションは、どのようにして コントローラ をロードするか、また、どこにテンポラリファイルを保存するかなどを知らなければなりません。
以下において、それらのプロパティを要約します。


必須のプロパティ 

どのアプリケーションでも、最低二つのプロパティは構成しなければなりません。
すなわち、[[yii\base\Application::id|id]] と [[yii\base\Application::basePath|basePath]] です。


[[yii\base\Application::id|id]] 

[[yii\base\Application::id|id]] プロパティは、アプリケーションを他のアプリケーションから区別するユニークな ID を指定するものです。
このプロパティは主としてプログラム内部で使われます。
必須ではありませんが、最良の相互運用性を確保するために、アプリケーション ID を指定するときには英数字だけを使うことが推奨されます。




[[yii\base\Application::basePath|basePath]] 

[[yii\base\Application::basePath|basePath]] プロパティは、アプリケーションのルートディレクトリを指定するものです。
これは、アプリケーションシステムの全ての保護されたソースコードを収容するディレクトリです。
通常、このディレクトリの下に、MVC パターンに対応するソースコードを収容した models、views、controllers などのサブディレクトリがあります。

[[yii\base\Application::basePath|basePath]] プロパティの構成には、ディレクトリパスを使っても、パスエイリアス を使っても構いません。
どちらの形式においても、対応するディレクトリが存在しなければなりません。
さもなくば、例外が投げられます。
パスは realpath() 関数を呼び出して正規化されます。

[[yii\base\Application::basePath|basePath]] プロパティは、しばしば、他の重要なパス (例えば、runtime のパス) を派生させるために使われます。
このため、basePath を示す @app というパスエイリアスが、あらかじめ定義されています。
その結果、派生的なパスはこのエイリアスを使って形成することが出来ます
(例えば、runtime ディレクトリを示す @app/runtime など)。






重要なプロパティ

この項で説明するプロパティは、アプリケーションごとに異なってくるものであるため、たいてい、構成する必要が生じます。


[[yii\base\Application::aliases|aliases]] 

このプロパティを使って、配列形式で一連の エイリアス を定義することが出来ます。
配列のキーがエイリアスの名前であり、配列の値が対応するパスの定義です。
例えば、

[
    'aliases' => [
        '@name1' => 'path/to/path1',
        '@name2' => 'path/to/path2',
    ],
]





このプロパティが提供されているのは、[[Yii::setAlias()]] メソッドを呼び出す代りに、アプリケーションの構成情報を使ってエイリアスを定義することが出来るようにするためです。




[[yii\base\Application::bootstrap|bootstrap]] 

これは非常に有用なプロパティです。
これによって、アプリケーションの [[yii\base\Application::bootstrap()|ブートストラップの過程]] において走らせるべきコンポーネントを配列として指定することが出来ます。
例えば、ある モジュール に URL 規則 をカスタマイズさせたいときに、モジュールの ID をこのプロパティの要素として挙げることが出来ます。

このプロパティにリストする各コンポーネントは、以下の形式のいずれかによって指定することが出来ます。


	components によって指定されているアプリケーションコンポーネントの ID

	modules によって指定されているモジュールの ID

	クラス名

	構成情報の配列

	コンポーネントを作成して返す無名関数



例えば、

[
    'bootstrap' => [
        // アプリケーションコンポーネント ID、または、モジュール ID
        'demo',

        // クラス名
        'app\components\Profiler',

        // 構成情報の配列
        [
            'class' => 'app\components\Profiler',
            'level' => 3,
        ],

        // 無名関数
        function () {
            return new app\components\Profiler();
        }
    ],
]






Info: モジュール ID と同じ ID のアプリケーションコンポーネントがある場合は、ブートストラップの過程ではアプリケーションコンポーネントが使われます。
代りにモジュールを使いたいときは、次のように、無名関数を使って指定することが出来ます。

[
    function () {
        return Yii::$app->getModule('user');
    },
]








ブートストラップの過程で、各コンポーネントのインスタンスが作成されます。
そして、コンポーネントクラスが [[yii\base\BootstrapInterface]] を実装している場合は、その [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] メソッドも呼び出されます。

もう一つの実用的な例が ベーシックプロジェクトテンプレート のアプリケーションの構成情報の中にあります。
そこでは、アプリケーションが開発環境で走るときには debug モジュールと gii モジュールがブートストラップコンポーネントとして構成されています。

if (YII_ENV_DEV) {
    // 'dev' 環境のための構成情報の修正
    $config['bootstrap'][] = 'debug';
    $config['modules']['debug'] = 'yii\debug\Module';

    $config['bootstrap'][] = 'gii';
    $config['modules']['gii'] = 'yii\gii\Module';
}






Note: あまり多くのコンポーネントを bootstrap に置くと、アプリケーションのパフォーマンスを劣化させます。
なぜなら、リクエストごとに同じ一連のコンポーネントを走らせなければならないからです。
ですから、ブートストラップコンポーネントは賢く使ってください。





[[yii\web\Application::catchAll|catchAll]] 

このプロパティは [[yii\web\Application|ウェブアプリケーション]] においてのみサポートされます。
これは、全てのユーザリクエストを処理すべき コントローラアクション を指定するものです。
これは主としてアプリケーションがメンテナンスモードにあって、入ってくる全てのリクエストを単一のアクションで処理する必要があるときに使われます。

構成情報は配列の形を取り、最初の要素はアクションのルートを指定します。
そして、配列の残りの要素 (キー・値のペア) は、アクションに渡されるパラメータを指定します。
例えば、

[
    'catchAll' => [
        'offline/notice',
        'param1' => 'value1',
        'param2' => 'value2',
    ],
]






Info: このプロパティを有効にすると、開発環境でデバッグパネルが動作しなくなります。





[[yii\base\Application::components|components]] 

これこそが、唯一の最も重要なプロパティです。
これによって、アプリケーションコンポーネント と呼ばれる一連の名前付きのコンポーネントを登録して、それらを他の場所で使うことが出来るようになります。
例えば、

[
    'components' => [
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'user' => [
            'identityClass' => 'app\models\User',
            'enableAutoLogin' => true,
        ],
    ],
]





全てのアプリケーションコンポーネントは、それぞれ、配列の中で「キー・値」のペアとして指定されます。
キーはコンポーネントの ID を示し、値はコンポーネントのクラス名または 構成情報 を示します。

どのようなコンポーネントでもアプリケーションに登録することが出来ます。
そして登録されたコンポーネントは、後で、\Yii::$app->componentID という式を使ってグローバルにアクセスすることが出来ます。

詳細は アプリケーションコンポーネント の節を読んでください。




[[yii\base\Application::controllerMap|controllerMap]] 

このプロパティは、コントローラ ID を任意のコントローラクラスに割り付けることを可能にするものです。
デフォルトでは、Yii は 規約 に基づいてコントローラ ID をコントローラクラスに割り付けます
(例えば、post という ID は app\controllers\PostController に割り付けられます)。
このプロパティを構成することによって、特定のコントローラに対する規約を破ることが出来ます。
下記の例では、account は app\controllers\UserController に割り付けられ、article は app\controllers\PostController に割り付けられることになります。

[
    'controllerMap' => [
        'account' => 'app\controllers\UserController',
        'article' => [
            'class' => 'app\controllers\PostController',
            'enableCsrfValidation' => false,
        ],
    ],
]





このプロパティの配列のキーはコントローラ ID を表し、配列の値は対応するコントローラクラスの名前または 構成情報 を表します。




[[yii\base\Application::controllerNamespace|controllerNamespace]] 

このプロパティは、コントローラクラスが配置されるべきデフォルトの名前空間を指定するものです。
デフォルト値は app\controllers です。
コントローラ ID が post である場合、規約によって対応するコントローラの (名前空間を略した) クラス名は PostController となり、完全修飾クラス名は app\controllers\PostController となります。

コントローラクラスは、この名前空間に対応するディレクトリのサブディレクトリに配置されても構いません。
例えば、コントローラ ID として admin/post を仮定すると、対応するコントローラの完全修飾クラス名は app\controllers\admin\PostController となります。

重要なことは、完全修飾されたコントローラクラスが オートロード可能 でなければならず、コントローラクラスの実際の名前空間がこのプロパティと合致していなければならない、ということです。
そうでないと、アプリケーションにアクセスしたときに “ページがみつかりません” というエラーを受け取ることになります。

上で説明された規約を破りたい場合は、controllerMap プロパティを構成することが出来ます。




[[yii\base\Application::language|language]] 

このプロパティは、アプリケーションがコンテントをエンドユーザに表示するときに使うべき言語を指定するものです。
このプロパティのデフォルト値は en であり、英語を意味します。
アプリケーションが多言語をサポートする必要があるときは、このプロパティを構成しなければなりません。

このプロパティの値が、メッセージの翻訳、日付の書式、数字の書式などを含む 国際化 のさまざまな側面を決定します。
例えば、[[yii\jui\DatePicker]] ウィジェットは、どの言語でカレンダーを表示すべきか、そして日付をどのように書式設定すべきかを、デフォルトでは、このプロパティを使用して決定します。

言語を指定するのには、IETF 言語タグ [http://ja.wikipedia.org/wiki/IETF%E8%A8%80%E8%AA%9E%E3%82%BF%E3%82%B0] に従うことが推奨されます。
例えば、en は英語を意味し、en-US はアメリカ合衆国の英語を意味します。

このプロパティに関する詳細は 国際化 の節で読むことが出来ます。




[[yii\base\Application::modules|modules]] 

このプロパティはアプリケーションが含む モジュール を指定するものです。

このプロパティは、モジュールの ID をキーとする、モジュールのクラスまたは 構成情報 の配列です。
例えば、

[
    'modules' => [
        // モジュールクラスで指定された "booking" モジュール
        'booking' => 'app\modules\booking\BookingModule',

        // 構成情報の配列で指定された "comment" モジュール
        'comment' => [
            'class' => 'app\modules\comment\CommentModule',
            'db' => 'db',
        ],
    ],
]





詳細は モジュール の節を参照してください。




[[yii\base\Application::name|name]] 

このプロパティは、エンドユーザに対して表示されるアプリケーション名を指定するものです。
[[yii\base\Application::id|id]] プロパティがユニークな値を取らなければならないのとは違って、このプロパティの値は主として表示目的であり、ユニークである必要はありません。

コードのどこにも使わないのであれば、このプロパティは必ずしも構成する必要はありません。




[[yii\base\Application::params|params]] 

このプロパティは、グローバルにアクセス可能なアプリケーションパラメータの配列を指定するものです。
コードの中のいたる処でハードコードされた数値や文字列を使う代りに、それらをアプリケーションパラメータとして一ヶ所で定義し、必要な場所ではそのパラメータを使うというのが良いプラクティスです。
例えば、次のように、サムネール画像のサイズをパラメータとして定義することが出来ます。

[
    'params' => [
        'thumbnail.size' => [128, 128],
    ],
]





そして、このサイズの値を使う必要があるコードにおいては、下記のようなコードを使うだけで済ませることが出来ます。

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];





後でサムネールのサイズを変更すると決めたときは、アプリケーションの構成情報においてのみサイズを修正すればよく、これに依存するコードには少しも触れる必要がありません。




[[yii\base\Application::sourceLanguage|sourceLanguage]] 

このプロパティはアプリケーションコードが書かれている言語を指定するものです。
デフォルト値は 'en-US'、アメリカ合衆国の英語です。
あなたのコードのテキストのコンテントが英語以外で書かれているときは、このプロパティを構成しなければなりません。

language プロパティと同様に、このプロパティは IETF 言語タグ [http://ja.wikipedia.org/wiki/IETF%E8%A8%80%E8%AA%9E%E3%82%BF%E3%82%B0] に従って構成しなければなりません。
例えば、en は英語を意味し、en-US はアメリカ合衆国の英語を意味します。

このプロパティに関する詳細は 国際化 の節で読むことが出来ます。




[[yii\base\Application::timeZone|timeZone]] 

このプロパティは、PHP ランタイムのデフォルトタイムゾーンを設定する代替手段として提供されています。
このプロパティを構成することによって、本質的には PHP 関数 date_default_timezone_set() [http://php.net/manual/ja/function.date-default-timezone-set.php] を呼び出すことになります。
例えば、

[
    'timeZone' => 'Asia/Tokyo',
]








[[yii\base\Application::version|version]] 

このプロパティはアプリケーションのバージョンを指定するものです。デフォルト値は '1.0' です。
コードの中で全く使わないのであれば、必ずしも構成する必要はありません。






有用なプロパティ 

この項で説明されるプロパティは通常は構成されません。というのは、そのデフォルト値が通常の規約を指定しているからです。
しかしながら、規約を破る必要がある場合には、これらのプロパティを構成することが出来ます。


[[yii\base\Application::charset|charset]] 

このプロパティはアプリケーションが使う文字セットを指定するものです。
デフォルト値は 'UTF-8' であり、あなたのアプリケーションが多数の非ユニコードデータを使うレガシーシステムと連携するのでなければ、たいていのアプリケーションでは、そのままにしておくべきです。




[[yii\base\Application::defaultRoute|defaultRoute]] 

このプロパティは、リクエストがルートを指定していないときにアプリケーションが使用すべき ルート を指定するものです。
ルートは、チャイルドモジュール ID、コントローラ ID、および/または アクション ID を構成要素とすることが出来ます。
例えば、help、post/create、admin/post/create などです。
アクション ID が与えられていない場合は、[[yii\base\Controller::defaultAction]] で指定されるデフォルト値を取ります。

[[yii\web\Application|ウェブアプリケーション]] では、このプロパティのデフォルト値は 'site' であり、その意味するところは、SiteController コントローラとそのデフォルトアクションが使用されるべきである、ということです。
結果として、ルートを指定せずにアプリケーションにアクセスすると、app\controllers\SiteController::actionIndex() の結果が表示されます。

[[yii\console\Application|コンソールアプリケーション]] では、デフォルト値は 'help' であり、コアコマンドの [[yii\console\controllers\HelpController::actionIndex()]] が使用されるべきであるという意味です。
結果として、何も引数を与えずに yii というコマンドを実行すると、ヘルプ情報が表示されることになります。




[[yii\base\Application::extensions|extensions]] 

このプロパティは、アプリケーションにインストールされて使われている エクステンション のリストを指定するものです。
デフォルトでは、@vendor/yiisoft/extensions.php というファイルによって返される配列を取ります。
extensions.php は、Composer [https://getcomposer.org] を使ってエクステンションをインストールすると、自動的に生成され保守されます。
ですから、たいていの場合、このプロパティをあなたが構成する必要はありません。

エクステンションを手作業で保守したいという特殊なケースにおいては、次のようにしてこのプロパティを構成することが出来ます。

[
    'extensions' => [
        [
            'name' => 'extension name',
            'version' => 'version number',
            'bootstrap' => 'BootstrapClassName',  // オプション、構成情報の配列でもよい
            'alias' => [  // optional
                '@alias1' => 'to/path1',
                '@alias2' => 'to/path2',
            ],
        ],

        // ... 上記と同じように、更にエクステンションを構成 ...

    ],
]





ご覧のように、このプロパティはエクステンションの仕様を示す配列を取ります。
それぞれのエクステンションは、name と version の要素を含む配列によって指定されます。
エクステンションが ブートストラップ の過程で走る必要がある場合には、bootstrap 要素をブートストラップのクラス名または 構成情報 の配列によって指定することが出来ます。
また、エクステンションはいくつかの エイリアス を定義することも出来ます。




[[yii\base\Application::layout|layout]] 

このプロパティは、ビュー をレンダリングするときに使われるべきデフォルトのレイアウトを指定するものです。
デフォルト値は 'main' であり、レイアウトパス の下にある main.php というファイルが使われるべきことを意味します。
レイアウトパス と ビューパス の両方がデフォルト値を取る場合、デフォルトのレイアウトファイルは @app/views/layouts/main.php というパスエイリアスとして表すことが出来ます。

滅多には無いことですが、レイアウトをデフォルトで無効にしたい場合は、このプロパティを false として構成することが出来ます。




[[yii\base\Application::layoutPath|layoutPath]] 

このプロパティは、レイアウトファイルが捜されるべきパスを指定するものです。
デフォルト値は、ビューパス の下の layouts サブディレクトリです。
ビューパス がデフォルト値を取る場合、デフォルトのレイアウトパスは @app/views/layouts というパスエイリアスとして表すことが出来ます。

このプロパティはディレクトリまたはパス エイリアス として構成することが出来ます。




[[yii\base\Application::runtimePath|runtimePath]] 

このプロパティは、ログファイルやキャッシュファイルなどの一時的ファイルを生成することが出来るパスを指定するものです。
デフォルト値は、@app/runtime というエイリアスで表現されるディレクトリです。

このプロパティはディレクトリまたはパス エイリアス として構成することが出来ます。
ランタイムパスは、アプリケーションを実行するプロセスによって書き込みが可能なものでなければならないことに注意してください。
そして、この下にある一時的ファイルは秘匿を要する情報を含みうるものですので、ランタイムパスはエンドユーザによるアクセスから保護されなければなりません。

このパスに簡単にアクセスできるように、Yii は @runtime というパスエイリアスを事前に定義しています。




[[yii\base\Application::viewPath|viewPath]] 

このプロパティはビューファイルが配置されるルートディレクトリを指定するものです。
デフォルト値は、@app/views というエイリアスで表現されるディレクトリです。
このプロパティはディレクトリまたはパス エイリアス として構成することが出来ます。




[[yii\base\Application::vendorPath|vendorPath]] 

このプロパティは、Composer [https://getcomposer.org] によって管理される vendor ディレクトリを指定するものです。
Yii フレームワークを含めて、あなたのアプリケーションによって使われる全てのサードパーティライブラリを格納するディレクトリです。
デフォルト値は、@app/vendor というエイリアスで表現されるディレクトリです。

このプロパティはディレクトリまたはパス エイリアス として構成することが出来ます。
このプロパティを修正するときは、必ず、Composer の構成もそれに合せて修正してください。

このパスに簡単にアクセスできるように、Yii は @vendor というパスエイリアスを事前に定義しています。




[[yii\console\Application::enableCoreCommands|enableCoreCommands]] 

このプロパティは [[yii\console\Application|コンソールアプリケーション]] においてのみサポートされています。
Yii リリースに含まれているコアコマンドを有効にすべきか否かを指定するものです。デフォルト値は true です。








アプリケーションのイベント 

アプリケーションはリクエストを処理するライフサイクルの中でいくつかのイベントをトリガします。
これらのイベントに対して、下記のようにして、アプリケーションの構成情報の中でイベントハンドラをアタッチすることが出来ます。

[
    'on beforeRequest' => function ($event) {
        // ...
    },
]





on eventName という構文の使い方については、構成情報 の節で説明されています。

別の方法として、アプリケーションのインスタンスが生成された後、ブートストラップの過程 の中でイベントハンドラをアタッチすることも出来ます。
例えば、

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
    // ...
});






[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] 

このイベントは、アプリケーションがリクエストを処理する 前 にトリガされます。
実際のイベント名は beforeRequest です。

このイベントがトリガされるときには、アプリケーションのインスタンスは既に構成されて初期化されています。
ですから、イベントメカニズムを使って、リクエスト処理のプロセスに干渉するカスタムコードを挿入するのには、ちょうど良い場所です。
例えば、このイベントハンドラの中で、何らかのパラメータに基づいて [[yii\base\Application::language]] プロパティを動的にセットすることが出来ます。




[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]] 

このイベントは、アプリケーションがリクエストの処理を完了した 後、レスポンスを送信する 前 にトリガされます。
実際のイベント名は afterRequest です。

このイベントがトリガされるときにはリクエストの処理は完了していますので、この機をとらえて、リクエストに対する何らかの後処理をしたり、レスポンスをカスタマイズしたりすることが出来ます。

[[yii\web\Response|response]] コンポーネントも、エンドユーザにレスポンスのコンテントを送出する間にいくつかのイベントをトリガすることに注意してください。
それらのイベントは、このイベントの 後 にトリガされます。




[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]] 

このイベントは、コントローラアクション を実行する 前 に毎回トリガされます。
実際のイベント名は beforeAction です。

イベントのパラメータは [[yii\base\ActionEvent]] のインスタンスです。
イベントハンドラは、[[yii\base\ActionEvent::isValid]] プロパティを false にセットして、アクションの実行を中止することが出来ます。
例えば、

[
    'on beforeAction' => function ($event) {
        if (何らかの条件) {
            $event->isValid = false;
        } else {
        }
    },
]





同じ beforeAction イベントが、モジュール と コントローラ からもトリガされることに注意してください。
アプリケーションオブジェクトが最初にこのイベントをトリガし、次に (もし有れば) モジュールが、そして最後にコントローラがこのイベントをトリガします。
イベントハンドラが [[yii\base\ActionEvent::isValid]] を false にセットすると、後続のイベントはトリガされません。




[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]] 

このイベントは、コントローラアクション を実行した 後 に毎回トリガされます。
実際のイベント名は afterAction です。

イベントのパラメータは [[yii\base\ActionEvent]] のインスタンスです。
[[yii\base\ActionEvent::result]] プロパティを通じて、イベントハンドラはアクションの結果にアクセスしたり、またはアクションの結果を修正したり出来ます。
例えば、

[
    'on afterAction' => function ($event) {
        if (何らかの条件) {
            // $event->result を修正する
        } else {
        }
    },
]





同じ afterAction イベントが、モジュール と コントローラ からもトリガされることに注意してください。
これらのオブジェクトは、beforeAction の場合とは逆の順でイベントをトリガします。
すなわち、コントローラオブジェクトが最初にこのイベントをトリガし、次に (もし有れば) モジュールが、そして最後にアプリケーションがこのイベントをトリガします。






アプリケーションのライフサイクル

[image: アプリケーションのライフサイクル]

エントリスクリプト が実行されて、リクエストが処理されるとき、アプリケーションは次のようなライフサイクルを経ます。


	エントリスクリプトがアプリケーションの構成情報を配列として読み出す。

	エントリスクリプトがアプリケーションの新しいインスタンスを作成する。




	[[yii\base\Application::preInit()|preInit()]] が呼び出されて、[[yii\base\Application::basePath|basePath]] のような、優先度の高いアプリケーションプロパティを構成する。

	[[yii\base\Application::errorHandler|エラーハンドラ]] を登録する。

	アプリケーションのプロパティを構成する。

	[[yii\base\Application::init()|init()]] が呼ばれ、そこから更に、ブートストラップコンポーネントを走らせるために、[[yii\base\Application::bootstrap()|bootstrap()]] が呼ばれる。




	エントリスクリプトが [[yii\base\Application::run()]] を呼んで、アプリケーションを走らせる。




	[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] イベントをトリガする。

	リクエストを処理する: リクエストを ルート とそれに結び付くパラメータとして解決する。
ルートによって指定されたモジュール、コントローラ、および、アクションを作成する。
そしてアクションを実行する。

	[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]] イベントをトリガする。

	エンドユーザにレスポンスを送信する。




	エントリスクリプトがアプリケーションから終了ステータスを受け取り、リクエストの処理を完了する。









          

      

      

    

  

  
    
    
    リソース
    
    

    
 
  
  

    
      
          
            
  
リソース

RESTful API は、つまるところ、リソース にアクセスし、それを操作するものです。
MVC の枠組の中では、リソースは モデル として見ることが出来ます。

リソースをどのように表現すべきかについて制約がある訳ではありませんが、Yii においては、通常は、次のような理由によって、リソースを [[yii\base\Model]] またはその子クラス (例えば [[yii\db\ActiveRecord]]) のオブジェクトとして表現することになります。


	[[yii\base\Model]] は [[yii\base\Arrayable]] インタフェイスを実装しています。
これによって、リソースのデータを RESTful API を通じて公開する仕方をカスタマイズすることが出来ます。

	[[yii\base\Model]] は 入力値のバリデーション をサポートしています。
これは、RESTful API がデータ入力をサポートする必要がある場合に役に立ちます。

	[[yii\db\ActiveRecord]] は DB データのアクセスと操作に対する強力なサポートを提供しています。
リソースデータがデータベースに保存されているときは、アクティブレコードが最適の選択です。



この節では、主として、[[yii\base\Model]] クラス (またはその子クラス) から拡張したリソースクラスにおいて、RESTful API を通じて返すことが出来るデータを指定する方法を説明します。
リソースクラスが [[yii\base\Model]] から拡張したものでない場合は、全てのパブリックなメンバ変数が返されます。


フィールド 

RESTful API のレスポンスにリソースを含めるとき、リソースは文字列にシリアライズされる必要があります。
Yii はこのプロセスを二つのステップに分けます。
最初に、リソースは [[yii\rest\Serializer]] によって配列に変換されます。
次に、その配列が [[yii\web\ResponseFormatterInterface|レスポンスフォーマッタ]] によって、リクエストされた形式 (例えば JSON や XML) の文字列にシリアライズされます。
リソースクラスを開発するときに主として力を注ぐべきなのは、最初のステップです。

[[yii\base\Model::fields()|fields()]] および/または [[yii\base\Model::extraFields()|extraFields()]] をオーバーライドすることによって、リソースのどういうデータ (フィールド と呼ばれます) を配列表現に入れることが出来るかを指定することが出来ます。
この二つのメソッドの違いは、前者が配列表現に含まれるべきフィールドのデフォルトのセットを指定するのに対して、後者はエンドユーザが expand クエリパラメータで要求したときに配列に含めることが出来る追加のフィールドを指定する、という点にあります。
例えば、

// fields() に宣言されている全てのフィールドを返す。
http://localhost/users

// id と email のフィールドだけを返す (ただし、fields() で宣言されているなら) 。
http://localhost/users?fields=id,email

// fields() の全てのフィールドと profile のフィールドを返す (ただし、profile が extraFields() で宣言されているなら)。
http://localhost/users?expand=profile

// id、email、profile のフィールドだけを返す (ただし、それらが fields() と extraFields() で宣言されているなら)。
http://localhost/users?fields=id,email&expand=profile






fields()` をオーバーライドする 

デフォルトでは、[[yii\base\Model::fields()]] は、モデルの全ての属性をフィールドとして返し、[[yii\db\ActiveRecord::fields()]] は、DB から投入された属性だけを返します。

fields() をオーバーライドして、フィールドを追加、削除、名前変更、または再定義することが出来ます。
fields() の返り値は配列でなければなりません。
配列のキーはフィールド名であり、配列の値は対応するフィールドの定義です。
フィールドの定義は、プロパティ/属性の名前か、あるいは、対応するフィールドの値を返す無名関数とすることが出来ます。
フィールド名がそれを定義する属性名と同一であるという特殊な場合においては、配列のキーを省略することが出来ます。
例えば、

// 明示的に全てのフィールドをリストする方法。(API の後方互換性を保つために) DB テーブルやモデル属性の
// 変更がフィールドの変更を引き起こさないことを保証したい場合に適している。
public function fields()
{
    return [
        // フィールド名が属性名と同じ
        'id',
        // フィールド名は "email"、対応する属性名は "email_address"
        'email' => 'email_address',
        // フィールド名は "name"、その値は PHP コールバックで定義
        'name' => function ($model) {
            return $model->first_name . ' ' . $model->last_name;
        },
    ];
}

// いくつかのフィールドを除去する方法。親の実装を継承しつつ、公開すべきでないフィールドを
// 除外したいときに適している。
public function fields()
{
    $fields = parent::fields();

    // 公開すべきでない情報を含むフィールドを削除する
    unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

    return $fields;
}






Warning: デフォルトではモデルの全ての属性がエクスポートされる配列に含まれるため、データを精査して、
公開すべきでない情報が含まれていないことを確認すべきです。そういう情報がある場合は、
fields() をオーバーライドして、除去すべきです。上記の例では、auth_key、password_hash
および password_reset_token を選んで除去しています。





extraFields() をオーバーライドする

デフォルトでは、[[yii\base\Model::extraFields()]] は空の配列を返し、[[yii\db\ActiveRecord::extraFields()]] は DB から取得されたリレーションの名前を返します。

extraFields() によって返されるデータの形式は fields() のそれと同じです。
通常、extraFields() は、主として、値がオブジェクトであるフィールドを指定するのに使用されます。
例えば、次のようなフィールドの宣言があるとしましょう。

public function fields()
{
    return ['id', 'email'];
}

public function extraFields()
{
    return ['profile'];
}





http://localhost/users?fields=id,email&expand=profile というリクエストは、次のような JSON データを返すことが出来ます。

[
    {
        "id": 100,
        "email": "100@example.com",
        "profile": {
            "id": 100,
            "age": 30,
        }
    },
    ...
]










リンク 

HATEOAS [http://en.wikipedia.org/wiki/HATEOAS] は、Hypermedia as the Engine of Application State (アプリケーション状態のエンジンとしてのハイパーメディア) の略称です。
HATEOAS は、RESTful API は自分が返すリソースについて、どのようなアクションがサポートされているかをクライアントが発見できるような情報を返すべきである、という概念です。
HATEOAS のキーポイントは、リソースデータが API によって提供されるときには、関連する情報を一群のハイパーリンクによって返すべきである、ということです。

あなたのリソースクラスは、[[yii\web\Linkable]] インタフェイスを実装することによって、HATEOAS をサポートすることが出来ます。
このインタフェイスは、[[yii\web\Link|リンク]] のリストを返すべき [[yii\web\Linkable::getLinks()|getLinks()]] メソッド一つだけを含みます。
典型的には、少なくとも、リソースオブジェクトそのものへの URL を表現する self リンクを返さなければなりません。
例えば、

use yii\base\Model;
use yii\web\Link; // JSON ハイパーメディア API 言語に定義されているリンクオブジェクトを表す
use yii\web\Linkable;
use yii\helpers\Url;

class UserResource extends Model implements Linkable
{
    public $id;
    public $email;

    //...

    public function fields()
    {
        return ['id', 'email'];
    }

    public function extraFields()
    {
        return ['profile'];
    }

    public function getLinks()
    {
        return [
            Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true),
            'edit' => Url::to(['user/view', 'id' => $this->id], true),
            'profile' => Url::to(['user/profile/view', 'id' => $this->id], true),
            'index' => Url::to(['users'], true),
        ];
    }
}





UserResource オブジェクトがレスポンスで返されるとき、レスポンスはそのユーザに関連するリンクを表現する _links 要素を含むことになります。
例えば、

{
    "id": 100,
    "email": "user@example.com",
    // ...
    "_links" => {
        "self": {
            "href": "https://example.com/users/100"
        },
        "edit": {
            "href": "https://example.com/users/100"
        },
        "profile": {
            "href": "https://example.com/users/profile/100"
        },
        "index": {
            "href": "https://example.com/users"
        }
    }
}








コレクション 

リソースオブジェクトは コレクション としてグループ化することが出来ます。
各コレクションは、同じ型のリソースのリストを含みます。

コレクションは配列として表現することも可能ですが、通常は、データプロバイダ として表現する方がより望ましい方法です。
これは、データプロバイダがリソースの並べ替えとページネーションをサポートしているからです。
並べ替えとページネーションは、コレクションを返す RESTful API にとっては、普通に必要とされる機能です。
例えば、次のアクションは投稿のリソースについてデータプロバイダを返すものです。

namespace app\controllers;

use yii\rest\Controller;
use yii\data\ActiveDataProvider;
use app\models\Post;

class PostController extends Controller
{
    public function actionIndex()
    {
        return new ActiveDataProvider([
            'query' => Post::find(),
        ]);
    }
}





データプロバイダが RESTful API のレスポンスで送信される場合は、[[yii\rest\Serializer]] が現在のページのリソースを取り出して、リソースオブジェクトの配列としてシリアライズします。
それだけでなく、[[yii\rest\Serializer]] は次の HTTP ヘッダを使ってページネーション情報もレスポンスに含めます。


	X-Pagination-Total-Count: リソースの総数

	X-Pagination-Page-Count: ページ数

	X-Pagination-Current-Page: 現在のページ (1 から始まる)

	X-Pagination-Per-Page: 各ページのリソース数

	Link: クライアントがリソースをページごとにたどることが出来るようにするための一群のナビゲーションリンク



その一例を クイックスタート の節で見ることが出来ます。







          

      

      

    

  

  
    
    
    概要
    
    

    
 
  
  

    
      
          
            
  
概要

Yii のアプリケーションは モデル・ビュー・コントローラ (MVC) [http://ja.wikipedia.org/wiki/Model_View_Controller] アーキテクチャパターンに従って編成されています。
モデル は、データ、ビジネスロジック、規則を表現します。
ビュー は、モデルの出力表現です。
そして コントローラ は入力を受け取って、それを モデル と ビュー のためのコマンドに変換します。

MVC 以外にも、Yii のアプリケーションは下記の要素を持っています。


	エントリスクリプト: エンドユーザから直接アクセスできる PHP スクリプトです。
これはリクエスト処理サイクルを開始する役目を持っています。

	アプリケーション: グローバルにアクセス可能なオブジェクトであり、アプリケーションコンポーネントを管理し、連携させて、リクエストに応えます。

	アプリケーションコンポーネント: アプリケーションと共に登録されたオブジェクトであり、リクエストに応えるための様々なサービスを提供します。

	モジュール: それ自身に完全な MVC を含む自己完結的なパッケージです。
アプリケーションは複数のモジュールとして編成することが出来ます。

	フィルタ: 各リクエストが実際に処理される前と後に、コントローラから呼び出される必要があるコードを表現します。

	ウィジェット: ビュー に埋め込むことが出来るオブジェクトです。コントローラのロジックを含むことが可能で、異なるビューで再利用することが出来ます。



下の図がアプリケーションの静的な構造を示すものです。

[image: アプリケーションの静的な構造]





          

      

      

    

  

  
    
    
    アプリケーションを走らせる
    
    

    
 
  
  

    
      
          
            
  
アプリケーションを走らせる

Yii のインストールが終ると、実際に動く Yii のアプリケーションにアクセスすることが出来ます。
その URL は、http://hostname/basic/web/index.php あるいは http://hostname/index.php など、設定によって異なります。
この節では、アプリケーションに組み込み済みの機能を紹介し、コードがどのように編成されているか、そして、一般にアプリケーションがリクエストをどのように処理するかを説明します。


Info: 話を簡単にするために、この「始めよう」のチュートリアルを通じて、basic/web をウェブサーバのドキュメントルートとして設定したと仮定します。
そして、アプリケーションにアクセスするための URL は http://hostname/index.php またはそれに似たものになるように設定したと仮定します。
必要に応じて、説明の中の URL を読み替えてください。


フレームワークそのものとは異なり、プロジェクトテンプレートはインストール後は完全にあなたのものであることに注意してください。
必要に応じてコードを追加したり削除したり、完全に書き換えたりするのはあなたの自由です。


機能 

インストールされた基本的なアプリケーションは四つのページを持っています。


	ホームページ: http://hostname/index.php の URL にアクセスすると表示されます。

	「について」のページ。

	「コンタクト」のページ: エンドユーザがメールであなたに連絡を取ることが出来るコンタクトフォームが表示されます。

	「ログイン」ページ: エンドユーザを認証するためのログインフォームが表示されます。
“admin/admin” でログインしてみてください。
「ログイン」のメインメニュー項目が「ログアウト」に変ることに気付くでしょう。



これらのページは共通のヘッダとフッタを持っています。
ヘッダには、異なるページ間を行き来することを可能にするメインメニューバーがあります。

ブラウザのウィンドウの下部にツールバーがあることにも気がつくはずです。
これは Yii によって提供される便利な デバッグツールバー [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide-ja/README.md] であり、たくさんのデバッグ情報、例えば、ログメッセージ、レスポンスのステータス、実行されたデータベースクエリなどを記録して表示するものです。

ウェブアプリケーションに加えて、yii というコンソールスクリプトがアプリケーションのベースディレクトリにあります。
このスクリプトは、バックグラウンドのタスクまたはメンテナンスのタスクを実行するために使用することが出来ます。
これについては、コンソールアプリケーションの節 で説明されています。




アプリケーションの構造 

アプリケーションにとって最も重要なディレクトリとファイルは (アプリケーションのルートディレクトリが basic だと仮定すると) 以下の通りです。

basic/                  アプリケーションのベースパス
    composer.json       Composer によって使用される。パッケージ情報を記述
    config/             アプリケーションその他の構成情報を格納
        console.php     コンソールアプリケーションの構成情報
        web.php         ウェブアプリケーションの構成情報
    commands/           コンソールコマンドのクラスを格納
    controllers/        コントローラのクラスを格納
    models/             モデルのクラスを格納
    runtime/            実行時に Yii によって生成されるファイル (ログやキャッシュなど) を格納
    vendor/             インストールされた Composer パッケージ (Yii フレームワークそのものを含む) を格納
    views/              ビューファイルを格納
    web/                アプリケーションのウェブルート。ウェブからアクセス可能なファイルを格納
        assets/         Yii によって発行されるアセットファイル (javascript と CSS) を格納
        index.php       アプリケーションのエントリスクリプト (ブートストラップスクリプト)
    yii                 Yii コンソールコマンド実行スクリプト





一般に、アプリケーションのファイルは二種類に分けることが出来ます。すなわち、basic/web の下にあるファイルとその他のディレクトリの下にあるファイルです。
前者は HTTP で (すなわちブラウザで) 直接にアクセスすることが出来ますが、後者は直接のアクセスは出来ませんし、許可すべきでもありません。

Yii は モデル・ビュー・コントローラ (MVC) [http://wikipedia.org/wiki/Model-view-controller] アーキテクチャパターンを実装していますが、それが上記のディレクトリ構成にも反映されています。
models ディレクトリが全ての モデルクラス を格納し、views ディレクトリが全ての ビュースクリプト を格納し、
controllers ディレクトリが全ての コントローラクラス を格納しています。

次の図がアプリケーションの静的な構造を示すものです。

[image: アプリケーションの静的な構造]

各アプリケーションは一つのエントリスクリプト web/index.php を持ちます。
これはアプリケーション中で唯一ウェブからアクセス可能な PHP スクリプトです。
エントリスクリプトは入力されたリクエストを受け取って、アプリケーション のインスタンスを作成します。
アプリケーション は コンポーネント の助力を得てリクエストを解決し、リクエストを MVC に送付します。
ウィジェット は、複雑で動的なユーザインタフェイス要素を構築するために、ビュー の中で使われます。




リクエストのライフサイクル 

次の図は、アプリケーションがどのようにリクエストを処理するかを示すものです。

[image: リクエストのライフサイクル]


	ユーザが エントリスクリプト web/index.php に対してリクエストを出します。

	エントリスクリプトはアプリケーションの 構成情報 を読み出して、リクエストを処理する アプリケーション のインスタンスを作成します。

	アプリケーションは、リクエスト アプリケーションコンポーネントの助力を得て、リクエストされた ルート を解決します。

	アプリケーションがリクエストを処理する コントローラ のインスタンスを作成します。

	コントローラが アクション のインスタンスを作成し、アクションのためのフィルタを実行します。

	一つでもフィルタが失敗したときは、アクションはキャンセルされます。

	すべてのフィルタを通ったとき、アクションが実行されます。

	アクションはデータモデルを、おそらくはデータベースから、読み出します。

	アクションはデータモデルをビューに提供して、ビューをレンダリングします。

	レンダリング結果が レスポンス アプリケーションコンポーネントに返されます。

	レスポンスコンポーネントがレンダリング結果をユーザのブラウザに送信します。









          

      

      

    

  

  
    
    
    コアバリデータ
    
    

    
 
  
  

    
      
          
            
  
コアバリデータ

Yii は、一般的に使われる一連のコアバリデータを提供しています。
コアバリデータは、主として、yii\validators 名前空間の下にあります。
長ったらしいバリデータクラス名を使う代りに、エイリアス を使って使用するコアバリデータを指定することが出来ます。
例えば、[[yii\validators\RequiredValidator]] クラスを参照するのに required というエイリアスを使うことが出来ます。

public function rules()
{
    return [
        [['email', 'password'], 'required'],
    ];
}





[[yii\validators\Validator::builtInValidators]] プロパティがサポートされている全てのコアバリデータのエイリアスを宣言しています。

以下では、全てのコアバリデータについて、主な使用方法とプロパティを説明します。


[[yii\validators\BooleanValidator|boolean]] 

[
    // データ型にかかわらず、"selected" が 0 または 1 であるかどうかチェック
    ['selected', 'boolean'],

    // "deleted" が boolean 型であり、true または false であるかどうかチェック
    ['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, 'strict' => true],
]





このバリデータは、入力値が真偽値であるかどうかをチェックします。


	trueValue: true を表す値。デフォルト値は '1'。

	falseValue: false を表す値。デフォルト値は '0'。

	strict: 入力値の型が trueValue と falseValue の型と一致しなければならないかどうか。デフォルト値は false。




Note: HTML フォームで送信されたデータ入力値は全て文字列であるため、通常は、[[yii\validators\BooleanValidator::strict|strict]] プロパティは false のままにすべきです。





[[yii\captcha\CaptchaValidator|captcha]] 

[
    ['verificationCode', 'captcha'],
]





このバリデータは、通常、[[yii\captcha\CaptchaAction]] および [[yii\captcha\Captcha]] と一緒に使われ、入力値が [[yii\captcha\Captcha|CAPTCHA]] ウィジェットによって表示された検証コードと同じであることを確認します。


	caseSensitive: 検証コードの比較で大文字と小文字を区別するかどうか。デフォルト値は false。

	captchaAction: CAPTCHA 画像を表示する [[yii\captcha\CaptchaAction|CAPTCHA アクション]] に対応する ルート。デフォルト値は 'site/captcha'。

	skipOnEmpty: 入力値が空のときに検証をスキップできるかどうか。デフォルト値は false で、入力が必須であることを意味します。






[[yii\validators\CompareValidator|compare]] 

[
    // "password" 属性の値が "password_repeat" 属性の値と同じであるかどうか検証する
    ['password', 'compare'],

    // 上記と同じだが、比較する属性を明示的に指定
    ['password', 'compare', 'compareAttribute' => 'password_repeat'],

    // "age" が 30 以上であるかどうか検証する
    ['age', 'compare', 'compareValue' => 30, 'operator' => '>=', 'type' => 'number'],
]





このバリデータは指定された入力値を他の値と比較し、両者の関係が operator プロパティで指定されたものであることを確認します。


	compareAttribute: その値が比較対象となる属性の名前。
このバリデータが属性を検証するのに使用されるとき、このプロパティのデフォルト値はその属性の名前に接尾辞 _repeat を付けた名前になります。
例えば、検証される属性が password であれば、このプロパティのデフォルト値は password_repeat となります。

	compareValue: 入力値が比較される定数値。
このプロパティと compareAttribute の両方が指定された場合は、このプロパティが優先されます。

	operator: 比較演算子。デフォルト値は == で、入力値が compareAttribute の値または compareValue と等しいことを検証することを意味します。
次の演算子がサポートされています。
	==: 二つの値が等しいことを検証。厳密でない比較を行う。

	===: 二つの値が等しいことを検証。厳密な比較を行う。

	!=: 二つの値が等しくないことを検証。厳密でない比較を行う。

	!==: 二つの値が等しくないことを検証。厳密な比較を行う。

	>: 検証される値が比較される値よりも大きいことを検証する。

	>=: 検証される値が比較される値よりも大きいか等しいことを検証する。

	<: 検証される値が比較される値よりも小さいことを検証する。

	<=: 検証される値が比較される値よりも小さいか等しいことを検証する。





	type: デフォルトの比較タイプは ‘[[yii\validators\CompareValidator::TYPE_STRING|string]]‘ (文字列) であり、その場合、値は 1 バイトごとに比較されます。
数値を比較する場合は、必ず [[yii\validators\CompareValidator::$type|$type]] を ‘[[yii\validators\CompareValidator::TYPE_NUMBER|number]]‘ に設定して、数値としての比較を有効にして下さい。




日付の値を比較する

compare バリデータは、文字列や数値を比較するためにしか使えません。
日付のような値を比較する必要がある場合は、二つの選択肢があります。
日付をある固定値と比較するときは、単に [[yii\validators\DateValidator|date]] バリデータを使って、その [[yii\validators\DateValidator::$min|$min]] や [[yii\validators\DateValidator::$max|$max]] のプロパティを指定すれば良いでしょう。
フォームに入力された二つの日付、例えば、fromDate と toDate のフィールドを比較する必要がある場合は、
次のように、compare バリデータと date バリデータを組み合わせて使うことが出来ます。

['fromDate', 'date', 'timestampAttribute' => 'fromDate'],
['toDate', 'date', 'timestampAttribute' => 'toDate'],
['fromDate', 'compare', 'compareAttribute' => 'toDate', 'operator' => '<', 'enableClientValidation' => false],





バリデータは指定された順序に従って実行されますので、まず最初に、fromDate と toDate に入力された値が有効な日付であることが確認されます。
そして、有効な日付であった場合は、機械が読める形式に変換されます。
その後に、これらの二つの値が compare バリデータによって比較されます。
現在、date バリデータはクライアント側のバリデーションを提供していませんので、これはサーバ側でのみ動作します。
そのため、compare バリデータについても、[[yii\validators\CompareValidator::$enableClientValidation|$enableClientValidation]] は false に設定されています。






[[yii\validators\DateValidator|date]] 

[[yii\validators\DateValidator|date]] バリデータには 3 つの異なるショートカットがあります。

[
    [['from_date', 'to_date'], 'date'],
    [['from_datetime', 'to_datetime'], 'datetime'],
    [['some_time'], 'time'],
]





このバリデータは、入力値が正しい書式の date、time、または datetime であるかどうかをチェックします。
オプションとして、入力値を UNIX タイムスタンプ (または、その他、機械による読み取りが可能な形式) に変換して、[[yii\validators\DateValidator::timestampAttribute|timestampAttribute]] によって指定された属性に保存することも出来ます。


	format: 検証される値が従っているべき日付/時刻の書式。
これには ICU manual [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax] で記述されている日付/時刻のパターンを使うことが出来ます。
あるいは、PHP の Datetime クラスによって認識される書式に接頭辞 php: を付けた文字列でも構いません。
サポートされている書式については、http://php.net/manual/ja/datetime.createfromformat.php を参照してください。
このプロパティが設定されていないときは、Yii::$app->formatter->dateFormat の値を取ります。



	timestampAttribute: このバリデータが、入力された日付/時刻から変換した UNIX タイムスタンプを代入することが出来る属性の名前。
これは、検証される属性と同じ属性であってもかまいません。
その場合は、元の値は検証実行後にタイムスタンプで上書きされます。
DatePicker で日付の入力を扱う [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide-ja/topics-date-picker.md] に使用例がありますので、参照してください。

バージョン 2.0.4 以降では、[[yii\validators\DateValidator::$timestampAttributeFormat|$timestampAttributeFormat]] と [[yii\validators\DateValidator::$timestampAttributeTimeZone|$timestampAttributeTimeZone]] を使って、この属性に対するフォーマットとタイムゾーンを指定することが出来ます。





timestampAttribute を使う場合、入力値が UNIX タイムスタンプに変換されること、そして、UNIX タイムスタンプは定義により UTC であることに注意して下さい。
すなわち、[[yii\validators\DateValidator::timeZone|入力のタイムゾーン]] から UTC への変換が実行されます。


	バージョン 2.0.4 以降では、タイムスタンプの [[yii\validators\DateValidator::$min|最小値]] または  [[yii\validators\DateValidator::$max|最大値]] を指定することも出来ます。



入力が必須でない場合には、date バリデータに加えて、default バリデータ (デフォルト値フィルタ) を追加すれば、空の入力値が null として保存されることを保証することが出来ます。
そうしないと、データベースに 0000-00-00 という日付が保存されたり、デートピッカーの入力フィールドが 1970-01-01 になったりしてしまいます。

    [['from_date', 'to_date'], 'default', 'value' => null],
    [['from_date', 'to_date'], 'date'],








[[yii\validators\DefaultValueValidator|default]] 

[
    // 空のときは "age" を null にする
    ['age', 'default', 'value' => null],

    // 空のときは "country" を "USA" にする
    ['country', 'default', 'value' => 'USA'],

    // 空のときは "from" と "to" に今日から三日後・六日後の日付を入れる
    [['from', 'to'], 'default', 'value' => function ($model, $attribute) {
        return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6 days'));
    }],
]





このバリデータはデータを検証しません。
その代りに、検証される属性が空のときに、その属性にデフォルト値を割り当てます。


	value: デフォルト値、または、デフォルト値を返す PHP コーラブル。
検証される属性が空のときにこのデフォルト値が割り当てられます。
PHP コーラブルのシグニチャは、次のものでなければなりません。



function foo($model, $attribute) {
    // ... $value を計算 ...
    return $value;
}






Info: 値が空であるか否かを決定する方法については、独立したトピックとして、空の入力値を扱う の節でカバーされています。





[[yii\validators\NumberValidator|double]] 

[
    // "salary" が実数であるかどうかチェック
    ['salary', 'double'],
]





このバリデータは、入力値が実数値であるかどうかをチェックします。
number バリデータと等価です。


	max: 上限値 (その値を含む)。
設定されていない場合は、バリデータが上限値をチェックしないことを意味します。

	min: 下限値 (その値を含む)。
設定されていない場合は、バリデータが下限値をチェックしないことを意味します。






[[yii\validators\EachValidator|each]] 


Info: このバリデータは、バージョン 2.0.4 以降で利用できます。


[
    // 全てのカテゴリ ID が整数であるかどうかチェックする
    ['categoryIDs', 'each', 'rule' => ['integer']],
]





このバリデータは配列の属性に対してのみ働きます。
これは、配列の 全ての 要素が指定された検証規則による検証に成功するかどうかを調べるものです。
上の例では、categoryIDs 属性は配列を値として取らなければならず、配列の各要素は integer の検証規則によって検証されることになります。


	rule: 検証規則を指定する配列。
配列の最初の要素がバリデータのクラス名かエイリアスを指定します。
配列の残りの「名前・値」のペアが、バリデータオブジェクトを構成するのに使われます。

	allowMessageFromRule: 埋め込まれた検証規則によって返されるエラーメッセージを使うかどうか。
デフォルト値は true です。これが false の場合は、message をエラーメッセージとして使います。




Note: 属性が配列でない場合は、検証が失敗したと見なされ、message がエラーメッセージとして返されます。





[[yii\validators\EmailValidator|email]] 

[
    // "email" が有効なメールアドレスであるかどうかチェック
    ['email', 'email'],
]





このバリデータは、入力値が有効なメールアドレスであるかどうかをチェックします。


	allowName: メールアドレスに表示名 (例えば、John Smith <john.smith@example.com>) を許容するか否か。デフォルト値は false。

	checkDNS: メールのドメインが存在して A または MX レコードを持っているかどうかをチェックするか否か。
このチェックは、メールアドレスが実際には有効なものでも、一時的な DNS の問題によって失敗する場合があることに注意してください。
デフォルト値は false。

	enableIDN: 検証のプロセスが IDN (国際化ドメイン名) を考慮に入れるか否か。
デフォルト値は false。
IDN のバリデーションを使用するためには、intl PHP 拡張をインストールして有効化する必要があることに注意してください。そうしないと、例外が投げられます。






[[yii\validators\ExistValidator|exist]] 

[
    // a1 の値が属性 "a1" で表されるカラムに存在する必要がある
    ['a1', 'exist'],

    // a1 の値が属性 "a2" で表されるカラムに存在する必要がある
    ['a1', 'exist', 'targetAttribute' => 'a2'],

    // a1 の値が "a1" のカラム、a2 の値が "a2" のカラムに存在する必要がある
    // 両者はともにエラーメッセージを受け取る
    [['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

    // a1 の値が "a1" のカラム、a2 の値が "a2" のカラムに存在する必要がある
    // a1 のみがエラーメッセージを受け取る
    ['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

    // a2 の値が "a2" のカラム、a1 の値が "a3" のカラムに存在する必要がある
    // a1 がエラーメッセージを受け取る
    ['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

    // a1 の値が "a1" のカラムに存在する必要がある
    // a1 が配列である場合は、その全ての要素が "a1" のカラムに存在する必要がある
    ['a1', 'exist', 'allowArray' => true],
]





このバリデータは、入力値が アクティブレコード の属性によって表されるテーブルのカラムに存在するかどうかをチェックします。
targetAttribute を使って アクティブレコード の属性を指定し、targetClass によって対応するクラスを指定することが出来ます。
これらを指定しない場合は、検証されるモデルの属性とクラスの値が使用されます。

このバリデータは、一つまたは複数のカラムに対する検証に使用することが出来ます
(複数のカラムに対する検証の場合は、それらの属性の組み合せが存在しなければならないことを意味します)。


	targetClass: 検証される入力値を探すために使用される アクティブレコード クラスの名前。
設定されていない場合は、現在検証されているモデルのクラスが使用されます。

	targetAttribute: targetClass において、入力値の存在を検証するために使用される属性の名前。
設定されていない場合は、現在検証されている属性の名前が使用されます。
複数のカラムの存在を同時に検証するために配列を使うことが出来ます。
配列の値は存在を検証するのに使用される属性であり、配列のキーはその値が検証される属性です。
キーと値が同じ場合は、値だけを指定することが出来ます。

	filter: 入力値の存在をチェックするのに使用される DB クエリに適用される追加のフィルタ。
これには、文字列、または、追加のクエリ条件を表現する配列を使うことが出来ます
(クエリ条件の書式については、[[yii\db\Query::where()]] を参照してください)。
または、function ($query) というシグニチャを持つ無名関数でも構いません。
$query は関数の中で修正できる [[yii\db\Query|Query]] オブジェクトです。

	allowArray: 入力値が配列であることを許容するか否か。
デフォルト値は false。
このプロパティが true で入力値が配列であった場合は、配列の全ての要素がターゲットのカラムに存在しなければなりません。
targetAttribute を配列で指定して複数のカラムに対して検証しようとしている場合は、このプロパティを true に設定することが出来ないことに注意してください。






[[yii\validators\FileValidator|file]] 

[
    // "primaryImage" が PNG、JPG、または GIF 形式のアップロードされた
    // 画像ファイルであり、ファイルサイズが 1MB 以下であるかどうかチェック
    ['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize' => 1024*1024],
]





このバリデータは、入力値がアップロードされた有効なファイルであるかどうかをチェックします。


	extensions: アップロードを許可されるファイル名拡張子のリスト。
リストは、配列、または、空白かカンマで区切られたファイル名拡張子からなる文字列 (例えば、”gif, jpg”) で指定することが出来ます。
拡張子名は大文字と小文字を区別しません。
デフォルト値は null であり、すべてのファイル名拡張子が許可されることを意味します。

	mimeTypes: アップロードを許可されるファイルの MIME タイプのリスト。
リストは、配列、または、空白かカンマで区切られたファイルの MIME タイプからなる文字列 (例えば、”image/jpeg, image/png”) で指定することが出来ます。
特殊文字 * によるワイルドカードのマスクを使って、一群の MIME タイプに一致させることも出来ます。
例えば image/* は、image/ で始まる全ての MIME タイプ (image/jpeg, image/png など) を通します。
MIME タイプ名は大文字と小文字を区別しません。
デフォルト値は null であり、すべての MIME タイプが許可されることを意味します。
MIME タイプの詳細については、一般的なメディアタイプ [http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types] を参照してください。

	minSize: アップロードされるファイルに要求される最小限のバイト数。
デフォルト値は null であり、下限値が無いことを意味します。

	maxSize: アップロードされるファイルに許可される最大限のバイト数。
デフォルト値は null であり、上限値が無いことを意味します。

	maxFiles: 指定された属性が保持しうる最大限のファイル数。
デフォルト値は 1 であり、入力値がアップロードされた一つだけのファイルでなければならないことを意味します。
この値が 2 以上である場合は、入力値は最大で maxFiles 数のアップロードされたファイルからなる配列でなければなりません。

	checkExtensionByMimeType: ファイルの MIME タイプでファイル拡張子をチェックするか否か。
MIME タイプのチェックから導かれる拡張子がアップロードされたファイルの拡張子と違う場合に、そのファイルは無効であると見なされます。
デフォルト値は true であり、そのようなチェックが行われることを意味します。



FileValidator は [[yii\web\UploadedFile]] と一緒に使用されます。
ファイルのアップロードおよびアップロードされたファイルの検証の実行に関する完全な説明は、ファイルをアップロードする の節を参照してください。




[[yii\validators\FilterValidator|filter]] 

[
    // "username" と "email" の入力値をトリムする
    [['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' => true],

    // "phone" の入力値を正規化する
    ['phone', 'filter', 'filter' => function ($value) {
        // 電話番号の入力値をここで正規化する
        return $value;
    }],
]





このバリデータはデータを検証しません。
代りに、入力値にフィルタを適用して、それを検証される属性に書き戻します。


	filter: フィルタを定義する PHP コールバック。
これには、グローバル関数の名前、無名関数などを指定することが出来ます。
関数のシグニチャは ``function ($value) { return $newValue; }` でなければなりません。
このプロパティは必須項目です。

	skipOnArray: 入力値が配列である場合にフィルタをスキップするか否か。
デフォルト値は false。
フィルタが配列の入力を処理できない場合は、このプロパティを true に設定しなければなりません。
そうしないと、何らかの PHP エラーが生じ得ます。




Tip: 入力値をトリムしたい場合は、trim バリデータを直接使うことが出来ます。



Tip: filter のコールバックに期待されるシグニチャを持つ PHP 関数が多数存在します。
例えば、(intval [http://php.net/manual/ja/function.intval.php] や boolval [http://php.net/manual/ja/function.boolval.php] などを使って) 型キャストを適用し、属性が特定の型になるように保証したい場合は、それらの関数をクロージャで包む必要はなく、単にフィルタの関数名を指定するだけで十分です。

['property', 'filter', 'filter' => 'boolval'],
['property', 'filter', 'filter' => 'intval'],











[[yii\validators\ImageValidator|image]] 

[
    // "primaryImage" が適切なサイズの有効な画像であることを検証
    ['primaryImage', 'image', 'extensions' => 'png, jpg',
        'minWidth' => 100, 'maxWidth' => 1000,
        'minHeight' => 100, 'maxHeight' => 1000,
    ],
]





このバリデータは、入力値が有効な画像ファイルであるかどうかをチェックします。
これは file バリデータを拡張するものであり、従って、そのプロパティの全てを継承しています。
それに加えて、画像の検証の目的に特化した次のプロパティをサポートしています。


	minWidth: 画像の幅の最小値。デフォルト値は null であり、下限値がないことを意味します。

	maxWidth: 画像の幅の最大値。デフォルト値は null であり、上限値がないことを意味します。

	minHeight: 画像の高さの最小値。デフォルト値は null であり、下限値がないことを意味します。

	maxHeight: 画像の高さの最大値。デフォルト値は null であり、上限値がないことを意味します。






[[yii\validators\IpValidator|ip]] 

[
    // "ip_address" が有効な IPv4 または IPv6 アドレスであることを検証
    ['ip_address', 'ip'],

    // "ip_address" が有効な IPv6 アドレスまたはサブネットであることを検証
    // 値は完全な IPv6 記法に展開される
    ['ip_address', 'ip', 'ipv4' => false, 'subnet' => null, 'expandIPv6' => true],

    // "ip_address" が有効な IPv4 または IPv6 アドレスであることを検証
    // 先頭に否定文字 `!` を置くことを許可
    ['ip_address', 'ip', 'negation' => true],
]





このバリデータは属性の値が有効な IPv4/IPv6 アドレスまたはサブネットであることを検証します。
正規化または IPv6 展開が有効にされた場合は、属性の値を変更することも出来ます。

バリデータは以下の構成オプションを持っています。


	ipv4: 検証の対象となる値が IPv4 アドレスであってよいか否か。デフォルト値は true。



	ipv6: 検証の対象となる値が IPv6 アドレスであってよいか否か。デフォルト値は true。



	subnet: アドレスが 192.168.10.0/24 のような CIDR サブネットを持つ IP であってよいか否か。


	true - サブネットが必要。CIDR の無いアドレスは却下されます

	false - アドレスは CIDR を伴ってはいけません

	null - CIDR は有っても無くても構いません



デフォルト値は false。



	normalize: CIDR を持たないアドレスに、最も短い (IPv4 では 32、IPv6 では 128) CIDR プレフィクスを追加するか否か。
subnet が false 以外の場合にのみ動作します。
例えば、


	10.0.1.5 は 10.0.1.5/32 に正規化され、

	2008:db0::1 は 2008:db0::1/128 に正規化されます



デフォルト値は false。



	negation: 検証の対象となるアドレスが先頭に否定文字 ! を持つことが出来るか否か。
デフォルト値は false。



	expandIPv6: IPv6 アドレスを完全な記法に展開するか否か。
例えば、2008:db0::1 は 2008:0db0:0000:0000:0000:0000:0000:0001 に展開されます。
デフォルト値は false。



	ranges: 許容または禁止される IPv4 または IPv6 の範囲の配列。

配列が空の場合、またはこのオプションが設定されていない場合は、全ての IP アドレスが許容されます。
そうでない場合は、最初に合致するものが見つかるまで、規則が順番にチェックされます。
どの規則にも合致しなかった場合、その IP アドレスは禁止されます。

例えば、

[
     'client_ip', 'ip', 'ranges' => [
         '192.168.10.128'
         '!192.168.10.0/24',
         'any' // 他の IP アドレスは全て許容
     ]
]









この例では、192.168.10.0/24 のサブネットを除いて、全ての IPv4 および IPv6 アドレスが許容されます。
IPv4 アドレス 192.168.10.128 も、制約の前にリストされているため、同様に許容されます。


	networks: ranges で使用する事が出来るネットワークのエイリアスの配列。
配列の形式は、


	キー - エイリアス名

	値 - 文字列の配列。文字列は、範囲、IP アドレス、または、他のエイリアスとすることが出来ます。
また、文字列は (negation オプションとは独立に) ! によって否定することが出来ます。



デフォルトで、次のエイリアスが定義されています。


	*: any

	any: 0.0.0.0/0, ::/0

	private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fd00::/8

	multicast: 224.0.0.0/4, ff00::/8

	linklocal: 169.254.0.0/16, fe80::/10

	localhost: 127.0.0.0/8', ::1

	documentation: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 2001:db8::/32

	system: multicast, linklocal, localhost, documentation








Info: このバリデータは、バージョン 2.0.7 以降で利用することが出来ます。





[[yii\validators\RangeValidator|in]] 

[
    // "level" が 1, 2 または 3 であるかどうかチェック
    ['level', 'in', 'range' => [1, 2, 3]],
]





このバリデータは、入力値が所与の値のリストにあるかどうかをチェックします。


	range: 与えられた値のリスト。この中に、入力値がなければならない。

	strict: 入力値と所与の値の比較が厳密でなければならない (型と値の両方が同じでなければならない) かどうか。
デフォルト値は false。

	not: 検証結果を反転すべきか否か。デフォルト値は false。
このプロパティが true に設定されているときは、入力値が所与の値のリストにない場合に検証が成功したとされます。

	allowArray: 入力値が配列であることを許可するかどうか。
このプロパティが true であるときに、入力値が配列である場合は、配列の全ての要素が所与の値のリストにある必要があり、そうでなければ検証は失敗します。






[[yii\validators\NumberValidator|integer]] 

[
    // "age" が整数であるかどうかチェック
    ['age', 'integer'],
]





このバリデータは入力値が整数であるかどうかをチェックします。


	max: 上限値 (その値を含む)。設定されていないときは、バリデータは上限をチェックしません。

	min: 下限値 (その値を含む)。設定されていないときは、バリデータは下限をチェックしません。






[[yii\validators\RegularExpressionValidator|match]] 

[
    // "username" が英字から始まり、英字、数字、アンダーバーだけで構成されているかどうかチェック
    ['username', 'match', 'pattern' => '/^[a-z]\w*$/i']
]





このバリデータは、入力値が指定された正規表現に一致するかどうかをチェックします。


	pattern: 入力値が一致すべき正規表現。このプロパティを設定することは必須です。そうしないと、例外が投げられます。

	not: 検証結果を反転すべきかどうか。
デフォルト値は false で、入力値がパターンに一致したときにだけ検証が成功することを意味します。
このプロパティが true に設定されているときは、入力値がパターンに一致しない場合にだけ検証が成功したと見なされます。






[[yii\validators\NumberValidator|number]] 

[
    // "salary" が数値であるかどうかチェック
    ['salary', 'number'],
]





このバリデータは、入力値が数値であるかどうかをチェックします。double バリデータと等価です。


	max: 上限値 (その値を含む)。設定されていないときは、バリデータは上限をチェックしません。

	min: 下限値 (その値を含む)。設定されていないときは、バリデータは下限をチェックしません。






[[yii\validators\RequiredValidator|required]] 

[
    // "username" と "password" がともに空ではないことをチェックする
    [['username', 'password'], 'required'],
]





このバリデータは、入力値が提供されており、空ではないことをチェックします。


	requiredValue: 入力値として要求される値。
このプロパティが設定されていない場合は、入力値が空ではいけないことを意味します。

	strict: 値を検証するときに、データ型をチェックするかどうか。デフォルト値は false。
requiredValue が設定されていない場合、このプロパティが true であるときは、バリデータは入力値が厳密な意味で null であるかどうかをチェックします。
一方、このプロパティが false であるときは、値が空か否かの判断に緩い規則を使います。
requiredValue が設定されている場合、このプロパティが true であるときは、入力値と requiredValue を比較するときに型のチェックを行います。




Info: 値が空であるか否かを決定する方法については、独立したトピックとして、空の入力値を扱う の節でカバーされています。





[[yii\validators\SafeValidator|safe]] 

[
    // "description" を安全な属性としてマーク
    ['description', 'safe'],
]





このバリデータは検証を実行しません。
その代りに、このバリデータは、属性を 安全な属性 としてマークするために使われます。




[[yii\validators\StringValidator|string]] 

[
    // "username" が、長さが 4 以上 24 以下の文字列であるかどうかチェック
    ['username', 'string', 'length' => [4, 24]],
]





このバリデータは、入力値が一定の長さを持つ有効な文字列であるかどうかをチェックします。


	length: 検証される入力文字列の長さの制限を指定します。
これは、次のいずれかの形式で指定することが出来ます。
	一つの整数: 文字列がちょうどその長さでなければならない、その長さ。

	一つの要素を持つ配列: 入力文字列の長さの最小値 (例えば、[8])。これは min を上書きします。

	二つの要素を持つ配列: 入力文字列の長さの最小値と最大値 (例えば、[8, 128])。これは min と max の両方を上書きします。





	min: 入力文字列の長さの最小値。設定されていない時は、長さの下限値がないことを意味します。

	max: 入力文字列の長さの最大値。設定されていない時は、長さの上限値がないことを意味します。

	encoding: 検証される入力文字列の文字エンコーディング。設定されていない時は、アプリケーションの [[yii\base\Application::charset|charset]] の値が使われ、デフォルトでは UTF-8 となります。






[[yii\validators\FilterValidator|trim]] 

[
    // "username" と "email" の前後にあるホワイトスペースをトリムする
    [['username', 'email'], 'trim'],
]





このバリデータはデータの検証を実行しません。
その代りに、入力値の前後にあるホワイトスペースをトリムします。
入力値が配列であるときは、このバリデータによって無視されることに注意してください。




[[yii\validators\UniqueValidator|unique]] 

[
    // a1 の値が属性 "a1" で表されるカラムにおいてユニークである必要がある
    ['a1', 'unique'],

    // a1 の値が属性 "a2" で表されるカラムにおいてユニークである必要がある
    ['a1', 'unique', 'targetAttribute' => 'a2'],

    // a1 の値が "a1" のカラム、a2 の値が "a2" のカラムにおいてユニークである必要がある
    // 両者はともにエラーメッセージを受け取る
    [['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

    // a1 の値が "a1" のカラム、a2 の値が "a2" のカラムにおいてユニークである必要がある
    // a1 のみがエラーメッセージを受け取る
    ['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

    // a2 の値が "a2" のカラム、a1 の値が "a3" のカラムにおいてユニークである必要がある
    // a1 がエラーメッセージを受け取る
    ['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],
]





このバリデータは、入力値がテーブルのカラムにおいてユニークであるかどうかをチェックします。
アクティブレコード モデルの属性に対してのみ働きます。
一つのカラムに対するバリデーションか、複数のカラムに対するバリデーションか、どちらかをサポートします。


	targetClass: 検証される入力値を探すために使用される アクティブレコード クラスの名前。
設定されていない場合は、現在検証されているモデルのクラスが使用されます。

	targetAttribute: targetClass において、入力値がユニークであることを検証するために使用される属性の名前。
設定されていない場合は、現在検証されている属性の名前が使用されます。
複数のカラムのユニーク性を同時に検証するために配列を使うことが出来ます。
配列の値はユニーク性を検証するのに使用される属性であり、配列のキーはその値が検証される属性です。
キーと値が同じ場合は、値だけを指定することが出来ます。

	filter: 入力値のユニーク性をチェックするのに使用される DB クエリに適用される追加のフィルタ。
これには、文字列、または、追加のクエリ条件を表現する配列を使うことが出来ます
(クエリ条件の書式については、[[yii\db\Query::where()]] を参照してください)。
または、function ($query) というシグニチャを持つ無名関数でも構いません。
$query は関数の中で修正できる [[yii\db\Query|Query]] オブジェクトです。






[[yii\validators\UrlValidator|url]] 

[
    // "website" が有効な URL であるかどうかをチェック。
    // URI スキームを持たない場合は、"website" 属性に "http://" を前置する
    ['website', 'url', 'defaultScheme' => 'http'],
]





このバリデータは、入力値が有効な URL であるかどうかをチェックします。


	validSchemes: 有効と見なされるべき URI スキームを指定する配列。
デフォルト値は  ['http', 'https'] であり、http と https の URL がともに有効と見なされることを意味します。

	defaultScheme: 入力値がスキームの部分を持たないときに前置されるデフォルトの URI スキーム。
デフォルト値は null であり、入力値を修正しないことを意味します。

	enableIDN: バリデータが IDN (国際化ドメイン名) を考慮すべきか否か。
デフォルト値は false。
IDN のバリデーションを使用するためには、intl PHP 拡張をインストールして有効化する必要があることに注意してください。
そうしないと、例外が投げられます。









          

      

      

    

  

  
    
    
    ルーティングと URL 生成
    
    

    
 
  
  

    
      
          
            
  
ルーティングと URL 生成

Yii のアプリケーションがリクエストされた URL の処理を開始するときに、最初に実行するステップは URL を解析して ルート にすることです。
次に、リクエストを処理するために、このルートを使って、対応する コントローラアクション のインスタンスが作成されます。
このプロセスの全体が ルーティング と呼ばれます。

ルーティングの逆のプロセスが URL 生成 と呼ばれます。
これは、与えられたルートとそれに結び付けられたクエリパラメータから URL を生成するものです。
生成された URL が後でリクエストされたときには、ルーティングのプロセスがその URL を解決して元のルートとクエリパラメータに戻すことが出来ます。

ルーティングと URL 生成について主たる役割を果たすのが urlManager アプリケーションコンポーネント として登録されている [[yii\web\UrlManager|URL マネージャ]] です。
[[yii\web\UrlManager|URL マネージャ]] は、入ってくるリクエストをルートとそれに結び付けられたクエリパラメータとして解析するための [[yii\web\UrlManager::parseRequest()|parseRequest()]] メソッドと、与えられたルートとそれに結び付けられたクエリパラメータから URL を生成するための [[yii\web\UrlManager::createUrl()|createUrl()]] メソッドを提供します。

アプリケーション構成情報の urlManager コンポーネントを構成することによって、既存のアプリケーションコードを修正することなく、任意の URL 形式をアプリケーションに認識させることが出来ます。
例えば、post/view アクションのための URL を生成するためには、次のコードを使うことが出来ます。

use yii\helpers\Url;

// Url::to() は UrlManager::createUrl() を呼び出して URL を生成します
$url = Url::to(['post/view', 'id' => 100]);





このコードによって生成される URL は、urlManager の構成に応じて、下記のどれか (またはその他) になります。
そして、こうして生成された URL が後でリクエストされた場合には、解析されて元のルートとクエリパラメータの値に戻されます。

/index.php?r=post%2Fview&id=100
/index.php/post/100
/posts/100






URL 形式 

[[yii\web\UrlManager|URL マネージャ]] は二つの URL 形式をサポートします。すなわち、


	デフォルトの URL 形式と、

	綺麗な URL (プリティ URL) の 形式。



デフォルトの URL 形式は、r という [[yii\web\UrlManager::$routeParam|クエリパラメータ]] を使用してルートを表し、通常のクエリパラメータを使用してルートに結び付けられたクエリパラメータを表します。
例えば、/index.php?r=post/view&id=100 という URL は、post/view というルートと、id というクエリパラメータが 100 であることを表します。
デフォルトの URL 形式は、[[yii\web\UrlManager|URL マネージャ]] についての構成を何も必要とせず、ウェブサーバの設定がどのようなものでも動作します。

綺麗な URL 形式は、エントリスクリプトの名前に続く追加のパスを使用して、ルートとそれに結び付けられたクエリパラメータを表します。
例えば、/index.php/post/100 という URL の追加のパスは /post/100 ですが、適切な [[yii\web\UrlManager::rules|URL 規則]] があれば、この追加のパスが post/view というルートと id のクエリパラメータ 100 を表すものとすることが出来ます。
綺麗な URL 形式を使用するためには、URL をどのように表現すべきかという実際の要求に従って、一連の [[yii\web\UrlManager::rules|URL 規則]] を設計する必要があります。

この二つの URL 形式は、[[yii\web\UrlManager|URL マネージャ]] の [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] プロパティを ON/OFF することによって、他のアプリケーションコードを少しも変えることなく、切り替えることが出来ます。




ルーティング 

ルーティングは二つのステップを含みます。


	まず、入ってくるリクエストが解析されて、ルートとそれに結び付けられたクエリパラメータに分解されます。

	そして、解析されたルートに対応する コントローラアクション がリクエストを処理するために生成されます。



デフォルトの URL 形式を使っている場合は、リクエストからルートを解析することは、r という名前の GET クエリパラメータを取得するだけの簡単なことです。

綺麗な URL 形式を使っている場合は、[[yii\web\UrlManager|URL マネージャ]] が、登録されている [[yii\web\UrlManager::rules|URL 規則]] を調べます。
合致する規則が見つかれば、リクエストをルートに解決することが出来ます。
合致する規則が見つからなかったら、[[yii\web\NotFoundHttpException]] 例外が投げられます。

いったんリクエストからルートが解析されたら、今度はルートによって特定されるコントローラアクションを生成する番です。
ルートはその中にあるスラッシュによって複数の部分に分けられます。例えば、site/index は site と index に分割されます。
その各部分は、モジュール、コントローラ、または、アクションを参照する ID です。
アプリケーションは、ルートの最初の部分の ID から始めて、下記のステップを踏んで、モジュール (もし有れば)、コントローラ、アクションを生成します。


	アプリケーションをカレントモジュールとして設定します。

	カレントモジュールの [[yii\base\Module::controllerMap|コントローラマップ]] が現在の ID を含むかどうかを調べます。
含んでいる場合は、マップの中で見つかった構成情報に従ってコントローラのオブジェクトが生成されます。
そして、ステップ 5 に跳んで、ルートの残りの部分を処理します。

	現在の ID がカレントモジュールの [[yii\base\Module::modules|modules]] プロパティのリストに挙げられたモジュールを指すものかどうかを調べます。
もしそうであれば、モジュールのリストで見つかった構成情報に従ってモジュールが生成されます。
そして、新しく生成されたモジュールのコンテキストのもとで、ステップ 2 に戻って、ルートの次の部分を処理します。

	現在の ID を コントローラ ID として扱ってコントローラオブジェクトを生成します。
そしてルートの残りの部分を持って次のステップに進みます。

	コントローラは、[[yii\base\Controller::actions()|アクションマップ]] の中に現在の ID があるかどうかを調べます。
もし有れば、マップの中で見つかった構成情報に従ってアクションを生成します。
もし無ければ、現在の アクション ID に対応するアクションメソッドで定義されるインラインアクションを生成しようと試みます。



上記のステップの中で、何かエラーが発生すると、[[yii\web\NotFoundHttpException]] が投げられて、ルーティングのプロセスが失敗したことが示されます。


デフォルトルート 

リクエストから解析されたルートが空になった場合は、いわゆる デフォルトルート が代りに使用されることになります。
デフォルトでは、デフォルトルートは site/index であり、site コントローラの index アクションを指します。
デフォルトルートは、次のように、アプリケーションの構成情報の中でアプリケーションの [[yii\web\Application::defaultRoute|defaultRoute]] プロパティを構成することによって、カスタマイズすることが出来ます。

[
    // ...
    'defaultRoute' => 'main/index',
];





アプリケーションのデフォルトルートと同じく、モジュールにもデフォルトルートがあります。
従って、例えば、user というモジュールがあって、リクエストの解析結果が user というルートになった場合、
このモジュールの [[yii\base\Module::defaultRoute|defaultRoute]] がコントローラを決定するのに使用されます。
デフォルトでは、このコントローラの名前は default となります。
[[yii\base\Module::defaultRoute|defaultRoute]] でアクションが指定されていない場合は、
コントローラの [[yii\base\Controller::defaultAction|defaultAction]] プロパティがアクションを決定するのに使用されます。
この例の場合だと、完全なルートは user/default/index となります。




catchAll ルート 

たまには、ウェブアプリケーションを一時的にメンテナンスモードにして、全てのリクエストに対して同じ「お知らせ」のページを表示したいことがあるでしょう。
この目的を達する方法はたくさんありますが、最も簡単な方法の一つは、次のように、アプリケーションの構成情報の中で [[yii\web\Application::catchAll]] プロパティを構成することです。

[
    // ...
    'catchAll' => ['site/offline'],
];





上記の構成によって、入ってくる全てのリクエストを処理するために site/offline アクションが使われるようになります。

catchAll プロパティは配列を取り、最初の要素はルートを指定し、残りの要素 (「名前-値」のペア) は アクションのパラメータ を指定するものでなければなりません。


Info: このプロパティを有効にすると、開発環境で デバッグツールバー [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide-ja/README.md]が 動作しなくなります。







URL を生成する 

Yii は、与えられたルートとそれに結び付けられたクエリパラメータからさまざまな URL を生成する [[yii\helpers\Url::to()]] というヘルパメソッドを提供しています。例えば、

use yii\helpers\Url;

// ルートへの URL を生成する: /index.php?r=post%2Findex
echo Url::to(['post/index']);

// パラメータを持つルートへの URL を生成する: /index.php?r=post%2Fview&id=100
echo Url::to(['post/view', 'id' => 100]);

// アンカー付きの URL を生成する: /index.php?r=post%2Fview&id=100#content
echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// 絶対 URL を生成する: http://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], true);

// https スキームを使って絶対 URL を生成する: https://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], 'https');





上記の例では、デフォルトの URL 形式が使われていると仮定していることに注意してください。
綺麗な URL 形式が有効になっている場合は、生成される URL は、使われている [[yii\web\UrlManager::rules|URL 規則]] に従って、異なるものになります。

[[yii\helpers\Url::to()]] メソッドに渡されるルートの意味は、コンテキストに依存します。
ルートは 相対 ルートか 絶対 ルートかのどちらかであり、下記の規則によって正規化されます。


	ルートが空文字列である場合は、現在リクエストされている [[yii\web\Controller::route|ルート]] が使用されます。

	ルートがスラッシュを全く含まない場合は、カレントコントローラのアクション ID であると見なされて、カレントコントローラの [[\yii\web\Controller::uniqueId|uniqueId]] の値が前置されます。

	ルートが先頭にスラッシュを含まない場合は、カレントモジュールに対する相対ルートと見なされて、カレントモジュールの [[\yii\base\Module::uniqueId|uniqueId]] の値が前置されます。



バージョン 2.0.2 以降では、エイリアス の形式でルートを指定することが出来ます。
その場合は、エイリアスが最初に実際のルートに変換され、そのルートが上記の規則に従って絶対ルートに変換されます。

例えば、カレントモジュールが admin であり、カレントコントローラが post であると仮定すると、

use yii\helpers\Url;

// 現在リクエストされているルート: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['']);

// アクション ID だけの相対ルート: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['index']);

// 相対ルート: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['post/index']);

// 絶対ルート: /index.php?r=post%2Findex
echo Url::to(['/post/index']);

// "/post/index" と定義されているエイリアス "@posts"を使用: /index.php?r=post%2Findex
echo Url::to(['@posts']);





[[yii\helpers\Url::to()]] メソッドは、[[yii\web\UrlManager|URL マネージャ]] の [[yii\web\UrlManager::createUrl()|createUrl()]] メソッド、および、[[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]] を呼び出すことによって実装されています。
次に続くいくつかの項では、[[yii\web\UrlManager|URL マネージャ]] を構成して、生成される URL の形式をカスタマイズする方法を説明します。

[[yii\helpers\Url::to()]] メソッドは、特定のルートとの関係を持たない URL の生成もサポートしています。
その場合、最初のパラメータには、配列を渡す代りに文字列を渡さなければなりません。例えば、

use yii\helpers\Url;

// 現在リクエストされている URL: /index.php?r=admin%2Fpost%2Findex
echo Url::to();

// エイリアス化された URL: http://example.com
Yii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// 絶対 URL: http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);





to() メソッドの他にも、[[yii\helpers\Url]]` ヘルパクラスは、便利な URL 生成メソッドをいくつか提供しています。
例えば、

use yii\helpers\Url;

// ホームページの URL: /index.php?r=site%2Findex
echo Url::home();

// ベース URL。アプリケーションがウェブルートのサブディレクトリに配置されているときに便利
echo Url::base();

// 現在リクエストされている URL の canonical URL。
// https://en.wikipedia.org/wiki/Canonical_link_element を参照
echo Url::canonical();

// 現在リクエストされている URL を記憶し、それを後のリクエストの中で呼び戻す。
Url::remember();
echo Url::previous();








綺麗な URL を使う 

綺麗な URL を使うためには、アプリケーションの構成情報の中で urlManager コンポーネントを次のように構成します。

[
    'components' => [
        'urlManager' => [
            'enablePrettyUrl' => true,
            'showScriptName' => false,
            'enableStrictParsing' => false,
            'rules' => [
                // ...
            ],
        ],
    ],
]





[[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] プロパティは、綺麗な URL 形式の有効/無効を切り替えますので、必須です。
その他のプロパティはオプションですが、上記で示されている構成が最もよく用いられているものです。


	[[yii\web\UrlManager::showScriptName|showScriptName]]: このプロパティは、生成される URL にエントリスクリプトを含めるべきかどうかを決定します。
例えば、このプロパティを false にすると、/index.php/post/100 という URL を生成する代りに、/post/100 という URL を生成することが出来ます。

	厳密な解析が有効にされた場合、リクエストされた URL が有効なリクエストとして扱われるためには、それが [[yii\web\UrlManager::rules|rules]] の少なくとも一つに合致しなければなりません。
そうでなければ、[[yii\web\NotFoundHttpException]] が投げられます。
厳密な解析が無効にされた場合は、リクエストされた URL が [[yii\web\UrlManager::rules|rules]] のどれにも合致しない場合は、URL のパス情報の部分がリクエストされたルートとして扱われます。

	[[yii\web\UrlManager::rules|rules]]: このプロパティが URL を解析および生成するための一連の規則を含みます。
このプロパティが、アプリケーションの固有の要求を満たす形式を持つ URL を生成するために、あなたが主として使うプロパティです。




Note: 生成された URL からエントリスクリプト名を隠すためには、[[yii\web\UrlManager::showScriptName|showScriptName]] を false に設定するだけでなく、ウェブサーバを構成して、リクエストされた URL が PHP スクリプトを明示的に指定していない場合でも、正しい PHP スクリプトを特定出来るようにする必要があります。
もしあなたが Apache または nginx ウェブサーバを使うつもりなら、インストール の節で説明されている推奨設定を参照することが出来ます。



URL 規則 

URL 規則は [[yii\web\UrlRuleInterface]] を実装するクラス、通常は、[[yii\web\UrlRule]] クラスです。
すべての URL 規則は、URL のパス情報の部分との照合に使われるパターン、ルート、そして、いくつかのクエリパラメータから構成されます。
URL 規則は、パターンがリクエストされた URL と合致する場合に、リクエストの解析に使用することが出来ます。
また、URL 規則は、ルートとクエリパラメータ名が与えられたものと合致する場合に、URL の生成に使用することが出来ます。

綺麗な URL 形式が有効にされている場合、[[yii\web\UrlManager|URL マネージャ]] は、その [[yii\web\UrlManager::rules|rules]] プロパティに宣言されている URL 規則を使って、入ってくるリクエストの解析と URL の生成を行います。
具体的に言えば、入ってくるリクエストを解析するためには、[[yii\web\UrlManager|URL マネージャ]] は宣言されている順に規則を調べて、リクエストされた URL に合致する 最初の 規則を探します。
そして、その合致する規則を使って URL を解析して、ルートとそれに結び付けられたパラメータを得ます。
同じように、URL を生成するためには、[[yii\web\UrlManager|URL マネージャ]] は、与えられたルートとパラメータに合致する最初の規則を探して、それを使って URL を生成します。

[[yii\web\UrlManager::rules]] は、 [[yii\web\UrlRule::$pattern|パターン]] をキーとし、それに対応する [[yii\web\UrlRule::$route|ルート]] を値とする配列として構成することが出来ます。
「パターン - ルート」のペアが、それぞれ、URL 規則を構成します。
例えば、次の [[yii\web\UrlManager::rules|rules]] の構成は、二つの URL 規則を宣言するものです。
最初の規則は posts という URL に合致し、それを post/index というルートにマップします。
第二の規則は post/(\d+) という正規表現にマッチする URL に合致し、それを post/view というルートと id という名前のパラメータにマップします。

'rules' => [
    'posts' => 'post/index',
    'post/<id:\d+>' => 'post/view',
]






Info: 規則のパターンは URL のパス情報の部分との照合に使用されます。
例えば、/index.php/post/100?source=ad のパス情報は post/100 であり (先頭と末尾のスラッシュは無視します)、これは post/(\d+) というパターンに合致します。


URL 規則は、「パターン - ルート」のペアとして宣言する以外に、構成情報配列として宣言することも出来ます。
構成情報の一つの配列が、それぞれ、一つの URL 規則のオブジェクトを構成するために使われます。
この形式は、URL 規則の他のプロパティを構成したい場合に、よく必要になります。
例えば、

'rules' => [
    // ... 他の URL 規則 ...
    [
        'pattern' => 'posts',
        'route' => 'post/index',
        'suffix' => '.json',
    ],
]





URL 規則の構成情報で class を指定しない場合は、デフォルトとして、[[yii\web\UrlRule]] が使われます。
このクラスが、[[yii\web\UrlManager::$ruleConfig]] でデフォルト値として定義されています。




名前付きパラメータ 

URL 規則は、パターンの中で <ParamName:RgExp> の形式で指定される、名前付きクエリパラメータと結び付けることが出来ます。
ここで、ParamName はパラメータ名を指定し、RegExp はパラメータの値との照合に使われるオプションの正規表現を指定するものです。
RegExp が指定されていない場合は、パラメータの値がスラッシュを含まない文字列であるべきことを意味します。


Note: 正規表現はパラメータの中でのみ使用できます。パターンの残りの部分はプレーンテキストとして解釈されます。


規則が URL の解析に使われるときには、URL の対応する部分に合致した値が、結び付けられたパラメータに入れられます。
そして、そのパラメータは、後に request アプリケーションコンポーネントによって、$_GET に入れられて利用できるようになります。
規則が URL の生成に使われるときは、提供されたパラメータの値を受けて、パラメータが宣言されている所にその値が挿入されます。

名前付きパラメータの動作を説明するためにいくつかの例を挙げましょう。次の三つの URL 規則を宣言したと仮定してください。

'rules' => [
    'posts/<year:\d{4}>/<category>' => 'post/index',
    'posts' => 'post/index',
    'post/<id:\d+>' => 'post/view',
]





規則が URL 解析に使われる場合は、


	/index.php/posts は、二番目の規則を使って解析され、ルート post/index になります。

	/index.php/posts/2014/php は、最初の規則を使って解析され、ルートは post/index、year パラメータの値は 2014、そして、category パラメータの値は php となります。

	/index.php/post/100 は、三番目の規則を使って解析され、ルートが post/view、id パラメータの値が 100 となります。

	/index.php/posts/php は、どのパターンにも合致しないため、[[yii\web\UrlManager::enableStrictParsing]] が true の場合は、[[yii\web\NotFoundHttpException]] を引き起こします。
[[yii\web\UrlManager::enableStrictParsing]] が false (これがデフォルト値です) の場合は、パス情報の部分である posts/php がルートとして返されることになります。
こうして解析されたルートに対応するアクションがあればそれが実行され、そうでなければ [[yii\web\NotFoundHttpException]] が投げられます。



規則が URL 生成に使われる場合は、


	Url::to(['post/index']) は、二番目の規則を使って、/index.php/posts を生成します。

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) は、最初の規則を使って、/index.php/posts/2014/php を生成します。

	Url::to(['post/view', 'id' => 100]) は、三番目の規則を使って、/index.php/post/100 を生成します。

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) も、三番目の規則を使って、/index.php/post/100?source=ad を生成します。
source パラメータは規則の中で指定されていないので、クエリパラメータとして、生成される URL に追加されます。

	Url::to(['post/index', 'category' => 'php']) は、どの規則も使わずに、/index.php/post/index?category=php を生成します。
どの規則も当てはまらないため、URL は、単純に、ルートをパス情報とし、すべてのパラメータをクエリ文字列として追加して生成されます。






ルートをパラメータ化する 

URL 規則のルートにはパラメータ名を埋め込むことが出来ます。このことによって、URL 規則を複数のルートに合致させることが可能になっています。
例えば、以下の規則は controller と action というパラメータをルートに埋め込んでいます。

'rules' => [
    '<controller:(post|comment)>/create' => '<controller>/create',
    '<controller:(post|comment)>/<id:\d+>/<action:(update|delete)>' => '<controller>/<action>',
    '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
    '<controller:(post|comment)>s' => '<controller>/index',
]





/index.php/comment/100/update という URL の解析には、二番目の規則が適用され、controller パラメータには comment、action パラメータには update がセットされます。
こうして、<controller>/<action> というルートは、comment/update として解決されます。

同じように、comment/index というルートの URL を生成するためには、最後の規則が適用されて、index.php/comments という URL が生成されます。


Info: ルートをパラメータ化することによって、URL 規則の数を大幅に減らすことが可能になり、[[yii\web\UrlManager|URL マネージャ]] のパフォーマンスを目に見えて改善することが出来ます。





デフォルトのパラメータ値 

デフォルトでは、規則の中で宣言されたパラメータは必須となります。
リクエストされた URL が特定のパラメータを含まない場合や、特定のパラメータなしで URL を生成する場合には、規則は適用されません。
パラメータのどれかをオプション扱いにしたい場合は、規則の [[yii\web\UrlRule::defaults|defaults]] プロパティを構成することが出来ます。
このプロパティのリストに挙げられたパラメータはオプション扱いとなり、提供されなかった場合は指定された値を取るようになります。

次の規則の宣言においては、page と tag のパラメータは両方ともオプション扱いで、提供されなかった場合は、それぞれ、1 と空文字列を取ります。

'rules' => [
    // ... 他の規則 ...
    [
        'pattern' => 'posts/<page:\d+>/<tag>',
        'route' => 'post/index',
        'defaults' => ['page' => 1, 'tag' => ''],
    ],
]





上記の規則を以下の URL を解析または生成するために使用することが出来ます。


	/index.php/posts: page は 1, tag は ‘’.

	/index.php/posts/2: page は 2, tag は ‘’.

	/index.php/posts/2/news: page は 2, tag は 'news'.

	/index.php/posts/news: page は 1, tag は 'news'.



オプション扱いのパラメータを使わなければ、同じ結果を得るために 4 個の規則を作らなければならなかったところです。




サーバ名を持つ規則 

URL 規則のパターンには、ウェブサーバ名を含むことが出来ます。
このことが役に立つのは、主として、あなたのアプリケーションがウェブサーバ名によって異なる動作をしなければならない場合です。
例えば、次の規則は、http://admin.example.com/login という URL を admin/user/login のルートとして解析し、http://www.example.com/login を site/login として解析するものです。

'rules' => [
    'http://admin.example.com/login' => 'admin/user/login',
    'http://www.example.com/login' => 'site/login',
]





サーバ名にパラメータを埋め込んで、そこから動的な情報を抽出することも出来ます。
例えば、次の規則は http://en.example.com/posts という URL を解析して、post/index というルートと language=en というパラメータを取得するものです。

'rules' => [
    'http://<language:\w+>.example.com/posts' => 'post/index',
]





バージョン 2.0.11 以降は、http と https の両方に通用する、プロトコル相対パターンを使うことも出来ます。
記法は上記と同じです、ただ、http: の部分を省略します。
例えば、'//www.example.com/login' => 'site/login'。


Note: サーバ名を持つ規則は、そのパターンに、エントリスクリプトのサブフォルダを含まないようにすべきです。
例えば、アプリケーションのエントリスクリプトが http://www.example.com/sandbox/blog/index.php である場合は、
http://www.example.com/sandbox/blog/posts ではなく、http://www.example.com/posts というパターンを使うべきです。
こうすれば、アプリケーションをどのようなディレクトリに配置しても、URL 規則を変更する必要がなくなります。
Yii はアプリケーションのベース URL を自動的に検出します。





URL 接尾辞 

さまざまな目的から URL に接尾辞を追加したいことがあるでしょう。
例えば、静的な HTML ページに見えるように、.html を URL に追加したいかも知れません。
また、レスポンスとして期待されているコンテントタイプを示すために、.json を URL に追加したい場合もあるでしょう。
アプリケーションの構成情報で、次のように、[[yii\web\UrlManager::suffix]] プロパティを構成することによって、この目的を達することが出来ます。

[
    'components' => [
        'urlManager' => [
            'enablePrettyUrl' => true,
            // ...
            'suffix' => '.html',
            'rules' => [
                // ...
            ],
        ],
    ],
]





上記の構成によって、[[yii\web\UrlManager|URL マネージャ]] は、接尾辞として .html の付いた URL を認識し、また、生成するようになります。


Tip: URL が全てスラッシュで終るようにするためには、URL 接尾辞として / を設定することが出来ます。



Note: URL 接尾辞を構成すると、リクエストされた URL が接尾辞を持たない場合は、認識できない URL であると見なされるようになります。
これは、異なる URL 上の重複コンテンツを防止するためのものであり、SEO (検索エンジン最適化) の見地からも推奨されるプラクティスです。


場合によっては、URL によって異なる接尾辞を使いたいことがあるでしょう。
その目的は、個々の URL 規則の [[yii\web\UrlRule::suffix|suffix]] プロパティを構成することによって達成できます。
URL 規則にこのプロパティが設定されている場合は、それが [[yii\web\UrlManager|URL マネージャ]] レベルの接尾辞の設定をオーバーライドします。
例えば、次の構成には、グローバルな接尾辞 .html の代りに .json を使用するカスタマイズされた URL 規則が含まれています。

[
    'components' => [
        'urlManager' => [
            'enablePrettyUrl' => true,
            // ...
            'suffix' => '.html',
            'rules' => [
                // ...
                [
                    'pattern' => 'posts',
                    'route' => 'post/index',
                    'suffix' => '.json',
                ],
            ],
        ],
    ],
]








HTTP メソッド 

RESTful API を実装するときは、使用されている HTTP メソッドに応じて、同一の URL を異なるルートとして解析することが必要になる場合がよくあります。
これは、規則のパターンにサポートされている HTTP メソッドを前置することによって、簡単に達成することが出来ます。
一つの規則が複数の HTTP メソッドをサポートする場合は、メソッド名をカンマで区切ります。
例えば、次の三つの規則は、post/<id:\d+> という同一のパターンを持って、異なる HTTP メソッドをサポートするものです。
PUT post/100 に対するリクエストは post/update と解析され、GET post/100 に対するリクエストは post/view と解析されることになります。

'rules' => [
    'PUT,POST post/<id:\d+>' => 'post/update',
    'DELETE post/<id:\d+>' => 'post/delete',
    'post/<id:\d+>' => 'post/view',
]






Note: URL 規則が HTTP メソッドをパターンに含む場合、指定されたメソッドに GET が入っていない限り、その規則は解析目的にだけ使用されます。
[[yii\web\UrlManager|URL マネージャ]] が URL 生成のために呼ばれたときは、その規則はスキップされます。



Tip: RESTful API のルーティングを簡単にするために、Yii は特別な URL 規則クラス [[yii\rest\UrlRule]] を提供しています。
これは非常に効率的なもので、コントローラ ID の自動的な複数形化など、いくつかの素敵な機能をサポートするものです。
詳細については、RESTful API 開発についての ルーティング の節を参照してください。





規則を動的に追加する 

URL 規則は [[yii\web\UrlManager|URL マネージャ]] に動的に追加することが出来ます。
このことは、再配布可能な モジュール が自分自身の URL 規則を管理する必要がある場合に、しばしば必要になります。
動的に追加された規則がルーティングのプロセスで効果を発揮するためには、その規則をアプリケーションの ブートストラップ の段階で追加しなければなりません。
これは、モジュールにとっては、次のように、[[yii\base\BootstrapInterface]] を実装して、[[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] メソッドの中で規則を追加しなければならないことを意味します。

public function bootstrap($app)
{
    $app->getUrlManager()->addRules([
        // ここに規則の宣言
    ], false);
}





さらに、モジュールが ブートストラップ の過程に関与できるように、それを [[yii\web\Application::bootstrap]] のリストに挙げなければならないことに注意してください。




規則クラスを作成する 

デフォルトの [[yii\web\UrlRule]] クラスはほとんどのプロジェクトに対して十分に柔軟なものであるというのは事実ですが、それでも、自分自身で規則クラスを作る必要があるような状況はあります。
例えば、自動車ディーラーのウェブサイトにおいて、/Manufacturer/Model のような URL 形式をサポートしたいけれども、Manufacturer と Model は、両方とも、データベーステーブルに保存されている何らかのデータに合致するものでなければならない、というような場合です。
デフォルトの規則クラスは、静的に宣言されるパターンに依拠しているため、ここでは役に立ちません。

この問題を解決するために、次のような URL 規則クラスを作成することが出来ます。

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class CarUrlRule extends Object implements UrlRuleInterface
{

    public function createUrl($manager, $route, $params)
    {
        if ($route === 'car/index') {
            if (isset($params['manufacturer'], $params['model'])) {
                return $params['manufacturer'] . '/' . $params['model'];
            } elseif (isset($params['manufacturer'])) {
                return $params['manufacturer'];
            }
        }
        return false; // この規則は適用されない
    }

    public function parseRequest($manager, $request)
    {
        $pathInfo = $request->getPathInfo();
        if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
            // $matches[1] と $matches[3] をチェックして、
            // データベースの中の製造者とモデルに合致するかどうか調べる
            // 合致すれば、$params['manufacturer'] および/または $params['model']
            // をセットし、['car/index', $params] を返す
        }
        return false; // この規則は適用されない
    }
}





そして、[[yii\web\UrlManager::rules]] の構成情報で、新しい規則クラスを使います。

'rules' => [
    // ... 他の規則 ...
    [
        'class' => 'app\components\CarUrlRule', 
        // ... 他のプロパティを構成する ...
    ],
]










URL の正規化 

バージョン 2.0.10 以降、[[yii\web\UrlManager|UrlManager]] で [[yii\web\UrlNormalizer|UrlNormalizer]] を使って、
同一 URL のバリエーション (例えば、末尾のスラッシュの有無) の問題を処理する出来るようになりました。
技術的には http://example.com/path と http://example.com/path/ は別の URL ですから、
これらの両方に同一のコンテントを提供することは SEO ランキングを低下させる可能性があります。
デフォルトでは、URL ノーマライザは、連続したスラッシュを畳み、サフィックスが末尾のスラッシュを持っているかどうかに従って末尾のスラッシュを追加または削除し、
正規化された URL に 恒久的な移動 [https://en.wikipedia.org/wiki/HTTP_301] を使ってリダイレクトします。
ノーマライザは、URL マネージャのためにグローバルに構成することも、各規則のために個別に構成することも出来ます。
各規則は、デフォルトでは、URL マネージャのノーマライザを使用します。
[[yii\web\UrlRule::$normalizer|UrlRule::$normalizer]] を false にすれば、特定の URL 規則について正規化を無効にすることが出来ます。

次に、[[yii\web\UrlNormalizer|UrlNormalizer]] の構成例を示します。

'urlManager' => [
    'enablePrettyUrl' => true,
    'showScriptName' => false,
    'enableStrictParsing' => true,
    'suffix' => '.html',
    'normalizer' => [
        'class' => 'yii\web\UrlNormalizer',
        // デバッグのために、恒久的移動のかわりに一時的リダイレクションを使う
        'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,
    ],
    'rules' => [
        // ... 他の規則 ...
        [
            'pattern' => 'posts',
            'route' => 'post/index',
            'suffix' => '/',
            'normalizer' => false, // この規則では正規化を無効にする
        ],
        [
            'pattern' => 'tags',
            'route' => 'tag/index',
            'normalizer' => [
                // この規則では連続するスラッシュを畳まない
                'collapseSlashes' => false,
            ],
        ],
    ],
]






Note: デフォルトでは [[yii\web\UrlManager::$normalizer|UrlManager::$normalizer]] は無効になっています。
URL の正規化を有効にするためには、明示的に構成する必要があります。





パフォーマンスに対する考慮 

複雑なウェブアプリケーションを開発するときは、リクエストの解析と URL 生成に要する時間を削減するために URL 規則を最適化することが重要になります。

パラメータ化したルートを使うことによって、URL 規則の数を減らして、パフォーマンスを著しく向上させることが出来ます。

URL を解析または生成するときに、[[yii\web\UrlManager|URL マネージャ]] は、宣言された順序で URL 規則を調べます。
従って、より多く使われる規則がより少なく使われる規則より前に来るように順序を調整することを検討してください。

パターンまたはルートに共通の先頭部分を持つ URL 規則がある場合は、[[yii\web\UrlManager|URL マネージャ]] がそれらをグループ化して効率的に調べることが出来るように、[[yii\web\GroupUrlRule]] を使うことを検討してください。
あなたのアプリケーションがモジュールによって構成されており、モジュールごとに、モジュール ID を共通の先頭部分とする一群の URL 規則を持っている場合は、通常、このことが当てはまります。







          

      

      

    

  

  
    
    
    キャッシュ
    
    

    
 
  
  

    
      
          
            
  
キャッシュ

ウェブアプリケーションのパフォーマンスを向上させるための簡単で効果的な方法としてキャッシュというものがあります。
比較的静的なデータをキャッシュに格納し、要求に応じてキャッシュからそれらを取得することによって、アプリケーションは毎回一からデータを生成するのに必要な時間を節約することができます。

キャッシュはアプリケーション内のさまざまなレベルと場所で使用することができます。
例えばサーバサイドでの低いレベルでは、データベースから取得した最新の記事情報リストのような基本的なデータを格納するために使用することが出来ます。
高いレベルでは、ウェブページの断片または全体、例えば、最新の記事のレンダリング結果を格納するために使用することが出来ます。
クライアントサイドでは、ブラウザのキャッシュに最近訪れたことのあるページの内容を格納するために HTTP キャッシュを使用することもできます。

Yii はこれら全てのキャッシュ機構をサポートしています:


	データキャッシュ

	フラグメントキャッシュ

	ページキャッシュ

	HTTP キャッシュ







          

      

      

    

  

  
    
    
    セッションとクッキー
    
    

    
 
  
  

    
      
          
            
  
セッションとクッキー

セッションとクッキーは、データが複数回のユーザリクエストにまたがって持続することを可能にします。
素の PHP では、それぞれ、グローバル変数 $_SESSION と $_COOKIE によってアクセスすることが出来ます。
Yii はセッションとクッキーをオブジェクトとしてカプセル化し、オブジェクト指向の流儀でアクセスできるようにするとともに、有用な機能強化を追加しています。


セッション 

リクエスト や レスポンス と同じように、デフォルトでは [[yii\web\Session]] のインスタンスである session [アプリケーションコンポーネント] によって、セッションにアクセスすることが出来ます。


セッションのオープンとクローズ 

セッションのオープンとクローズは、次のようにして出来ます。

$session = Yii::$app->session;

// セッションが既に開かれているかチェックする
if ($session->isActive) ...

// セッションを開く
$session->open();

// セッションを閉じる
$session->close();

// セッションに登録されている全てのデータを破壊する
$session->destroy();





エラーを発生させずに [[yii\web\Session::open()|open()]] と [[yii\web\Session::close()|close()]] を複数回呼び出すことが出来ます。
内部的には、これらのメソッドは、セッションが既に開かれているかどうかを最初にチェックします。




セッションデータにアクセスする 

セッションに保存されているデータにアクセスするためには、次のようにすることが出来ます。

$session = Yii::$app->session;

// セッション変数を取得する。次の三つの用法は等価。
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// セッション変数を設定する。次の三つの用法は等価。
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// セッション変数を削除する。次の三つの用法は等価。
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// セッション変数が存在するかどうかをチェックする。次の三つの用法は等価。
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// 全てのセッション変数をたどる。次の二つの用法は等価。
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...






Info: セッションデータに session コンポーネントによってアクセスする場合は、まだ開かれていないときは、自動的にセッションが開かれます。
これに対して $_SESSION によってセッションデータにアクセスする場合は、session_start() を明示的に呼び出すことが必要になります。


配列であるセッションデータを扱う場合、session コンポーネントには、配列の要素を直接修正することができない、という制約があります。例えば、

$session = Yii::$app->session;

// 次のコードは動かない
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// 次のコードは動く
$session['captcha'] = [
    'number' => 5,
    'lifetime' => 3600,
];

// 次のコードも動く
echo $session['captcha']['lifetime'];





次の回避策のどれかを使ってこの問題を解決することが出来ます。

$session = Yii::$app->session;

// $_SESSION を直接使う (既に Yii::$app->session->open() が呼び出されていることを確認)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// 配列全体を取得し、修正して、保存しなおす
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// 配列の代わりに ArrayObject を使う
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// 共通の接頭辞を持つキーを使って配列データを保存する
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;





パフォーマンスとコードの可読性を高めるためには、最後の回避策を推奨します。
すなわち、配列を一つのセッション変数として保存する代りに、配列の個々の要素を他の要素と同じキー接頭辞を共有する一個ずつのセッション変数として保存することです。




カスタムセッションストレージ 

デフォルトの [[yii\web\Session]] クラスはセッションデータをサーバ上のファイルとして保存します。
Yii は、また、さまざまなセッションストレージを実装する下記のクラスをも提供しています。


	

	[[yii\web\CacheSession]]: セッションデータを、構成された キャッシュコンポーネント の力を借りて、キャッシュを使って保存する。

	[[yii\redis\Session]]: セッションデータを redis [http://redis.io/] をストレージ媒体として使って保存する。

	[[yii\mongodb\Session]]: セッションデータを MongoDB [http://www.mongodb.org/] に保存する。



これらのセッションクラスは全て一連の同じ API メソッドをサポートします。
その結果として、セッションを使用するアプリケーションコードを修正することなしに、セッションストレージクラスを切り替えることが出来ます。


Note: カスタムセッションストレージを使っているときに $_SESSION を通じてセッションデータにアクセスしたい場合は、セッションが [[yii\web\Session::open()]] によって既に開始されていることを確認しなければなりません。
これは、カスタムセッションストレージのハンドラは、この open() メソッドの中で登録されるからです。


これらのコンポーネントクラスの構成方法と使用方法については、それらの API ドキュメントを参照してください。
下記の例は、アプリケーションの構成情報において、データベーステーブルをセッションストレージとして使うために [yii\web\DbSession] を構成する方法を示すものです。

return [
    'components' => [
        'session' => [
            'class' => 'yii\web\DbSession',
            // 'db' => 'mydb',  // DB 接続のアプリケーションコンポーネント ID。デフォルトは 'db'。
            // 'sessionTable' => 'my_session', // セッションテーブル名。デフォルトは 'session'。
        ],
    ],
];





セッションデータを保存するために、次のようなデータベーステーブルを作成することも必要です。

CREATE TABLE session
(
    id CHAR(40) NOT NULL PRIMARY KEY,
    expire INTEGER,
    data BLOB
)





ここで ‘BLOB’ はあなたが選んだ DBMS の BLOB 型を指します。下記は人気のあるいくつかの DBMS で使用できる BLOB 型です。


	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB




Note: php.ini の session.hash_function の設定によっては、id カラムの長さを修正する必要があるかも知れません。
例えば、session.hash_function=sha256 である場合は、40 の代りに 64 の長さを使わなければなりません。





フラッシュデータ 

フラッシュデータは特殊な種類のセッションデータで、あるリクエストの中で設定されると、次のリクエストの間においてのみ読み出すことが出来て、その後は自動的に削除されるものです。
フラッシュデータが最もよく使われるのは、エンドユーザに一度だけ表示されるべきメッセージ、例えば、ユーザのフォーム送信が成功した後に表示される確認メッセージなどを実装するときです。

session アプリケーションコンポーネントによって、フラッシュデータを設定し、アクセスすることが出来ます。例えば、

$session = Yii::$app->session;

// リクエスト #1
// "postDeleted" という名前のフラッシュメッセージを設定する
$session->setFlash('postDeleted', '投稿の削除に成功しました。');

// リクエスト #2
// "postDeleted" という名前のフラッシュメッセージを表示する
echo $session->getFlash('postDeleted');

// リクエスト #3
// フラッシュメッセージは自動的に削除されるので、$result は false になる
$result = $session->hasFlash('postDeleted');





通常のセッションデータと同様に、任意のデータをフラッシュデータとして保存することが出来ます。

[[yii\web\Session::setFlash()]] を呼び出すと、同じ名前の既存のフラッシュデータは上書きされます。
同じ名前の既存のメッセージに新しいフラッシュデータを追加するためには、代りに [[yii\web\Session::addFlash()]] を使うことが出来ます。
例えば、

$session = Yii::$app->session;

// リクエスト #1
// "alerts" という名前の下にフラッシュメッセージを追加する
$session->addFlash('alerts', '投稿の削除に成功しました。');
$session->addFlash('alerts', '友達の追加に成功しました。');
$session->addFlash('alerts', 'あなたのレベルが上りました。');

// リクエスト #2
// $alerts は "alerts" という名前の下にあるフラッシュメッセージの配列となる
$alerts = $session->getFlash('alerts');






Note: 同じ名前のフラッシュデータに対して、[[yii\web\Session::setFlash()]] と [[yii\web\Session::addFlash()]] を一緒に使わないようにしてください。
これは、後者のメソッドが、同じ名前のフラッシュデータを追加できるように、フラッシュデータを自動的に配列に変換するからです。
その結果、[[yii\web\Session::getFlash()]] を呼び出したとき、この二つのメソッドの呼び出し順によって、あるときは配列を受け取り、あるときは文字列を受け取るということになってしまいます。



Tip: フラッシュメッセージを表示するためには、[[yii\bootstrap\Alert|bootstrap Alert]] ウィジェットを次のように使用することが出来ます。

echo Alert::widget([
   'options' => ['class' => 'alert-info'],
   'body' => Yii::$app->session->getFlash('postDeleted'),
]);













クッキー 

Yii は個々のクッキーを [[yii\web\Cookie]] のオブジェクトとして表します。
[[yii\web\Request]] と [[yii\web\Response]] は、ともに、cookies という名前のプロパティによって、クッキーのコレクションを保持します。
後者のクッキーコレクションはリクエストの中で送信されてきたクッキーを表し、一方、後者のクッキーコレクションは、これからユーザに送信されるクッキーを表します。

アプリケーションで、リクエストとレスポンスを直接に操作する部分は、コントローラです。
従って、クッキーの読み出しと送信はコントローラで実行されるべきです。


クッキーを読み出す 

現在のリクエストに含まれるクッキーは、下記のコードを使って取得することが出来ます。

// "request" コンポーネントからクッキーコレクション (yii\web\CookieCollection) を取得する。
$cookies = Yii::$app->request->cookies;

// "language" というクッキーの値を取得する。クッキーが存在しない場合は、デフォルト値として "en" を返す。
$language = $cookies->getValue('language', 'en');

// "language" というクッキーの値を取得する別の方法。
if (($cookie = $cookies->get('language')) !== null) {
    $language = $cookie->value;
}

// $cookies を配列のように使うことも出来る。
if (isset($cookies['language'])) {
    $language = $cookies['language']->value;
}

// "language" というクッキーが在るかどうかチェックする。
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...








クッキーを送信する 

下記のコードを使って、クッキーをエンドユーザに送信することが出来ます。

// "response" コンポーネントからクッキーコレクション (yii\web\CookieCollection) を取得する。
$cookies = Yii::$app->response->cookies;

// 送信されるレスポンスに新しいクッキーを追加する。
$cookies->add(new \yii\web\Cookie([
    'name' => 'language',
    'value' => 'zh-CN',
]));

// クッキーを削除する。
$cookies->remove('language');
// 次のようにしても同じ。
unset($cookies['language']);





[[yii\web\Cookie]] クラスは、上記の例で示されている [[yii\web\Cookie::name|name]] と [[yii\web\Cookie::value|value]] のプロパティ以外にも、[[yii\web\Cookie::domain|domain]]
や [[yii\web\Cookie::expire|expire]] など、他のプロパティを定義して、利用可能なクッキー情報の全てを完全に表しています。
クッキーを準備するときに必要に応じてこれらのプロパティを構成してから、レスポンスのクッキーコレクションに追加することが出来ます。


Note: セキュリティを向上させるために、[[yii\web\Cookie::httpOnly]] のデフォルト値は true に設定されています。
これは、クライアントサイドスクリプトが保護されたクッキーにアクセスする危険を軽減するものです (ブラウザがサポートしていれば)。
詳細については、httpOnly wiki article [https://www.owasp.org/index.php/HttpOnly] を読んでください。





クッキー検証 

最後の二つの項で示されているように、request と response のコンポーネントを通じてクッキーを読んだり送信したりする場合には、クッキーがクライアントサイドで修正されるのを防止するクッキー検証という追加のセキュリティを享受することが出来ます。
これは、個々のクッキーにハッシュ文字列をサインとして追加することによって達成されます。
アプリケーションは、サインを見て、クッキーがクライアントサイドで修正されたかどうかを知ることが出来ます。
もし、修正されていれば、そのクッキーは request コンポーネントの [[yii\web\Request::cookies|クッキーコレクション]] からはアクセスすることが出来なくなります。


Note: クッキー検証は値が修正されたクッキーの読み込みを防止するだけです。
検証に失敗した場合でも、$_COOKIE を通じてそのクッキーにアクセスすることは引き続いて可能です。
これは、サードパーティのライブラリが、クッキー検証を含まない独自の方法でクッキーを操作することが出来るようにするするためです。


クッキー検証はデフォルトで有効になっています。
[[yii\web\Request::enableCookieValidation]] プロパティを false に設定することによって無効にすることが出来ますが、無効にしないことを強く推奨します。


Note: $_COOKIE と setcookie() によって直接に 読み出し/送信 されるクッキーは検証されません。


クッキー検証を使用する場合は、前述のハッシュ文字列を生成するために使用される [[yii\web\Request::cookieValidationKey]] を指定しなければなりません。
アプリケーションの構成情報で request コンポーネントを構成することによって、そうすることが出来ます。

return [
    'components' => [
        'request' => [
            'cookieValidationKey' => 'ここに秘密のキーを書く',
        ],
    ],
];






Info: [[yii\web\Request::cookieValidationKey|cookieValidationKey]] は、あなたのアプリケーションにとって、決定的に重要なものです。
これは信頼する人にだけ教えるべきものです。バージョンコントロールシステムに保存してはいけません。










          

      

      

    

  

  
    
    
    Yii とは何か
    
    

    
 
  
  

    
      
          
            
  
Yii とは何か

Yii は現代的なウェブアプリケーションを迅速に開発するための、高性能な、コンポーネントベースの PHP フレームワークです。
Yii という名前 (イー すなわち [ji:] と発音します) は、中国語では「易」であり、「シンプルかつ進化的」であることを意味します。
また Yes It Is のアクロニム (頭字語) であると考えることも出来ます。


Yii は何に適しているか

Yii は汎用的なウェブプログラミングフレームワークです。
つまり、あらゆる種類のウェブアプリケーションを PHP を使って開発するときに、Yii を使用することが出来ます。
コンポーネントベースのアーキテクチャと洗練されたキャッシュサポートを持っているため、Yii は大規模なアプリケーション、たとえば、ポータル、フォーラム、コンテントマネージメントシステム (CMS)、電子商取引プロジェクト、RESTful ウェブサービス、等々を開発するのに特に適しています。




Yii を他のフレームワークと比べると

あなたが既に他のフレームワークに親しんでいる場合は、Yii を比較するとどうなのかを知りたいでしょう。


	ほとんどの PHP フレームワーク同様、Yii は MVC (Model-View-Controller) アーキテクチャパターンを実装し、このパターンに基づいたコードの編成を推進しています。

	Yii は、コードはシンプルかつエレガントに書かれるべきである、という哲学を採用しています。
何らかのデザインパターンの厳密な遵守を主な目的とする凝りすぎた設計を、Yii がしようと試みることは決してありません。

	Yii はフル装備のフレームワークです。
クエリビルダ、リレーショナルデータベースと NoSQL データベースの双方のためのアクティブレコード、RESTful API 開発サポート、多層構成のキャッシュサポート、その他、検証済みで直ちに使える多数の機能を提供します。

	Yii は極めて拡張性の高いフレームワークです。あなたはコアのコードのほとんど全ての要素をカスタマイズしたり置き換えたりすることが出来ます。
また、Yii の堅固なエクステンションアーキテクチャを利用して、再配布可能なエクステンションを使用したり開発したりすることも出来ます。

	高性能であることは常に Yii の主たる目標です。



Yii はワンマンショーではありません。Yii は 強力なコア開発チーム [http://www.yiiframework.com/team/] および Yii 開発に間断なく貢献してくれるプロフェッショナルの大きなコミュニティーに支えられたプロジェクトです。
Yii 開発チームは、最新のウェブ開発の潮流と、他のフレームワークやプロジェクトに見出される最善のプラクティスと機能を、注意深く見守り続けています。
他のところで見出された最善のプラクティスと機能で最も適切なものは、定期的にコアフレームワークに組み込まれ、シンプルかつエレガントなインターフェイスを通じて公開されます。




Yii のバージョン

Yii は現在、利用可能な二つのメジャーバージョン、すなわち 1.1 と 2.0 を持っています。
バージョン 1.1 は古い世代のもので、現在はメンテナンスモードにあります。
バージョン 2.0 は、最新のテクノロジーとプロトコル、例えば、Composer、PSR、名前空間、トレイトなどを採用して、Yii を完全に書き直したものです。
バージョン 2.0 がこのフレームワークの現世代を表すものであり、今後数年間にわたって主要な開発努力の対象となるものです。
このガイドは主としてバージョン 2.0 について述べます。




必要条件と前提条件

Yii 2.0 は PHP 5.4.0 以上を必要とし、PHP 7 の最新バージョンで最高の力を発揮します。
個々の機能に対する詳細な必要条件は、全ての Yii リリースに含まれている必要条件チェッカを走らせることによって知ることが出来ます。

Yii を使うためには、オブジェクト指向プログラミング (OOP) の基本的な知識が必要です。
なぜなら、Yii は純粋な OOP ベースのフレームワークだからです。
また、Yii 2.0 は 名前空間 [http://php.net/manual/ja/language.namespaces.php] や トレイト [http://php.net/manual/ja/language.oop5.traits.php] のような PHP の最新の機能を利用しています。
これらの概念を理解することは、Yii 2.0 を採用することを一層容易にするでしょう。







          

      

      

    

  

  
    
    
    こんにちは、と言う
    
    

    
 
  
  

    
      
          
            
  
こんにちは、と言う

この節では、アプリケーションに「こんにちは」という新しいページを作成する方法を説明します。
この目的を達するために、アクション と ビュー を作成します。


	アプリケーションは、このページへのリクエストをそのアクションに送付します。

	次にそのアクションが「こんにちは」という言葉をエンドユーザに示すビューを表示します。



このチュートリアルを通じて、三つのことを学びます。


	リクエストに応える アクション を作成する方法

	レスポンスのコンテントを作成する ビュー を作成する方法

	アプリケーションがリクエストを アクション に送付する仕組み




アクションを作成する 

「こんにちは」のタスクのために、リクエストから message パラメータを読んで、そのメッセージをユーザに表示して返す say アクション を作ります。
リクエストが message パラメータを提供しなかった場合は、アクションはデフォルト値として “こんにちは” というメッセージを表示するものとします。


Info: アクション は、エンドユーザが直接に参照して実行できるオブジェクトです。
アクションは コントローラ によってグループ化されます。
アクションの実行結果が、エンドユーザが受け取るレスポンスです。


アクションは コントローラ の中で宣言されなければなりません。
話を簡単にするために、say アクションを既存の SiteController の中で宣言しましょう。
このコントローラは controllers/SiteController.php というクラスファイルの中で定義されています。
次のようにして、新しいアクションが始まります。

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    // ... 既存のコード ...

    public function actionSay($message = 'こんにちは')
    {
        return $this->render('say', ['message' => $message]);
    }
}





上記のコードでは、SiteController クラスの中で、say アクションが actionSay という名前のメソッドとして定義されています。
Yii はコントローラクラスの中で、アクションのメソッドとアクションでないメソッドを区別するために、action という接頭辞を使います。
action という接頭辞の後に続く名前がアクション ID にマップされます。

アクションを命名するについては、Yii がアクション ID をどのように取り扱うかを知っていなければなりません。
アクション ID は常に小文字で参照されます。
アクション ID が複数の単語を必要とするときは、単語がダッシュ (-) で連結されます (例えば、create-comment)。
アクションメソッドの名前は、アクション ID からダッシュを全て削除し、各単語の先頭の文字を大文字にした結果に action という接頭辞を付けたものになります。
例えば、アクション ID create-comment に対応するアクションメソッド名は actionCreateComment となります。

私たちの例では、アクションメソッドは $message というパラメータを取り、そのデフォルト値は "こんにちは" です
(PHP で関数やメソッドの引数にデフォルト値を設定するのと全く同じ方法です)。
アプリケーションがリクエストを受け取って、当該リクエストの処理を say アクションが担当すべきであると決定した場合は、リクエストの中に見つかった同じ名前のパラメータの値をこの $message パラメータに代入します。
言い換えれば、もしリクエストの中に "さようなら" という値の message パラメータが入っていれば、アクションの $message 変数にその値が割り当てられます。

アクションメソッドの中では、[[yii\web\Controller::render()|render()]] が呼ばれて say と言う名前の ビュー ファイルがレンダリングされます。
message パラメータも同時にビューに渡され、そこで使用されます。
レンダリング結果はアクションメソッドによって返されます。
返された結果はアプリケーションによって受け取られ、ブラウザ上でエンドユーザに (完全な HTML ページの一部として) 表示されます。




ビューを作成する 

ビュー は、レスポンスのコンテントを生成するために書かれるスクリプトです。
「こんにちは」のタスクのためには、アクションメソッドから受け取った message パラメータを出力する say ビューを作成します。

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>





say ビューは views/site/say.php というファイルに保存しなければなりません。
アクションの中で [[yii\web\Controller::render()|render()]] メソッドが呼ばれるとき、render() メソッドは views/ControllerID/ViewName.php という名前の PHP ファイルを探します。

上記のコードで message パラメータが出力される前に  [[yii\helpers\Html::encode()|HTML-エンコード]] されていることに注意してください。
パラメータはエンドユーザから来るものであり、悪意のある JavaScript コードを埋め込まれて クロスサイトスクリプティング (XSS) 攻撃 [http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%86%E3%82%A3%E3%83%B3%E3%82%B0] に使われうるものですから、脆弱性を防止するためにこうすることが必要です。

当然ながら、say ビューにはもっと多くのコンテントを入れても構いません。
コンテントには、HTML タグ、平文テキスト、さらには PHP 文を含めることが出来ます。
実際、say ビューは [[yii\web\Controller::render()|render()]] メソッドによって実行される PHP スクリプトであるに過ぎません。
ビュースクリプトによって出力されたコンテントはレスポンス結果としてアプリケーションに返されます。
そしてアプリケーションがこの結果をエンドユーザに対して出力します。




試してみる 

アクションとビューを作成したら、下記の URL で新しいページにアクセスすることが出来ます。

http://hostname/index.php?r=site%2Fsay&message=Hello+World





[image: Hello World]

この URL は、結果として、”Hello World” を表示するページになります。
このページはアプリケーションの他のページと同じヘッダとフッタを共有しています。

URL から message パラメータを省略すると、”こんにちは” を表示するページを見ることになるでしょう。
これは、message が actionSay() メソッドにパラメータとして渡されるものであり、それが省略された場合には、デフォルト値である "こんにちは" が代りに使われるからです。


Info: 新しいページは他のページと同じヘッダとフッタを共有していますが、それは [[yii\web\Controller::render()|render()]] メソッドが say ビューの結果をいわゆる レイアウト に自動的に埋め込むからです。
レイアウトは、この場合、views/layouts/main.php にあります。


上記の URL の r パラメータについては、さらに説明が必要でしょう。
これは ルート、すなわち、アクションを指し示すアプリケーションを通じて一意な ID を表します。
ルートの書式は ControllerID/ActionID です。
アプリケーションはリクエストを受け取ると、このパラメータ r をチェックし、ControllerID の部分を使って、このリクエストを処理するためにどのコントローラクラスのインスタンスを作成すべきかを決定します。
そして、コントローラは ActionID の部分を使って、実際の仕事をするためにどのアクションを呼び出すべきかを決定します。
この例で言えば、site/say というルートは、SiteController コントローラクラスと say アクションとして解決されます。
結果として、SiteController::actionSay() メソッドがリクエストを処理するために呼び出されます。


Info: アクションと同じく、コントローラもまたアプリケーションの中で一意に定義される ID を持ちます。
コントローラ ID も、アクション ID と同じ命名規則を使います。
コントローラクラスの名前は、コントローラ ID からダッシュを削除し、各単語の最初の文字を大文字にし、結果として出来る文字列に Controller という接尾辞を追加したものとなります。
例えば、post-comment というコントローラ ID に対応するコントローラクラスの名前は PostCommentController です。





まとめ 

この節では、MVC アーキテクチャパターンのうちのコントローラとビューの部分に触れました。
特定のリクエストを処理するためのアクションをコントローラの一部として作成しました。
また、レスポンスのコンテントを作成するためのビューも作成しました。
この単純な例においては、使用される唯一のデータが message パラメータであったため、モデルは関係していません。

また、Yii におけるルートについても学びました。ルートはユーザのリクエストとコントローラのアクションとの橋渡しとして働くものです。

次の節では、モデルを作成する方法を学びます。そして、HTML フォームを含むページを追加します。







          

      

      

    

  

  
    
    
    ファイルをアップロードする
    
    

    
 
  
  

    
      
          
            
  
ファイルをアップロードする

Yii におけるファイルのアップロードは、通常、アップロードされる個々のファイルを UploadedFile としてカプセル化する [[yii\web\UploadedFile]] の助けを借りて実行されます。
これを [[yii\widgets\ActiveForm]] および モデル と組み合わせることで、安全なファイルアップロードメカニズムを簡単に実装することが出来ます。


モデルを作成する 

プレーンなテキストインプットを扱うのと同じように、一つのファイルをアップロードするためには、モデルクラスを作成して、そのモデルの一つの属性を使ってアップロードされるファイルのインスタンスを保持します。
また、ファイルのアップロードを検証するために、検証規則も宣言しなければなりません。
例えば、

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
    /**
     * @var UploadedFile
     */
    public $imageFile;

    public function rules()
    {
        return [
            [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
        ];
    }
    
    public function upload()
    {
        if ($this->validate()) {
            $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
            return true;
        } else {
            return false;
        }
    }
}





上記のコードにおいては、imageFile 属性がアップロードされたファイルのインスタンスを保持するのに使われます。
この属性が関連付けられている file 検証規則は、[[yii\validators\FileValidator]] を使って、png または jpg の拡張子を持つファイルがアップロードされることを保証しています。
upload() メソッドは検証を実行して、アップロードされたファイルをサーバに保存します。

file バリデータによって、ファイル拡張子、サイズ、MIME タイプなどをチェックすることが出来ます。
詳細については、コアバリデータ の節を参照してください。


Tip: 画像をアップロードしようとする場合は、image バリデータを代りに使うことを考慮しても構いません。
image バリデータは [[yii\validators\ImageValidator]] によって実装されており、属性が有効な画像、すなわち、保存したり Imagine エクステンション [https://github.com/yiisoft/yii2-imagine] を使って処理したりすることが可能な有効な画像を、受け取ったかどうかを検証します。


上記のコードにおいて作成した UploadForm というモデルは、HTML フォームで <input type="file"> となる $file という属性を持ちます。
この属性は [[yii\validators\FileValidator|FileValidator]] を使用する file という検証規則を持ちます。




ファイルインプットをレンダリングする 

次に、ビューでファイルインプットを作成します。

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

    <?= $form->field($model, 'imageFile')->fileInput() ?>

    <button>送信</button>

<?php ActiveForm::end() ?>





ファイルが正しくアップロードされるように、フォームに enctype オプションを追加することを憶えておくのは重要なことです。
fileInput() を呼ぶと <input type="file"> のタグがレンダリングされて、ユーザがアップロードするファイルを選ぶことが出来るようになります。


Tip: バージョン 2.0.8 以降では、ファイルインプットのフィールドが使われているときは、[[yii\widgets\ActiveField::fileInput|fileInput]] がフォームに enctype オプションを自動的に追加します。





繋ぎ合せる 

そして、コントローラアクションの中で、モデルとビューを繋ぎ合せるコードを書いて、ファイルのアップロードを実装します。

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
    public function actionUpload()
    {
        $model = new UploadForm();

        if (Yii::$app->request->isPost) {
            $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
            if ($model->upload()) {
                // ファイルのアップロードが成功
                return;
            }
        }

        return $this->render('upload', ['model' => $model]);
    }
}





上記のコードでは、フォームが送信されると [[yii\web\UploadedFile::getInstance()]] メソッドが呼ばれて、アップロードされたファイルが UploadedFile のインスタンスとして表現されます。
そして、次に、モデルの検証によってアップロードされたファイルが有効なものであることを確かめ、サーバにファイルを保存します。




複数のファイルをアップロードする 

ここまでの項で示したコードに若干の修正を加えれば、複数のファイルを一度にアップロードすることも出来ます。

最初に、モデルクラスを修正して、file 検証規則に maxFiles オプションを追加して、アップロードを許可されるファイルの最大数を制限しなければなりません。
maxFiles を 0 に設定することは、同時にアップロード出来るファイル数に制限がないことを意味します。
同時にアップロードすることを許されるファイルの数は、また、PHP のディレクティブ max_file_uploads [http://php.net/manual/ja/ini.core.php#ini.max-file-uploads] (デフォルト値は 20) によっても制限されます。
upload() メソッドも、アップロードされた複数のファイルを一つずつ保存するように修正しなければなりません。

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
    /**
     * @var UploadedFile[]
     */
    public $imageFiles;

    public function rules()
    {
        return [
            [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
        ];
    }
    
    public function upload()
    {
        if ($this->validate()) { 
            foreach ($this->imageFiles as $file) {
                $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
            }
            return true;
        } else {
            return false;
        }
    }
}





ビューファイルでは、fileInput() の呼び出しに multiple オプションを追加して、ファイルアップロードのフィールドが複数のファイルを受け取ることが出来るようにしなければなりません。

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

    <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

    <button>送信</button>

<?php ActiveForm::end() ?>





そして、最後に、コントローラアクションの中では、UploadedFile::getInstance() の代りに UploadedFile::getInstances() を呼んで、UploadedFile インスタンスの配列を UploadForm::imageFiles に代入しなければなりません。

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
    public function actionUpload()
    {
        $model = new UploadForm();

        if (Yii::$app->request->isPost) {
            $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
            if ($model->upload()) {
                // ファイルのアップロードが成功
                return;
            }
        }

        return $this->render('upload', ['model' => $model]);
    }
}











          

      

      

    

  

  
    
    
    単体テスト
    
    

    
 
  
  

    
      
          
            
  
単体テスト


Note: この節はまだ執筆中です。


単体テストは、一かたまりのコードが期待通りに動作することを検証するものです。
オブジェクト指向プログラミングでは、最も基本的なコードのかたまりはクラスです。
単体テストで主として必要となることは、従って、クラスの全てのインタフェイスメソッドが正しく動作することを検証することです。
つまり、テストは、さまざまな入力パラメータに対してメソッドが期待通りの結果を返すかどうかを検証します。
単体テストは、通常は、テストされるクラスを書く人によって開発されます。

Yii における単体テストは、PHPUnit と Codeception (こちらはオプションです) の上に構築されます。
従って、それらのドキュメントを通読することが推奨されます。


	PHPUnit のドキュメントの第2章以降 [http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html].

	Codeception Unit Tests [http://codeception.com/docs/05-UnitTests].




ベーシックおよびアドバンストのテンプレートのテストを実行する

アドバンストテンプレートでプロジェクトを開始した場合、テストの実行については、
“テスト” のガイド [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/start-testing.md] を参照して下さい。

ベーシックテンプレートでプロジェクトを開始した場合は、
check its README の “testing” の節 [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing] を参照して下さい。




フレームワークの単体テスト

Yii フレームワーク自体に対する単体テストを走らせたい場合は、”Yii 2 の開発を始めよう [https://github.com/yiisoft/yii2/blob/master/docs/internals-ja/getting-started.md]” の説明に従ってください。







          

      

      

    

  

  
    
    
    セキュリティのベストプラクティス
    
    

    
 
  
  

    
      
          
            
  
セキュリティのベストプラクティス

下記において、一般的なセキュリティの指針を復習し、Yii を使ってアプリケーションを開発するときに脅威を回避する方法を説明します。


基本的な指針

どのようなアプリケーションが開発されているかに関わらず、セキュリティに関しては二つの大きな指針が存在します。


	入力をフィルタする。

	出力をエスケープする。




入力をフィルタする

入力をフィルタするとは、入力値は決して安全なものであると見なさず、取得した値が実際に許可さていれる値に含まれるか否かを常にチェックしなければならない、ということを意味します。
例えば、並べ替えが三つのフィールド title、created_at および status によって実行され、フィールドの名前がユーザの入力によって提供されるものであることを知っている場合、取得した値を受信するその場でチェックする方が良い、ということです。
基本的な PHP の形式では、次のようなコードになります。

$sortBy = $_GET['sort'];
if (!in_array($sortBy, ['title', 'created_at', 'status'])) {
    throw new Exception('sort の値が不正です。');
}





Yii においては、たいていの場合、同様のチェックを行うために フォームのバリデーション を使うことになるでしょう。




出力をエスケープする

データを使用するコンテキストに応じて、出力をエスケープしなければなりません。
つまり、HTML のコンテキストでは、< や > などの特殊な文字をエスケープしなければなりません。
JavaScript や SQL のコンテキストでは、対象となる文字は別のセットになります。
全てを手動でエスケープするのは間違いを生じやすいことですから、Yii は異なるコンテキストに応じたエスケープを実行するためのさまざまなツールを提供しています。






SQL インジェクションを回避する

SQL インジェクションは、次のように、エスケープされていない文字列を連結してクエリテキストを構築する場合に発生します。

$username = $_GET['username'];
$sql = "SELECT * FROM user WHERE username = '$username'";





正しいユーザ名を提供する代りに、攻撃者は '; DROP TABLE user; -- のような文字列をあなたのアプリケーションに与えることが出来ます。
結果として構築される SQL は次のようになります。

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'





これは有効なクエリで、空のユーザ名を持つユーザを探してから、user テーブルを削除します。
おそらく、ウェブサイトは破壊されて、データは失われることになります (定期的なバックアップは設定済みですよね、ね? )。

Yii においては、ほとんどのデータベースクエリは、PDO のプリペアドステートメントを適切に使用する アクティブレコード を経由して実行されます。
プリペアドステートメントの場合は、上で説明したようなクエリの改竄は不可能です。

それでも、生のクエリ や クエリビルダ を必要とする場合はあります。
その場合には、データを渡すための安全な方法を使わなければなりません。
データをカラムの値として使う場合は、プリペアドステートメントを使うことが望まれます。

// query builder
$userIDs = (new Query())
    ->select('id')
    ->from('user')
    ->where('status=:status', [':status' => $status])
    ->all();

// DAO
$userIDs = $connection
    ->createCommand('SELECT id FROM user where status=:status')
    ->bindValues([':status' => $status])
    ->queryColumn();





データがカラム名やテーブル名を指定するために使われる場合は、事前定義された一連の値だけを許可するのが最善の方法です。

function actionList($orderBy = null)
{
    if (!in_array($orderBy, ['name', 'status'])) {
        throw new BadRequestHttpException('name と status だけを並べ替えに使うことが出来ます。')
    }
    
    // ...
}





それが不可能な場合は、テーブル名とカラム名をエスケープしなければなりません。
Yii はそういうエスケープのための特別な文法を持っており、それを使うと、サポートされている全てのデータベースに対して同じ方法でエスケープすることが出来ます。

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";
$rowCount = $connection->createCommand($sql)->queryScalar();





この文法の詳細は、テーブルとカラムの名前を引用符で囲む で読むことが出来ます。




XSS を回避する

XSS すなわちクロスサイトスクリプティングは、ブラウザに HTML を出力する際に、出力が適切にエスケープされていないと発生します。
例えば、ユーザ名を入力できるフォームで Alexander の代りに <script>alert('Hello!');</script> と入力した場合、ユーザ名をエスケープせずに出力している全てのページでは、JavaScript alert('Hello!'); が実行されて、ブラウザにアラートボックスがポップアップ表示されます。
ウェブサイト次第では、そのようなスクリプトを使って、無害なアラートではなく、あなたの名前を使ってメッセージを送信したり、さらには銀行取引を実行したりすることが可能です。

XSS の回避は、Yii においてはとても簡単です。一般に、二つのケースがあります。


	データを平文テキストとして出力したい。

	データを HTML として出力したい。



平文テキストしか必要でない場合は、エスケープは次のようにとても簡単です。

<?= \yii\helpers\Html::encode($username) ?>





HTML である場合は、HtmlPurifier から助けを得ることが出来ます。

<?= \yii\helpers\HtmlPurifier::process($description) ?>





HtmlPurifier の処理は非常に重いので、キャッシュを追加することを検討してください。




CSRF を回避する

CSRF は、クロスサイトリクエストフォージェリ (cross-site request forgery) の略称です。
多くのアプリケーションは、ユーザのブラウザから来るリクエストはユーザ自身によって発せられたものだと仮定しているけれども、その仮定は間違っているかもしれない ... というのが CSRF の考え方です。

例えば、an.example.com というウェブサイトが /logout という URL を持っており、この URL を単純な GET でアクセスするとユーザをログアウトさせるようになっているとします。
ユーザ自身によってこの URL がリクエストされる限りは何も問題はありませんが、ある日、悪い奴が、ユーザが頻繁に訪れるフォーラムに <img src="http://an.example.com/logout"> というリンクを含むコンテントを何とかして投稿することに成功します。
ブラウザは画像のリクエストとページのリクエストの間に何ら区別を付けませんので、ユーザがそのような img タグを含むページを開くとブラウザはその URL に対して GET リクエストを送信します。
そして、ユーザが an.example.com からログアウトされてしまうことになる訳です。

これは基本的な考え方です。ユーザがログアウトされるぐらいは大したことではない、と言うことも出来るでしょう。
しかし、悪い奴は、この考え方を使って、もっとひどいことをすることも出来ます。
例えば、http://an.example.com/purse/transfer?to=anotherUser&amount=2000 という URL を持つウェブサイトがあると考えて見てください。
この URL に GET リクエストを使ってアクセスすると、権限を持つユーザアカウントから anotherUser に $2000 が送金されるのです。
私たちは、ブラウザは画像をロードするのに常に GET リクエストを使う、ということを知っていますから、この URL が POST リクエストだけを受け入れるようにコードを修正することは出来ます。
しかし残念なことに、それで問題が解決する訳ではありません。
攻撃者は <img> タグの代りに何らかの JavaScript コードを書いて、その URL に対する POST リクエストの送信を可能にすることが出来ます。

CSRF を回避するためには、常に次のことを守らなければなりません。


	HTTP の規格、すなわち、GET はアプリケーションの状態を変更すべきではない、という規則に従うこと。

	Yii の CSRF 保護を有効にしておくこと。



場合によっては、コントローラやアクションの単位で CSRF 検証を無効化する必要があることがあるでしょう。
これは、そのプロパティを設定することによって達成することが出来ます。

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public $enableCsrfValidation = false;

    public function actionIndex()
    {
        // CSRF 検証はこのアクションおよびその他のアクションに対して適用されない
    }

}





特定のアクションに対して CSRF 検証を無効化したいときは、次のようにすることが出来ます。

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public function beforeAction($action)
    {
        // ... ここで何らかの条件に従って `$this->enableCsrfValidation` を設定する ...
        // 親のメソッドを呼ぶ。プロパティが true であれば、その中で CSRF がチェックされる。
        return parent::beforeAction($action);
    }
}








ファイルの曝露を回避する

デフォルトでは、サーバのウェブルートは、index.php がある web ディレクトリを指すように意図されています。
共有ホスティング環境の場合、それをすることが出来ずに、全てのコード、構成情報、ログをサーバのウェブルートの下に置かなくてはならないことがあり得ます。

そういう場合には、web 以外の全てに対してアクセスを拒否することを忘れないでください。
それも出来ない場合は、アプリケーションを別の場所でホストすることを検討してください。




本番環境ではデバッグ情報とデバッグツールを無効にする

デバッグモードでは、Yii は極めて多くのエラー情報を出力します。これは確かに開発には役立つものです。
しかし、実際の所、これらの饒舌なエラー情報は、攻撃者にとっても、データベース構造、構成情報の値、コードの断片などを曝露してくれる重宝なものです。
本番でのアプリケーションにおいては、決して index.php の YII_DEBUG を true にして走らせてはいけません。

本番環境では Gii を決して有効にしてはいけません。
Gii を使うと、データベース構造とコードに関する情報を得ることが出来るだけでなく、コードを Gii によって生成したもので書き換えることすら出来てしまいます。

デバッグツールバーは本当に必要でない限り本番環境では使用を避けるべきです。
これはアプリケーションと構成情報の全ての詳細を曝露することが出来ます。
どうしても必要な場合は、あなたの IP だけに適切にアクセス制限されていることを再度チェックしてください。




TLS によるセキュアな接続を使う

Yii が提供する機能には、クッキーや PHP セッションに依存するものがあります。
これらのものは、接続が侵害された場合には、脆弱性となり得ます。
アプリケーションが TLS によるセキュアな接続を使用している場合は、この危険性を減少させることが出来ます。

その設定の仕方については、あなたのウェブサーバのドキュメントの指示を参照してください。
H5BP プロジェクトが提供する構成例を参考にすることも出来ます。


	Nginx [https://github.com/h5bp/server-configs-nginx]

	Apache [https://github.com/h5bp/server-configs-apache].

	IIS [https://github.com/h5bp/server-configs-iis].

	Lighttpd [https://github.com/h5bp/server-configs-lighttpd].






サーバの構成をセキュアにする

この節の目的は、Yii ベースのウェブサイトをホストするサーバの構成を作成するときに、
考慮に入れなければならないリスクに照明を当てることにあります。
ここで触れられる問題点以外にも、セキュリティに関連して考慮すべき構成オプションがあるかもしれません。
この節の説明が完全であるとは考えないで下さい。


Host ヘッダ攻撃を避ける

[[yii\web\UrlManager]] や [[yii\helpers\Url]] のクラスは、リンクを生成するために [[yii\web\Request::getHostInfo()|現在リクエストされているホスト名]] を使うことがあります。
って
ウェブサーバが Host ヘッダの値とは無関係に同じサイトとして応答するように構成されている場合は、
この情報は HTTP リクエストを送信するユーザによって偽装され [https://www.acunetix.com/vulnerabilities/web/host-header-attack] て、信頼できないものになっている可能性があります。
そのような状況においては、ウェブサーバの構成を改修して、指定されたホスト名に対してのみ応答するようにするか、
または、request アプリケーションコンポーネントの [[yii\web\Request::setHostInfo()|hostInfo]] プロパティを設定して、ホスト名の値を設定ないしフィルタするか、
どちらかの対策を取るべきです。

サーバの構成についての詳細な情報は、ウェブサーバのドキュメントを参照して下さい。


	Apache 2: http://httpd.apache.org/docs/trunk/vhosts/examples.html#defaultallports

	Nginx: https://www.nginx.com/resources/wiki/start/topics/examples/server_blocks/



サーバの構成にアクセスする権限がない場合は、このような攻撃に対して防御するために、[[yii\filters\HostControl]] フィルタを設定することが出来ます。

// ウェブアプリケーション構成ファイル
return [
    'as hostControl' => [
        'class' => 'yii\filters\HostControl',
        'allowedHosts' => [
            'example.com',
            '*.example.com',
        ],
        'fallbackHostInfo' => 'https://example.com',
    ],
    // ...
];






Note: 「ホストヘッダ攻撃」に対する保護のためには、常に、フィルタの使用よりもウェブサーバの構成を優先すべきです。
[[yii\filters\HostControl]] は、サーバの構成が出来ない場合にだけ使うべきものです。










          

      

      

    

  

  
    
    
    エラー処理
    
    

    
 
  
  

    
      
          
            
  
エラー処理

Yii が内蔵している [[yii\web\ErrorHandler|エラーハンドラ]] は、エラー処理を従来よりはるかに快適な経験にしてくれます。
具体的には、Yii のエラーハンドラはエラー処理をより良くするために、次のことを行います。


	致命的でない全ての PHP エラー (警告や通知) は捕捉可能な例外に変換されます。

	例外および致命的 PHP エラーは、デバッグモードでは、詳細なコールスタック情報とソースコード行とともに表示されます。

	エラーを表示するために専用の コントローラアクション を使うことがサポートされています。

	さまざまなエラーレスポンス形式をサポートしています。



[[yii\web\ErrorHandler|エラーハンドラ]] はデフォルトで有効になっています。
アプリケーションの エントリスクリプト において、定数 YII_ENABLE_ERROR_HANDLER を false と定義することによって、これを無効にすることが出来ます。


エラーハンドラを使用する 

[[yii\web\ErrorHandler|エラーハンドラ]] は errorHandler という名前の アプリケーションコンポーネント です。
次のように、アプリケーションの構成情報でこれをカスタマイズすることが出来ます。

return [
    'components' => [
        'errorHandler' => [
            'maxSourceLines' => 20,
        ],
    ],
];





上記の構成によって、例外ページで表示されるソースコードの行数は最大で 20 までとなります。

既に述べたように、エラーハンドラは致命的でない全ての PHP エラーを捕捉可能な例外に変換します。
これは、次のようなコードを使って PHP エラーを処理することが出来るということを意味します。

use Yii;
use yii\base\ErrorException;

try {
    10/0;
} catch (ErrorException $e) {
    Yii::warning("0 による除算。");
}

// 実行を継続 ...





リクエストが無効または予期しないものであることをユーザに知らせるエラーページを表示したい場合は、単に [[yii\web\NotFoundHttpException]] のような [[yii\web\HttpException|HTTP 例外]] を投げるだけで済ませることが出来ます。
そうすれば、エラーハンドラがレスポンスの HTTP ステータスコードを正しく設定し、適切なエラービューを使ってエラーメッセージを表示してくれます。

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();








エラー表示をカスタマイズする 

[[yii\web\ErrorHandler|エラーハンドラ]] は、定数 YII_DEBUG の値に従って、エラー表示を調整します。
YII_DEBUG が true である (デバッグモードである) 場合は、エラーハンドラは、デバッグがより容易になるように、例外とともに、詳細なコールスタック情報とソースコード行を表示します。
そして、YII_DEBUG が false のときは、アプリケーションに関する公開できない情報の開示を防ぐために、エラーメッセージだけが表示されます。


Info: 例外が [[yii\base\UserException]] の子孫である場合は、YII_DEBUG の値の如何にかかわらず、コールスタックは表示されません。
これは、この種の例外はユーザの誤操作によって引き起こされるものであり、開発者は何も修正する必要がないと考えられるからです。


デフォルトでは、[[yii\web\ErrorHandler|エラーハンドラ]] は二つの ビュー を使ってエラーを表示します。


	@yii/views/errorHandler/error.php: エラーがコールスタック情報なしで表示されるべき場合に使用されます。
YII_DEBUG が false の場合、これが表示される唯一のビューとなります。

	@yii/views/errorHandler/exception.php: エラーがコールスタック情報と共に表示されるべき場合に使用されます。



エラー表示をカスタマイズするために、エラーハンドラの [[yii\web\ErrorHandler::errorView|errorView]] および [[yii\web\ErrorHandler::exceptionView|exceptionView]] プロパティを構成して、自分自身のビューを使用することが出来ます。


エラーアクションを使う 

エラー表示をカスタマイズするためのもっと良い方法は、専用のエラー アクション を使うことです。
そうするためには、まず、errorHandler コンポーネントの [[yii\web\ErrorHandler::errorAction|errorAction]] プロパティを次のように構成します。

return [
    'components' => [
        'errorHandler' => [
            'errorAction' => 'site/error',
        ],
    ]
];





[[yii\web\ErrorHandler::errorAction|errorAction]] プロパティは、アクションへの ルート を値として取ります。
上記の構成は、エラーをコールスタック情報なしで表示する必要がある場合は、site/error アクションが実行されるべきことを記述しています。

site/error アクションは次のようにして作成することが出来ます。

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
    public function actions()
    {
        return [
            'error' => [
                'class' => 'yii\web\ErrorAction',
            ],
        ];
    }
}





上記のコードは [[yii\web\ErrorAction]] クラスを使って error アクションを定義しています。
[[yii\web\ErrorAction]] クラスは error という名前のビューを使ってエラーをレンダリングします。

[[yii\web\ErrorAction]] を使う以外に、次のようにアクションメソッドを使って error アクションを定義することも出来ます。

public function actionError()
{
    $exception = Yii::$app->errorHandler->exception;
    if ($exception !== null) {
        return $this->render('error', ['exception' => $exception]);
    }
}





次に views/site/error.php に配置されるビューファイルを作成しなければなりません。
エラーアクションが [[yii\web\ErrorAction]] として定義されている場合は、このビューファイルの中で次の変数にアクセスすることが出来ます。


	name: エラーの名前。

	message: エラーメッセージ。

	exception: 例外オブジェクト。これを通じて、更に有用な情報、例えば、HTTP ステータスコード、エラーコード、エラーコールスタックなどにアクセスすることが出来ます。




Info: あなたが ベーシックプロジェクトテンプレート または アドバンストプロジェクトテンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] を使っている場合は、エラーアクションとエラービューは、既にあなたのために定義されています。



Note: エラーハンドラの中でリダイレクトする必要がある場合は、次のようにしてください。

Yii::$app->getResponse()->redirect($url)->send();
return;











エラーのレスポンス形式をカスタマイズする 

エラーハンドラは、レスポンス 形式の設定に従ってエラーを表示します。
[[yii\web\Response::format|レスポンス形式]] が html である場合は、直前の項で説明したように、エラービューまたは例外ビューを使ってエラーを表示します。
その他のレスポンス形式の場合は、エラーハンドラは例外の配列表現を [[yii\web\Response::data]] プロパティに代入し、次に data プロパティをレスポンス形式に応じて様々な形式に変換します。
例えば、レスポンス形式が json である場合は、次のようなレスポンスになります。

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "name": "Not Found Exception",
    "message": "リクエストされたリソースは見つかりませんでした。",
    "code": 0,
    "status": 404
}





エラーのレスポンス形式をカスタマイズするために、アプリケーションの構成情報の中で、response コンポーネントの beforeSend イベントに反応するハンドラを構成することが出来ます。

return [
    // ...
    'components' => [
        'response' => [
            'class' => 'yii\web\Response',
            'on beforeSend' => function ($event) {
                $response = $event->sender;
                if ($response->data !== null) {
                    $response->data = [
                        'success' => $response->isSuccessful,
                        'data' => $response->data,
                    ];
                    $response->statusCode = 200;
                }
            },
        ],
    ],
];





上記のコードは、エラーのレスポンスを以下のようにフォーマットし直すものです。

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "success": false,
    "data": {
        "name": "Not Found Exception",
        "message": "リクエストされたリソースは見つかりませんでした。",
        "code": 0,
        "status": 404
    }
}













          

      

      

    

  

  
    
    
    フォームを扱う
    
    

    
 
  
  

    
      
          
            
  
フォームを扱う

この節では、ユーザからデータを取得するためのフォームを持つ新しいページを作る方法を説明します。
このページは名前のインプットフィールドとメールのインプットフィールドを持つフォームを表示します。
ユーザからこれら二つの情報を受け取った後、ページは入力された値を確認のためにエコーバックします。

この目的を達するために、一つの アクション と 二つの ビュー を作成する以外に、一つの モデル をも作成します。

このチュートリアルを通じて、次の方法を学びます。


	フォームを通じてユーザによって入力されるデータを表す モデル を作成する方法

	入力されたデータを検証する規則を宣言する方法

	ビュー の中で HTML フォームを構築する方法




モデルを作成する 

ユーザに入力してもらうデータは、下に示されているように EntryForm モデルクラスとして表現され、models/EntryForm.php というファイルに保存されます。
クラスファイルの命名規約についての詳細は クラスのオートロード の節を参照してください。

<?php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model
{
    public $name;
    public $email;

    public function rules()
    {
        return [
            [['name', 'email'], 'required'],
            ['email', 'email'],
        ];
    }
}





このクラスは、Yii によって提供される基底クラス [[yii\base\Model]] を拡張するものです。
通常、この基底クラスがフォームデータを表現するのに使われます。


Info: [[yii\base\Model]] はデータベーステーブルと関連しないモデルクラスの親として使われます。
データベーステーブルと対応するモデルクラスでは、通常は [[yii\db\ActiveRecord]] が親になります。


EntryForm クラスは二つのパブリックメンバー、name と email を持っており、これらがユーザによって入力されるデータを保管するのに使われます。
このクラスはまた rules() という名前のメソッドを持っています。このメソッドがデータを検証する一連の規則を返します。
上記で宣言されている検証規則は次のことを述べています。


	name と email は、ともに値を要求される

	email のデータは構文的に有効なメールアドレスでなければならない



ユーザによって入力されたデータを EntryForm オブジェクトに投入した後、[[yii\base\Model::validate()|validate()]] を呼んでデータ検証ルーチンを始動することが出来ます。
データ検証が失敗すると [[yii\base\Model::hasErrors|hasErrors]] プロパティが true に設定されます。
そして、[[yii\base\Model::getErrors|errors]] を通じて、どのような検証エラーが発生したかを知ることが出来ます。

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
    // 良し!
} else {
    // 失敗!
    // $model->getErrors() を使う
}








アクションを作成する 

次に、この新しいモデルを使う entry アクションを site コントローラに作る必要があります。
アクションを作成して使うプロセスについては、こんにちは、と言う の節で既に説明されています。

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
    // ... 既存のコード ...

    public function actionEntry()
    {
        $model = new EntryForm();

        if ($model->load(Yii::$app->request->post()) && $model->validate()) {
            // $model に有効なデータを受け取った場合

            // ここで $model について何か意味のあることをする ...

            return $this->render('entry-confirm', ['model' => $model]);
        } else {
            // ページの初期表示か、または、何か検証エラーがある場合
            return $this->render('entry', ['model' => $model]);
        }
    }
}





アクションは最初に EntryForm オブジェクトを生成します。
次に、モデルに $_POST のデータ、Yii においては [[yii\web\Request::post()]] によって提供されるデータを投入しようと試みます。
モデルへのデータ投入が成功した場合（つまり、ユーザが HTML フォームを送信した場合)、アクションは[[yii\base\Model::validate()|validate()]] を呼んで、入力された値が有効なものであるかどうかを確認します。


Info: Yii::$app という式は アプリケーション インスタンスを表現します。
これはグローバルにアクセス可能なシングルトンです。
これは、また、特定の機能性をサポートする request、response、db などのコンポーネントを提供する サービスロケータ でもあります。
上記のコードでは、アプリケーションインスタンスの request コンポーネントが $_POST データにアクセスするために使われています。


すべてが適正である場合、アクションは entry-confirm という名前のビューを表示して、データの送信が成功したことをユーザに確認させます。
データが送信されなかったり、データがエラーを含んでいたりする場合は、entry ビューが表示され、その中で HTML フォームが (もし有れば) 検証エラーのメッセージとともに表示されます。


Note: この簡単な例では、有効なデータ送信に対して単純に確認ページを表示しています。
実際の仕事では、フォーム送信の諸問題 [http://en.wikipedia.org/wiki/Post/Redirect/Get] を避けるために、[[yii\web\Controller::refresh()|refresh()]] または [[yii\web\Controller::redirect()|redirect()]] を使うことを考慮すべきです。





ビューを作成する 

最後に、entry-confirm と entry という名前の二つのビューファイルを作成します。
今まさに説明したように、これらが entry アクションによって表示されます。

entry-confirm ビューは単純に名前とメールのデータを表示するものです。このビューは views/site/entry-confirm.php というファイルに保存しなければなりません。

<?php
use yii\helpers\Html;
?>
<p>あなたは次の情報を入力しました</p>

<ul>
    <li><label>名前</label>: <?= Html::encode($model->name) ?></li>
    <li><label>メール</label>: <?= Html::encode($model->email) ?></li>
</ul>





entry ビューは HTML フォームを表示します。これは views/site/entry.php というファイルに保存しなければなりません。

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

    <?= $form->field($model, 'name') ?>

    <?= $form->field($model, 'email') ?>

    <div class="form-group">
        <?= Html::submitButton('送信', ['class' => 'btn btn-primary']) ?>
    </div>

<?php ActiveForm::end(); ?>





このビューは HTML フォームを構築するのに、[[yii\widgets\ActiveForm|ActiveForm]] と呼ばれる強力な ウィジェット を使います。
ウィジェットの begin() メソッドと end() メソッドが、それぞれ、フォームの開始タグと終了タグをレンダリングします。
この二つのメソッドの呼び出しの間に、[[yii\widgets\ActiveForm::field()|field()]] メソッドによってインプットフィールドが作成されます。
最初のインプットフィールドは “name” のデータ、第二のインプットフィールドは “email” のデータのためのものです。
インプットフィールドの後に、[[yii\helpers\Html::submitButton()]] メソッドが呼ばれて、送信ボタンを生成しています。




試してみる 

どのように動作するかを見るために、ブラウザで下記の URL にアクセスしてください。

http://hostname/index.php?r=site%2Fentry





二つのインプットフィールドを持つフォームを表示するページが表示されるでしょう。
それぞれのインプットフィールドの前には、どんなデータを入力すべきかを示すラベルがあります。
何も入力せずに、あるいは、無効なメールアドレスを入力して送信ボタンをクリックすると、それぞれ問題のあるインプットフィールドの後ろにエラーメッセージが表示されます。

[image: 検証エラーのあるフォーム]

有効な名前とメールアドレスを入力してから送信ボタンをクリックすると、たった今入力したデータを表示する新しいページが表示されます。

[image: データ入力の確認]


魔法の説明

あなたは、舞台裏で HTML フォームがどのように動いているのか、不思議に思うかも知れません。
なぜなら、フォームが、ほとんど魔法のように、各インプットフィールドのラベルを表示し、データを正しく入力しなかった場合には、ページをリロードすることなく、エラーメッセージを表示するからです。

そう、データの検証は、最初に JavaScript を使ってクライアント側で実行され、次に PHP によってサーバ側で実行されます。
[[yii\widgets\ActiveForm]] は、賢いことに、EntryForm で宣言した検証規則を抽出し、それを実行可能な JavaScript コードに変換して、JavaScript を使ってデータ検証を実行します。
ブラウザで JavaScript を無効にした場合でも、actionEntry() メソッドで示されているように、サーバ側での検証は引き続き実行されます。
これにより、どのような状況であっても、データの有効性が保証されます。


Warning: クライアント側の検証は、ユーザにとってのより良い使い心地のために利便性を提供するものです。
クライアント側の検証の有無にかかわらず、サーバ側の検証は常に必要とされます。


インプットフィールドのラベルは、モデルのプロパティ名を使用して、field() メソッドによって生成されます。
例えば、name というプロパティから Name というラベルが生成されます。

ビューの中で、下記のコードのように、ラベルをカスタマイズすることも出来ます。

<?= $form->field($model, 'name')->label('お名前') ?>
<?= $form->field($model, 'email')->label('メールアドレス') ?>






Info: Yii はこのようなウィジェットを数多く提供して、複雑で動的なビューを素速く作成することを手助けしてくれます。
後で学ぶように、新しいウィジェットを書くことも非常に簡単です。
あなたは、将来のビュー開発を単純化するために、多くのビューコードを再利用可能なウィジェットに変換したいと思うことでしょう。







まとめ 

ガイドのこの節においては、MVC アーキテクチャパターンの全ての部分に触れました。
そして、ユーザデータを表現し、当該データを検証するモデルクラスを作成する方法を学びました。

また、ユーザからデータを取得する方法と、ブラウザにデータを表示して返す方法も学びました。
この作業は、アプリケーションを開発するときに、多大な時間を必要とするものになり得るものです。
しかし、Yii はこの作業を非常に容易にする強力なウィジェットを提供しています。

次の節では、ほとんど全てのアプリケーションで必要とされるデータベースを取り扱う方法を学びます。







          

      

      

    

  

  
    
    
    Flujo de Trabajo de Traducción
    
    

    
 
  
  

    
      
          
            
  
Flujo de Trabajo de Traducción

Yii se traduce en muchos idiomas con el fin de ser útil para desarrolladores de aplicaciones e internacionales.
Dos áreas principales donde la contribución es muy bienvenida son la documentación y los mensajes del framework.


Mensajes del Framework

El framework tiene dos tipos de mensajes: excepciones que están destinadas al desarrollador y nunca se traducen, y mensajes
que en realidad son visibles para el usuario final, tales como errores de validación.

El orden para comenzar con la traducción de mensajes:


	Comprobar que en framework/messages/config.php su idioma aparece en languages. Si no, añade tu idioma allí (recuerda que debes mantener la lista en orden alfabético).
El formato de código de idioma debe seguir el Código de Idiomas IETF [http://es.wikipedia.org/wiki/C%C3%B3digo_de_idioma_IETF], por ejemplo, es.

	Ir al directorio framework y ejecutar el comando yii message/extract messages/config.php.

	Traducir los mensajes en framework/messages/tu-idioma/yii.php. Asegúrate de guardar el archivo con codificación UTF-8.

	Crear un pull request [https://github.com/yiisoft/yii2/blob/master/docs/internals-es/git-workflow.md].



Con el fin de mantener la traducción al día puedes ejecutar yii message/extract messages/config.php nuevamente.
Se volverán a extraer automáticamente los mensajes de mantenimiento intactos sin los cambios.

En el archivo de traducción de cada elemento del array representa un mensaje (clave) y su la traducción (valor). Si el valor está vacío, el mensaje se considera como no traducido.
Los mensajes que ya no necesiten traducción tendrán sus traducciones encerrado entre un par de marcas ‘@@’. El texto de los mensajes se puede utilizar con el formato de formas plurales.
Chequea la sección i18n de la guía para más detalles.




Documentación

Coloca las traducciones de la documentación bajo docs/<original>-<language> donde <original> es el nombre de la documentación original como guide o internals
y <language> es el código del idioma al que se está traduciendo. Para la traducción al español de la guía, es docs/guide-es.

Después de que el trabajo inicial está hecho, puedes obtener los cambios desde la última traducción del archivo usando un comando especial del directorio build:

php build translation "../docs/guide" "../docs/guide-es" "Reporte de traducción guia en Español" > report_guide_es.html





Si recibes un error de composer, ejecuta composer install en el directorio raíz.




Convenios para la traducción

Las palabras en inglés que son propias del framework o de PHP se pueden dejar en el idioma original. Ejemplos: namespace, assets, helper, widget, etc.

Para las palabras que están muy ligadas a conceptos extendidos se deben traducir y poner entre paréntesis su equivalente en el idioma original. Ejemplos : petición (request), respuesta (response), comportamiento (behavior), etc.


Aclaraciones :



	Sólo mencionar una vez entre paréntesis la palabra original en su primera aparición en el texto o en el fichero README.md,
evitando redundancias. Ejemplo: vista(view), controlador(controller), etc.

	Si una palabra se refiere a un concepto o acción se aplicará la traducción, si por el contrario se refiere a un tipo de dato de php o del framework no se debe traducir.

	El equipo de traductores hemos escogido el Español-latino para elaborar las traducciones de las guías en Español, eviten usar expresiones o palabras autóctonas de su región para un mayor acercamiento al resto de hispano hablantes.









          

      

      

    

  

  
    
    
    Автозагрузка классов
    
    

    
 
  
  

    
      
          
            
  
Автозагрузка классов

Поиск и подключение файлов классов в Yii реализовано при помощи
автозагрузки классов [http://www.php.net/manual/ru/language.oop5.autoload.php]. Фреймворк предоставляет свой быстрый
совместимый с PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md]
автозагрузчик, который устанавливается в момент подключения Yii.php.


Note: Для простоты повествования, в этом разделе мы будем говорить только об автозагрузке классов. Тем не менее,
всё описанное применимо к интерфейсам и трейтам.



Как использовать автозагрузчик Yii 

При использовании автозагрузчика классов Yii следует соблюдать два простых правила создания и именования классов:


	Каждый класс должен принадлежать пространству имён [http://php.net/manual/ru/language.namespaces.php]
(то есть foo\bar\MyClass).

	Каждый класс должен находиться в отдельном файле, путь к которому определятся следующим правилом:



// $className — это абсолютное имя класса без начального "\"
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');





Например, если абсолютное имя класса foo\bar\MyClass, то псевдоним пути данного файла будет
@foo/bar/MyClass.php. Для того, чтобы данный псевдоним можно было преобразовать в путь к файлу, необходимо чтобы
либо @foo либо @foo/bar являлся корневым псевдонимом.

При использовании шаблона приложения basic вы можете хранить свои классы в пространстве имён app.
В этом случае они будут загружаться автоматически без создания нового псевдонима. Это работает потому как @app
является заранее определённым псевдонимом и такое имя класса как
app\components\MyClass в соответствии с описанным выше алгоритмом преобразуется в путь
директорияПриложения/components/MyClass.php.

В шаблоне приложения advanced каждый уровень приложения обладает собственным корневым
псевдонимом. Например, для frontend корневым псевдонимом является @frontend, а для backend — @backend. Это позволяет
разместить классы frontend в пространство имён frontend, а классы backend в пространство имён backend. При этом
классы будут загружены автоматически.




Карта классов 

Автозагрузчик Yii поддерживает карту классов. Эта возможность позволяет указать путь к файлу для каждого имени класса.
При загрузке класса автозагрузчик проверяет наличие класса в карте. Если он там есть, соответствующий файл будет загружен
напрямую без каких-либо дополнительных проверок. Это делает автозагрузку очень быстрой. Все классы самого фреймворка
загружаются именно этим способом.

Вы можете добавить класс в карту Yii::$classMap следующим образом:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';





Для указания путей к файлам классов можно использовать псевдонимы. Карту классов необходимо
сформировать в процессе первоначальной загрузки так как она должна быть готова до
использования классов.




Использование других автозагрузчиков 

Так как Yii использует Composer в качестве менеджера зависимостей, рекомендуется дополнительно установить его автозагрузчик.
Если вы используете какие-либо сторонние библиотеки, в которых есть свои автозагрузчики, эти автозагрузчики также необходимо
установить.

При использовании дополнительных автозагрузчиков файл Yii.php должен быть подключен после их установки. Это позволит
автозагрузчику Yii первым пробовать загрузить класс. К примеру, приведённый ниже код взят из
входного скрипта шаблона приложения basic. Первая строка устанавливает
автозагрузчик Composer, а вторая — автозагрузчик Yii:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');





Вы можете использовать автозагрузчик Composer без автозагрузчика Yii. Однако, скорость автозагрузки в этом случае
может уменьшится. Также вам будет необходимо следовать правилам автозагрузчика Composer.


Info: Если вы не хотите использовать автозагрузчик Yii, создайте свою версию файла Yii.php
и подключите его в входном скрипте.





Автозагрузка классов расширений 

Автозагрузчик Yii может автоматически загружать классы расширений в том случае, если соблюдается
единственное правило. Расширение должно правильно описать раздел ‘autoload’ в файле ‘composer.json’. Более подробно об
этом можно узнать из официальной документации Composer [https://getcomposer.org/doc/04-schema.md#autoload].

Если вы не используете автозагрузчик Yii, то классы расширений могут быть автоматически загружены с помощью
автозагрузчика Composer.







          

      

      

    

  

  
    
    
    Service Locator
    
    

    
 
  
  

    
      
          
            
  
Service Locator

Service Locator является объектом, предоставляющим всевозможные сервисы (или компоненты), которые могут понадобиться
приложению. В Service Locator, каждый компонент представлен единственным экземпляром, имеющим уникальный ID.
Уникальный идентификатор (ID) может быть использован для получения компонента из Service Locator.

В Yii Service Locator является экземпляром класса [[yii\di\ServiceLocator]] или его дочернего класса.

Наиболее часто используемый Service Locator в Yii — это объект приложения, который можно получить через \Yii::$app.
Предоставляемые им службы, такие, как компоненты request, response, urlManager, называют компонентами приложения.
Благодаря Service Locator вы легко можете настроить эти компоненты или даже заменить их собственными реализациями.

Помимо объекта приложения, объект каждого модуля также является Service Locator.

При использовании Service Locator первым шагом является регистрация компонентов. Компонент может быть зарегистрирован
с помощью метода [[yii\di\ServiceLocator::set()]]. Следующий код демонстрирует различные способы регистрации компонентов:

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// регистрирует "cache", используя имя класса, которое может быть использовано для создания компонента.
$locator->set('cache', 'yii\caching\ApcCache');

// регистрирует "db", используя конфигурационный массив, который может быть использован для создания компонента.
$locator->set('db', [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=localhost;dbname=demo',
    'username' => 'root',
    'password' => '',
]);

// регистрирует "search", используя анонимную функцию, которая создаёт компонент
$locator->set('search', function () {
    return new app\components\SolrService;
});

// регистрирует "pageCache", используя компонент
$locator->set('pageCache', new FileCache);





После того, как компонент зарегистрирован, вы можете обращаться к нему по его ID одним из двух следующих способов:

$cache = $locator->get('cache');
// или
$cache = $locator->cache;





Как видно выше, [[yii\di\ServiceLocator]] позволяет обратиться к компоненту как к свойству используя его ID.
При первом обращении к компоненту, [[yii\di\ServiceLocator]] создаст новый экземпляр компонента на основе регистрационной
информации и вернёт его. При повторном обращении к компоненту Service Locator вернёт тот же экземпляр.

Чтобы проверить, был ли идентификатор компонента уже зарегистрирован, можно использовать [[yii\di\ServiceLocator::has()]].
Если вы вызовете [[yii\di\ServiceLocator::get()]] с несуществующим ID, будет выброшено исключение.

Поскольку Service Locator часто используется с конфигурациями, в нём имеется доступное
для записи свойство [[yii\di\ServiceLocator::setComponents()|components]]. Это позволяет настроить и зарегистрировать
сразу несколько компонентов. Следующий код демонстрирует конфигурационный массив, который может использоваться
для регистрации компонентов db, cache и search в Service Locator (то есть в приложении):

return [
    // ...
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=demo',
            'username' => 'root',
            'password' => '',
        ],
        'cache' => 'yii\caching\ApcCache',
        'search' => function () {
            $solr = new app\components\SolrService('127.0.0.1');
            // ... дополнительная инициализация ...
            return $solr;
        },
    ],
];





Есть альтернативный приведённому выше способ настройки компонента search. Вместо анонимной функции, которая
отдаёт экземпляр SolrService можно использовать статический метод, возвращающий такую анонимную функцию:

class SolrServiceBuilder
{
    public static function build($ip)
    {
        return function () use ($ip) {
            $solr = new app\components\SolrService($ip);
            // ... дополнительная инициализация ...
            return $solr;
        };
    }
}

return [
    // ...
    'components' => [
        // ...
        'search' => SolrServiceBuilder::build('127.0.0.1'),
    ],
];





Это особенно полезно если вы создаёте компонент для Yii, являющийся обёрткой над какой-либо сторонней библиотекой.
Подобный приведённому выше статический метод позволяет скрыть от конечного пользователя сложную логику настройки
сторонней библиотеки. Пользователю будет достаточно вызвать статический метод.





          

      

      

    

  

  
    
    
    Использование шаблонизаторов
    
    

    
 
  
  

    
      
          
            
  
Использование шаблонизаторов

По умолчанию, Yii использует PHP в шаблонах, но вы можете настроить Yii на поддержку других шаблонизаторов,таких как
Twig [http://twig.sensiolabs.org/] или Smarty [http://www.smarty.net/], которые доступны в расширениях.

view компонент, отвественный за генерацию видов. Вы можете добавить шаблонизатор, с помощью перенастройки поведения компонента:

[
    'components' => [
        'view' => [
            'class' => 'yii\web\View',
            'renderers' => [
                'tpl' => [
                    'class' => 'yii\smarty\ViewRenderer',
                    //'cachePath' => '@runtime/Smarty/cache',
                ],
                'twig' => [
                    'class' => 'yii\twig\ViewRenderer',
                    'cachePath' => '@runtime/Twig/cache',
                    // Array of twig options:
                    'options' => [
                        'auto_reload' => true,
                    ],
                    'globals' => ['html' => '\yii\helpers\Html'],
                    'uses' => ['yii\bootstrap'],
                ],
                // ...
            ],
        ],
    ],
]





В коде, показанном выше, оба шаблонизатора Smarty и Twig настроены, чтобы использоваться в файле вида. Но чтобы добавить эти расширения в ваш проект, вам необходимо также изменить ваш composer.json файл. Добавить в него:

"yiisoft/yii2-smarty": "~2.0.0",
"yiisoft/yii2-twig": "~2.0.0",





Это код вставляется в секцию require файла composer.json. После изменения и сохранения этого файла, вы можете установить расширение, запустив composer update --prefer-dist в командной строке.

Для получения подробной информации об использовании конкретного шаблонизатора обратитесь в их документации:


	Twig guide [https://github.com/yiisoft/yii2-twig/tree/master/docs/guide]

	Smarty guide [https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide]







          

      

      

    

  

  
    
    
    Провайдеры данных
    
    

    
 
  
  

    
      
          
            
  
Провайдеры данных

В разделах Постраничное разделение данных и Сортировка было описано,
как сделать возможность для конечных пользователей, чтобы они могли выбирать определённую страницу для вывода данных и
сортировку их по некоторым колонкам.

Провайдер данных это класс, который реализует [[yii\data\DataProviderInterface]]. Такая реализация поддерживает в основном
разбивку на страницы и сортировку. Они обычно используются для работы виджетов данных, что позволяет
конечным пользователям интерактивно использовать сортировку данных и их разбивку на страницы.

В Yii реализованы следующие классы провайдеров данных:


	[[yii\data\ActiveDataProvider]]: использует [[yii\db\Query]] или [[yii\db\ActiveQuery]] для запроса данных из базы данных,
возвращая их в виде массива или экземпляров Active Record.

	[[yii\data\SqlDataProvider]]: выполняет запрос SQL к базе данных и возвращает результат в виде массива.

	[[yii\data\ArrayDataProvider]]: принимает большой массив и возвращает выборку из него с возможностью сортировки и разбивки
на страницы.



Использование всех этих провайдеров данных имеет общую закономерность:

// создание провайдера данных с конфигурацией для сортировки и постраничной разбивки
$provider = new XyzDataProvider([
    'pagination' => [...],
    'sort' => [...],
]);

// Получение данных с разбивкой на страницы и сортировкой.
$models = $provider->getModels();

// получение количества данных на текущей странице
$count = $provider->getCount();

// получение общего количества данных на всех страницах
$totalCount = $provider->getTotalCount();





Определение поведений сортировки и разбивки для провайдера данных устанавливается через его свойства
[[yii\data\BaseDataProvider::pagination|pagination]] и [[yii\data\BaseDataProvider::sort|sort]], которые соответствуют
настройкам [[yii\data\Pagination]] and [[yii\data\Sort]]. Вы можете отключить сортировку и разбивку на страницы путём
выставления их настроек в false.

Виджеты данных, такие как [[yii\grid\GridView]], имеют свойство dataProvider, которое может
принимать экземпляр провайдера данных для отображения его данных. Например:

echo yii\grid\GridView::widget([
    'dataProvider' => $dataProvider,
]);





Эти провайдеры данных в некоторой степени различаются по использовании, в зависимости от источника данных. Далее
опишем более подробно использование каждого провайдера данных.


ActiveDataProvider 

Для использования [[yii\data\ActiveDataProvider]], необходимо настроить его свойство [[yii\data\ActiveDataProvider::query|query]].
Оно принимает любой [[yii\db\Query]] или [[yii\db\ActiveQuery]] объект. Если использовать первый, то данные будут возвращены в
виде массивов, если второй - данные также могут быть возвращены в виде массивов, а также в виде экземпляров
Active Record. Например:

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'defaultOrder' => [
            'created_at' => SORT_DESC,
            'title' => SORT_ASC, 
        ]
    ],
]);

// возвращает массив Post объектов
$posts = $provider->getModels();





Если изменить $query в этом примере на следующий код, то будут возвращены сырые массивы.

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]); 






Note: Если query содержит условия сортировки в orderBy, то новые условия, полученные от конечных пользователей
(через настройки sort) будут добавлены к существующим условиям в orderBy. Любые условия в limit и offset
будут переписаны запросом конечного пользователя к различным страницам ( через конфигурацию  pagination).


По умолчанию, [[yii\data\ActiveDataProvider]] использует компонент приложения db для подключения к базе данных. Можно
использовать разные базы данных, настроив подключение через конфигурацию свойства [[yii\data\ActiveDataProvider::db]].




SqlDataProvider 

[[yii\data\SqlDataProvider]] работает с сырыми запросами SQL, которые используются для извлечение необходимых данных.
Основываясь на спецификации из [[yii\data\SqlDataProvider::sort|sort]] и  [[yii\data\SqlDataProvider::pagination|pagination]],
провайдер данных будет добавлять ORDER BY и LIMIT конструкции к SQL запросу, для возврата только запрошенной
страницы данных с учётом определённой сортировки.

Для использования [[yii\data\SqlDataProvider]], необходимо настроить свойства [[yii\data\SqlDataProvider::sql|sql]] и
[[yii\data\SqlDataProvider::totalCount|totalCount]]. Например:

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
    SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
    'sql' => 'SELECT * FROM post WHERE status=:status',
    'params' => [':status' => 1],
    'totalCount' => $count,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => [
            'title',
            'view_count',
            'created_at',
        ],
    ],
]);

// возвращает массив данных
$models = $provider->getModels();






Совет: Свойство [[yii\data\SqlDataProvider::totalCount|totalCount]] обязательно только тогда, когда вам нужна разбивка
на страницы. Всё потому, что запрос SQL [[yii\data\SqlDataProvider::sql|sql]] будет изменяться провайдером данных для возврата
только текущей запрошенной страницы. Провайдеру необходимо знать общее количество данных в запросе для корректного
вычисления разбивки на доступные страницы.





ArrayDataProvider 

[[yii\data\ArrayDataProvider]] лучше использовать для работы с большим массивом. Этот провайдер помогает вернуть выборку
из большого массива с сортировкой по одному или нескольким колонкам. Для использования [[yii\data\ArrayDataProvider]]
необходимо определить свойство [[yii\data\ArrayDataProvider::allModels|allModels]], как большой массив. Элементы в
большом массиве могут быть ассоциативными массивами (например результаты выборки из DAO) или объекты (
Active Record экземпляры). Например:

use yii\data\ArrayDataProvider;

$data = [
    ['id' => 1, 'name' => 'name 1', ...],
    ['id' => 2, 'name' => 'name 2', ...],
    ...
    ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
    'allModels' => $data,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => ['id', 'name'],
    ],
]);

// получает строки для текущей запрошенной странице
$rows = $provider->getModels();






Note: Сравнивая с Active Data Provider и SQL Data Provider,
ArrayDataProvider менее эффективный потому, что требует загрузки всех данных в память.





Принципы работы с ключами данных 

При возврате данных с помощью провайдера, часто требуется идентификация каждого элемента по уникальному ключу. Например,
если данные - это какая-то информация по клиенту, то возможно понадобится использовать ID клиента, как ключ для данных по
каждому клиенту. Провайдер данных через [[yii\data\DataProviderInterface::getModels()]] может вернуть список из ключей
и соответствующего набора данных. Например,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
]);

// возвращает массив объектов Post
$posts = $provider->getModels();

// возвращает значения первичного ключа в соответствии с $posts
$ids = $provider->getKeys();





В вышеописанном примере, так как [[yii\data\ActiveDataProvider]] предоставляется один [[yii\db\ActiveQuery]] объект, то
в этом случае провайдер достаточно умён, чтобы вернуть значения первичных ключей в качестве идентификатора. Также есть
возможность настроить способ вычисления значения идентификатора, через настройку [[yii\data\ActiveDataProvider::key]], как
имя колонки или функцию вычисления значений ключа. Например:

// в качестве ключа используется столбец "slug"
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => 'slug',
]);

// в качестве ключа используется md5(id)
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => function ($model) {
        return md5($model->id);
    }
]);








Создание своего провайдера данных 

Для создания своих классов провайдера данных, необходимо реализовать [[yii\data\DataProviderInterface]]. Простой способ
сделать это - наследовать [[yii\data\BaseDataProvider]], который помогает сфокусироваться на логике ядра провайдера данных.
В основном необходимо реализовать следующие методы:


	[[yii\data\BaseDataProvider::prepareModels()|prepareModels()]]:подготавливает модели данных, которые будут доступны
в текущей странице и возвращает их в виде массива.

	[[yii\data\BaseDataProvider::prepareKeys()|prepareKeys()]]: принимает массив имеющихся в настоящее время моделей
данных и возвращает ключи, связанные с ними.

	[[yii\data\BaseDataProvider::prepareTotalCount()|prepareTotalCount]]:возвращает значение, указывающее общее количество
моделей данных в провайдере данных.



Ниже приведён пример провайдера данных, который эффективно считывает данные из CSV:

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
    /**
     * @var string name of the CSV file to read
     */
    public $filename;
    
    /**
     * @var string|callable name of the key column or a callable returning it
     */
    public $key;
    
    /**
     * @var SplFileObject
     */
    protected $fileObject; // SplFileObject is very convenient for seeking to particular line in a file
    
 
    /**
     * @inheritdoc
     */
    public function init()
    {
        parent::init();
        
        // open file
        $this->fileObject = new SplFileObject($this->filename);
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareModels()
    {
        $models = [];
        $pagination = $this->getPagination();
 
        if ($pagination === false) {
            // in case there's no pagination, read all lines
            while (!$this->fileObject->eof()) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        } else {
            // in case there's pagination, read only a single page
            $pagination->totalCount = $this->getTotalCount();
            $this->fileObject->seek($pagination->getOffset());
            $limit = $pagination->getLimit();
 
            for ($count = 0; $count < $limit; ++$count) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        }
 
        return $models;
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareKeys($models)
    {
        if ($this->key !== null) {
            $keys = [];
 
            foreach ($models as $model) {
                if (is_string($this->key)) {
                    $keys[] = $model[$this->key];
                } else {
                    $keys[] = call_user_func($this->key, $model);
                }
            }
 
            return $keys;
        } else {
            return array_keys($models);
        }
    }
 
    /**
     * @inheritdoc
     */
    protected function prepareTotalCount()
    {
        $count = 0;
 
        while (!$this->fileObject->eof()) {
            $this->fileObject->next();
            ++$count;
        }
 
        return $count;
    }
}











          

      

      

    

  

  
    
    
    Отправка почты
    
    

    
 
  
  

    
      
          
            
  
Отправка почты


Note: Этот раздел находиться в стадии разработки.


Yii позволяет оформлять и посылать E-mail сообщения. Однако, ядро фреимворка предоставляет только
функциональность оформления и основной интерфейс. Фактический механизм отправки почты должен быть предоставлен с помощью расширения, потому что различным проектам могут потребоваться различные реализации и обычно они зависят от внешних сервисов и бибилотек.

Для наиболее распространенных ситуаций вы можете использовать официальное расширение yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer].


Настройка

Настройка почтового компонента зависит от расширения, которое вы выбрали.
В целом настройка вашего приложения должна выглядеть так:

return [
    //....
    'components' => [
        'mailer' => [
            'class' => 'yii\swiftmailer\Mailer',
        ],
    ],
];








Основы использования

Когда ‘mailer’ компонент настроен, вы можете использовать следующий код, чтобы отправить почтовое сообщение:

Yii::$app->mailer->compose()
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('Тема сообщения')
    ->setTextBody('Текст сообщения')
    ->setHtmlBody('<b>текст сообщения в формате HTML</b>')
    ->send();





В показанном выше примере метод compose() создает экземпляр почтового сообщения, который затем заполняется и отправляется.
Вы можете использовать более сложную логику в этом процессе, если вам понадобится:

$message = Yii::$app->mailer->compose();
if (Yii::$app->user->isGuest) {
    $message->setFrom('from@domain.com')
} else {
    $message->setFrom(Yii::$app->user->identity->email)
}
$message->setTo(Yii::$app->params['adminEmail'])
    ->setSubject('Тема сообщения')
    ->setTextBody('Текст сообщения')
    ->send();






Note: каждое ‘mailer’ расширение имеет два главных класса: ‘Mailer’ и ‘Message’. ‘Mailer’ всегда знает имя класса и специфику ‘Message’. Не пытайтесь создать экземпляр объекта ‘Message’ напрямую -
всегда используйте для этого метод compose().


Вы также можете послать несколько сообщений за раз:

$messages = [];
foreach ($users as $user) {
    $messages[] = Yii::$app->mailer->compose()
        // ...
        ->setTo($user->email);
}
Yii::$app->mailer->sendMultiple($messages);





В некоторых почтовых расширениях этот подход может быть полезен, так как использует одиночное сетевое сообщение.




Компоновка почтовых сообщений

Yii предоставляет возможность оформления содержания почтовых сообщений через специальные файлы виды.
По умолчанию эти файлы должны быть расположены в директории ‘@app/mail’.

Пример содержания почтового файла вида:

<?php
use yii\helpers\Html;
use yii\helpers\Url;


/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\BaseMessage instance of newly created mail message */

?>
<h2>This message allows you to visit our site home page by one click</h2>
<?= Html::a('Go to home page', Url::home('http')) ?>





Для того, чтобы оформить содержание сообщения через файл вида, просто передайте название файла вида в compose() метод:

Yii::$app->mailer->compose('home-link') // здесь устанавливается результат рендеринга вида в тело сообщения
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('Message subject')
    ->send();





Вы можете передать допольнительный параметр, относящийся к виду в compose() метод, который будет доступен внутри файла вида:

Yii::$app->mailer->compose('greetings', [
    'user' => Yii::$app->user->identity,
    'advertisement' => $adContent,
]);





Вы можете указать разные файлы видов для HTML и простого текста в содержании сообщения:

Yii::$app->mailer->compose([
    'html' => 'contact-html',
    'text' => 'contact-text',
]);





Если вы укажете название вида как строку, результат рендеринга в теле сообщения будет использоваться как HTML, в то время как при обычном тексте в теле сообщения при компоновке будут удаляться все HTML теги.

Результат рендеринга вида может быть вставлен в макет (layout), который может быть установлен, используя [[yii\mail\BaseMailer::htmlLayout]]
и [[yii\mail\BaseMailer::textLayout]]. Это будет работать аналогично макетам в обычном веб приложении.
Макет может использовать CSS стили или другие общие элементы страниц для использования в сообщении:

<?php
use yii\helpers\Html;

/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\MessageInterface the message being composed */
/* @var $content string main view render result */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::$app->charset ?>" />
    <style type="text/css">
        .heading {...}
        .list {...}
        .footer {...}
    </style>
    <?php $this->head() ?>
</head>
<body>
    <?php $this->beginBody() ?>
    <?= $content ?>
    <div class="footer">With kind regards, <?= Yii::$app->name ?> team</div>
    <?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>








Прикрепление файлов

Вы можете прикрепить вложения к сообщению с помощью методов attach() и attachContent():

$message = Yii::$app->mailer->compose();

// Прикрепление файла из локальной файловой системы:
$message->attach('/path/to/source/file.pdf');

// Прикрепить файл на лету
$message->attachContent('Attachment content', ['fileName' => 'attach.txt', 'contentType' => 'text/plain']);








Вложение изображений

Вы можете вставить изображения в содержание сообщения через embed() метод. Этот метод возвращает id прикрепленной картинки,
которые должны быть доступны в ‘img’ тегах.
Этот метод легко использовать, когда сообщение составляется через файлы представления:

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/image.jpg'])
    // ...
    ->send();





Внутри файла представления вы можете использовать следующий код:

<img src="<?= $message->embed($imageFileName); ?>">








Тестирование и отладка

Разработчикам часто надо проверять, что почтовые сообщения отправляются из приложения, их содержание и так далее.
Такая возможность предоставляется в Yii через yii\mail\BaseMailer::useFileTransport. Если это опция включена, то она принудительно сохраняет данные почтовых сообщений в локальный файл вместо его отправки. Эти файлы будут сохранены в директории
yii\mail\BaseMailer::fileTransportPath, которая по умолчанию ‘@runtime/mail’.


Note: вы можете либо сохранить сообщения в файл, либо послать его фактическим получателям, но не используйте оба варианта одновременно.


Файл почтового сообщения может быть открыт обычным текстовым редактором, также вы можете просматривать фактические заголовки сообщений, их содержание и так далее.
Этот механизм может понадобиться во время отладки приложения, либо прогонки unit тестов.


Note: содержание файла почтового сообщения формируется через \yii\mail\MessageInterface::toString(), правда это зависит от почтового расширения, которое вы используете в своем приложении.





Создание вашего собственного решения

Для того, чтобы создать свое собственное решение, вам надо будет создать два класса: одно для ‘Mailer’ и другое для ‘Message’.
Вы можете использовать yii\mail\BaseMailer и yii\mail\BaseMessage как базовые классы для вашего решения. Эти классы уже содержат базовую логику, которая описана в этом руководстве. Однако, их испольщование не обязательно, достаточно унаследоваться от yii\mail\MailerInterface и yii\mail\MessageInterface интерфейсов.
Затем вам необходимо обеспечить выполнение всех абстрактных методов этих интерфейсов для построения вашего решения.







          

      

      

    

  

  
    
    
    Оптимизация производительности
    
    

    
 
  
  

    
      
          
            
  
Оптимизация производительности

Существует много факторов, влияющих на производительность веб-приложения. Какие-то относятся к окружению, какие-то
к вашему коду, а какие-то к самому Yii. В этом разделе мы перечислим большинство из них и объясним, как можно улучшить
производительность приложения, регулируя эти факторы.


Оптимизация окружения PHP 

Хорошо сконфигурированное окружение PHP очень важно. Для получения максимальной производительности,


	Используйте последнюю стабильную версию PHP. Мажорные релизы PHP могут принести значительные улучшения производительности.

	Включите кеширование байткода в Opcache [http://php.net/opcache] (PHP 5.5 и старше) или APC [http://ru2.php.net/apc]
(PHP 5.4 и более ранние версии). Кеширование байткода позволяет избежать затрат времени на обработку и подключение PHP
скриптов при каждом входящем запросе.






Отключение режима отладки 

При запуске приложения в производственном режиме, вам нужно отключить режим отладки. Yii использует значение константы
YII_DEBUG чтобы указать, следует ли включить режим отладки. Когда режим отладки включен, Yii тратит дополнительное
время чтобы создать и записать отладочную информацию.

Вы можете разместить следующую строку кода в начале входного скрипта чтобы
отключить режим отладки:

defined('YII_DEBUG') or define('YII_DEBUG', false);






Info: Значение по умолчанию для константы YII_DEBUG — false.
Так что, если вы уверены, что не изменяете значение по умолчанию где-то в коде приложения, можете просто удалить эту
строку, чтобы отключить режим отладки.





Использование техник кеширования 

Вы можете использовать различные техники кеширования чтобы значительно улучшить производительность вашего приложения.
Например, если ваше приложение позволяет пользователям вводить текст в формате Markdown, вы можете закешировать
разобранное содержимого Markdown, чтобы избежать разбора одной и той же разметки Markdown неоднократно
при каждом запросе. Пожалуйста, обратитесь к разделу Кеширование чтобы узнать о поддержке
кеширования, которую предоставляет Yii.




Включение кеширования схемы 

Кэширование схемы - это специальный тип кеширования, который должен быть включен при использовании Active Record.
Как вы знаете, Active Record достаточно умен, чтобы обнаружить информацию о схеме (например, имена столбцов, типы столбцов,
ограничения) таблицы БД без необходимости описывать ее вручную. Active Record получает эту информацию, выполняя
дополнительные SQL запросы. При включении кэширования схемы, полученная информация о схеме будет сохранена в кэше и
повторно использована при последующих запросах.

Чтобы включить кеширование схемы, сконфигурируйте компонент приложения cache
для хранения информации о схеме и установите [[yii\db\Connection::enableSchemaCache]] в true в конфигурации приложения:

return [
    // ...
    'components' => [
        // ...
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=mydatabase',
            'username' => 'root',
            'password' => '',
            'enableSchemaCache' => true,

            // Продолжительность кеширования схемы.
            'schemaCacheDuration' => 3600,

            // Название компонента кеша, используемого для хранения информации о схеме
            'schemaCache' => 'cache',
        ],
    ],
];








Объединение и минимизация ресурсов 

Сложные веб-страницы часто подключают много CSS и/или JavaScript файлов. Для уменьшения числа HTTP запросов
и общего размера загрузки этих ресурсов, вы должны рассмотреть вопрос об их объединении в один файл и его сжатии.
Это может сильно увеличить скорость загрузки страницы и снизить нагрузку на сервер. Для получения более подробной
информации обратитесь, пожалуйста, к разделу Ресурсы




Оптимизация хранилища сессий 

По умолчанию данные сессий хранятся в файлах. Это удобно для разработки или в маленьких проектах.
Но когда дело доходит до обработки множества параллельных запросов, то лучше использовать более сложные хранилища,
такие как базы данных. Yii поддерживает различные хранилища “из коробки”.
Вы можете использовать эти хранилища, сконфигурировав компонент session в
конфигурации приложения как показано ниже,

return [
    // ...
    'components' => [
        'session' => [
            'class' => 'yii\web\DbSession',

            // Установите следующее, если вы хотите использовать компонент БД, с названием
            // отличным от значения по умолчанию 'db'.
            // 'db' => 'mydb',

            // Чтобы перезаписать таблицу сессий, заданную по умолчанию, установите
            // 'sessionTable' => 'my_session',
        ],
    ],
];





Приведенная выше конфигурация использует таблицу базы данных для хранения сессионных данных. По умолчанию, используется
компонент приложения db для подключения к базе данных и сохранения сессионных данных в таблице session. Вам нужно будет
создать таблицу session заранее:

CREATE TABLE session (
    id CHAR(40) NOT NULL PRIMARY KEY,
    expire INTEGER,
    data BLOB
)





Вы также можете хранить сессионные данные в кеше с помощью [[yii\web\CacheSession]]. Теоретически, вы можете использовать
любое поддерживаемое хранилище кеша. Тем не менее, помните, что некоторые
хранилища кеша могут сбрасывать закешированные данные при достижении лимитов хранилища. По этой причине, вы должны в
основном использовать хранилища кеша, которые не имеют таких лимитов.

Если на вашем сервере установлен Redis [http://redis.io/], настоятельно рекомендуется выбрать его в качестве
хранилища сессий используя [[yii\redis\Session]].




Оптимизация базы данных 

Выполнение запросов к БД и выборки данных часто являются узким местом производительности веб-приложения.
Хотя использование техник кэширования данных может смягчить снижение производительности, оно не
решает проблему полностью. Когда база данных содержит огромное количество данных, и данные в кэше невалидны, получение
свежих данных без правильного проектирования БД и запросов может быть чрезмерно ресурсоемкой операцией.

Общей методикой для повышения производительности запросов к БД является создание индексов для тех столбцов таблицы, по которым делается выборка.
Например, если вам нужно найти запись о пользователе по username, вам надо создать индекс на username.
Обратите внимание, что в то время как индексирование может сделать SELECT запросы намного быстрее, оно будет замедлять INSERT, UPDATE и DELETE запросы.

Для сложных запросов к БД рекомендуется создавать представления базы данных (views), чтобы сэкономить время подготовки и разбора запросов.

Последнее, хотя и не менее важное: используйте LIMIT в ваших SELECT запросах. Это позволяет избежать извлечения
большого количество данных из базы данных и исчерпания памяти, выделенной для PHP.




Использование обычных массивов 

Хотя Active Record очень удобно использовать, это не так эффективно, как использование простых
массивов, когда вам нужно получить большое количество данных из БД. В этом случае, вы можете вызвать asArray() при
использовании Active Record для получения данных, чтобы извлеченные данные были представлены в виде массивов вместо
громоздких записей Active Record. Например,

class PostController extends Controller
{
    public function actionIndex()
    {
        $posts = Post::find()->limit(100)->asArray()->all();
        
        return $this->render('index', ['posts' => $posts]);
    }
}





В приведенном выше коде, $posts будет заполнего массивом строк из таблицы. Каждая строка - это обычный массив. Чтобы
получить доступ к столбцу title в i-й строке, вы можете использовать выражение $posts[$i]['title'].

Вы также можете использовать DAO для создания запросов и извлечения данных в виде обычных массивов.




Оптимизация автозагрузчика Composer 

Поскольку автозагрузчик Composer’а используется для подключения большого количества файлов сторонних классов, вы должны
оптимизировать его, выполнив следующую команду:

composer dumpautoload -o








Асинхронная обработка данных 

Когда запрос включает в себя некоторые ресурсоемкие операции, вы должны подумать о том, чтобы выполнить эти операции
асинхронно, не заставляя пользователя ожидать их окончания.

Существует два метода асинхронной обработки данных: pull и push.

В методе pull, всякий раз, когда запрос включает в себя некоторые сложные операции, вы создаете задачу и сохраняете ее в
постоянном хранилище, таком как база данных. Затем в отдельном процессе (таком как задание cron) получаете эту задачу и
обрабатываете ее.

Этот метод легко реализовать, но у него есть некоторые недостатки. Например, задачи надо периодически забирать из
места их хранения. Если делать это слишком редко, задачи будут обрабатываться с большой задержкой, а если слишком часто -
это будет создавать большие накладные расходы.

В методе push, вы можете использовать очереди сообщений (например, RabbitMQ, ActiveMQ, Amazon SQS, и т.д.) для управления задачами.
Всякий раз, когда новая задача попадает в очередь, это инициирует обработку этой задачи обработчиком.




Профилирование производительности 

Вы должны профилировать код, чтобы определить узкие места в производительности и принять соответствующие меры.
Следующие инструменты для профилирования могут оказаться полезными:


	Отладочный тулбар Yii и отладчик [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Профайлер XDebug [http://xdebug.org/docs/profiler]

	XHProf [http://www.php.net/manual/en/book.xhprof.php]









          

      

      

    

  

  
    
    
    Проверка входящих данных
    
    

    
 
  
  

    
      
          
            
  
Проверка входящих данных

Как правило, вы никогда не должны доверять данным, полученным от пользователей и всегда проверять их прежде, чем работать с ними и добавлять в базу данных.

Учитывая модель данных которые должен заполнить пользователь, можно проверить эти данные на валидность воспользовавшись методом [[yii\base\Model::validate()]]. Метод возвращает логическое значение с результатом валидации ложь/истина. Если данные не валидны, ошибку можно получить воспользовавшись методом  [[yii\base\Model::errors]]. Рассмотрим пример:

$model = new \app\models\ContactForm;

// заполняем модель пользовательскими данными
$model->load(\Yii::$app->request->post());
// аналогично следующей строке:
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
    // все данные корректны
} else {
    // данные не корректны: $errors - массив содержащий сообщения об ошибках
    $errors = $model->errors;
}






Правила проверки 

Для того, чтобы  validate() действительно работал, нужно объявить правила проверки атрибутов.
Правила для проверки нужно указать в методе [[yii\base\Model::rules()]]. В следующем примере показано, как
правила для проверки модели ContactForm, нужно объявлять:

public function rules()
{
    return [
        // атрибут required указывает, что name, email, subject, body обязательны для заполнения
        [['name', 'email', 'subject', 'body'], 'required'],

        // атрибут email указывает, что в переменной email должен быть корректный адрес электронной почты
        ['email', 'email'],
    ];
}





Метод [[yii\base\Model::rules()|rules()]] должен возвращать массив правил, каждое из которых является массивом в следующем формате:

[
    // обязательный, указывает, какие атрибуты должны быть проверены по этому правилу.
    // Для одного атрибута, вы можете использовать имя атрибута не создавая массив
    ['attribute1', 'attribute2', ...],

    // обязательный, указывает тип правила.
    // Это может быть имя класса, псевдоним валидатора, или метод для проверки
    'validator',

    // необязательный, указывает, в каком случае(ях) это правило должно применяться
    // если не указан, это означает, что правило применяется ко всем сценариям
    // Вы также можете настроить "except" этот вариант применяет правило ко всем
    // сценариям кроме перечисленных
    'on' => ['scenario1', 'scenario2', ...],

    // необязательный, задает дополнительные конфигурации для объекта validator
    'property1' => 'value1', 'property2' => 'value2', ...
]





Для каждого правила необходимо указать, по крайней мере, какие атрибуты относится к этому правилу и тип правила.
Вы можете указать тип правила в одном из следующих форматов:


	Псевдонимы основного валидатора, например required, in, date и другие. Пожалуйста, обратитесь к списку
Основных валидаторов за более подробной информацией.

	Название метода проверки в модели класса, или анонимную функцию. Пожалуйста, обратитесь к разделу
Встроенных валидаторов за более подробной информацией.

	Полное имя класса валидатора. Пожалуйста, обратитесь к разделу Автономных валидаторов
за более подробной информацией.



Правило может использоваться для проверки одного или нескольких атрибутов. Атрибут может быть проверен одним или несколькими правилами.
Правило может быть применено только к определенным сценариям указав свойство on.
Если вы не укажите свойство on, это означает, что правило будет применяться ко всем сценариям.

Когда вызывается  метод validate() для проверки, он выполняет следующие действия:


	Определяет, какие атрибуты должны проверяться путем получения списка атрибутов от [[yii\base\Model::scenarios()]]
используя текущий [[yii\base\Model::scenario|scenario]]. Эти атрибуты называются - активными атрибутами.

	Определяет, какие правила проверки должны использоваться, получив список правил от [[yii\base\Model::rules()]]
используя текущий [[yii\base\Model::scenario|scenario]]. Эти правила называются - активными правилами.

	Каждое активное правило проверяет каждый активный атрибут, который ассоциируется с правилом.
Правила проверки выполняются в том порядке, как они перечислены.



Согласно вышеизложенным пунктам, атрибут будет проверяться, если и только если он является
активным атрибутом, объявленным в scenarios() и связан с одним или несколькими активными правилами,
объявленными в rules().


Note: Правилам валидации полезно давать имена. Например:

public function rules()
{
    return [
        // ...
        'password' => [['password'], 'string', 'max' => 60],
    ];
}





В случае наследования предыдущей модели, именованные правила можно модифицировать или удалить:

public function rules()
{
    $rules = parent::rules();
    unset($rules['password']);
    return $rules;
}









Настройка сообщений об ошибках 

Большинство валидаторов имеют сообщения об ошибках по умолчанию, которые будут добавлены к модели когда его атрибуты не проходят проверку.
Например, [[yii\validators\RequiredValidator|required]] валидатор добавил к модели сообщение об ошибке “Имя пользователя не может быть пустым.” когда атрибут username не удовлетворил правилу этого валидатора.

Вы можете настроить сообщение об ошибке для каждого правила, указав свойство message при объявлении правила, следующим образом:

public function rules()
{
    return [
        ['username', 'required', 'message' => 'Please choose a username.'],
    ];
}





Некоторые валидаторы могут поддерживать дополнительные сообщения об ошибках, чтобы более точно описать причину ошибки.
Например, [[yii\validators\NumberValidator|number]] валидатор поддерживает
[[yii\validators\NumberValidator::tooBig|tooBig]] и [[yii\validators\NumberValidator::tooSmall|tooSmall]]
для описания ошибки валидации, когда проверяемое значение является слишком большим и слишком маленьким, соответственно.
Вы можете настроить эти сообщения об ошибках, как в настройках валидаторов, так и непосредственно в правилах проверки.




События валидации 

Когда вызывается метод [[yii\base\Model::validate()]] он инициализирует вызов двух методов,
которые можно переопределить, чтобы настроить процесс проверки:


	[[yii\base\Model::beforeValidate()]]: выполнение по умолчанию вызовет [[yii\base\Model::EVENT_BEFORE_VALIDATE]]
событие. Вы можете переопределить этот метод, или обрабатывать это событие, чтобы сделать некоторую предобработку данных (например, форматирование входных данных), метод вызывается до начала валидации. Этот метод должен возвращать логическое значение, указывающее, следует ли продолжать проверку или нет.

	[[yii\base\Model::afterValidate()]]: выполнение по умолчанию вызовет  [[yii\base\Model::EVENT_AFTER_VALIDATE]]
событие. Вы можете либо переопределить этот метод или обрабатывать это событие, чтобы сделать некоторую  постобработку данных(Например, отформатировать данные удобным для дальнейшей обработки образом), метод вызывается после валидации.






Условные валидации 

Для проверки атрибутов только при выполнении определенных условий, например если один атрибут зависит от значения другого атрибута можно использовать [[yii\validators\Validator::when|when]] свойство, чтобы определить такие условия. Например:

    ['state', 'required', 'when' => function($model) {
        return $model->country == 'USA';
    }],





Это свойство [[yii\validators\Validator::when|when]] принимает PHP callable функцию с следующим описанием:

/**
 * @param Model $model модель используемая для проверки
 * @param string $attribute атрибут для проверки
 * @return bool следует ли применять правило
 */
function ($model, $attribute)





Если вам нужна поддержка условной проверки на стороне клиента, вы должны настроить свойство метода
[[yii\validators\Validator::whenClient|whenClient]] которое принимает строку, представляющую JavaScript
функцию, возвращаемое значение определяет, следует ли применять правило или нет. Например:

    ['state', 'required', 'when' => function ($model) {
        return $model->country == 'USA';
    }, 'whenClient' => "function (attribute, value) {
        return $('#country').val() == 'USA';
    }"]








Фильтрация данных 

Пользователь часто вводит данные которые нужно предварительно отфильтровать или предварительно обработать(очистить).
Например, вы хотите обрезать пробелы вокруг username. Вы можете использовать правила валидации для
достижения этой цели.

В следующих примерах показано, как обрезать пробелы в входных данных и превратить пустые входные данные в NULL
с помощью trim и указать значения по умолчанию с помощью свойства
default основного валидатора:

return [
    [['username', 'email'], 'trim'],
    [['username', 'email'], 'default'],
];





Вы также можете использовать более сложные фильтрации данных с помощью анонимной функции
подробнее об этом filter.

Как видите, эти правила валидации на самом деле не проверяют входные данные. Вместо этого,
они будут обрабатывать значения и обратно возвращать результат работы. Фильтры по сути выполняют предобработку входящих данных.




Обработка пустых входных данных 

Если входные данные представлены из HTML-формы, часто нужно присвоить некоторые значения
по умолчанию для входных данных, если они не заполнены. Вы можете сделать это с помощью
валидатора default. Например:

return [
    // установим "username" и "email" как NULL, если они пустые
    [['username', 'email'], 'default'],

    // установим "level" как 1 если он пустой
    ['level', 'default', 'value' => 1],
];





По умолчанию входные данные считаются пустыми, если их значением является пустая строка, пустой массив или null.
Вы можете настроить значение по умолчанию с помощью свойства [[yii\validators\Validator::isEmpty]]
используя анонимную функцию. Например:

    ['agree', 'required', 'isEmpty' => function ($value) {
        return empty($value);
    }]






Note: большинство валидаторов не обрабатывает пустые входные данные, если их
[[yii\base\Validator::skipOnEmpty]] свойство принимает значение по умолчанию true.
Они просто будут пропущены во время проверки, если связанные с ними атрибуты являются пустыми.
Среди основных валидаторов, только captcha, default, filter,
required, и trim будут обрабатывать пустые входные данные.







Специальная валидация 

Иногда вам нужно сделать специальную валидацию для значений, которые не связаны с какой-либо модели.

Если необходимо выполнить только один тип проверки (например, проверка адреса электронной почты),
вы можете вызвать метод [[yii\validators\Validator::validate()|validate()]] нужного валидатора.
Например:

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
    echo 'Email is valid.';
} else {
    echo $error;
}






Note: Не все валидаторы поддерживают такой тип проверки. Примером может служить
unique валидатор, который предназначен для работы с моделью.


Если необходимо выполнить несколько проверок в отношении нескольких значений,
вы можете использовать [[yii\base\DynamicModel]], который поддерживает объявление, как
атрибутов так и правил “на лету”. Его использование выглядит следующим образом:

public function actionSearch($name, $email)
{
    $model = DynamicModel::validateData(compact('name', 'email'), [
        [['name', 'email'], 'string', 'max' => 128],
        ['email', 'email'],
    ]);

    if ($model->hasErrors()) {
        // валидация завершилась с ошибкой
    } else {
        // Валидация успешно выполнена
    }
}





Метод [[yii\base\DynamicModel::validateData()]] создает экземпляр DynamicModel, определяет
атрибуты, используя приведенные данные (name и email в этом примере), и затем вызывает
[[yii\base\Model::validate()]]
с данными правилами.

Кроме того, вы можете использовать следующий “классический” синтаксис для выполнения специальной проверки данных:

public function actionSearch($name, $email)
{
    $model = new DynamicModel(compact('name', 'email'));
    $model->addRule(['name', 'email'], 'string', ['max' => 128])
        ->addRule('email', 'email')
        ->validate();

    if ($model->hasErrors()) {
        // валидация завершилась с ошибкой
    } else {
        // Валидация успешно выполнена
    }
}





После валидации, вы можете проверить успешность выполнения вызвав
метод [[yii\base\DynamicModel::hasErrors()|hasErrors()]] и затем получить ошибки проверки вызвав
метод [[yii\base\DynamicModel::errors|errors]] как это делают нормальные модели.
Вы можете также получить доступ к динамическим атрибутам, определенным через экземпляр модели, например,
$model->name и $model->email.




Создание Валидаторов 

Кроме того, используя основные валидаторы, включенные в релизы Yii, вы также можете
создавать свои собственные валидаторы. Вы можете создавать встроенные валидаторы или автономные валидаторы.


Встроенные Валидаторы 

Встроенный валидатор наследует методы модели или использует анонимную функцию.
Описание метода/функции:

/**
 * @param string $attribute атрибут проверяемый в настоящее время
 * @param array $params дополнительные пары имя-значение, заданное в правиле
 */
function ($attribute, $params)





Если атрибут не прошел проверку, метод/функция должна вызвать [[yii\base\Model::addError()]],
чтобы сохранить сообщение об ошибке в модели, для того чтобы позже можно было получить сообщение об ошибке для
представления конечным пользователям.

Ниже приведены некоторые примеры:

use yii\base\Model;

class MyForm extends Model
{
    public $country;
    public $token;

    public function rules()
    {
        return [
            // встроенный валидатор определяется как модель метода validateCountry()
            ['country', 'validateCountry'],

            // встроенный валидатор определяется как анонимная функция
            ['token', function ($attribute, $params) {
                if (!ctype_alnum($this->$attribute)) {
                    $this->addError($attribute, 'Токен должен содержать буквы или цифры.');
                }
            }],
        ];
    }

    public function validateCountry($attribute, $params)
    {
        if (!in_array($this->$attribute, ['USA', 'Web'])) {
            $this->addError($attribute, 'Страна должна быть либо "USA" или "Web".');
        }
    }
}






Note: по умолчанию, встроенные валидаторы не будут применяться, если связанные с ними атрибуты
получат пустые входные данные, или если они уже не смогли пройти некоторые правила валидации.
Если вы хотите, чтобы, это правило применялось всегда, вы можете настроить свойства
[[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] и/или [[yii\validators\Validator::skipOnError|skipOnError]]
свойства false в правиле объявления. Например:

[
    ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]











Автономные валидаторы 

Автономный валидатор - это класс, расширяющий [[yii\validators\Validator]] или его дочерних класс.
Вы можете реализовать свою логику проверки путем переопределения метода
[[yii\validators\Validator::validateAttribute()]]. Если атрибут не прошел проверку, вызвать
[[yii\base\Model::addError()]],
чтобы сохранить сообщение об ошибке в модели, как это делают встроенные валидаторы. Например:

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
    public function validateAttribute($model, $attribute)
    {
        if (!in_array($model->$attribute, ['USA', 'Web'])) {
            $this->addError($model, $attribute, 'Страна должна быть либо "USA" или "Web".');
        }
    }
}





Если вы хотите, чтобы ваш валидатор поддерживал проверку значений, без модели, также необходимо переопределить
[[yii\validators\Validator::validate()]]. Вы можете также
переопределить [[yii\validators\Validator::validateValue()]]
вместо validateAttribute() и validate(), потому что по умолчанию последние два метода
реализуются путем вызова validateValue().






Валидация на стороне клиента 

Проверка на стороне клиента на основе JavaScript целесообразна, когда конечные пользователи вводят
входные данные через HTML-формы, так как эта проверка позволяет пользователям узнать, ошибки ввода
быстрее, и таким образом улучшает ваш пользовательский интерфейс. Вы можете использовать или
реализовать валидатор, который поддерживает валидацию на стороне клиента в дополнение к проверке на стороне сервера.


Info: Проверка на стороне клиента желательна, но необязательна. Её основная цель заключается в
предоставлении пользователям более удобного интерфейса. Так как входные данные, поступают от конечных
пользователей, вы никогда не должны доверять верификации на стороне клиента. По этой причине, вы всегда
должны выполнять верификацию на стороне сервера путем вызова [[yii\base\Model::validate()]],
как описано в предыдущих пунктах.



Использование валидации на стороне клиента 

Многие основные валидаторы поддерживают проверку на стороне клиента out-of-the-box.
Все, что вам нужно сделать, это просто использовать [[yii\widgets\ActiveForm]] для построения HTML-форм.

Например, LoginForm ниже объявляет два правила: один использует required
основные валидаторы, который поддерживается на стороне клиента и сервера; другой использует validatePassword
встроенный валидатор, который поддерживается только на стороне сервера.

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
    public $username;
    public $password;

    public function rules()
    {
        return [
            // username и password обязательны для заполнения
            [['username', 'password'], 'required'],

            // проверке пароля с помощью validatePassword()
            ['password', 'validatePassword'],
        ];
    }

    public function validatePassword()
    {
        $user = User::findByUsername($this->username);

        if (!$user || !$user->validatePassword($this->password)) {
            $this->addError('password', 'Неправильное имя пользователя или пароль.');
        }
    }
}





HTML-форма построена с помощью следующего кода, содержит поля для ввода username и password.
Если вы отправите форму, не вводя ничего, вы получите сообщения об ошибках, требующих ввести данные.
Сообщения появиться сразу, без обращения к серверу.

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <?= Html::submitButton('Login') ?>
<?php yii\widgets\ActiveForm::end(); ?>





Класс [[yii\widgets\ActiveForm]] будет читать правила проверки заявленные в модели и генерировать
соответствующий код JavaScript для валидаторов, которые поддерживают проверку на стороне клиента.
Когда пользователь изменяет значение поля ввода или отправляет форму, JavaScript на стороне клиента
будет срабатывать и проверять введенные данные.

Если вы хотите отключить проверку на стороне клиента полностью, вы можете настроить свойство
[[yii\widgets\ActiveForm::enableClientValidation]] установив значение false. Вы также можете отключить
проверку на стороне клиента отдельных полей ввода, настроив их с помощью свойства
[[yii\widgets\ActiveField::enableClientValidation]] установив значение false.




Реализация проверки на стороне клиента 

Чтобы создать валидатор, который поддерживает проверку на стороне клиента, вы должны реализовать метод
[[yii\validators\Validator::clientValidateAttribute()]] возвращающий фрагмент кода JavaScript,
который выполняет проверку на стороне клиента. В JavaScript-коде, вы можете использовать следующие предопределенные переменные:


	attribute: имя атрибута для проверки.

	value: проверяемое значение.

	messages: массив, используемый для хранения сообщений об ошибках, проверки значения атрибута.

	deferred: массив, который содержит отложенные объекты (описано в следующем подразделе).



В следующем примере мы создаем StatusValidator который проверяет значение поля на соответствие допустимым статусам.
Валидатор поддерживает оба способа проверки и на стороне сервера и на стороне клиента.

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
    public function init()
    {
        parent::init();
        $this->message = 'Invalid status input.';
    }

    public function validateAttribute($model, $attribute)
    {
        $value = $model->$attribute;
        if (!Status::find()->where(['id' => $value])->exists()) {
            $model->addError($attribute, $this->message);
        }
    }

    public function clientValidateAttribute($model, $attribute, $view)
    {
        $statuses = json_encode(Status::find()->select('id')->asArray()->column());
        $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
        return <<<JS
if ($.inArray(value, $statuses) === -1) {
    messages.push($message);
}
JS;
    }
}






Tip: приведенный выше код даётся, в основном, чтобы продемонстрировать, как осуществляется
поддержка проверки на стороне клиента. На практике вы можете использовать
in основные валидаторы для достижения той же цели.
Вы можете написать проверку, как правило, например:

[
    ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]











Отложенная валидация 

Если Вам необходимо выполнить асинхронную проверку на стороне клиента, вы можете создавать
Deferred objects [http://api.jquery.com/category/deferred-object/]. Например, чтобы выполнить
пользовательские AJAX проверки, вы можете использовать следующий код:

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.push($.get("/check", {value: value}).done(function(data) {
            if ('' !== data) {
                messages.push(data);
            }
        }));
JS;
}





В примере выше переменная deferred предусмотренная Yii, которая является массивом Отложенных объектов.
$.get() метод jQuery создает Отложенный объект, который помещается в массив deferred.

Также можно явно создать Отложенный объект и вызвать его методом resolve(), тогда выполняется асинхронный
вызов к серверу. В следующем примере показано, как проверить размеры загружаемого файла изображения
на стороне клиента.

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        var def = $.Deferred();
        var img = new Image();
        img.onload = function() {
            if (this.width > 150) {
                messages.push('Изображение слишком широкое!');
            }
            def.resolve();
        }
        var reader = new FileReader();
        reader.onloadend = function() {
            img.src = reader.result;
        }
        reader.readAsDataURL(file);

        deferred.push(def);
JS;
}






Note: метод resolve() должен быть вызван после того, как атрибут был проверен.
В противном случае основная проверки формы не будет завершена.


Для простоты работы с массивом deferred, существует упрощенный метод add(), который автоматически создает Отложенный объект и добавляет его в deferred массив. Используя этот метод, вы можете упростить пример выше, следующим образом:

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.add(function(def) {
            var img = new Image();
            img.onload = function() {
                if (this.width > 150) {
                    messages.push('Изображение слишком широкое!');
                }
                def.resolve();
            }
            var reader = new FileReader();
            reader.onloadend = function() {
                img.src = reader.result;
            }
            reader.readAsDataURL(file);
        });
JS;
}








AJAX валидация 

Некоторые проверки можно сделать только на стороне сервера, потому что только сервер имеет необходимую информацию.
Например, чтобы проверить логин пользователя на уникальность, необходимо проверить логин в
базе данных на стороне сервера. Вы можете использовать проверку на основе AJAX в этом случае.
Это вызовет AJAX-запрос в фоновом режиме, чтобы проверить логин пользователя, сохраняя при этом валидацию
на стороне клиента. Выполняя её перед запросом к серверу.

Чтобы включить AJAX-валидацию для одного поля, Вы должны свойство [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]] выбрать как true и указать уникальный id формы:

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();





Чтобы включить AJAX-валидацию для всей формы, Вы должны свойство
[[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]] выбрать как true для формы:

$form = yii\widgets\ActiveForm::begin([
    'id' => 'contact-form',
    'enableAjaxValidation' => true,
]);






Note: В случае, если свойство enableAjaxValidation указано и у поля и у формы, первый вариант будет иметь приоритет.


Также необходимо подготовить сервер для обработки AJAX-запросов валидации. Это может быть достигнуто
с помощью следующего фрагмента кода, в контроллере действий:

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
    Yii::$app->response->format = Response::FORMAT_JSON;
    return ActiveForm::validate($model);
}





Приведенный выше код будет проверять, является ли текущий запрос AJAX. Если да,
он будет отвечать на этот запрос, предварительно выполнив проверку и возвратит ошибки в
случае их появления в формате JSON.


Info: Вы также можете использовать Deferred Validation AJAX валидации.
Однако, AJAX-функция проверки, описанная здесь более интегрированная и требует меньше усилий к написанию кода.










          

      

      

    

  

  
    
    
    Форматирование данных
    
    

    
 
  
  

    
      
          
            
  
Форматирование данных

Для форматирования вывода Yii предоставляет класс, преобразующий данные в человеко понятный формат.
[[yii\i18n\Formatter]] это класс-помощник, который зарегистрирован как
компонент приложения, по умолчанию под именем formatter.

Он предоставляет набор методов для форматирования таких данных как дата/время, числа и другие часто используемые в целях
локализации форматы.
Formatter может быть использован двумя различными способами.


	Напрямую используя методы форматирования (все методы форматирования имеют префикс as):

echo Yii::$app->formatter->asDate('2014-01-01', 'long'); // выведет: January 1, 2014
echo Yii::$app->formatter->asPercent(0.125, 2); // выведет: 12.50%
echo Yii::$app->formatter->asEmail('cebe@example.com'); // выведет: <a href="mailto:cebe@example.com">cebe@example.com</a>
echo Yii::$app->formatter->asBoolean(true); // выведет: Yes
// он также умеет отображать null значения:
echo Yii::$app->formatter->asDate(null); // выведет: (not set)







	Используя метод [[yii\i18n\Formatter::format()|format()]] и имя формата.
Этот метод также используется в виджетах на подобии [[yii\grid\GridView]] и [[yii\widgets\DetailView]], в которых
вы можете задать формат отображения данных в колонке через конфигурацию виджета.

echo Yii::$app->formatter->format('2014-01-01', 'date'); // выведет: January 1, 2014
// вы также можете использовать массивы для настроек метода форматирования:
// `2` это значение для $decimals параметра метода asPercent().
echo Yii::$app->formatter->format(0.125, ['percent', 2]); // выведет: 12.50%









Все данные, отображаемые через компонент formatter, будут локализованы, если
расширение PHP intl [http://php.net/manual/ru/book.intl.php] было установлено. Для этого вы можете настроить свойство
[[yii\i18n\Formatter::locale|locale]]. Если оно не было настроено, то в качестве локали будет использован
[[yii\base\Application::language|язык приложения]]. Подробнее смотрите в разделе «интернационализация».
Компонент форматирования будет выбирать корректный формат для даты и чисел в соответствии с локалью, включая имена
месяцев и дней недели, переведённые на текущий язык. Форматирование дат также зависит от
[[yii\i18n\Formatter::timeZone|часового пояса]], которая
также будет из свойства [[yii\base\Application::timeZone|timeZone]] приложения, если она не была задана явно.

Например, форматирование даты, вызванное с разной локалью, отобразит разные результаты::

Yii::$app->formatter->locale = 'en-US';
echo Yii::$app->formatter->asDate('2014-01-01'); // выведет: January 1, 2014
Yii::$app->formatter->locale = 'de-DE';
echo Yii::$app->formatter->asDate('2014-01-01'); // выведет: 1. January 2014
Yii::$app->formatter->locale = 'ru-RU';
echo Yii::$app->formatter->asDate('2014-01-01'); // выведет: 1 января 2014 г.






Обратите внимание, что форматирование может различаться между различными версиями библиотеки ICU, собранных с PHP,
а также на основе того установлено ли [расширение PHP intl] (http://php.net/manual/ru/book.intl.php) или нет.
Таким образом, чтобы гарантировать, что ваш сайт будет одинаково отображать данные во всех окружениях рекомендуется
установить расширение PHP intl во всех окружениях и проверить, что версия библиотеки ICU совпадает.
См. также: Настройка PHP окружения для интернационализации.

Отметим также, что даже если установлено расширение PHP intl, форматирование даты и времени для значений года >=2038
или <=1901 на 32-ух разрядных системах будет обращаться к реализации PHP, которая не обеспечивает локализованные
имена месяца и дня, потому что в этом случае intl будет использовать 32-ух битный UNIX timestamp. На 64-битной системе
intl formatter будет работать во всех случаях, если, конечно, intl был установлен.





Настройка форматирования 

Форматы по умолчанию, используемые в методах форматирования, можно настраивать через свойства
[[yii\i18n\Formatter|класса форматирования]]. Вы можете задать форматирование по умолчанию для всего приложения, настроив
компонент formatter в вашей конфигурации приложения. Ниже
приведён пример конфигурации. Чтобы узнать больше о доступных свойствах см. [[yii\i18n\Formatter|API документацию к классу Formatter]]
и следующие подсекции.

'components' => [
    'formatter' => [
        'dateFormat' => 'dd.MM.yyyy',
        'decimalSeparator' => ',',
        'thousandSeparator' => ' ',
        'currencyCode' => 'EUR',
   ],
],








Форматирование значений даты и времени 

Класс форматирования предоставляет различные методы для форматирования значений даты и времени. Например:


	[[yii\i18n\Formatter::asDate()|date]] - значение будет отформатировано как дата, например January 01, 2014.

	[[yii\i18n\Formatter::asTime()|time]] - значение будет отформатировано как время, например 14:23.

	[[yii\i18n\Formatter::asDatetime()|datetime]] - значение будет отформатировано как дата и время, например
January 01, 2014 14:23.

	[[yii\i18n\Formatter::asTimestamp()|timestamp]] - значение будет отформатировано как
unix timestamp [http://en.wikipedia.org/wiki/Unix_time], например, 1412609982.

	[[yii\i18n\Formatter::asRelativeTime()|relativeTime]] - значение будет отформатировано как временной промежуток между
заданной датой и текущим временем в человеко понятном формате, например: 1 час назад.

	[[yii\i18n\Formatter::asDuration()|duration]]: значение будет отформатировано как продолжительность в человеко понятном
формате, например 1 день, 2 минуты.



Форматирование даты и времени для методов [[yii\i18n\Formatter::asDate()|date]], [[yii\i18n\Formatter::asTime()|time]] и
[[yii\i18n\Formatter::asDatetime()|datetime]] может быть задано глобально через конфигурацию свойств форматирования
[[yii\i18n\Formatter::$dateFormat|$dateFormat]], [[yii\i18n\Formatter::$timeFormat|$timeFormat]] и
[[yii\i18n\Formatter::$datetimeFormat|$datetimeFormat]].

По умолчанию, форматирование использует сокращенный формат, который интерпретируется по-разному в зависимости от активной
в данный момент локали. Поэтому дата и время будут отформатированы наиболее часто используемым способом в стране и языке
пользователя. Доступны 4 разных сокращенных формата:


	short в локале en_GB отобразит, например, 06/10/2014 для даты и 15:58 для времени, в то время как

	medium будет отображать 6 Oct 2014 и 15:58:42 соответственно,

	long будет отображать 6 October 2014 и 15:58:42 GMT соответственно и

	full будет отображать Monday, 6 October 2014 и 15:58:42 GMT соответственно.



Дополнительно вы можете задать специальный формат, используя синтаксис, заданный ICU Project [http://site.icu-project.org/],
который описан в руководстве ICU по следующему адресу:
http://userguide.icu-project.org/formatparse/datetime. Также вы можете использовать синтаксис, который распознаётся
PHP-функцией date() [http://php.net/manual/ru/function.date.php], используя строку с префиксом php:.

// ICU форматирование
echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06
// PHP date() форматирование
echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06






Часовые пояса 

Для форматирования значений даты и времени Yii будет преобразовывать их в соответствии с
[[yii\i18n\Formatter::timeZone|настроенным часовым поясом]]. Поэтому предполагается, что входные значения будут в UTC,
если часовой пояс не был указан явно. По этой причине рекомендуется хранить все значения даты и времени в формате UTC,
предпочтительно в виде UNIX timestamp, которая всегда в часовом поясе UTC по определению. Если входное значение
находится в часовом поясе, отличном от UTC, часовой пояс должен быть указан явно, как в следующем примере:

// при условии Yii::$app->timeZone = 'Europe/Berlin';
echo Yii::$app->formatter->asTime(1412599260); // 14:41:00
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00
echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00





Начиная с версии 2.0.1 стало возможно настраивать часовой пояс для предполагаемых timestamp, которые не включают в себя
часовой пояс, как во втором примере в коде выше. Вы можете задать [[yii\i18n\Formatter::defaultTimeZone]] часовым поясом,
который вы используете для хранения данных.


Note: Поскольку часовые пояса являются субъектом ответственности правительств по всему миру и могут часто меняться,
это значит, что вы, вероятно, не имеете самую свежую информацию в базе данных часовых поясов, установленной на вашем сервере.
Вы можете обратиться к ICU руководству [http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data]
для получения подробностей об обновлении базы данных часовых поясов.
См. также: Настройка вашего PHP окружения для интернационализации.







Форматирование чисел 

Для форматирования числовых значений класс форматирования предоставляет следующие методы:


	[[yii\i18n\Formatter::asInteger()|integer]] - значение будет отформатировано как целое число, например 42.

	[[yii\i18n\Formatter::asDecimal()|decimal]] - значение будет отформатировано как дробное число, состоящее из целого и
дробной части, например: 2,542.123 или 2.542,123.

	[[yii\i18n\Formatter::asPercent()|percent]] - значение будет отформатировано как процентное значение, например 42%.

	[[yii\i18n\Formatter::asScientific()|scientific]] - значение будет отформатировано в научном формате, например: 4.2E4.

	[[yii\i18n\Formatter::asCurrency()|currency]] - значение будет отформатировано в денежном формате, например: £420.00.
Обратите внимание, чтобы эта функция работала правильно, локаль должна включать в себя часть со страной, например: en_GB
илиen_US потому что только язык будет неоднозначным в этом случае.

	[[yii\i18n\Formatter::asSize()|size]] - значение будет отформатировано как количество байт в человеко понятном формате,
например: 410 kibibytes.

	[[yii\i18n\Formatter::asShortSize()|shortSize]] - сокращённая версия [[yii\i18n\Formatter::asSize()|size]], например:
410 KiB.



Форматирование чисел может быть скорректирована с помощью [[yii\i18n\Formatter::decimalSeparator|дробного разделителя]] и
[[yii\i18n\Formatter::thousandSeparator|тысячного разделителя]], которые были заданы в соответствии с локалью.

Для более сложной конфигурации, [[yii\i18n\Formatter::numberFormatterOptions]] и [[yii\i18n\Formatter::numberFormatterTextOptions]]
могут быть использованы для настройки внутренне используемого класса NumberFormatter [http://php.net/manual/ru/class.numberformatter.php]

Например, чтобы настроить максимальное и минимальное количество знаков после запятой, вы можете настроить свойство
[[yii\i18n\Formatter::numberFormatterOptions]] как в примере ниже:

'numberFormatterOptions' => [
    NumberFormatter::MIN_FRACTION_DIGITS => 0,
    NumberFormatter::MAX_FRACTION_DIGITS => 2,
]








Остальное форматирование  

Кроме форматирование даты, времени и чисел, Yii предоставляет набор других полезных средств форматирования для различных
ситуаций:


	[[yii\i18n\Formatter::asRaw()|raw]] - значением будет отображено как есть, это псевдо-форматирование, которое не даёт
никакого эффекта,
кроме значений null, которые будет отформатированы в соответствии с [[nullDisplay]].

	[[yii\i18n\Formatter::asText()|text]] - значением будет экранированный от HTML текст.
Это формат по умолчанию, используемый в GridView DataColumn.

	[[yii\i18n\Formatter::asNtext()|ntext]] - значением будет экранированный от HTML текст с новыми строками,
сконвертированными в разрывы строк.

	[[yii\i18n\Formatter::asParagraphs()|paragraphs]] - значением будет экранированный от HTML текст с параграфами,
обрамлёнными в <p> теги.

	[[yii\i18n\Formatter::asHtml()|html]] - значение будет очищено, используя [[HtmlPurifier]] с целью предотвратить XSS
атаки. Вы можете задать дополнительные параметры, такие как ['html', ['Attr.AllowedFrameTargets' => ['_blank']]].

	[[yii\i18n\Formatter::asEmail()|email]] - значение будет отформатировано как ссылка mailto.

	[[yii\i18n\Formatter::asImage()|image]] - значение будет отформатировано как тег картинки.

	[[yii\i18n\Formatter::asUrl()|url]] - значение будет отформатировано как ссылка .
  
    
    
    Обновление с версии 1.1
    
    

    
 
  
  

    
      
          
            
  
Обновление с версии 1.1

Между версиями 1.1 и 2.0 существует много различий, так как Yii был полностью переписан для версии 2.0.
Таким образом, обновление с версии 1.1 не является таким же тривиальным как обновление между минорными версиями.
В данном руководстве приведены основные различия между двумя версиями.

Если прежде вы не использовали Yii 1.1, вы можете сразу перейти к разделу «Начало работы».

Также учтите, что в Yii 2.0 гораздо больше новых возможностей, чем описано далее. Настоятельно рекомендуется, изучить
всё руководство. Вполне возможно, что то, что раньше приходилось разрабатывать самостоятельно теперь является частью
фреймворка.


Установка

Yii 2.0 широко использует Composer [https://getcomposer.org/], который является основным менеджером зависимостей для PHP.
Установка как фреймворка, так и расширений, осуществляется через Composer. Подробно о установке Yii 2.0 вы можете узнать
из раздела «Установка Yii». О том, как создавать расширения для Yii 2.0 или адаптировать
уже имеющиеся расширения от версии 1.1, вы можете узнать из раздела «Создание расширений».




Требования PHP

Для работы Yii 2.0 необходим PHP 5.4 или выше. Данная версия включает большое количество улучшений по сравнению с
версией 5.2, которая использовалась Yii 1.1. Таким образом, существует много различий в языке, которые вы должны принимать
во внимание:


	Пространства имён [http://php.net/manual/ru/language.namespaces.php];

	Анонимные функции [http://php.net/manual/ru/functions.anonymous.php];

	Использование короткого синтаксиса для массивов: [...элементы...] вместо array(...элементы...);

	Использование короткого echo <?= для вывода в файлах представлений. С версии PHP 5.4 данную возможность можно
использовать не опасаясь;

	Классы и интерфейсы SPL [http://php.net/manual/ru/book.spl.php];

	Позднее статическое связывание (LSB) [http://php.net/manual/ru/language.oop5.late-static-bindings.php];

	Классы для дат и времени [http://php.net/manual/ru/book.datetime.php];

	Трейты [http://php.net/manual/ru/language.oop5.traits.php];

	Интернационализация (intl) [http://php.net/manual/ru/book.intl.php]; Yii 2.0 использует расширение PHP intl
для различного функционала интернационализации.






Пространства имён

Одним из основных изменений в Yii 2.0 является использование пространств имён. Почти каждый класс фреймворка
находится в пространстве имён, например, yii\web\Request. Префикс “С” в именах классов больше не используется.
Имена классов соответствуют структуре директорий. Например, yii\web\Request указывает, что соответствующий класс
находится в файле web/Request.php в директории фреймворка.

Благодаря загрузчику классов Yii, вы можете использовать любой класс фреймворка без необходимости непосредственно
подключать его.




Компонент и объект

В Yii 2.0 класс CComponent из версии 1.1 был разделён на два класса: [[yii\base\Object]] и [[yii\base\Component]].
Класс [[yii\base\Object|Object]] является простым базовым классом, который позволяет использовать
геттеры и сеттеры для свойств. Класс [[yii\base\Component|Component]] наследуется от
класса [[yii\base\Object|Object]] и поддерживает события и поведения.

Если вашему классу не нужны события или поведения, вы можете использовать [[yii\base\Object|Object]] в качестве
базового класса. В основном это относится к классам, представляющим собой базовые структуры данных.




Конфигурация объекта

Класс [[yii\base\Object|Object]] предоставляет единый способ конфигурирования объектов. Любой дочерний класс
[[yii\base\Object|Object]] может определить конструктор (если нужно) как показано ниже. Это позволит конфигурировать
его универсально:

class MyClass extends \yii\base\Object
{
    public function __construct($param1, $param2, $config = [])
    {
        // ... инициализация до того, как конфигурация будет применена

        parent::__construct($config);
    }

    public function init()
    {
        parent::init();

        // ... инициализация после того, как конфигурация была применена
    }
}





В примере выше, последний параметр конструктора должен быть массивом конфигурации, который содержит пары в формате
ключ-значение для инициализации свойств объекта. Вы можете переопределить метод [[yii\base\Object::init()|init()]] для
инициализации объекта после того, как конфигурация была применена к нему.

Следуя этому соглашению, вы сможете создавать и конфигурировать новые объекты с помощью массива конфигурации:

$object = Yii::createObject([
    'class' => 'MyClass',
    'property1' => 'abc',
    'property2' => 'cde',
], [$param1, $param2]);





Более подробная информация о конфигурации представлена в разделе «Настройки».




События

В Yii 1, события создавались с помощью объявления метода on (например, onBeforeSave). В Yii 2 вы можете использовать
любое имя события. Вызывать события можно при помощи метода [[yii\base\Component::trigger()|trigger()]].

$event = new \yii\base\Event;
$component->trigger($eventName, $event);





Для прикрепления обработчика события используйте метод [[yii\base\Component::on()|on()]].

$component->on($eventName, $handler);
// убираем обработчик
// $component->off($eventName, $handler);





Есть и другие улучшения по части событий, подробно описанные в разделе «События».




Псевдонимы пути

В Yii 2.0 псевдонимы используются более широко и применяются как к путям в файловой системе, так и к URL. Теперь, для
того, чтобы отличать псевдонимы от обычных путей и URL, требуется, чтобы имя псевдонима начиналось с символа @.
Например, псевдоним @yii соответствует директории, в которую установлен Yii. Псевдонимы пути используются во многих
местах. Например, значение свойства [[yii\caching\FileCache::cachePath]] может быть как псевдонимом пути так и
обычным путём к папке.

Псевдонимы пути тесно связаны с пространством имён классов. Рекомендуется определять псевдоним пути для каждого корневого
пространства имён, что позволяет использовать загрузчик классов Yii без какой-либо дополнительной настройки. Например,
так как @yii соответствует директории, в которую установлен фреймворк, класс yii\web\Request может быть загружен
автоматически. Если вы используете сторонние библиотеки, например, из Zend Framework, вы можете определить псевдоним
пути @Zend как директорию, в которую установлен этот фреймворк. После этого Yii будет способен автоматически загружать
любой класс Zend Framework.

Подробнее о псевдонимах пути можно узнать из раздела «Псевдонимы пути».




Представления

Одним из основных изменений в Yii 2 является то, что специальная переменная $this в представлении, больше не соответствует
текущему контроллеру или виджету. Вместо этого, $this теперь соответствует объекту представления, новой возможности
введённой в версии 2.0. Объект представления имеет тип [[yii\web\View]], который представляет собой часть view в
шаблоне проектирования MVC. Если вы хотите получить доступ к контроллеру или виджету, используйте выражение $this->context.

Для рендеринга частичных представлений теперь используется метод $this->render(), а не $this->renderPartial().
Результат вызова метода render теперь должен быть выведен напрямую, так как render возвращает результат рендеринга,
а не отображает его сразу:

echo $this->render('_item', ['item' => $item]);





Кроме использования PHP в качестве основного шаблонизатора, Yii 2.0 также предоставляет официальные расширения для двух
популярных шаблонизаторов: Smarty и Twig. Шаблонизатор Prado больше не поддерживается. Для использования данных
шаблонизаторов необходимо настроить компонент приложения view задав свойство [[yii\base\View::$renderers|View::$renderers]].
Подробнее об этом можно прочитать в разделе «Шаблонизаторы».




Модели

Yii 2.0 использует в качестве базового класса для моделей [[yii\base\Model]], аналогичный классу CModel в версии 1.1.
Класс CFormModel удалён. Вместо него для создания модели формы в Yii 2.0 вы должны напрямую наследоваться от [[yii\base\Model]].

Появился новый метод [[yii\base\Model::scenarios()|scenarios()]] для объявления поддерживаемых сценариев,
и для обозначения в каком сценарии атрибуты должны проверяться, считаться безопасными и т.п. Например,

public function scenarios()
{
    return [
        'backend' => ['email', 'role'],
        'frontend' => ['email', '!role'],
    ];
}





В примере выше, объявлено два сценария: backend и frontend. Для backend сценария, оба атрибута email и role являются
безопасными, и могут быть массово присвоены. Для сценария frontend, атрибут email может быть массово присвоен, а атрибут role нет.
Оба атрибута email и role должны быть проверены с помощью правил валидации.

Метод [[yii\base\Model::rules()|rules()]] по-прежнему используется для объявления правил валидации. Обратите внимание, что в связи с
появлением нового метода [[yii\base\Model::scenarios()|scenarios()]], больше не поддерживается валидатор unsafe.

В большинстве случаев вам не нужно переопределять метод [[yii\base\Model::scenarios()|scenarios()]], если метод [[yii\base\Model::rules()|rules()]]
полностью указывает все существующие сценарии, и если нет надобности в объявлении атрибутов небезопасными.

Более детальная информация представлена в разделе «Модели».




Контроллеры

В качестве базового класса для контроллеров в Yii 2.0 используется [[yii\web\Controller]], аналогичный CController
в Yii 1.1. Базовым классом для всех действий является [[yii\base\Action]].

Одним из основных изменений является то, что действие контроллера теперь должно вернуть результат вместо того, чтобы
напрямую выводить его:

public function actionView($id)
{
    $model = \app\models\Post::findOne($id);
    if ($model) {
        return $this->render('view', ['model' => $model]);
    } else {
        throw new \yii\web\NotFoundHttpException;
    }
}





Более детальная информация представлена в разделе «Контроллеры».




Виджеты

В Yii 2.0 класс [[yii\base\Widget]] используется в качестве базового класса для виджетов, аналогично CWidget в Yii 1.1.

Для лучшей поддержки фреймворка в IDE, Yii 2.0 использует новый синтаксис для виджетов. Новые статические методы
[[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], и [[yii\base\Widget::widget()|widget()]]
используются следующим образом:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Обратите внимание что вы должны выводить результат
echo Menu::widget(['items' => $items]);

// Указываем массив для конфигурации свойств объекта
$form = ActiveForm::begin([
    'options' => ['class' => 'form-horizontal'],
    'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... поля формы ...
ActiveForm::end();





Более детальная информация представлена в разделе «Виджеты».




Темы

В Yii 2.0 темы работают совершенно по-другому. Теперь они основаны на механизме сопоставления путей исходного файла
представления с темизированным файлом. Например, если используется сопоставление путей ['/web/views' => '/web/themes/basic'],
то темизированная версия файла представления /web/views/site/index.php будет находится в /web/themes/basic/site/index.php.
По этой причине темы могут быть применены к любому файлу представления, даже к представлению, отрендеренному внутри контекста
контроллера или виджета. Также, больше не существует компонента CThemeManager. Вместо этого, theme является конфигурируемым
свойством компонента приложения view.

Более детальная информация представлена в разделе «Темизация».




Консольные приложения

Консольные приложения теперь организованы как контроллеры, аналогично веб приложениям. Консольные контроллеры
должны быть унаследованы от класса [[yii\console\Controller]], аналогичного CConsoleCommand в версии 1.1.

Для выполнения консольной команды, используйте yii <маршрут>, где <маршрут> это маршрут контроллера (например, sitemap/index).
Дополнительные анонимные аргументы будут переданы в качестве параметров соответствующему действию контроллера, в то время как
именованные аргументы будут переданы в соответствие с объявлениями в [[yii\console\Controller::options()]].

Yii 2.0 поддерживает автоматическую генерацию справочной информации из блоков комментариев.

Более детальная информация представлена в разделе «Консольные команды».




I18N

В Yii 2.0 встроенные форматтеры времени и чисел были убраны в пользу PECL расширения PHP intl [http://pecl.php.net/package/intl].

Перевод сообщений теперь осуществляется через компонент приложения i18n. Данный компонент управляет множеством
исходных хранилищ сообщений, что позволяет вам использовать разные хранилища для исходных сообщений в зависимости
от категории сообщения.

Более детальная информация представлена в разделе «Интернационализация».




Фильтры действий

Фильтры действий теперь сделаны с помощью поведений. Для определения нового фильтра, унаследуйтесь от [[yii\base\ActionFilter]].
Для использования фильтра, прикрепите его к контроллеру в качестве поведения. Например, для использования фильтра [[yii\filters\AccessControl]],
следует сделать следующее:

public function behaviors()
{
    return [
        'access' => [
            'class' => 'yii\filters\AccessControl',
            'rules' => [
                ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
            ],
        ],
    ];
}





Более детальная информация представлена в разделе «Фильтры».




Ресурсы

В Yii 2.0 представлена новая возможность связка ресурсов, которая заменяет концепт пакетов скриптов в Yii 1.1.

Связка ресурсов — это коллекция файлов ресурсов (например, JavaScript файлы, CSS файлы, файлы изображений, и т.п.) в
определенной директории. Каждая связка ресурсов представлена классом, унаследованным от [[yii\web\AssetBundle]].
Связка ресурсов становится доступной через веб после её регистрации методом [[yii\web\AssetBundle::register()]].
В отличие от Yii 1.1, страница, регистрирующая связку ресурсов, автоматически будет содержать ссылки на JavaScript и CSS
файлы, указанные в связке.

Более детальная информация представлена в разделе «Ресурсы».




Хелперы

В Yii 2.0 включено много широко используемых статичных классов.


	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]



Более детальная информация представлена в разделе «Хелперы».




Формы

Yii 2.0 вводит новое понятие поле для построения форм с помощью [[yii\widgets\ActiveForm]]. Поле — это
контейнер, содержащий подпись, поле ввода, сообщение об ошибке и/или вспомогательный текст.
Поле представлено объектом [[yii\widgets\ActiveField|ActiveField]]. Используя поля, вы можете строить
формы гораздо проще чем это было раньше:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <div class="form-group">
        <?= Html::submitButton('Login') ?>
    </div>
<?php yii\widgets\ActiveForm::end(); ?>





Более детальная информация представлена в разделе «Работа с формами».




Построитель запросов

В версии 1.1, построение запроса было разбросано среди нескольких классов, включая CDbCommand,
CDbCriteria, и CDbCommandBuilder. В Yii 2.0 запрос к БД представлен в рамках объекта [[yii\db\Query|Query]],
который может быть превращён в SQL выражение с помощью [[yii\db\QueryBuilder|QueryBuilder]]. Например,

$query = new \yii\db\Query();
$query->select('id, name')
      ->from('user')
      ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();





Лучшим способом использования данных методов является работа с Active Record.

Более детальная информация представлена в разделе «Построитель запросов».




Active Record

В Yii 2.0 внесено множество изменений в работу Active Record. Два основных из них включают в себя
построение запросов и работу со связями.

Класс CDbCriteria версии 1.1 был заменен [[yii\db\ActiveQuery]]. Этот класс наследуется от [[yii\db\Query]] и таким
образом получает все методы, необходимые для построения запроса. Чтобы начать строить запрос следует вызвать метод
[[yii\db\ActiveRecord::find()]]:

// Получаем всех *активных* клиентов и сортируем их по ID
$customers = Customer::find()
    ->where(['status' => $active])
    ->orderBy('id')
    ->all();





Для объявления связи следует просто объявить геттер, который возвращает объект [[yii\db\ActiveQuery|ActiveQuery]].
Имя свойства, определённое геттером, представляет собой название связи. Например, следующий код объявляет связь
orders (в версии 1.1, вам нужно было бы объявить связи в одном месте — методе relations()):

class Customer extends \yii\db\ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany('Order', ['customer_id' => 'id']);
    }
}





Теперь вы можете использовать выражение $customer->orders для получения всех заказов клиента из связанной таблицы. Вы также
можете использовать следующий код, чтобы применить нужные условия «на лету»:

$orders = $customer->getOrders()->andWhere('status=1')->all();





Yii 2.0 осуществляет жадную загрузку связи не так, как это было в 1.1. В частности, в версии 1.1 для выбора данных из
основной и связанной таблиц будет использован запрос JOIN. В Yii 2.0 будут выполнены два запроса без использования JOIN:
первый запрос возвращает данные для основной таблицы, а второй, осуществляющий фильтрацию по первичным ключами основной
таблицы — для связанной.

Вместо того, чтобы при выборке большого количества записей возвращать объекты [[yii\db\ActiveRecord|ActiveRecord]], вы
можете использовать в построении запроса метод [[yii\db\ActiveQuery::asArray()|asArray()]]. Это заставит вернуть
результат запроса в виде массива, что при большом количестве записей может существенно снизить затрачиваемое процессорное
время и объём потребляемой памяти. Например:

$customers = Customer::find()->asArray()->all();





Ещё одно изменение связано с тем, что вы больше не можете определять значения по умолчанию через public свойства.
Вы должны установить их в методе init вашего класса, если это требуется.

public function init()
{
    parent::init();
    $this->status = self::STATUS_NEW;
}





Также в версии 1.1 были некоторые проблемы с переопределением конструктора ActiveRecord. Данные проблемы отсутствуют
в версии 2.0. Обратите внимание, что при добавлении параметров в конструктор, вам, возможно, понадобится переопределить метод
[[yii\db\ActiveRecord::instantiate()]].

Существует также множество других улучшений в ActiveRecord. Подробнее о них можно узнать в разделе
«Active Record».




Поведения Active Record

В версии 2.0 отсутствует базовый класс для поведений CActiveRecordBehavior. Если вам необходимо создать поведение для
Active Record, стоит наследовать его класс напрямую от yii\base\Behavior. Если поведение должно реагировать на какие-либо
события, необходимо перекрыть метод events() следующим образом:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
    // ...

    public function events()
    {
        return [
            ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
        ];
    }

    public function beforeValidate($event)
    {
        // ...
    }
}








User и IdentityInterface

Класс CWebUser из версии 1.1 теперь заменён классом [[yii\web\User]]. Также больше не существует класса CUserIdentity.
Вы должны реализовать интерфейс [[yii\web\IdentityInterface]], что гораздо проще. Пример реализации представлен в шаблоне
приложения advanced.

Более подробная информация представлена в разделах «Аутентификация»,
«Авторизация» и «Шаблон приложения advanced».




Разбор и генерация URL

Работа с URL в Yii 2.0 аналогична той, что была в версии 1.1. Основное изменение заключается в том, что теперь
поддерживаются дополнительные параметры. Например, если у вас имеется правило, объявленное следующим образом, то
оно совпадет с post/popular и post/1/popular. В версии 1.1, вам пришлось бы использовать два правила, для достижения
того же результата.

[
    'pattern' => 'post/<page:\d+>/<tag>',
    'route' => 'post/index',
    'defaults' => ['page' => 1],
]





Более детальная информация представлена в разделе «Разбор и генерация URL».




Использование Yii 1.1 вместе с 2.x

Информация об использовании кода для Yii 1.1 вместе с Yii 2.0 представлена в разделе
«Одновременное использование Yii 1.1 и 2.0».







          

      

      

    

  

  
    
    
    Active Record
    
    

    
 
  
  

    
      
          
            
  
Active Record

Active Record [http://ru.wikipedia.org/wiki/ActiveRecord] обеспечивает объектно-ориентированный интерфейс для доступа
и манипулирования данными, хранящимися в базах данных. Класс Active Record соответствует таблице в базе данных, объект
Active Record соответствует строке этой таблицы, а атрибут объекта Active Record представляет собой значение
отдельного столбца строки. Вместо непосредственного написания SQL-выражений вы сможете получать доступ к атрибутам
Active Record и вызывать методы Active Record для доступа и манипулирования данными, хранящимися в таблицах базы данных.

Для примера предположим, что Customer - это класс Active Record, который сопоставлен с таблицей customer, а name -
столбец в таблице customer. Тогда вы можете написать следующий код для вставки новой строки в таблицу customer:

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();





Вышеприведённый код аналогичен использованию следующего SQL-выражения в MySQL, которое менее интуитивно, потенциально
может вызвать ошибки и даже проблемы совместимости, если вы используете различные виды баз данных:

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
    ':name' => 'Qiang',
])->execute();





Yii поддерживает работу с Active Record для следующих реляционных баз данных:


	MySQL 4.1 и выше: посредством [[yii\db\ActiveRecord]]

	PostgreSQL 7.3 и выше: посредством [[yii\db\ActiveRecord]]

	SQLite 2 и 3: посредством [[yii\db\ActiveRecord]]

	Microsoft SQL Server 2008 и выше: посредством [[yii\db\ActiveRecord]]

	Oracle: посредством [[yii\db\ActiveRecord]]

	CUBRID 9.3 и выше: посредством [[yii\db\ActiveRecord]] (Имейте ввиду, что вследствие
бага [http://jira.cubrid.org/browse/APIS-658] в PDO-расширении для CUBRID, заключение значений в кавычки не работает,
поэтому необходимо использовать CUBRID версии 9.3 как на клиентской стороне, так и на сервере)

	Sphinx: посредством [[yii\sphinx\ActiveRecord]], потребуется расширение yii2-sphinx

	ElasticSearch: посредством [[yii\elasticsearch\ActiveRecord]], потребуется расширение yii2-elasticsearch



Кроме того Yii поддерживает использование Active Record со следующими NoSQL базами данных:


	Redis 2.6.12 и выше: посредством [[yii\redis\ActiveRecord]], потребуется расширение yii2-redis

	MongoDB 1.3.0 и выше: посредством [[yii\mongodb\ActiveRecord]], потребуется расширение yii2-mongodb



В этом руководстве мы в основном будем описывать использование Active Record для реляционных баз данных. Однако большая
часть этого материала также применима при использовании Active Record с NoSQL базами данных.


Объявление классов Active Record 

Для начала объявите свой собственный класс, унаследовав класс [[yii\db\ActiveRecord]].


Настройка имени таблицы

По умолчанию каждый класс Active Record ассоциирован с таблицей в базе данных. Метод
[[yii\db\ActiveRecord::tableName()|tableName()]] получает имя таблицы из имени класса с помощью [[yii\helpers\Inflector::camel2id()]].
Если таблица не названа соответственно, вы можете переопределить данный метод.

Также может быть применён [[yii\db\Connection::$tablePrefix|tablePrefix]] по умолчанию. Например, если
[[yii\db\Connection::$tablePrefix|tablePrefix]] задан как tbl_, Customer преобразуется в tbl_customer, а
OrderItem в tbl_order_item.

Если имя таблицы указано в формате {{%TableName}}, символ % заменяется префиксом. Например, , {{%post}} становится
{{tbl_post}}. Фигуриные скобки используются для экранирования в SQL-запросах.

В нижеследующем примере мы объявляем класс Active Record с названием Customer для таблицы customer.

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
    const STATUS_INACTIVE = 0;
    const STATUS_ACTIVE = 1;
    
    /**
     * @return string название таблицы, сопоставленной с этим ActiveRecord-классом.
     */
    public static function tableName()
    {
        return '{{customer}}';
    }
}








Классы Active record называются “моделями”

Объекты Active Record являются моделями. Именно поэтому мы обычно задаём классам Active Record
пространство имён app\models (или другое пространство имён, предназначенное для моделей).

Т.к. класс [[yii\db\ActiveRecord]] наследует класс [[yii\base\Model]], он обладает всеми возможностями
моделей, такими как атрибуты, правила валидации, способы сериализации данных и т.д.






Подключение к базам данных 

По умолчанию Active Record для доступа и манипулирования данными БД использует
компонент приложения db в качестве компонента
[[yii\db\Connection|DB connection]]. Как сказано в разделе Объекты доступа к данным (DAO), вы можете
настраивать компонент db на уровне конфигурации приложения как показано ниже:

return [
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=testdb',
            'username' => 'demo',
            'password' => 'demo',
        ],
    ],
];





Если вы хотите использовать для подключения к базе данных другой компонент подключения, отличный от db, вам нужно
переопределить метод [[yii\db\ActiveRecord::getDb()|getDb()]]:

class Customer extends ActiveRecord
{
    // ...

    public static function getDb()
    {
        // использовать компонент приложения "db2"
        return \Yii::$app->db2;  
    }
}








Получение данных 

После объявления класса Active Record вы можете использовать его для получения данных из соответствующей таблицы базы
данных. Этот процесс, как правило, состоит из следующих трёх шагов:


	Создать новый объект запроса вызовом метода [[yii\db\ActiveRecord::find()]];

	Настроить объект запроса вызовом методов построения запросов;

	Вызвать один из методов получения данных для извлечения данных в виде объектов
Active Record.



Как вы могли заметить, эти шаги очень похожи на работу с построителем запросов. Различие лишь в
том, что для создания объекта запроса вместо оператора new используется метод [[yii\db\ActiveRecord::find()]],
возвращающий новый объект запроса, являющийся представителем класса [[yii\db\ActiveQuery]].

Ниже приведено несколько примеров использования Active Query для получения данных:

// возвращает покупателя с идентификатором 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
    ->where(['id' => 123])
    ->one();

// возвращает всех активных покупателей, сортируя их по идентификаторам
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->orderBy('id')
    ->all();

// возвращает количество активных покупателей
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->count();

// возвращает всех покупателей массивом, индексированным их идентификаторами
// SELECT * FROM `customer`
$customers = Customer::find()
    ->indexBy('id')
    ->all();





В примерах выше $customer - это объект класса Customer, в то время как $customers - это массив таких объектов. Все
эти объекты заполнены данными таблицы customer.


Info: Т.к. класс [[yii\db\ActiveQuery]] наследует [[yii\db\Query]], вы можете использовать в нём все методы
построения запросов и все методы класса Query как описано в разделе Построитель запросов.


Т.к. извлечение данных по первичному ключу или значениям отдельных столбцов достаточно распространённая задача, Yii
предоставляет два коротких метода для её решения:


	[[yii\db\ActiveRecord::findOne()]]: возвращает один объект Active Record, заполненный первой строкой результата запроса.

	[[yii\db\ActiveRecord::findAll()]]: возвращает массив объектов Active Record, заполненных всеми полученными результатами запроса.



Оба метода могут принимать параметры в одном из следующих форматов:


	скалярное значение: значение интерпретируется как первичный ключ, по которому следует искать. Yii прочитает
информацию о структуре базы данных и автоматически определит, какой столбец таблицы содержит первичные ключи.

	массив скалярных значений: массив интерпретируется как набор первичных ключей, по которым следует искать.

	ассоциативный массив: ключи массива интерпретируются как названия столбцов, а значения - как содержимое столбцов,
которое следует искать. За подробностями вы можете обратиться к разделу Hash Format



Нижеследующий код демонстрирует, каким образом эти методы могут быть использованы:

// возвращает покупателя с идентификатором 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// возвращает покупателей с идентификаторами 100, 101, 123 и 124
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// возвращает активного покупателя с идентификатором 123
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
    'id' => 123,
    'status' => Customer::STATUS_ACTIVE,
]);

// возвращает всех неактивных покупателей
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
    'status' => Customer::STATUS_INACTIVE,
]);






Note: Ни метод [[yii\db\ActiveRecord::findOne()]], ни [[yii\db\ActiveQuery::one()]] не добавляет условие LIMIT 1 к
генерируемым SQL-запросам. Если ваш запрос может вернуть много строк данных, вы должны вызвать метод limit(1) явно
в целях улучшения производительности, например: Customer::find()->limit(1)->one().


Помимо использования методов построения запросов вы можете также писать запросы на “чистом” SQL для получения данных и
заполнения ими объектов Active Record. Вы можете делать это посредством метода [[yii\db\ActiveRecord::findBySql()]]:

// возвращает всех неактивных покупателей
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();





Не используйте дополнительные методы построения запросов после вызова метода
[[yii\db\ActiveRecord::findBySql()|findBySql()]], т.к. они будут проигнорированы.




Доступ к данным 

Как сказано выше, получаемые из базы данные заполняют объекты Active Record и каждая строка результата запроса
соответствует одному объекту Active Record. Вы можете получить доступ к значениям столбцов с помощью атрибутов этих
объектов. Например так:

// "id" и "email" - названия столбцов в таблице "customer"
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;






Note: Атрибуты объекта Active Record названы в соответствии с названиями столбцов связной таблицы с учётом
регистра. Yii автоматически объявляет для каждого столбца связной таблицы атрибут в Active Record. Вы НЕ должны
переопределять какие-либо из этих атрибутов.


Атрибуты Active Record названы в соответствии с именами столбцов таблицы. Если столбцы вашей таблицы именуются через
нижнее подчёркивание, то может оказаться, что вам придётся писать PHP-код вроде этого: $customer->first_name - в нём
будет использоваться нижнее подчёркивание для разделения слов в названиях атрибутов. Если вы обеспокоены единообразием
стиля кодирования, вам придётся переименовать столбцы вашей таблицы соответствующим образом (например, назвать столбцы
в стиле camelCase).


Преобразование данных 

Часто бывает так, что данные вводятся и/или отображаются в формате, который отличается от формата их хранения в базе
данных. Например, в базе данных вы храните дни рождения покупателей в формате UNIX timestamp (что, кстати говоря, не
является хорошим дизайном), в то время как во многих случаях вы хотите манипулировать днями рождения в виде строк
формата 'ДД.ММ.ГГГГ'. Для достижения этой цели, вы можете объявить методы преобразования данных в
ActiveRecord-классе Customer как показано ниже:

class Customer extends ActiveRecord
{
    // ...

    public function getBirthdayText()
    {
        return date('d.m.Y', $this->birthday);
    }
    
    public function setBirthdayText($value)
    {
        $this->birthday = strtotime($value);
    }
}





Теперь в своём PHP коде вместо доступа к $customer->birthday, вы сможете получить доступ к $customer->birthdayText,
что позволить вам вводить и отображать дни рождения покупателей в формате 'ДД.ММ.ГГГГ'.


Tip: Вышеприведённый пример демонстрирует общий способ преобразования данных в различные форматы. Если вы
работаете с датами и временем, вы можете использовать DateValidator и
[[yii\jui\DatePicker|DatePicker]], которые проще в использовании и являются более мощными инструментами.





Получение данных в виде массива 

Несмотря на то, что получение данных в виде Active Record объектов является удобным и гибким, этот способ не всегда
подходит при получении большого количества данных из-за больших накладных расходов памяти. В этом случае вы можете
получить данные в виде PHP-массива, используя перед выполнением запроса метод
[[yii\db\ActiveQuery::asArray()|asArray()]]:

// возвращает всех покупателей
// каждый покупатель будет представлен в виде ассоциативного массива
$customers = Customer::find()
    ->asArray()
    ->all();






Note: В то время как этот способ бережёт память и улучшает производительность, он ближе к низкому слою
абстракции базы данных и вы потеряете многие возможности Active Record. Важное отличие заключается в типах данных
значений столбцов. Когда вы получаете данные в виде объектов Active Record, значения столбцов автоматически приводятся
к типам, соответствующим типам столбцов; с другой стороны, когда вы получаете данные в массивах, значения столбцов
будут строковыми (до тех пор, пока они являются результатом работы PDO-слоя без какой-либо обработки), несмотря на
настоящие типы данных соответствующих столбцов.





Пакетное получение данных 

В главе Построитель запросов мы объясняли, что вы можете использовать пакетную выборку для
снижения расходов памяти при получении большого количества данных из базы. Вы можете использовать такой же подход при
работе с Active Record. Например:

// получить 10 покупателей одновременно
foreach (Customer::find()->batch(10) as $customers) {
    // $customers - это массив, в котором находится 10 или меньше объектов класса Customer
}

// получить одновременно десять покупателей и перебрать их одного за другим
foreach (Customer::find()->each(10) as $customer) {
    // $customer - это объект класса Customer
}

// пакетная выборка с жадной загрузкой
foreach (Customer::find()->with('orders')->each() as $customer) {
    // $customer - это объекта класса Customer
}










Сохранение данных 

Используя Active Record, вы легко можете сохранить данные в базу данных, осуществив следующие шаги:


	Подготовьте объект Active Record;

	Присвойте новые значения атрибутам Active Record;

	Вызовите метод [[yii\db\ActiveRecord::save()]] для сохранения данных в базу данных.



Например:

// вставить новую строку данных
$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// обновить имеющуюся строку данных
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();





Метод [[yii\db\ActiveRecord::save()|save()]] может вставить или обновить строку данных в зависимости от состояния
Active Record объекта. Если объект создан с помощью оператора new, вызов метода [[yii\db\ActiveRecord::save()|save()]]
приведёт к вставке новой строки данных; если же объект был получен с помощью запроса на получение данных, вызов
[[yii\db\ActiveRecord::save()|save()]] обновит строку таблицы, соответствующую объекту Active Record.

Вы можете различать два состояния Active Record объекта с помощью проверки значения его свойства
[[yii\db\ActiveRecord::isNewRecord|isNewRecord]]. Это свойство также используется внутри метода
[[yii\db\ActiveRecord::save()|save()]] как показано ниже:

public function save($runValidation = true, $attributeNames = null)
{
    if ($this->getIsNewRecord()) {
        return $this->insert($runValidation, $attributeNames);
    } else {
        return $this->update($runValidation, $attributeNames) !== false;
    }
}






Tip: Вы можете вызвать [[yii\db\ActiveRecord::insert()|insert()]] или [[yii\db\ActiveRecord::update()|update()]]
непосредственно, чтобы вставить или обновить строку данных в таблице.



Валидация данных 

Т.к. класс [[yii\db\ActiveRecord]] наследует класс [[yii\base\Model]], он обладает такими же возможностями
валидации данных. Вы можете объявить правила валидации переопределив метод
[[yii\db\ActiveRecord::rules()|rules()]] и осуществлять валидацию данных посредством вызовов метода
[[yii\db\ActiveRecord::validate()|validate()]].

Когда вы вызываете метод [[yii\db\ActiveRecord::save()|save()]], по умолчанию он автоматически вызывает метод
[[yii\db\ActiveRecord::validate()|validate()]]. Только после успешного прохождения валидации происходит сохранение
данных; в ином случае метод [[yii\db\ActiveRecord::save()|save()]] просто возвращает false, и вы можете проверить
свойство [[yii\db\ActiveRecord::errors|errors]] для получения сообщений об ошибках валидации.


Tip: Если вы уверены, что ваши данные не требуют валидации (например, данные пришли из доверенного источника),
вы можете вызвать save(false), чтобы пропустить валидацию.





Массовое присваивание 

Как и обычные модели, объекты Active Record тоже обладают
возможностью массового присваивания. Как будет показано ниже, используя эту
возможность, вы можете одним PHP выражением присвоить значения множества атрибутов Active Record объекту. Запомните
однако, что только безопасные атрибуты могут быть массово присвоены.

$values = [
    'name' => 'James',
    'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();








Обновление счётчиков 

Распространённой задачей является инкремент или декремент столбца в таблице базы данных. Назовём такие столбцы
столбцами-счётчиками. Вы можете использовать метод [[yii\db\ActiveRecord::updateCounters()|updateCounters()]] для
обновления одного или нескольких столбцов-счётчиков. Например:

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);






Note: Если вы используете метод [[yii\db\ActiveRecord::save()]] для обновления столбца-счётчика, вы можете
прийти к некорректному результату, т.к. вполне вероятно, что этот же счётчик был сохранён сразу несколькими запросами,
которые читают и записывают этот же столбец-счётчик.





Dirty-атрибуты 

Когда вы вызываете [[yii\db\ActiveRecord::save()|save()]] для сохранения Active Record объекта, сохраняются только
dirty-атрибуты. Атрибут считается dirty-атрибутом, если его значение было изменено после чтения из базы данных или
же он был сохранён в базу данных совсем недавно. Заметьте, что валидация данных осуществляется независимо от того,
имеются ли dirty-атрибуты в объекте Active Record или нет.

Active Record автоматически поддерживает список dirty-атрибутов. Это достигается за счёт хранения старых значений
атрибутов и сравнения их с новыми. Вы можете вызвать метод [[yii\db\ActiveRecord::getDirtyAttributes()]] для получения
текущего списка dirty-атрибутов. Вы также можете вызвать [[yii\db\ActiveRecord::markAttributeDirty()]], чтобы явно
пометить атрибут в качестве dirty-атрибута.

Если вам нужны значения атрибутов, какими они были до их изменения, вы можете вызвать
[[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]] или
[[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]].


Note: Сравнение старых и новых значений будет осуществлено с помощью оператора ===, так что значение будет
считаться dirty-значением даже в том случае, если оно осталось таким же, но изменило свой тип. Это часто происходит,
когда модель получает пользовательский ввод из HTML-форм, где каждое значение представлено строкой. Чтобы убедиться в
корректности типа данных, например для целых значений, вы можете применить
фильтрацию данных: ['attributeName', 'filter', 'filter' => 'intval'].





Значения атрибутов по умолчанию 

Некоторые столбцы ваших таблиц могут иметь значения по умолчанию, объявленные в базе данных. Иногда вы можете захотеть
предварительно заполнить этими значениями вашу веб-форму, которая соответствует Active Record объекту. Чтобы избежать
повторного указания этих значений, вы можете вызвать метод
[[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]] для заполнения соответствующих Active Record атрибутов
значениями по умолчанию, объявленными в базе данных:

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz получит значение по умолчанию, которое было указано при объявлении столбца "xyz"








Приведение типов атрибутов 

При заполнении результатами запроса [[yii\db\ActiveRecord]] производит автоматическое приведение типов для значений
атрибутов на основе информации из схемы базы данны. Это позволяет данным, полученным из
колонки таблицы объявленной как целое, заноситься в экземпляр ActiveRecord как значение целого типа PHP, булево как
булево и т.д.
Однако, механизм приведения типов имеет несколько ограничений:


	Числа с плавающей точкой не будут обработаны, а будут представленны как строки, в противном случае они могут потерять точность.

	Конвертация целых чисел зависит от разрядности используемой операциооной системы. В частности: значения колонок, объявленных
как ‘unsigned integer’ или ‘big integer’ будут приведены к целому типу PHP только на 64-х разрядных системах, в то время
как на 32-х разрядных - они будут представленны как строки.



Имейте в виду, что преобразование типов производиться только в момент заполнения экземпляра ActiveRecord данными из результата
запроса. При заполнении данных из HTTP запроса или непосредственно через механизм доступа к полям - автоматическая конвертация
не производтся.
Схема таблицы базы данных также используется при построении SQL запроса для сохранения данных ActiveRecord, обеспечивая
соответсвие типов связываемых параметров в запросе. Однако, над атрибутами объекта ActiveRecord не будет производиться
приведение типов в процессе сохранения.


Совет: вы можете использовать поведение [[yii\behaviors\AttributeTypecastBehavior]] для того, чтобы производить
приведение типов для ActiveRecord во время валидации или сохранения.





Обновление нескольких строк данных 

Методы, представленные выше, работают с отдельными Active Record объектами, инициируя вставку или обновление данных для
отдельной строки таблицы. Вместо них для обновления нескольких строк одновременно можно использовать метод
[[yii\db\ActiveRecord::updateAll()|updateAll()]], который является статическим.

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com%`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);





Подобным образом можно использовать метод [[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] для
обновления значений столбцов-счётчиков в нескольких строках одновременно.

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);










Удаление данных 

Для удаления одной отдельной строки данных сначала получите Active Record объект, соответствующий этой строке, а затем
вызовите метод [[yii\db\ActiveRecord::delete()]].

$customer = Customer::findOne(123);
$customer->delete();





Вы можете вызвать [[yii\db\ActiveRecord::deleteAll()]] для удаления всех или нескольких строк данных одновременно.
Например:

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);






Note: будьте очень осторожны, используя метод [[yii\db\ActiveRecord::deleteAll()|deleteAll()]], потому что он
может полностью удалить все данные из вашей таблицы, если вы сделаете ошибку при указании условий удаления.





Жизненные циклы Active Record 

Важно понимать как устроены жизненные циклы Active Record при использовании Active Record для различных целей.
В течение каждого жизненного цикла вызывается определённая последовательность методов, которые вы можете переопределять,
чтобы получить возможность тонкой настройки жизненного цикла. Для встраивания своего кода вы также можете отвечать на
конкретные события Active Record, которые срабатывают в течение жизненного цикла. Эти события особенно полезны, когда
вы разрабатываете поведения, которые требуют тонкой настройки жизненных циклов Active Record.

Ниже мы подробно опишем различные жизненные циклы Active Record и методы/события, которые участвуют в жизненных циклах.


Жизненный цикл создания нового объекта 

Когда создаётся новый объект Active Record с помощью оператора new, следующий жизненный цикл имеет место:


	Вызывается конструктор класса;

	Вызывается [[yii\db\ActiveRecord::init()|init()]]:
инициируется событие [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]].






Жизненный цикл получения данных 

Когда происходит получение данных посредством одного из методов получения данных, каждый вновь
создаваемый объект Active Record при заполнении данными проходит следующий жизненный цикл:


	Вызывается конструктор класса.

	Вызывается [[yii\db\ActiveRecord::init()|init()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]].

	Вызывается [[yii\db\ActiveRecord::afterFind()|afterFind()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]].






Жизненный цикл сохранения данных 

Когда вызывается метод [[yii\db\ActiveRecord::save()|save()]] для вставки или обновления объекта Active Record,
следующий жизненный цикл имеет место:


	Вызывается [[yii\db\ActiveRecord::beforeValidate()|beforeValidate()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]]. Если метод возвращает false или свойство
события [[yii\base\ModelEvent::isValid]] равно false, оставшиеся шаги не выполняются.

	Осуществляется валидация данных. Если валидация закончилась неудачей, после 3-го шага остальные шаги не выполняются.

	Вызывается [[yii\db\ActiveRecord::afterValidate()|afterValidate()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]].

	Вызывается [[yii\db\ActiveRecord::beforeSave()|beforeSave()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]] или событие
[[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]]. Если метод возвращает false или свойство события
[[yii\base\ModelEvent::isValid]] равно false, оставшиеся шаги не выполняются.

	Осуществляется фактическая вставка или обновление данных в базу данных;

	Вызывается [[yii\db\ActiveRecord::afterSave()|afterSave()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] или событие
[[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]].






Жизненный цикл удаления данных 

Когда вызывается метод [[yii\db\ActiveRecord::delete()|delete()]] для удаления объекта Active Record, следующий
жизненный цикл имеет место:


	Вызывается [[yii\db\ActiveRecord::beforeDelete()|beforeDelete()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]]. Если метод возвращает false или свойство события
[[yii\base\ModelEvent::isValid]] равно false, остальные шаги не выполняются.

	Осуществляется фактическое удаление данных из базы данных.

	Вызывается [[yii\db\ActiveRecord::afterDelete()|afterDelete()]]: инициируется событие
[[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]].




Note: Вызов следующих методов НЕ инициирует ни один из вышеприведённых жизненных циклов:


	[[yii\db\ActiveRecord::updateAll()]]

	[[yii\db\ActiveRecord::deleteAll()]]

	[[yii\db\ActiveRecord::updateCounters()]]

	[[yii\db\ActiveRecord::updateAllCounters()]]











Работа с транзакциями 

Есть два способа использования транзакций при работе с Active Record.

Первый способ заключается в том, чтобы явно заключить все вызовы методов Active Record в блок транзакции как показано
ниже:

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
    $customer->id = 200;
    $customer->save();
    // ...другие операции с базой данных...
});

// или по-другому

$transaction = Customer::getDb()->beginTransaction();
try {
    $customer->id = 200;
    $customer->save();
    // ...другие операции с базой данных...
    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}






Note: в коде выше ради совместимости с PHP 5.x и PHP 7.x использованы два блока catch.
\Exception реализует интерфейс \Throwable interface [http://php.net/manual/ru/class.throwable.php]
начиная с PHP 7.0. Если вы используете только PHP 7 и новее, можете пропустить блок с \Exception.


Второй способ заключается в том, чтобы перечислить операции с базой данных, которые требуют тразнакционного выполнения,
в методе [[yii\db\ActiveRecord::transactions()]]. Например:

class Customer extends ActiveRecord
{
    public function transactions()
    {
        return [
            'admin' => self::OP_INSERT,
            'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
            // вышеприведённая строка эквивалентна следующей:
            // 'api' => self::OP_ALL,
        ];
    }
}





Метод [[yii\db\ActiveRecord::transactions()]] должен возвращать массив, ключи которого являются именами
сценариев, а значения соответствуют операциям, которые должны быть выполнены с помощью
транзакций. Вы должны использовать следующие константы для обозначения различных операций базы данных:


	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: операция вставки, осуществляемая с помощью метода
[[yii\db\ActiveRecord::insert()|insert()]];

	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: операция обновления, осуществляемая с помощью метода
[[yii\db\ActiveRecord::update()|update()]];

	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: операция удаления, осуществляемая с помощью метода
[[yii\db\ActiveRecord::delete()|delete()]].



Используйте операторы | для объединения вышеприведённых констант при обозначении множества операций. Вы можете также
использовать вспомогательную константу [[yii\db\ActiveRecord::OP_ALL|OP_ALL]], чтобы обозначить одной константой все три
вышеприведённые операции.




Оптимистическая блокировка 

Оптимистическая блокировка - это способ предотвращения конфликтов, которые могут возникать, когда одна и та же строка
данных обновляется несколькими пользователями. Например, пользователь A и пользователь B одновременно редактируют одну и
ту же wiki-статью. После того, как пользователь A сохранит свои изменения, пользователь B нажимает на кнопку “Сохранить”
в попытке также сохранить свои изменения. Т.к. пользователь B работал с фактически-устаревшей версией статьи, было бы
неплохо иметь способ предотвратить сохранение его варианта статьи и показать ему некоторое сообщение с подсказкой о том,
что произошло.

Оптимистическая блокировка решает вышеприведённую проблему за счёт использования отдельного столбца для сохранения
номера версии каждой строки данных. Когда строка данных сохраняется с использованием устаревшего номера версии,
выбрасывается исключение [[yii\db\StaleObjectException]], которое предохраняет строку от сохранения. Оптимистическая
блокировка поддерживается только тогда, когда вы обновляете или удаляете существующую строку данных, используя методы
[[yii\db\ActiveRecord::update()]] или [[yii\db\ActiveRecord::delete()]] соответственно.

Для использования оптимистической блокировки:


	Создайте столбец в таблице базы данных, ассоциированной с классом Active Record, для сохранения номера версии каждой
строки данных. Столбец должен быть типа big integer (в Mysql это будет BIGINT DEFAULT 0).

	Переопределите метод [[yii\db\ActiveRecord::optimisticLock()]] таким образом, чтобы он возвращал название этого
столбца.

	В веб-форме, которая принимает пользовательский ввод, добавьте скрытое поле для сохранения текущей версии обновляемой
строки. Убедитесь, что для вашего атрибута с версией объявлены правила валидации, и валидация проходит успешно.

	В действии контроллера, которое занимается обновлением строки данных с использованием Active Record, оберните в блок
try...catch код и перехватывайте исключение [[yii\db\StaleObjectException]]. Реализуйте необходимую бизнес-логику
(например, возможность слияния изменений, подсказку о том, что данные устарели) для разрешения возникшего конфликта.



Например, предположим, что столбец с версией называется version. Вы можете реализовать оптимистическую блокировку с
помощью подобного кода:

// ------ код представления -------

use yii\helpers\Html;

// ...другие поля ввода
echo Html::activeHiddenInput($model, 'version');


// ------ код контроллера -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
    $model = $this->findModel($id);

    try {
        if ($model->load(Yii::$app->request->post()) && $model->save()) {
            return $this->redirect(['view', 'id' => $model->id]);
        } else {
            return $this->render('update', [
                'model' => $model,
            ]);
        }
    } catch (StaleObjectException $e) {
        // логика разрешения конфликта версий
    }
}








Работа со связными данными 

Помимо работы с отдельными таблицами баз данных, Active Record также имеет возможность объединять связные данные, что
делает их легко-доступными для получения через основные объекты данных. Например, данные покупателя связаны с данными
заказов, потому что один покупатель может осуществить один или несколько заказов. С помощью объявления этой связи вы
можете получить возможность доступа к информации о заказе покупателя с помощью выражения $customer->orders, которое
возвращает информацию о заказе покупателя в виде массива объектов класса Order, которые являются Active Record
объектами.


Объявление связей 

Для работы со связными данными посредством Active Record вы прежде всего должны объявить связи в классе Active Record.
Эта задача решается простым объявлением методов получения связных данных для каждой интересующей вас связи как
показано ниже:

class Customer extends ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}

class Order extends ActiveRecord
{
    public function getCustomer()
    {
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}





В вышеприведённом коде мы объявили связь orders для класса Customer и связь customer для класса Order.

Каждый метод получения связных данных должен быть назван в формате getXyz. Мы называем xyz (первая буква в нижнем
регистре) именем связи. Помните, что имена связей чувствительны к регистру.

При объявлении связи, вы должны указать следующую информацию:


	кратность связи: указывается с помощью вызова метода [[yii\db\ActiveRecord::hasMany()|hasMany()]] или метода
[[yii\db\ActiveRecord::hasOne()|hasOne()]]. В вышеприведённом примере вы можете легко увидеть в объявлениях связей,
что покупатель может иметь много заказов в то время, как заказ может быть сделан лишь одним покупателем.



	название связного Active Record класса: указывается в качестве первого параметра для метода
[[yii\db\ActiveRecord::hasMany()|hasMany()]] или для метода [[yii\db\ActiveRecord::hasOne()|hasOne()]]. Рекомендуется
использовать код Xyz::className(), чтобы получить строку с именем класса, при этом вы сможете воспользоваться
возможностями авто-дополнения кода, встроенного в IDE, а также получите обработку ошибок на этапе компиляции.



	связь между двумя типами данных: указываются столбцы с помощью которых два типа данных связаны. Значения массива - это
столбцы  основного объекта данных (представлен классом Active Record, в котором объявляется связь), в то время как
ключи массива - столбцы связанных данных.

Есть простой способ запомнить это правило: как вы можете увидеть в примере выше, столбец связной Active Record
указывается сразу же после указания самого класса Active Record. Вы видите, что customer_id - это свойство класса
Order, а id - свойство класса Customer.








Доступ к связным данным 

После объявления связей вы можете получать доступ к связным данным с помощью имён связей. Это происходит таким же
образом, каким осуществляется доступ к свойству объекта объявленному с помощью метода получения
связных данных. По этой причине, мы называем его свойством связи. Например:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders - это массив объектов Order
$orders = $customer->orders;






Info: когда вы объявляете связь с названием xyz посредством геттера getXyz(), у вас появляется возможность
доступа к свойству xyz подобно свойству объекта. Помните, что название связи чувствительно
к регистру.


Если связь объявлена с помощью метода [[yii\db\ActiveRecord::hasMany()|hasMany()]], доступ к свойству связи вернёт
массив связных объектов Active Record; если связь объявлена с помощью метода [[yii\db\ActiveRecord::hasOne()|hasOne()]],
доступ к свойству связи вернёт связный Active Record объект или null, если связные данные не найдены.

Когда вы запрашиваете свойство связи в первый раз, выполняется SQL-выражение как показано в примере выше. Если то же
самое свойство запрашивается вновь, будет возвращён результат предыдущего SQL-запроса без повторного выполнения
SQL-выражения. Для принудительного повторного выполнения SQL-запроса, вы можете удалить свойство связи с помощью
операции: unset($customer->orders).


Note: Несмотря на то, что эта концепция выглядит похожей на концепцию свойств объектов,
между ними есть важное различие. Для обычных свойств объектов значения свойств имеют тот же тип, который возвращает
геттер. Однако метод получения связных данных возвращает объект [[yii\db\ActiveQuery]], в то время как доступ к
свойству связи возвращает объект [[yii\db\ActiveRecord]] или массив таких объектов.


$customer->orders; // массив объектов `Order`
$customer->getOrders(); // объект ActiveQuery





Это полезно при тонкой настройке запросов к связным данным, что будет описано в следующем разделе.




Динамические запросы связных данных 

Т.к. метод получения связных данных возвращает объект запроса [[yii\db\ActiveQuery]], вы можете в дальнейшем перед его
отправкой в базу данных настроить этот запрос, используя методы построения запросов. Например:

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getOrders()
    ->where(['>', 'subtotal', 200])
    ->orderBy('id')
    ->all();





В отличие от доступа к данным с помощью свойства связи, каждый раз при выполнении такого динамического запроса
посредством метода получения связных данных будет выполняться SQL-запрос, даже если тот же самый динамический запрос был
отправлен ранее.

Иногда вы можете даже захотеть настроить объявление связи таким образом, чтобы вы могли более просто осуществлять
динамические запросы связных данных. Например, вы можете объявить связь bigOrders как показано ниже:

class Customer extends ActiveRecord
{
    public function getBigOrders($threshold = 100)
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id'])
            ->where('subtotal > :threshold', [':threshold' => $threshold])
            ->orderBy('id');
    }
}





После этого вы сможете выполнять следующие запросы связных данных:

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100 ORDER BY `id`
$orders = $customer->bigOrders;








Связывание посредством промежуточной таблицы 

При проектировании баз данных, когда между двумя таблицами имеется кратность связи many-to-many, обычно вводится
промежуточная таблица [http://en.wikipedia.org/wiki/Junction_table]. Например, таблицы order и item могут быть
связаны посредством промежуточной таблицы с названием order_item. Один заказ будет соотносится с несколькими товарами,
в то время как один товар будет также соотноситься с несколькими заказами.

При объявлении подобных связей вы можете пользоваться методом [[yii\db\ActiveQuery::via()|via()]] или методом
[[yii\db\ActiveQuery::viaTable()|viaTable()]] для указания промежуточной таблицы. Разница между методами
[[yii\db\ActiveQuery::via()|via()]] и [[yii\db\ActiveQuery::viaTable()|viaTable()]] заключается в том, что первый
метод указывает промежуточную таблицу с помощью названия связи, в то время как второй метод непосредственно указывает
промежуточную таблицу. Например:

class Order extends ActiveRecord
{
    public function getItems()
    {
        return $this->hasMany(Item::className(), ['id' => 'item_id'])
            ->viaTable('order_item', ['order_id' => 'id']);
    }
}





или по-другому:

class Order extends ActiveRecord
{
    public function getOrderItems()
    {
        return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);
    }

    public function getItems()
    {
        return $this->hasMany(Item::className(), ['id' => 'item_id'])
            ->via('orderItems');
    }
}





Использовать связи, объявленные с помощью промежуточных таблиц, можно точно также, как и обычные связи. Например:

// SELECT * FROM `order` WHERE `id` = 100
$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100
// SELECT * FROM `item` WHERE `item_id` IN (...)
// возвращает массив объектов Item
$items = $order->items;








Отложенная и жадная загрузка 

В разделе Доступ к связным данным, мы показывали, что вы можете получать доступ к свойству
связи объекта Active Record точно также, как получаете доступ к свойству обычного объекта. SQL-запрос будет выполнен
только во время первого доступа к свойству связи. Мы называем подобный способ получения связных данных отложенной
загрузкой. Например:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$orders = $customer->orders;

// SQL-запрос не выполняется
$orders2 = $customer->orders;





Отложенная загрузка очень удобна в использовании. Однако этот метод может вызвать проблемы производительности, когда вам
понадобится получить доступ к тем же самым свойствам связей для нескольких объектов Active Record. Рассмотрите
следующий пример кода. Сколько SQL-запросов будет выполнено?

// SELECT * FROM `customer` LIMIT 100
$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {
    // SELECT * FROM `order` WHERE `customer_id` = ...
    $orders = $customer->orders;
}





Как вы могли заметить по вышеприведённым комментариям кода, будет выполнен 101 SQL-запрос! Это произойдёт из-за того,
что каждый раз внутри цикла будет выполняться SQL-запрос при получении доступа к свойству связи orders каждого
отдельного объекта Customer.

Для решения этой проблемы производительности вы можете, как показано ниже, использовать подход, который называется
жадная загрузка:

// SELECT * FROM `customer` LIMIT 100;
// SELECT * FROM `orders` WHERE `customer_id` IN (...)
$customers = Customer::find()
    ->with('orders')
    ->limit(100)
    ->all();

foreach ($customers as $customer) {
    // SQL-запрос не выполняется
    $orders = $customer->orders;
}





Посредством вызова метода [[yii\db\ActiveQuery::with()]], вы указываете объекту Active Record вернуть заказы первых 100
покупателей с помощью одного SQL-запроса. В результате снижаете количество выполняемых SQL-запросов от 101 до 2!

Вы можете жадно загружать одну или несколько связей. Вы можете даже жадно загружать вложенные связи. Вложенная связь -
это связь, которая объявлена внутри связного Active Record класса. Например, Customer связан с Order посредством
связи orders, а Order связан с Item посредством связи items. При формировании запроса для Customer, вы можете
жадно загрузить items, используя нотацию вложенной связи orders.items.

Ниже представлен код, который показывает различные способы использования метода [[yii\db\ActiveQuery::with()|with()]].
Мы полагаем, что класс Customer имеет две связи: orders и country - в то время как класс Order имеет лишь одну
связь items.

// жадная загрузка "orders" и "country" одновременно
$customers = Customer::find()->with('orders', 'country')->all();
// аналог с использованием синтаксиса массива
$customers = Customer::find()->with(['orders', 'country'])->all();
// SQL-запрос не выполняется
$orders= $customers[0]->orders;
// SQL-запрос не выполняется
$country = $customers[0]->country;

// жадная загрузка связи "orders" и вложенной связи "orders.items"
$customers = Customer::find()->with('orders.items')->all();
// доступ к деталям первого заказа первого покупателя 
// SQL-запрос не выполняется
$items = $customers[0]->orders[0]->items;





Вы можете жадно загрузить более глубокие вложенные связи, такие как a.b.c.d. Все родительские связи будут жадно
загружены. Таким образом, когда вы вызываете метод [[yii\db\ActiveQuery::with()|with()]] с параметром a.b.c.d, вы
жадно загрузите связи a, a.b, a.b.c и a.b.c.d.


Info: В целом, когда жадно загружается N связей, среди которых M связей объявлено с помощью
промежуточной таблицы, суммарное количество выполняемых SQL-запросов будет равно N+M+1. Заметьте,
что вложенная связь a.b.c.d насчитывает 4 связи.


Когда связь жадно загружается, вы можете настроить соответствующий запрос получения связных данных с использованием
анонимной функции. Например:

// найти покупателей и получить их вместе с их странами и активными заказами
// SELECT * FROM `customer`
// SELECT * FROM `country` WHERE `id` IN (...)
// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1
$customers = Customer::find()->with([
    'country',
    'orders' => function ($query) {
        $query->andWhere(['status' => Order::STATUS_ACTIVE]);
    },
])->all();





Когда настраивается запрос на получение связных данных для какой-либо связи, вы можете указать название связи в виде
ключа массива и использовать анонимную функцию в качестве соответствующего значения этого массива. Анонимная функция
получит параметр $query, который представляет собой объект [[yii\db\ActiveQuery]], используемый для выполнения запроса
на получение связных данных для данной связи. В вышеприведённом примере кода мы изменили запрос на получение связных
данных, наложив на него дополнительное условие выборки статуса заказов.


Note: Если вы вызываете метод [[yii\db\Query::select()|select()]] в процессе жадной загрузки связей, вы должны
убедиться, что будут выбраны столбцы, участвующие в объявлении связей. Иначе связные модели будут загружены
неправильно. Например:

$orders = Order::find()->select(['id', 'amount'])->with('customer')->all();
// $orders[0]->customer всегда равно null. Для исправления проблемы вы должны сделать следующее:
$orders = Order::find()->select(['id', 'amount', 'customer_id'])->with('customer')->all();











Использование JOIN со связями 


Note: Материал этого раздела применим только к реляционным базам данных, таким как MySQL, PostgreSQL, и т.д.


Запросы на получение связных данных, которые мы рассмотрели выше, ссылаются только на столбцы основной таблицы при
извлечении основной информации. На самом же деле нам часто нужно ссылаться в запросах на столбцы связных таблиц.
Например, мы можем захотеть получить покупателей, для которых имеется хотя бы один активный заказ. Для решения этой
проблемы мы можем построить запрос с использованием JOIN как показано ниже:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id`
// WHERE `order`.`status` = 1
// 
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()
    ->select('customer.*')
    ->leftJoin('order', '`order`.`customer_id` = `customer`.`id`')
    ->where(['order.status' => Order::STATUS_ACTIVE])
    ->with('orders')
    ->all();






Note: Важно однозначно указывать в SQL-выражениях имена столбцов при построении запросов на получение связных
данных с участием оператора JOIN. Наиболее распространённая практика - предварять названия столбцов с помощью имён
соответствующих им таблиц.


Однако лучшим подходом является использование имеющихся объявлений связей с помощью вызова метода
[[yii\db\ActiveQuery::joinWith()]]:

$customers = Customer::find()
    ->joinWith('orders')
    ->where(['order.status' => Order::STATUS_ACTIVE])
    ->all();





Оба подхода выполняют одинаковый набор SQL-запросов. Однако второй подход более прозрачен и прост.

По умолчанию, метод [[yii\db\ActiveQuery::joinWith()|joinWith()]] будет использовать конструкцию LEFT JOIN для
объединения основной таблицы со связной. Вы можете указать другой тип операции JOIN (например, RIGHT JOIN) с помощью
третьего параметра этого метода - $joinType. Если же вам нужен INNER JOIN, вы можете вместо этого просто вызвать
метод [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]].

Вызов метода [[yii\db\ActiveQuery::joinWith()|joinWith()]] будет жадно загружать связные данные
по умолчанию. Если вы не хотите получать связные данные, вы можете передать во втором параметре $eagerLoading значение
false.

Подобно методу [[yii\db\ActiveQuery::with()|with()]] вы можете объединять данные с одной или несколькими связями; вы
можете настроить запрос на получение связных данных “на лету”; вы можете объединять данные с вложенными связями; вы
можете смешивать использование метода [[yii\db\ActiveQuery::with()|with()]] и метода
[[yii\db\ActiveQuery::joinWith()|joinWith()]]. Например:

$customers = Customer::find()->joinWith([
    'orders' => function ($query) {
        $query->andWhere(['>', 'subtotal', 100]);
    },
])->with('country')
    ->all();





Иногда во время объединения двух таблиц вам может потребоваться указать некоторые дополнительные условия рядом с
оператором ON во время выполнения JOIN-запроса. Это можно сделать с помощью вызова метода
[[yii\db\ActiveQuery::onCondition()]] как показано ниже:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id` AND `order`.`status` = 1 
// 
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()->joinWith([
    'orders' => function ($query) {
        $query->onCondition(['order.status' => Order::STATUS_ACTIVE]);
    },
])->all();





Вышеприведённый запрос вернёт всех покупателей и для каждого покупателя вернёт все активные заказы. Заметьте, что это
поведение отличается от нашего предыдущего примера, в котором возвращались только покупатели, у которых был как минимум
один активный заказ.


Info: Когда в объекте [[yii\db\ActiveQuery]] указано условие выборки с помощью метода
[[yii\db\ActiveQuery::onCondition()|onCondition()]], это условие будет размещено в конструкции ON, если запрос
содержит оператор JOIN. Если же запрос не содержит оператор JOIN, такое условие будет автоматически размещено в
конструкции WHERE.



Псевдонимы связанных таблиц 

Как уже было отмечено, при использовании в запросе JOIN-ов, приходится явно решать конфликты имён. Поэтому часто таблицам
дают псевдонимы. Задать псевдоним для реляционного запроса можно следующим образом:

$query->joinWith([
  'orders' => function ($q) {
      $q->from(['o' => Order::tableName()]);
  },
])





Выглядит это довольно сложно. Либо приходится задавать явно имена таблиц, либо вызывать Order::tableName().
Начиная с версии 2.0.7 вы можете задать и использовать псевдоним для связанной таблицы следующим образом:

// join the orders relation and sort the result by orders.id
$query->joinWith(['orders o'])->orderBy('o.id');





Этот синтаксис работает для простых связей. Если же необходимо использовать связующую таблицу, например
$query->joinWith(['orders.product']), то вызовы joinWith вкладываются друг в друга:

$query->joinWith(['orders o' => function($q) {
      $q->joinWith('product p');
  }])
  ->where('o.amount > 100');










Обратные связи 

Объявления связей часто взаимны между двумя Active Record классами. Например, Customer связан с Order посредством
связи orders, а Order взаимно связан с Customer посредством связи customer.

class Customer extends ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}

class Order extends ActiveRecord
{
    public function getCustomer()
    {
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}





Теперь рассмотрим следующий участок кода:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// SELECT * FROM `customer` WHERE `id` = 123
$customer2 = $order->customer;

// выведет "not the same"
echo $customer2 === $customer ? 'same' : 'not the same';





Мы думали, что $customer и $customer2 эквивалентны, но оказалось, что нет! Фактически они содержат одинаковые
данные, но являются разными объектами. Когда мы получаем доступ к данным посредством $order->customer, выполняется
дополнительный SQL-запрос для заполнения нового объекта $customer2.

Чтобы избежать избыточного выполнения последнего SQL-запроса в вышеприведённом примере, мы должны подсказать Yii, что
customer - обратная связь относительно orders, и сделаем это с помощью вызова метода
[[yii\db\ActiveQuery::inverseOf()|inverseOf()]] как показано ниже:

class Customer extends ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id'])->inverseOf('customer');
    }
}





Теперь, после этих изменений в объявлении связи, получим:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// SQL-запрос не выполняется
$customer2 = $order->customer;

// выведет "same"
echo $customer2 === $customer ? 'same' : 'not the same';






Note: обратные связи не могут быть объявлены для связей, использующих промежуточную таблицу.
То есть, если связь объявлена с помощью методов [[yii\db\ActiveQuery::via()|via()]] или
[[yii\db\ActiveQuery::viaTable()|viaTable()]], вы не должны вызывать после этого метод
[[yii\db\ActiveQuery::inverseOf()|inverseOf()]].







Сохранение связных данных 

Во время работы со связными данными вам часто требуется установить связи между двумя разными видами данных или удалить
существующие связи. Это требует установки правильных значений для столбцов, с помощью которых заданы связи. При
использовании Active Record вам может понадобится завершить участок кода следующим образом:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

// установка атрибута, которой задаёт связь "customer" в объекте Order
$order->customer_id = $customer->id;
$order->save();





Active Record предоставляет метод [[yii\db\ActiveRecord::link()|link()]], который позволяет выполнить эту задачу
более красивым способом:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

$order->link('customer', $customer);





Метод [[yii\db\ActiveRecord::link()|link()]] требует указать название связи и целевой объект Active Record, с которым
должна быть установлена связь. Метод изменит значения атрибутов, которые связывают два объекта Active Record, и сохранит
их в базу данных. В вышеприведённом примере, метод присвоит атрибуту customer_id объекта Order значение атрибута
id объекта Customer и затем сохранит его в базу данных.


Note: Невозможно связать два свежесозданных объекта Active Record.


Преимущество метода [[yii\db\ActiveRecord::link()|link()]] становится ещё более очевидным, когда связь объявлена
посредством промежуточной таблицы. Например, вы можете использовать следующий код, чтобы связать
объект Order с объектом Item:

$order->link('items', $item);





Вышеприведённый код автоматически вставит строку данных в промежуточную таблицу order_item, чтобы связать объект
order с объектом item.


Info: Метод [[yii\db\ActiveRecord::link()|link()]] не осуществляет какую-либо валидацию данных во время
сохранения целевого объекта Active Record. На вас лежит ответственность за валидацию любых введённых данных перед
вызовом этого метода.


Существует противоположная операция для [[yii\db\ActiveRecord::link()|link()]] - это операция
[[yii\db\ActiveRecord::unlink()|unlink()]], она снимает существующую связь с двух объектов Active Record. Например:

$customer = Customer::find()->with('orders')->where(['id' => 123])->one();
$customer->unlink('orders', $customer->orders[0]);





По умолчанию метод [[yii\db\ActiveRecord::unlink()|unlink()]] задаст вторичному ключу (или ключам), который определяет
существующую связь, значение null. Однако вы можете запросить удаление строки таблицы, которая содержит значение
вторичного ключа, передав значение true в параметре $delete для этого метода.

Если связь построена на основе промежуточной таблицы, вызов метода [[yii\db\ActiveRecord::unlink()|unlink()]] инициирует
очистку вторичных ключей в промежуточной таблице, или же удаление соответствующей строки данных в промежуточной таблице,
если параметр $delete равен true.




Связывание объектов из разных баз данных 

Active Record позволяет вам объявить связи между классами Active Record, которые относятся к разным базам данных. Базы
данных могут быть разных типов (например, MySQL и PostgreSQL или MS SQL и MongoDB), и они могут быть запущены на разных
серверах. Вы можете использовать тот же самый синтаксис для осуществления запросов выборки связных данных. Например:

// Объект Customer соответствует таблице "customer" в реляционной базе данных (например MySQL)
class Customer extends \yii\db\ActiveRecord
{
    public static function tableName()
    {
        return 'customer';
    }

    public function getComments()
    {
        // у покупателя может быть много комментариев
        return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
    }
}

// Объект Comment соответствует коллекции "comment" в базе данных MongoDB
class Comment extends \yii\mongodb\ActiveRecord
{
    public static function collectionName()
    {
        return 'comment';
    }

    public function getCustomer()
    {
        // комментарий принадлежит одному покупателю
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}

$customers = Customer::find()->with('comments')->all();





Вы можете использовать большую часть возможностей запросов получения связных данных, которые были описаны в этой главе.


Note: Применимость метода [[yii\db\ActiveQuery::joinWith()|joinWith()]] ограничена базами данных, которые
позволяют выполнять запросы между разными базами с использованием оператора JOIN. По этой причине вы не можете
использовать этот метод в вышеприведённом примере, т.к. MongoDB не поддерживает операцию JOIN.





Тонкая настройка классов Query 

По умолчанию все запросы данных для Active Record поддерживаются с помощью класса [[yii\db\ActiveQuery]]. Для
использования собственного класса запроса вам необходимо переопределить метод [[yii\db\ActiveRecord::find()]] и
возвращать из него объект вашего собственного класса запроса. Например:

namespace app\models;

use yii\db\ActiveRecord;
use yii\db\ActiveQuery;

class Comment extends ActiveRecord
{
    public static function find()
    {
        return new CommentQuery(get_called_class());
    }
}

class CommentQuery extends ActiveQuery
{
    // ...
}





Теперь, когда вы будете осуществлять получение данных (например, выполните find(), findOne()) или объявите связь
(например, hasOne()) с объектом Comment, вы будете работать с объектом класса CommentQuery вместо ActiveQuery.


Tip: В больших проектах рекомендуется использовать собственные классы запросов, которые будут содержать в себе
большую часть кода, связанного с настройкой запросов, таким образом классы Active Record удастся сохранить более
чистыми.


Вы можете настроить класс запроса большим количеством различных способов для улучшения методик построения запросов.
Например, можете объявить новые методы построения запросов в собственном классе запросов:

class CommentQuery extends ActiveQuery
{
    public function active($state = true)
    {
        return $this->andWhere(['active' => $state]);
    }
}






Note: Вместо вызова метода [[yii\db\ActiveQuery::where()|where()]] старайтесь во время объявления новых методов
построения запросов использовать [[yii\db\ActiveQuery::andWhere()|andWhere()]] или
[[yii\db\ActiveQuery::orWhere()|orWhere()]] для добавления дополнительных условий, в этом случае уже заданные условия
выборок не будут перезаписаны.


Это позволит вам писать код построения запросов как показано ниже:

$comments = Comment::find()->active()->all();
$inactiveComments = Comment::find()->active(false)->all();





Вы также можете использовать новые методы построения запросов, когда объявляете связи для класса Comment или
осуществляете запрос для выборки связных данных:

class Customer extends \yii\db\ActiveRecord
{
    public function getActiveComments()
    {
        return $this->hasMany(Comment::className(), ['customer_id' => 'id'])->active();
    }
}

$customers = Customer::find()->with('activeComments')->all();

// или по-другому:
 
$customers = Customer::find()->with([
    'comments' => function($q) {
        $q->active();
    }
])->all();






Info: В Yii версии 1.1 была концепция с названием scope. Она больше не поддерживается в Yii версии 2.0, и вы
можете использовать собственные классы запросов и собственные методы построения запросов, чтобы добиться той же самой
цели.





Получение дополнительных атрибутов

Когда объект Active Record заполнен результатами запроса, его атрибуты заполнены значениями соответствующих столбцов
из полученного набора данных.

Вы можете получить дополнительные столбцы или значения с помощью запроса и сохранить их внутри объекта Active Record.
Например, предположим, что у нас есть таблица ‘room’, которая содержит информацию о доступных в отеле комнатах. Каждая
комната хранит информацию о её геометрических размерах с помощью атрибутов ‘length’, ‘width’, ‘height’. Представьте, что
вам требуется получить список всех доступных комнат, отсортированных по их объёму в порядке убывания. В этом случае вы
не можете вычислять объём с помощью PHP, потому что нам требуется сортировать записи по объёму, но вы также хотите
отображать объем в списке. Для достижения этой цели, вам необходимо объявить дополнительный атрибут в вашем Active
Record классе ‘Room’, который будет хранить значение ‘volume’:

class Room extends \yii\db\ActiveRecord
{
    public $volume;

    // ...
}





Далее вам необходимо составить запрос, который вычисляет объём комнаты и выполняет сортировку:

$rooms = Room::find()
    ->select([
        '{{room}}.*', // получить все столбцы
        '([[length]] * [[width]] * [[height]]) AS volume', // вычислить объём
    ])
    ->orderBy('volume DESC') // отсортировать
    ->all();

foreach ($rooms as $room) {
    echo $room->volume; // содержит значение, вычисленное с помощью SQL-запроса
}





Возможность выбирать дополнительные атрибуты может быть особенно полезной для агрегирующих запросов. Представьте, что
вам необходимо отображать список покупателей с количеством их заказов. Прежде всего вам потребуется объявить класс
Customer со связью ‘orders’ и дополнительным атрибутом для хранения расчётов:

class Customer extends \yii\db\ActiveRecord
{
    public $ordersCount;

    // ...

    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}





После этого вы сможете составить запрос, который объединяет заказы и вычисляет их количество:

$customers = Customer::find()
    ->select([
        '{{customer}}.*', // получить все атрибуты покупателя
        'COUNT({{order}}.id) AS ordersCount' // вычислить количество заказов
    ])
    ->joinWith('orders') // обеспечить построение промежуточной таблицы
    ->groupBy('{{customer}}.id') // сгруппировать результаты, чтобы заставить агрегацию работать
    ->all();





Недостаток этого подхода заключается в том, что если данные для поля не загружены по результатам SQL запроса, то они
должны быть вычисленны отдельно. Это означает, что запись, полученная посредством обычного запроса без дополнительных полей в
разделе ‘select’, не может вернуть реальное значения для дополнительного поля. Это же касается и только что сохранненой
записи.

$room = new Room();
$room->length = 100;
$room->width = 50;
$room->height = 2;

$room->volume; // значение будет равно `null`, т.к. поле не было заполнено





Использование магических методов [[yii\db\BaseActiveRecord::__get()|__get()]] и [[yii\db\BaseActiveRecord::__set()|__set()]]
позволяет эмулировать поведение обычного поля:

class Room extends \yii\db\ActiveRecord
{
    private $_volume;

    public function setVolume($volume)
    {
        $this->_volume = (float) $volume;
    }

    public function getVolume()
    {
        if (empty($this->length) || empty($this->width) || empty($this->height)) {
            return null;
        }

        if ($this->_volume === null) {
            $this->setVolume(
                $this->length * $this->width * $this->height
            );
        }

        return $this->_volume;
    }

    // ...
}





Если результат запроса на выборку данных не содержит поле ‘volume’, то модель сможет расчитать его автоматически
используя имеющиеся атрибуты.

Вы также можете вычислять агрегируемые поля используя объявленные отношения:

class Customer extends \yii\db\ActiveRecord
{
    private $_ordersCount;

    public function setOrdersCount($count)
    {
        $this->_ordersCount = (int) $count;
    }

    public function getOrdersCount()
    {
        if ($this->isNewRecord) {
            return null; // нет смысла выполнять запрос на поиск по пустым ключам
        }

        if ($this->_ordersCount === null) {
            $this->setOrdersCount($this->getOrders()->count()); // вычисляем агрегацию по требованию из отношения
        }

        return $this->_ordersCount;
    }

    // ...

    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}





При такой реализации, в случае когда ‘ordersCount’ присутсвует в разделе ‘select’ - значение ‘Customer::ordersCount’ будет
заполнено из результатов запроса, в противном случае - оно булет вычислено по превому требованию на основании отношения Customer::orders.

Этот подход также можно использовать для быстрого доступа к некоторым данным отношений, в особенности для агрегации.
Например:

class Customer extends \yii\db\ActiveRecord
{
    /**
     * Объявляет виртуальное свойство для агрегируемых данных, доступное только на чтение.
     */
    public function getOrdersCount()
    {
        if ($this->isNewRecord) {
            return null; // нет смысла выполнять запрос на поиск по пустым ключам
        }

        return $this->ordersAggregation[0]['counted'];
    }

    /**
     * Объявляет обычное отношение 'orders'.
     */
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }

    /**
     * Объявляет новое отношение, основанное на 'orders', которое предоставляет агрегацию.
     */
    public function getOrdersAggregation()
    {
        return $this->getOrders()
            ->select(['customer_id', 'counted' => 'count(*)'])
            ->groupBy('customer_id')
            ->asArray(true);
    }

    // ...
}

foreach (Customer::find()->with('ordersAggregation')->all() as $customer) {
    echo $customer->ordersCount; // выводит агрегируемые данные из отношения без дополнительного запроса благодаря жадной загрузке
}

$customer = Customer::findOne($pk);
$customer->ordersCount; // выводит агрегируемые данные отношения через ленивую загрузку











          

      

      

    

  

  
    
    
    Конфигурации
    
    

    
 
  
  

    
      
          
            
  
Конфигурации

Конфигурации широко используются в Yii при создании новых объектов или при инициализации уже существующих объектов.
Обычно конфигурации включают в себя названия классов создаваемых объектов и список первоначальных значений,
которые должны быть присвоены свойствам объекта. Также в конфигурациях можно указать список
обработчиков событий объекта, и/или список поведений объекта.

Пример конфигурации подключения к базе данных и дальнейшей инициализации подключения:

$config = [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
];

$db = Yii::createObject($config);





Метод [[Yii::createObject()]] принимает в качестве аргумента массив с конфигурацией и создаёт объект указанного в них класса.
При этом оставшаяся часть конфигурации используется для инициализации свойств, обработчиков событий и поведений объекта.

Если объект уже создан, вы можете использовать [[Yii::configure()]] для того, чтобы инициализировать свойства объекта
массивом с конфигурацией:

Yii::configure($object, $config);





Обратите внимание, что в этом случае массив с конфигурацией не должен содержать ключ class.


Формат конфигурации 

Формат конфигурации выглядит следующим образом:

[
    'class' => 'ClassName',
    'propertyName' => 'propertyValue',
    'on eventName' => $eventHandler,
    'as behaviorName' => $behaviorConfig,
]





где


	Элемент class указывает абсолютное имя класса создаваемого объекта.

	Элементы propertyName указывают первоначальные значения свойств создаваемого объекта. Ключи являются именами свойств
создаваемого объекта, а значения — начальными значениями свойств создаваемого объекта.
Таким способом могут быть установлены только публичные переменные объекта и его свойства,
созданные через геттеры и сеттеры.

	Элементы on eventName указывают на то, какие обработчики должны быть прикреплены к событиям объекта.
Обратите внимание, что ключи массива начинаются с on. Чтобы узнать весь список поддерживаемых видов
обработчиков событий обратитесь в раздел события

	Элементы as behaviorName указывают на то, какие поведения должны быть внедрены в объект.
Обратите внимание, что ключи массива начинаются с as; а $behaviorConfig представляет собой конфигурацию для
создания поведения, похожую на все остальные конфигурации.



Пример конфигурации с установкой первоначальных значений свойств объекта, обработчика событий и поведения:

[
    'class' => 'app\components\SearchEngine',
    'apiKey' => 'xxxxxxxx',
    'on search' => function ($event) {
        Yii::info("Keyword searched: " . $event->keyword);
    },
    'as indexer' => [
        'class' => 'app\components\IndexerBehavior',
        // ... начальные значения свойств ...
    ],
]








Использование конфигурации 

Конфигурации повсеместно используются в Yii. В самом начале данной главы мы узнали как
создать объект с необходимыми параметрами используя метод [[Yii::createObject()]].
В данном разделе речь пойдет о конфигурации приложения и конфигурациях виджетов — двух основных способов
использования конфигурации.


Конфигурация приложения 

Конфигурация приложения, пожалуй, самая сложная из используемых в фреймворке.
Причина в том, что класс [[yii\web\Application|application]] содержит большое количество конфигурируемых
свойств и событий. Более того, свойство приложения [[yii\web\Application::components|components]]
может принимать массив с конфигурацией для создания компонентов, регистрируемых на уровне приложения.
Пример конфигурации приложения для шаблона приложения basic.

$config = [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
    'components' => [
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'mailer' => [
            'class' => 'yii\swiftmailer\Mailer',
        ],
        'log' => [
            'class' => 'yii\log\Dispatcher',
            'traceLevel' => YII_DEBUG ? 3 : 0,
            'targets' => [
                [
                    'class' => 'yii\log\FileTarget',
                ],
            ],
        ],
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=stay2',
            'username' => 'root',
            'password' => '',
            'charset' => 'utf8',
        ],
    ],
];





Ключ class в данной конфигурации не указывается. Причина в том, что класс вызывается по полному имени во
входном скрипте:

(new yii\web\Application($config))->run();





За более подробной документацией о настройках свойства components в конфигурации приложения обратитесь к главам
приложения и Service Locator.

Начиная с версии 2.0.11, можно настраивать контейнер зависимостей через конфигурацию
приложения. Для этого используется свойство container:

$config = [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
    'container' => [
        'definitions' => [
            'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
        ],
        'singletons' => [
            // Конфигурация для единожды создающихся объектов
        ]
    ]
];





Чтобы узнать о возможных значениях definitions и singletons, а также о реальных примерах использования,
прочитайте подраздел более сложное практическое применение раздела
Dependency Injection Container.




Конфигурации виджетов 

При использовании виджетов часто возникает необходимость изменить параметры виджета с помощью
конфигурации. Для создания виджета можно использовать два метода: [[yii\base\Widget::widget()]] и
[[yii\base\Widget::begin()]]. Оба метода принимают конфигурацию в виде PHP массива:

use yii\widgets\Menu;

echo Menu::widget([
    'activateItems' => false,
    'items' => [
        ['label' => 'Home', 'url' => ['site/index']],
        ['label' => 'Products', 'url' => ['product/index']],
        ['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
    ],
]);





Данный код создает виджет Menu и устанавливает параметр виджета activeItems в значение false.
Также устанавливается параметр items, состоящий из элементов меню.

Обратите внимание что параметр class НЕ передается, так как полное имя уже указано.






Конфигурационные файлы 

Если конфигурация очень сложная, то её, как правило, разделяют по нескольким PHP файлам. Такие файлы называют
Конфигурационными файлами. Конфигурационный файл возвращает массив PHP являющийся конфигурацией.
Например, конфигурацию приложения можно хранить в отдельном файле web.php, как показано ниже:

return [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),
    'components' => require(__DIR__ . '/components.php'),
];





Параметр components также имеет сложную конфигурацию, поэтому можно его хранить в файле components.php
и подключать в файл web.php используя require как и показано выше.
Содержимое файла components.php:

return [
    'cache' => [
        'class' => 'yii\caching\FileCache',
    ],
    'mailer' => [
        'class' => 'yii\swiftmailer\Mailer',
    ],
    'log' => [
        'class' => 'yii\log\Dispatcher',
        'traceLevel' => YII_DEBUG ? 3 : 0,
        'targets' => [
            [
                'class' => 'yii\log\FileTarget',
            ],
        ],
    ],
    'db' => [
        'class' => 'yii\db\Connection',
        'dsn' => 'mysql:host=localhost;dbname=stay2',
        'username' => 'root',
        'password' => '',
        'charset' => 'utf8',
    ],
];





Чтобы получить конфигурацию, хранящуюся в файле, достаточно подключить файл с помощью require:

$config = require('path/to/web.php');
(new yii\web\Application($config))->run();








Значения конфигурации по умолчанию 

Метод [[Yii::createObject()]] реализован с использованием dependency injection container.
Это позволяет задавать так называемые значения конфигурации по умолчанию, которые будут применены ко ВСЕМ экземплярам классов во время их инициализации методом [[Yii::createObject()]]. Значения конфигурации по умолчанию указываются с помощью метода Yii::$container->set() на этапе предварительной загрузки.

Например, если мы хотим изменить виджет [[yii\widgets\LinkPager]] так, чтобы все виджеты данного вида показывали максимум
5 кнопок на странице вместо 10 (как это установлено изначально), можно использовать следующий код:

\Yii::$container->set('yii\widgets\LinkPager', [
    'maxButtonCount' => 5,
]);





Без использования значений конфигурации по умолчанию, при использовании LinkPager, вам пришлось бы каждый раз
задавать значение maxButtonCount.




Константы окружения 

Конфигурации могут различаться в зависимости от режима, в котором происходит запуск приложения. Например,
в окружении разработчика (development) вы используете базу данных mydb_dev, а в эксплуатационном (production) окружении
базу данных mydb_prod. Для упрощения смены окружений в Yii существует константа YII_ENV.  Вы можете указать её во
входном скрипте своего приложения:

defined('YII_ENV') or define('YII_ENV', 'dev');





YII_ENV может принимать следующие значения:


	prod: окружение production, т.е. эксплуатационный режим сервера. Константа YII_ENV_PROD установлена в true.
Значение по умолчанию.

	dev: окружение development, т.е. режим для разработки. Константа YII_ENV_DEV установлена в true.

	test: окружение testing, т.е. режим для тестирования. Константа YII_ENV_TEST установлена в true.



Используя эти константы, вы можете задать в конфигурации значения параметров зависящие от текущего окружения.
Например, чтобы включить отладочную панель и отладчик в режиме разработки, вы можете использовать
следующий код в конфигурации приложения:

$config = [...];

if (YII_ENV_DEV) {
    // значения параметров конфигурации для окружения разработки 'dev'
    $config['bootstrap'][] = 'debug';
    $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;











          

      

      

    

  

  
    
    
    Свойства
    
    

    
 
  
  

    
      
          
            
  
Свойства

В PHP, переменные-члены класса называются свойства. Эти переменные являются частью объявления класса и используются для
хранения состояния объектов этого класса (т.е. именно этим отличается один экземпляр класса от другого). На практике
вам часто придётся производить чтение и запись свойств особым образом. Например, вам может понадобиться обрезать строку
при её записи в поле label. Для этого вы можете использовать следующий код:

$object->label = trim($label);





Недостатком приведённого выше кода является то, что вам придется вызывать функцию trim() во всех местах, где вы
присваиваете значение полю label. Если в будущем понадобится производить еще какие-либо действие, например преобразовать первую букву в верхний регистр, вам придётся изменить каждый участок кода, где производится присваивание значения
полю label. Повторение кода приводит к ошибкам и его необходимо избегать всеми силами.

Что бы решить эту проблему, в Yii был добавлен базовый класс [[yii\base\Object]] который реализует работу со свойствами
через геттеры и сеттеры. Если вашему классу нужна такая возможность, необходимо унаследовать его от
[[yii\base\Object]] или его потомка.


Info: Почти все внутренние классы Yii наследуются от [[yii\base\Object]] или его потомков.
Это значит, что всякий раз, когда вы встречаете геттер или сеттер в классах фреймворка, вы можете обращаться к нему
как к свойству.


Геттер — это метод, чьё название начинается со слова get. Имя сеттера начинается со слова  set. Часть названия после
get или set определяет имя свойства. Например, геттер getLabel() и/или сеттер setLabel() определяют свойство
label, как показано в коде ниже:

namespace app\components;

use yii\base\Object;

class Foo extends Object
{
    private $_label;

    public function getLabel()
    {
        return $this->_label;
    }

    public function setLabel($value)
    {
        $this->_label = trim($value);
    }
}





В коде выше геттер и сеттер реализуют свойство label, значение которого хранится в private свойстве _label.

Свойства, определенные с помощью геттеров и сеттеров, можно использовать как обычные свойства класса. Главное отличие
в том, что когда происходит чтение такого свойства, вызывается соответствующий геттер, при присвоении значения такому
свойству запускается соответствующий сеттер. Например:

// Идентично вызову $label = $object->getLabel();
$label = $object->label;

// Идентично вызову $object->setLabel('abc');
$object->label = 'abc';





Свойство, для которого объявлен только геттер без сеттера, может использоваться только для чтения. Попытка присвоить
ему значение вызовет [[yii\base\InvalidCallException|InvalidCallException]]. Точно так же, свойство для которого объявлен
только сеттер без геттера может использоваться только для записи. Попытка получить его значение так же вызовет
исключение. Свойства, предназначенные только для чтения, встречаются не часто.

При определении свойств класса при помощи геттеров и сеттеров нужно помнить о некоторых правилах и ограничениях:


	Имена таких свойств регистронезависимы. Таким образом, $object->label и $object->Label — одно и то же.
Это обусловлено тем, что имена методов в PHP регистронезависимы.

	Если имя такого свойства уже используется переменной-членом класса, то последнее будет иметь более высокий приоритет.
Например, если в классе Foo объявлено свойство label, то при вызове $object->label = 'abc' будет напрямую изменено
значение свойства label. А метод setLabel() не будет вызван.

	Свойства, объявленные таким образом, не поддерживают модификаторы видимости. Это значит, что объявление геттера или
сеттера как public, protected или private никак не скажется на области видимости свойства.

	Свойства могут быть объявлены только с помощью не статичных геттеров и/или сеттеров. Статичные методы не будут
обрабатываться подобным образом.

	Обычный вызов property_exists() не работает для магических свойств. Для них необходимо использовать
[[yii\base\Object::canGetProperty()|canGetProperty()]] или [[yii\base\Object::canSetProperty()|canSetProperty()]].



Возвращаясь к проблеме необходимости вызова функции trim() во всех местах, где присваивается значение свойству label,
описанной в начале этого руководства, функцию trim() теперь необходимо вызывать только один раз — в методе setLabel().
При возникновении нового требования о возведение первой буквы в верхний регистр, можно быстро поправить метод setLabel()
не затрагивая остальной код. Эта правка будет распространяться на все присвоения значения свойству label.





          

      

      

    

  

  
    
    
    Ответы
    
    

    
 
  
  

    
      
          
            
  
Ответы

Когда приложение заканчивает обработку запроса, оно генерирует объект [[yii\web\Response|ответа]]
и отправляет его пользователю. Объект ответа содержит такие данные, как HTTP-код состояния, HTTP-заголовки и тело ответа.
Конечная цель разработки Web-приложения состоит в создании объектов ответа на различные запросы.

В большинстве случаев вам придется иметь дело с компонентом приложения response,
который по умолчанию является экземпляром класса [[yii\web\Response]]. Однако Yii также позволяет вам создавать собственные
объекты ответа и отправлять их пользователям. Это будет рассмотрено ниже.

В данном разделе мы опишем, как составлять ответы и отправлять их пользователям.


Код состояния 

Первое, что вы делаете при построении ответа, — определяете, был ли успешно обработан запрос. Это реализуется заданием
свойству [[yii\web\Response::statusCode]] значения, которое может быть одним из валидных
HTTP-кодов состояния [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html]. Например, чтобы показать, что запрос был
успешно обработан, вы можете установить значение кода состояния равным 200:

Yii::$app->response->statusCode = 200;





Однако в большинстве случаев явная установка не требуется так как значение [[yii\web\Response::statusCode]]
по умолчанию равно 200. Если же вам нужно показать, что запрос не удался, вы можете выбросить соответствующее
HTTP-исключение:

throw new \yii\web\NotFoundHttpException;





Когда обработчик ошибок поймает исключение, он извлечёт код состояния
из исключения и назначит его ответу. Исключение [[yii\web\NotFoundHttpException]] в коде выше
представляет HTTP-код состояния 404. В Yii предопределены следующие HTTP-исключения:


	[[yii\web\BadRequestHttpException]]: код состояния 400.

	[[yii\web\ConflictHttpException]]: код состояния 409.

	[[yii\web\ForbiddenHttpException]]: код состояния 403.

	[[yii\web\GoneHttpException]]: код состояния 410.

	[[yii\web\MethodNotAllowedHttpException]]: код состояния 405.

	[[yii\web\NotAcceptableHttpException]]: код состояния 406.

	[[yii\web\NotFoundHttpException]]: код состояния 404.

	[[yii\web\ServerErrorHttpException]]: код состояния 500.

	[[yii\web\TooManyRequestsHttpException]]: код состояния 429.

	[[yii\web\UnauthorizedHttpException]]: код состояния 401.

	[[yii\web\UnsupportedMediaTypeHttpException]]: код состояния 415.



Если в приведённом выше списке нет исключения, которое вы хотите выбросить, вы можете создать его, расширив класс
[[yii\web\HttpException]], или выбросить его напрямую с кодом состояния, например:

throw new \yii\web\HttpException(402);








HTTP-заголовки 

Вы можете отправлять HTTP-заголовки, работая с [[yii\web\Response::headers|коллекцией заголовков]] компонента response:

$headers = Yii::$app->response->headers;

// добавить заголовок Pragma. Уже имеющиеся Pragma-заголовки НЕ будут перезаписаны.
$headers->add('Pragma', 'no-cache');

// установить заголовок Pragma. Любые уже имеющиеся Pragma-заголовки будут сброшены.
$headers->set('Pragma', 'no-cache');

// удалить заголовок (или заголовки) Pragma и вернуть их значения массивом
$values = $headers->remove('Pragma');






Info: названия заголовков не чувствительны к регистру символов. Заново зарегистрированные заголовки не отсылаются
пользователю до вызова [[yii\web\Response::send()]].





Тело ответа 

Большинство ответов должны иметь тело, содержащее то, что вы хотите показать пользователям.

Если у вас уже имеется отформатированная строка для тела, вы можете присвоить её свойству [[yii\web\Response::content]]
объекта запроса:

Yii::$app->response->content = 'hello world!';





Если ваши данные перед отправкой конечным пользователям нужно привести к определённому формату, вам следует установить значения
двух свойств: [[yii\web\Response::format|format]] и [[yii\web\Response::data|data]]. Свойство [[yii\web\Response::format|format]]
определяет, в каком формате следует возвращать данные из [[yii\web\Response::data|data]]. Например:

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];





Yii из коробки имеет поддержку следующих форматов, каждый из которых реализован классом [[yii\web\ResponseFormatterInterface|форматтера]].
Вы можете настроить эти форматтеры или добавить новые через свойство [[yii\web\Response::formatters]].


	[[yii\web\Response::FORMAT_HTML|HTML]]: реализуется классом [[yii\web\HtmlResponseFormatter]].

	[[yii\web\Response::FORMAT_XML|XML]]: реализуется классом [[yii\web\XmlResponseFormatter]].

	[[yii\web\Response::FORMAT_JSON|JSON]]: реализуется классом [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: реализуется классом [[yii\web\JsonResponseFormatter]].



Хотя тело запроса может быть явно установлено показанным выше способом, в большинстве случаев вы можете задавать его неявно
через возвращаемое значение методов действий. Типичный пример использования:

public function actionIndex()
{
    return $this->render('index');
}





Действие index в коде выше возвращает результат рендеринга представления index. Возвращаемое значение будет взято
компонентом response, отформатировано и затем отправлено пользователям.

Так как по умолчанию форматом ответа является [[yii\web\Response::FORMAT_HTML|HTML]], в методе действия следует
вернуть строку. Если вы хотите использовать другой формат ответа, необходимо настроить его перед отправкой данных:

public function actionInfo()
{
    \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
    return [
        'message' => 'hello world',
        'code' => 100,
    ];
}





Как уже было сказано, кроме использования стандартного компонента приложения response вы также можете создавать свои
объекты ответа и отправлять их конечным пользователям. Вы можете сделать это, возвращая такой объект в методе действия:

public function actionInfo()
{
    return \Yii::createObject([
        'class' => 'yii\web\Response',
        'format' => \yii\web\Response::FORMAT_JSON,
        'data' => [
            'message' => 'hello world',
            'code' => 100,
        ],
    ]);
}






Note: создавая собственные объекты ответов, вы не сможете воспользоваться конфигурацией компонента response,
настроенной вами в конфигурации приложения. Тем не менее, вы можете воспользоваться
внедрением зависимости, чтобы применить общую конфигурацию к вашим новым объектам ответа.





Перенаправление браузера 

Перенаправление браузера основано на отправке HTTP-заголовка Location. Так как данная возможность широко применяется,
Yii имеет средства для её использования.

Вы можете перенаправить браузер пользователя на URL-адрес, вызвав метод [[yii\web\Response::redirect()]]. Этот метод
использует указанный URL-адрес в качестве значения заголовка Location и возвращает сам объект ответа. В методе действия
вы можете вызвать короткую версию этого метода — [[yii\web\Controller::redirect()]]. Например:

public function actionOld()
{
    return $this->redirect('http://example.com/new', 301);
}





В приведённом выше коде метод действия возвращает результат redirect(). Как говорилось выше, объект ответа,
возвращаемый методом действия, будет использоваться в качестве ответа конечным пользователям.

В коде, находящемся вне методов действий, следует использовать [[yii\web\Response::redirect()]] и непосредственно после
него — метод [[yii\web\Response::send()]]. Так можно быть уверенным, что к ответу не будет добавлено нежелательное
содержимое.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();






Info: По умолчанию метод [[yii\web\Response::redirect()]] устанавливает код состояния ответа равным 302, сообщая
браузеру, что запрашиваемый ресурс временно находится по другому URI-адресу. Вы можете передать код состояния
301, чтобы сообщить браузеру, что ресурс перемещён навсегда.


Если текущий запрос является AJAX-запросом, отправка заголовка Location не заставит браузер автоматически
осуществить перенаправление. Чтобы решить эту задачу, метод [[yii\web\Response::redirect()]] устанавливает значение
заголовка X-Redirect равным URL для перенаправления. На стороне клиента вы можете написать JavaScript-код для чтения
значения этого заголовка и перенаправления браузера соответственно.


Info: Yii поставляется с JavaScript-файлом yii.js, который предоставляет набор часто используемых
JavaScript-утилит, включая и перенаправление браузера на основе заголовка X-Redirect. Следовательно, если вы
используете этот JavaScript-файл (зарегистрировав пакет ресурсов [[yii\web\YiiAsset]]), вам не нужно писать
дополнительный код для поддержки AJAX-перенаправления.





Отправка файлов 

Как и перенаправление браузера, отправка файлов является ещё одной возможностью, основанной на определённых HTTP-заголовках.
Yii предоставляет набор методов для решения различных задач по отправке файлов. Все они поддерживают HTTP-заголовок range.


	[[yii\web\Response::sendFile()]]: отправляет клиенту существующий файл.

	[[yii\web\Response::sendContentAsFile()]]: отправляет клиенту строку как файл.

	[[yii\web\Response::sendStreamAsFile()]]: отправляет клиенту существующий файловый поток как файл.



Эти методы имеют одинаковую сигнатуру и возвращают объект ответа. Если отправляемый файл очень велик, следует
использовать [[yii\web\Response::sendStreamAsFile()]], так как он более эффективно использует оперативную память.
Следующий пример показывает, как отправить файл в действии контроллера:

public function actionDownload()
{
    return \Yii::$app->response->sendFile('path/to/file.txt');
}





При вызове метода отправки файла вне методов действий чтобы быть уверенным, что к ответу не будет добавлено никакое
нежелательное содержимое, следует вызвать сразу после него [[yii\web\Response::send()]].

\Yii::$app->response->sendFile('path/to/file.txt')->send();





Некоторые Web-серверы поддерживают особый режим отправки файлов, который называется X-Sendfile. Идея в том, чтобы
перенаправить запрос файла Web-серверу, который отдаст файл пользователю самостоятельно. В результате Web-приложение
может завершиться раньше, пока Web-сервер ещё пересылает файл. Чтобы использовать эту возможность, воспользуйтесь
методом [[yii\web\Response::xSendFile()]]. Далее приведены ссылки на то, как включить X-Sendfile для популярных
Web-серверов:


	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]






Отправка ответа 

Содержимое ответа не отправляется пользователю до вызова метода [[yii\web\Response::send()]]. По умолчанию он вызывается
автоматически в конце метода [[yii\base\Application::run()]]. Однако, чтобы ответ был отправлен немедленно, вы можете
вызвать этот метод явно.

Для отправки ответа метод [[yii\web\Response::send()]] выполняет следующие шаги:


	Инициируется событие [[yii\web\Response::EVENT_BEFORE_SEND]].

	Для форматирования [[yii\web\Response::data|данных ответа]] в [[yii\web\Response::content|содержимое ответа]]
вызывается метод [[yii\web\Response::prepare()]] .

	Инициируется событие [[yii\web\Response::EVENT_AFTER_PREPARE]].

	Для отправки зарегистрированных HTTP-заголовков вызывается метод [[yii\web\Response::sendHeaders()]].

	Для отправки тела ответа вызывается метод [[yii\web\Response::sendContent()]].

	Инициируется событие [[yii\web\Response::EVENT_AFTER_SEND]].



Повторный вызов [[yii\web\Response::send()]] игнорируется. Это означает, что если ответ уже отправлен, то к нему уже
ничего не добавить.

Как видно, метод [[yii\web\Response::send()]] инициирует несколько полезных событий. Реагируя на
эти события, можно настраивать или декорировать ответ.







          

      

      

    

  

  
    
    
    Компоненты приложения
    
    

    
 
  
  

    
      
          
            
  
Компоненты приложения

Приложения являются сервис локаторами. Они хранят множество так называемых
компонентов приложения, которые предоставляют различные средства для обработки запросов. Например,
компонент urlManager ответственен за маршрутизацию веб запросов к нужному контроллеру; компонент db предоставляет
средства для работы с базой данных; и т. д.

Каждый компонент приложения имеет свой уникальный ID, который позволяет идентифицировать его среди других различных компонентов
в одном и том же приложении. Вы можете получить доступ к компоненту следующим образом:

\Yii::$app->componentID





Например, вы можете использовать \Yii::$app->db для получения [[yii\db\Connection|соединения с БД]],
и \Yii::$app->cache для получения доступа к основному компоненту [[yii\caching\Cache|кэша]], зарегистрированному в приложении.

Компонент приложения будет создан при первом обращении к нему через вышеуказанное выражение. Любые дальнейшие обращения будут возвращать тот же экземпляр компонента.

Компонентами приложения могут быть любые объекты. Вы можете зарегистрировать их с помощьюсвойства [[yii\base\Application::components]] в конфигурации приложения.
Например,

[
    'components' => [
        // регистрация "cache" компонента с помощью имени класса
        'cache' => 'yii\caching\ApcCache',

        // регистрация "db" компонента с помощью массива конфигурации
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=demo',
            'username' => 'root',
            'password' => '',
        ],

        // регистрация "search" компонента с помощью анонимной функции
        'search' => function () {
            return new app\components\SolrService;
        },
    ],
]






Info: Хотя вы можете зарегистрировать столько компонентов в приложении сколько вам нужно,
все таки стоит это делать разумно. Компоненты приложения похожи на глобальные переменные. Использование слишком
большого количества компонентов приложения может потенциально сделать ваш код сложным для разработки и тестирования.
В большинстве случаев вы можете просто создать локальный компонент и использовать его при необходимости.



Компоненты начальной загрузки 

Как упоминалось выше, компонент приложения будет создан только при первом обращении к нему. Однако может возникнуть необходимость в наличии созданного компонента при каждом запросе, даже если напрямую к нему ни разу не обращались. Для этого необходимо указать ID компонента в качестве элемента свойства [[yii\base\Application::bootstrap|bootstrap]].

К примеру, при данной конфигурации компонент log всегда подгружается при загрузке:

[
    'bootstrap' => [
        'log',
    ],
    'components' => [
        'log' => [
            // конфигурация для компонента `log`
        ],
    ],
]








Встроенные компоненты приложения 

В Yii есть несколько встроенных компонентов приложения, с фиксированными ID и конфигурациями по умолчанию. Например,
компонент [[yii\web\Application::request|request]] используется для сбора информации о запросе пользователя и разбора его в
определенный маршрут; компонент [[yii\base\Application::db|db]] представляет собой соединение с базой данных,
через которое вы можете выполнять запросы. Именно с помощью этих встроенных компонентов Yii приложения могут обработать
запрос пользователя.

Ниже представлен список встроенных компонентов приложения. Вы можете конфигурировать их также как и другие компоненты приложения.
Когда вы конфигурируете встроенный компонент приложения и не указываете класс этого компонента, то значение по умолчанию будет использовано.


	[[yii\web\AssetManager|assetManager]]: используется для управления и опубликования ресурсов приложения.
Более детальная информация представлена в разделе Ресурсы;

	[[yii\db\Connection|db]]: представляет собой соединение с базой данных, через которое вы можете выполнять запросы.
Обратите внимание, что когда вы конфигурируете данный компонент, вы должны указать класс компонента также как и остальные
необходимые параметры, такие как [[yii\db\Connection::dsn]].
Более детальная информация представлена в разделе Объекты доступа к данным (DAO);

	[[yii\base\Application::errorHandler|errorHandler]]: осуществляет обработку PHP ошибок и исключений.
Более детальная информация представлена в разделе Обработка ошибок;

	[[yii\i18n\Formatter|formatter]]: форматирует данные для отображения их конечному пользователю. Например, число может
быть отображено с различными разделителями, дата может быть отображена в формате long.
Более детальная информация представлена в разделе Форматирование данных;

	[[yii\i18n\I18N|i18n]]: используется для перевода сообщений и форматирования.
Более детальная информация представлена в разделе Интернационализация;

	[[yii\log\Dispatcher|log]]: обработка и маршрутизация логов.
Более детальная информация представлена в разделе Логирование;

	[[yii\swiftmailer\Mailer|mailer]]: предоставляет возможности для составления и рассылки писем.
Более детальная информация представлена в разделе Отправка почты;

	[[yii\base\Application::response|response]]: представляет собой данные от сервера, которые будет направлены пользователю.
Более детальная информация представлена в разделе Ответы;

	[[yii\base\Application::request|request]]: представляет собой запрос, полученный от конечных пользователей.
Более детальная информация представлена в разделе Запросы;

	[[yii\web\Session|session]]: информация о сессии. Данный компонент доступен только в [[yii\web\Application|веб приложениях]].
Более детальная информация представлена в разделе Сессии и куки;

	[[yii\web\UrlManager|urlManager]]: используется для разбора и создания URL.
Более детальная информация представлена в разделе Разбор и генерация URL;

	[[yii\web\User|user]]: представляет собой информацию аутентифицированного пользователя.
Данный компонент доступен только в [[yii\web\Application|веб приложениях]].
Более детальная информация представлена в разделе Аутентификация;

	[[yii\web\View|view]]: используется для отображения представлений.
Более детальная информация представлена в разделе Представления.









          

      

      

    

  

  
    
    
    Функциональные тесты
    
    

    
 
  
  

    
      
          
            
  
Функциональные тесты


Note: Данный раздел находится в разработке.



	Codeception Functional Tests [http://codeception.com/docs/04-FunctionalTests]




Запуск функциональных тестов для шаблонов проектов basic и advanced

Следуйте инструкциям в apps/advanced/tests/README.md и apps/basic/tests/README.md.







          

      

      

    

  

  
    
    
    Компоненты
    
    

    
 
  
  

    
      
          
            
  
Компоненты

Компоненты — это главные строительные блоки приложений основанных на Yii. Компоненты наследуются от класса
[[yii\base\Component]] или его наследников. Три главные возможности, которые компоненты предоставляют для других классов:


	Свойства.

	События.

	Поведения.



Как по отдельности, так и вместе, эти возможности делают классы Yii более простыми в настройке и использовании.
Например, пользовательские компоненты, включающие в себя [[yii\jui\DatePicker|виджет выбора даты]], могут быть
использованы в представлении для генерации интерактивных элементов выбора даты:

use yii\jui\DatePicker;

echo DatePicker::widget([
    'language' => 'ru',
    'name'  => 'country',
    'clientOptions' => [
        'dateFormat' => 'yy-mm-dd',
    ],
]);





Свойства виджета легко доступны для записи потому, что его класс унаследован от класса [[yii\base\Component]].

Компоненты — очень мощный инструмент. Но в то же время они немного тяжелее обычных объектов, потому что на поддержку
событий и поведений тратится дополнительные память и процессорное время.
Если ваши компоненты не нуждаются в этих двух возможностях, вам стоит унаследовать их от [[yii\base\Object]],
а не от [[yii\base\Component]]. Поступив так, вы сделаете ваши компоненты такими же эффективными, как и обычные PHP объекты,
но с поддержкой свойств.

При наследовании ваших классов от [[yii\base\Component]] или [[yii\base\Object]], рекомендуется следовать некоторым
соглашениям:


	Если вы переопределяете конструктор, то добавьте последним аргументом параметр $config и затем передайте его
в конструктор предка.

	Всегда вызывайте конструктор предка в конце вашего переопределенного конструктора.

	Если вы переопределяете метод [[yii\base\Object::init()]], убедитесь, что вы вызываете родительскую реализацию этого
метода в начале вашего метода init().



Пример:

<?php

namespace yii\components\MyClass;

use yii\base\Object;

class MyClass extends Object
{
    public $prop1;
    public $prop2;

    public function __construct($param1, $param2, $config = [])
    {
        // ... инициализация происходит перед тем, как будет применена конфигурация.

        parent::__construct($config);
    }

    public function init()
    {
        parent::init();

        // ... инициализация происходит после того, как была применена конфигурация.
    }
}





Следуя этому руководству вы позволите настраивать ваш компонент при создании. Например:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// альтернативный способ
$component = \Yii::createObject([
    'class' => MyClass::className(),
    'prop1' => 3,
    'prop2' => 4,
], [1, 2]);






Info: Способ инициализации через вызов [[Yii::createObject()]] выглядит более сложным. Но в то же время он более
мощный из-за того, что он реализован на самом верху контейнера внедрения зависимостей.


Жизненный цикл объектов класса [[yii\base\Object]] содержит следующие этапы:


	Предварительная инициализация в конструкторе. Здесь вы можете установить значения свойств по умолчанию.

	Конфигурация объекта с помощью $config. Во время конфигурации могут быть перезаписаны значения свойств по умолчанию,
установленные в конструкторе.

	Конфигурация после инициализации в методе [[yii\base\Object::init()|init()]]. Вы можете переопределить этот метод,
для проверки готовности объекта и нормализации свойств.

	Вызов методов объекта.



Первые три шага всегда выполняются из конструктора объекта. Это значит, что если вы получите экземпляр объекта, он уже
будет проинициализирован и готов к работе.





          

      

      

    

  

  
    
    
    Работа с паролями
    
    

    
 
  
  

    
      
          
            
  
Работа с паролями

Многие разработчики знают, что хранить пароль открытым текстом нельзя, но многие до сих пор считают безопасным
использование для хеширования паролей md5 или sha1. Раньше упомянутых алгоритмов было достаточно, но современное
оборудование позволяет подобрать эти хеши очень быстро, методом простого перебора.

Для того, чтобы обеспечить повышенную безопасность паролей ваших пользователей даже в худшем случае (ваше
приложение взломано), нужно использовать алгоритм шифрования, устойчивый к атаке перебором. Лучший вариант в текущий
момент bcrypt. В PHP вы можете использовать хеши bcrypt через функцию crypt [http://php.net/manual/en/function.crypt.php].
Yii обеспечивает две вспомогательные функции, которые упрощают использование функции crypt для генерации и проверки
пароля.

Когда пользователь задаёт пароль (например во время регистрации), пароль должен быть захеширован:

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);





Хеш можно связать с соответствующим атрибутом модели, так чтобы он сохранялся в базе для последующего использования.

Когда пользователь попытается войти, отправленный пароль должен быть хеширован и сравнён с ранее сохранённым хешем:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
    // всё хорошо, пользователь может войти
} else {
    // неправильный пароль
}









          

      

      

    

  

  
    
    
    Ограничение частоты запросов
    
    

    
 
  
  

    
      
          
            
  
Ограничение частоты запросов

Чтобы избежать злоупотреблений, вам следует подумать о добавлении ограничения частоты запросов к вашим API. Например,
вы можете ограничить использование API до 100 вызовов в течение 10 минут для каждого пользователя. Если от пользователя
в течение этого периода времени приходит большее количество запросов, будет возвращаться ответ с кодом состояния 429
(«слишком много запросов»).

Чтобы включить ограничение частоты запросов, [[yii\web\User::identityClass|класс user identity]] должен реализовывать
интерфейс [[yii\filters\RateLimitInterface]]. Этот интерфейс требует реализации следующих трех методов:


	getRateLimit(): возвращает максимальное количество разрешенных запросов и период времени, например [100, 600], что
означает не более 100 вызовов API в течение 600 секунд.

	loadAllowance(): возвращает оставшееся количество разрешенных запросов и UNIX-timestamp последней проверки
ограничения.

	saveAllowance(): сохраняет оставшееся количество разрешенных запросов и текущий UNIX-timestamp.



Вы можете использовать два столбца в таблице user для хранения количества разрешённых запросов и времени последней проверки.
В методах loadAllowance() и saveAllowance() можно реализовать чтение и сохранение значений этих столбцов в соответствии
с данными текущего аутентифицированного пользователя. Для улучшения производительности можно попробовать хранить эту
информацию в кэше или NoSQL хранилище.

Реализация в модели User может быть, например, такой:

public function getRateLimit($request, $action)
{
    return [$this->rateLimit, 1]; // $rateLimit запросов в секунду
}

public function loadAllowance($request, $action)
{
    return [$this->allowance, $this->allowance_updated_at];
}

public function saveAllowance($request, $action, $allowance, $timestamp)
{
    $this->allowance = $allowance;
    $this->allowance_updated_at = $timestamp;
    $this->save();
}





Как только соответствующий интерфейс будет реализован в классе identity, Yii начнёт автоматически проверять ограничения
частоты запросов при помощи [[yii\filters\RateLimiter]], фильтра действий для [[yii\rest\Controller]]. При превышении
ограничений будет выброшено исключение [[yii\web\TooManyRequestsHttpException]].

Вы можете настроить ограничитель частоты запросов в ваших классах REST-контроллеров следующим образом:

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['rateLimiter']['enableRateLimitHeaders'] = false;
    return $behaviors;
}





При включенном ограничении частоты запросов каждый ответ, по умолчанию, возвращается со следующими HTTP-заголовками,
содержащими информацию о текущих ограничениях:


	X-Rate-Limit-Limit: максимальное количество запросов, разрешённое в течение периода времени;

	X-Rate-Limit-Remaining: оставшееся количество разрешённых запросов в текущем периоде времени;

	X-Rate-Limit-Reset: количество секунд, которое нужно подождать до получения максимального количества разрешённых
запросов.



Вы можете отключить эти заголовки, установив свойство [[yii\filters\RateLimiter::enableRateLimitHeaders]] в false,
как показано в примере кода выше.





          

      

      

    

  

  
    
    
    События
    
    

    
 
  
  

    
      
          
            
  
События

События - это механизм, внедряющий элементы собственного кода в существующий код в определенные моменты его исполнения. К событию можно присоединить собственный код, который будет выполняться автоматически при срабатывании события. Например, объект, отвечающий за почту, может инициировать событие messageSent при успешной отправке сообщения. При этом если нужно отслеживать успешно отправленные сообщения, достаточно присоединить соответствующий код к событию messageSent.

Для работы с событиями Yii использует базовый класс [[yii\base\Component]]. Если класс должен инициировать события, его нужно унаследовать от [[yii\base\Component]] или потомка этого класса.


Обработчики событий 

Обработчик события - это callback-функция PHP [http://www.php.net/manual/ru/language.types.callable.php], которая выполняется при срабатывании события, к которому она присоединена. Можно использовать следующие callback-функции:


	глобальную функцию PHP, указав строку с именем функции (без скобок), например, 'trim';

	метод объекта, указав массив, содержащий строки с именами объекта и метода (без скобок), например, [$object, 'methodName'];

	статический метод класса, указав массив, содержащий строки с именами класса и метода (без скобок), например, ['ClassName', 'methodName'];

	анонимную функцию, например, function ($event) { ... }.



Сигнатура обработчика события выглядит следующим образом:

function ($event) {
    // $event - это объект класса yii\base\Event или его потомка
}





Через параметр $event обработчик события может получить следующую информацию о возникшем событии:


	[[yii\base\Event::name|event name]]

	[[yii\base\Event::sender|event sender]]: объект, метод trigger() которого был вызван

	[[yii\base\Event::data|custom data]]: данные, которые были предоставлены во время присоединения обработчика события (будет описано ниже)






Присоединение обработчиков событий 

Обработчики события присоединяются с помощью метода [[yii\base\Component::on()]]. Например:

$foo = new Foo;

// обработчик - глобальная функция
$foo->on(Foo::EVENT_HELLO, 'function_name');

// обработчик - метод объекта
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// обработчик - статический метод класса
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// обработчик - анонимная функция
$foo->on(Foo::EVENT_HELLO, function ($event) {
    // логика обработки события
});





Также обработчики событий можно присоединять с помощью конфигураций. Дополнительную информацию см. в разделе Конфигурации.

Присоединяя обработчик события, можно передать дополнительные данные с помощью третьего параметра метода [[yii\base\Component::on()]]. Эти данные будут доступны в обработчике, когда сработает событие и он будет вызван. Например:

// Следующий код выводит "abc" при срабатывании события
// так как в $event->data содержатся данные, которые переданы в качестве третьего аргумента метода "on"
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
    echo $event->data;
}








Порядок обработки событий

К одному событию можно присоединить несколько обработчиков. При срабатывании события обработчики будут вызываться в том порядке, к котором они присоединялись к событию. Чтобы запретить в обработчике вызов всех следующих за ним обработчиков, необходимо установить свойство [[yii\base\Event::handled]] параметра $event в true:

$foo->on(Foo::EVENT_HELLO, function ($event) {
    $event->handled = true;
});





По умолчанию, новые обработчики присоединяются к концу очереди обработчиков, уже существующей у события.
В результате при срабатывании события обработчик выполнится последним.
Чтобы обработчик присоединился к началу очереди и запускался первым, при вызове [[yii\base\Component::on()]] в качестве четвертого параметра $append следует передать false:

$foo->on(Foo::EVENT_HELLO, function ($event) {
    // ...
}, $data, false);








Инициирование событий 

События инициируются при вызове метода [[yii\base\Component::trigger()]]. Методу нужно передать имя события, а при необходимости - объект события, в котором описываются параметры, передаваемые обработчикам событий. Например:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
    const EVENT_HELLO = 'hello';

    public function bar()
    {
        $this->trigger(self::EVENT_HELLO);
    }
}





Показанный выше код инициирует событие hello при каждом вызове метода bar().


Tip: Желательно для обозначения имен событий использовать константы класса. В предыдущем примере константа EVENT_HELLO обозначает событие hello. У такого подхода три преимущества. Во-первых, исключаются опечатки. Во-вторых, для событий работает автозавершение в различных средах разработки. В-третьих, чтобы узнать, какие события поддерживаются классом, достаточно проверить константы, объявленные в нем.


Иногда при инициировании события может понадобиться передать его обработчику дополнительную информацию. Например, объекту, отвечающему за почту, может понадобиться передать обработчику события messageSent определенные данные, раскрывающие смысл отправленных почтовых сообщений. Для этого в качестве второго параметра методу [[yii\base\Component::trigger()]] передается объект события. Объект события должен быть экземпляром класса [[yii\base\Event]] или его потомка. Например:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
    public $message;
}

class Mailer extends Component
{
    const EVENT_MESSAGE_SENT = 'messageSent';

    public function send($message)
    {
        // ...отправка $message...

        $event = new MessageEvent;
        $event->message = $message;
        $this->trigger(self::EVENT_MESSAGE_SENT, $event);
    }
}





При вызове метода [[yii\base\Component::trigger()]] будут вызваны все обработчики, присоединенные к указанному событию.




Отсоединение обработчиков событий 

Для отсоединения обработчика от события используется метод [[yii\base\Component::off()]]. Например:

// обработчик - глобальная функция
$foo->off(Foo::EVENT_HELLO, 'function_name');

// обработчик - метод объекта
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// обработчик - статический метод класса
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// обработчик - анонимная функция
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);





Учтите, что в общем случае отсоединять обработчики - анонимные функции можно только если они где-то сохраняются в момент присоединения к событию. В предыдущем примере предполагается, что анонимная функция сохранена в переменной $anonymousFunction.

Чтобы отсоединить ВСЕ обработчики от события, достаточно вызвать [[yii\base\Component::off()]] без второго параметра:

$foo->off(Foo::EVENT_HELLO);








Обработчики событий на уровне класса 

Во всех предыдущих примерах мы рассматривали присоединение событий на уровне экземпляров. Есть случаи, когда необходимо обрабатывать события, которые инициируются любым экземпляром класса, а не только конкретным экземпляром. В таком случае присоединять обработчик события к каждому экземпляру класса не нужно. Достаточно присоединить обработчик на уровне класса, вызвав статический метод [[yii\base\Event::on()]].

Например, объект Active Record инициирует событие [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] после добавления в базу данных новой записи. Чтобы отслеживать записи, добавленные в базу данных каждым объектом Active Record, можно использовать следующий код:

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
    Yii::trace(get_class($event->sender) . ' добавлен');
});





Обработчик будет вызван при срабатывании события [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] в экземплярах класса [[yii\db\ActiveRecord|ActiveRecord]] или его потомков. В обработчике можно получить доступ к объекту, который инициировал событие, с помощью свойства $event->sender.

При срабатывании события будут в первую очередь вызваны обработчики на уровне экземпляра, а затем - обработчики на уровне класса.

Инициировать событие на уровне класса можно с помощью статического метода [[yii\base\Event::trigger()]]. Событие на уровне класса не связано ни с одним конкретным объектом. В таком случае будут вызваны только обработчики события на уровне класса. Например:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
    var_dump($event->sender);  // выводит "null"
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);





Обратите внимание, что в данном случае $event->sender имеет значение null вместо экзепляра класса, который инициировал событие.


Note: Поскольку обработчики на уровне класса отвечают на события, инициируемые всеми экземплярами этого класса и всех его потомков, их следует использовать с осторожностью, особенно в случае базовых классов низкого уровня, таких как [[yii\base\Object]].


Отсоединить обработчик события на уровне класса можно с помощью метода [[yii\base\Event::off()]]. Например:

// отсоединение $handler
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// отсоединяются все обработчики Foo::EVENT_HELLO
Event::off(Foo::className(), Foo::EVENT_HELLO);








Обработчики событий на уровне интерфейсов 

Существует еще более абстрактный способ обработки событий.
Вы можете создать отдельный интерфейс для общего события и реализовать его в классах, где это необходимо.

Например, создадим следующий интерфейс:

namespace app\interfaces;

interface DanceEventInterface
{
    const EVENT_DANCE = 'dance';
}





И два класса, которые его реализовывают:

class Dog extends Component implements DanceEventInterface
{
    public function meetBuddy()
    {
        echo "Woof!";
        $this->trigger(DanceEventInterface::EVENT_DANCE);
    }
}

class Developer extends Component implements DanceEventInterface
{
    public function testsPassed()
    {
        echo "Yay!";
        $this->trigger(DanceEventInterface::EVENT_DANCE);
    }
}





Для обработки события EVENT_DANCE, инициализированного любым из этих классов,
вызовите [[yii\base\Event::on()|Event:on()]], передав ему в качестве первого параметра имя интерфейса.

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
    Yii::trace(get_class($event->sender) . ' just danced'); // Оставит запись в журнале о том, что кто-то танцевал
});





Вы можете также инициализировать эти события:

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);





Однако, невозможно инициализировать событие во всех классах, которые реализуют интерфейс:

// НЕ БУДЕТ РАБОТАТЬ
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);





Отсоединить обработчик события можно с помощью метода [[yii\base\Event::off()|Event::off()]]. Например:

// отсоединяет $handler
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// отсоединяются все обработчики DanceEventInterface::EVENT_DANCE
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);








Глобальные события 

Yii поддерживает так называемые глобальные события, которые на самом деле основаны на нестандартном использовании описанного выше механизма событий. Для глобальных событий нужен глобально доступный объект-синглтон, например, экземпляр приложения - application.

Чтобы создать глобальное событие, отправитель сообщения вызывает метод trigger() синглтона, а не свой собственный метод trigger(). Аналогичным образом обработчики события также присоединяются к событиям синглтона. Например:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
    echo get_class($event->sender);  // выводит "app\components\Foo"
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));





Преимущество глобальных событий в том, что им не нужен объект, к событию которого бы присоединялся обработчик и объект, с помощью которого бы это событие инициировалось. Вместо этого и для присоединения обработчика, и для инициирования события используется синглтон (например, экземпляр приложения).

Тем не менее, так как пространство имен глобальных событий едино для всего приложения, их имена нельзя назначать бездумно. Например, полезными могут быть искусственные пространства имен (“frontend.mail.sent”, “backend.mail.sent”).







          

      

      

    

  

  
    
    
    Обработка ошибок
    
    

    
 
  
  

    
      
          
            
  
Обработка ошибок

Если при обработке запроса к RESTful API в запросе пользователя обнаруживается ошибка или происходит
что-то непредвиденное на сервере, вы можете просто выбрасывать исключение, чтобы уведомить пользователя о нештатной ситуации.
Если же вы можете установить конкретную причину ошибки (например, запрошенный ресурс не существует), вам следует подумать
о том, чтобы выбрасывать исключение с соответствующим кодом состояния HTTP (например, [[yii\web\NotFoundHttpException]],
соответствующее коду состояния 404). Yii отправит ответ с соответствующим
HTTP-кодом и текстом. Он также включит в тело ответа сериализованное представление
исключения. Например:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "name": "Not Found Exception",
    "message": "The requested resource was not found.",
    "code": 0,
    "status": 404
}





Сводный список кодов состояния HTTP, используемых REST-фреймворком Yii:


	200: OK. Все сработало именно так, как и ожидалось.

	201: Ресурс был успешно создан в ответ на POST-запрос. Заголовок Location
содержит URL, указывающий на только что созданный ресурс.

	204: Запрос обработан успешно, и в ответе нет содержимого (для запроса DELETE, например).

	304: Ресурс не изменялся. Можно использовать закэшированную версию.

	400: Неверный запрос. Может быть связано с разнообразными проблемами на стороне пользователя, такими как неверные JSON-данные
в теле запроса, неправильные параметры действия, и т.д.

	401: Аутентификация завершилась неудачно.

	403: Аутентифицированному пользователю не разрешен доступ к указанной точке входа API.

	404: Запрошенный ресурс не существует.

	405: Метод не поддерживается. Сверьтесь со списком поддерживаемых HTTP-методов в заголовке Allow.

	415: Не поддерживаемый тип данных. Запрашивается неправильный тип данных или номер версии.

	422: Проверка данных завершилась неудачно (в ответе на POST-запрос, например). Подробные сообщения об ошибках смотрите в теле ответа.

	429: Слишком много запросов. Запрос отклонен из-за превышения ограничения частоты запросов.

	500: Внутренняя ошибка сервера. Возможная причина — ошибки в самой программе.




Свой формат ответа с ошибкой 

Вам может понадобиться изменить формат ответа с ошибкой. Например, вместо использования разных статусов ответа HTTP
для разных ошибок, вы можете всегда отдавать статус 200, а реальный код статуса отдавать как часть JSON ответа:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "success": false,
    "data": {
        "name": "Not Found Exception",
        "message": "The requested resource was not found.",
        "code": 0,
        "status": 404
    }
}





Для этого можно использовать событие beforeSend компонента response прямо в конфигурации приложения:

return [
    // ...
    'components' => [
        'response' => [
            'class' => 'yii\web\Response',
            'on beforeSend' => function ($event) {
                $response = $event->sender;
                if ($response->data !== null && !empty(Yii::$app->request->get('suppress_response_code'))) {
                    $response->data = [
                        'success' => $response->isSuccessful,
                        'data' => $response->data,
                    ];
                    $response->statusCode = 200;
                }
            },
        ],
    ],
];





Приведённый выше код изменит формат ответа (как для удачного запроса, так и для ошибок) если передан GET-параметр
suppress_response_code.







          

      

      

    

  

  
    
    
    Работа с базами данных
    
    

    
 
  
  

    
      
          
            
  
Работа с базами данных

Этот раздел расскажет о том, как создать новую страницу, отображающую данные по странам, полученные из таблицы countries базы данных. Для достижения этой цели вам будет необходимо настроить подключение к базе данных, создать класс Active Record, определить action, и создать view.

Изучив эту часть, вы научитесь:


	Настраивать подключение к БД

	Определять класс Active Record

	Запрашивать данные, используя класс Active Record

	Отображать данные во view с использованием пагинации



Обратите внимание, чтобы усвоить этот раздел, вы должны иметь базовые знания и навыки использования баз данных.
В частности, вы должны знать, как создать базу данных, и как выполнять SQL запросы, используя клиентские инструменты для работы с БД.


Подготавливаем базу данных 

Для начала, создайте базу данных под названием yii2basic, из которой вы будете получать данные в вашем приложении.
Вы можете создать базу данных SQLite, MySQL, PostgreSQL, MSSQL или Oracle, так как Yii имеет встроенную поддержку для многих баз данных. Для простоты, в дальнейшем описании будет подразумеваться MySQL.

После этого создайте в базе данных таблицу country, и добавьте в неё немного демонстрационных данных. Вы можете запустить следующую SQL инструкцию, чтобы сделать это:

CREATE TABLE `country` (
  `code` CHAR(2) NOT NULL PRIMARY KEY,
  `name` CHAR(52) NOT NULL,
  `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);





На данный момент у вас есть база данных под названием yii2basic, и внутри неё таблица country с тремя столбцами, содержащими десять строк данных.




Настраиваем подключение к БД 

Перед продолжением убедитесь, что у вас установлены PHP-расширение PDO [http://www.php.net/manual/en/book.pdo.php] и драйвер PDO для используемой вами базы данных (н-р pdo_mysql для MySQL). Это базовое требование в случае использования вашим приложением реляционной базы данных.
После того, как они установлены, откройте файл config/db.php и измените параметры на верные для вашей базы данных. По умолчанию этот файл содержит следующее:

<?php

return [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=localhost;dbname=yii2basic',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
];





Файл config/db.php - типичный конфигурационный инструмент, базирующийся на файлах. Данный конфигурационный файл определяет параметры, необходимые для создания и инициализации экземпляра [[yii\db\Connection]], через который вы можете делать SQL запросы к подразумеваемой базе данных.

Подключение к БД, настроенное выше, доступно в коде приложения через выражение Yii::$app->db.


Info: файл config/db.php будет подключен главной конфигурацией приложения config/web.php,
описывающей то, как экземпляр приложения должен быть инициализирован.
Для детальной информации, пожалуйста, обратитесь к разделу Конфигурации.


Если вам необходимо работать с базами данных, поддержка которых не включена непосредственно в фреймворк, стоит обратить
внимание на следующие расширения:


	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]






Создаём потомка Active Record 

Чтобы представлять и получать данные из таблицы country, создайте класс - потомок Active Record, под названием Country, и сохраните его в файле models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}





Класс Country наследуется от [[yii\db\ActiveRecord]]. Вам не нужно писать ни строчки кода внутри него! С кодом, приведённым выше, Yii свяжет имя таблицы с именем класса.


Info: Если нет возможности задать прямой зависимости между именем таблицы и именем класса, вы можете переопределить
метод [[yii\db\ActiveRecord::tableName()]], чтобы явно задать имя связанной таблицы.


Используя класс Country, вы можете легко манипулировать данными в таблице country, как показано в этих фрагментах:

use app\models\Country;

// получаем все строки из таблицы "country" и сортируем их по "name"
$countries = Country::find()->orderBy('name')->all();

// получаем строку с первичным ключом "US"
$country = Country::findOne('US');

// отобразит "United States"
echo $country->name;

// меняем имя страны на "U.S.A." и сохраняем в базу данных
$country->name = 'U.S.A.';
$country->save();






Info: Active Record - мощный способ доступа и манипулирования данными БД в объектно-ориентированном стиле.
Вы можете найти подробную информацию в разделе Active Record. В качестве альтернативы, вы также можете взаимодействовать с базой данных, используя более низкоуровневый способ доступа, называемый Data Access Objects.





Создаём Action 

Для того, чтобы показать данные по странам конечным пользователям, вам надо создать новый action. Вместо размещения нового action’a в контроллере site, как вы делали в предыдущих разделах, будет иметь больше смысла создать новый контроллер специально для всех действий, относящихся к данным по странам. Назовите новый контроллер CountryController, и создайте action index внутри него, как показано ниже.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
    public function actionIndex()
    {
        $query = Country::find();

        $pagination = new Pagination([
            'defaultPageSize' => 5,
            'totalCount' => $query->count(),
        ]);

        $countries = $query->orderBy('name')
            ->offset($pagination->offset)
            ->limit($pagination->limit)
            ->all();

        return $this->render('index', [
            'countries' => $countries,
            'pagination' => $pagination,
        ]);
    }
}





Сохраните код выше в файле controllers/CountryController.php.

Action index вызывает Country::find(). Данный метод Active Record строит запрос к БД и извлекает все данные из таблицы country.
Чтобы ограничить количество стран, возвращаемых каждым запросом, запрос разбивается на страницы с помощью объекта [[yii\data\Pagination]]. Объект Pagination служит двум целям:


	Устанавливает пункты offset и limit для SQL инструкции, представленной запросом, чтобы она возвращала только одну страницу данных за раз (в нашем случае максимум 5 строк на страницу).

	Он используется во view для отображения пагинатора, состоящего из набора кнопок с номерами страниц, это будет разъяснено в следующем подразделе.



В конце кода action index выводит view с именем index, и передаёт в него данные по странам вместе c информацией о пагинации.




Создаём View 

Первым делом создайте поддиректорию с именем country внутри директории views. Эта папка будет использоваться для хранения всех view, выводимых контроллером country. Внутри директории views/country создайте файл с именем index.php, содержащий следующий код:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>
<ul>
<?php foreach ($countries as $country): ?>
    <li>
        <?= Html::encode("{$country->name} ({$country->code})") ?>:
        <?= $country->population ?>
    </li>
<?php endforeach; ?>
</ul>

<?= LinkPager::widget(['pagination' => $pagination]) ?>





View имеет 2 части относительно отображения данных по странам. В первой части предоставленные данные по странам выводятся как неупорядоченный HTML-список.
Во второй части выводится виджет [[yii\widgets\LinkPager]], используя информацию о пагинации, переданную из action во view. Виджет LinkPager отображает набор постраничных кнопок. Клик по любой из них обновит данные по странам в соответствующей странице.




Испытываем в действии 

Чтобы увидеть, как работает весь вышеприведённый код, перейдите по следующей ссылке в своём браузере:

http://hostname/index.php?r=country%2Findex





[image: Список Стран]

В начале вы увидите страницу, показывающую пять стран. Под странами вы увидите пагинатор с четырьмя кнопками. Если вы кликните по кнопке “2”, то увидите страницу, отображающую другие пять стран из базы данных: вторая страница записей.
Посмотрев внимательней, вы увидите, что URL в браузере тоже сменилось на

http://hostname/index.php?r=country%2Findex&page=2





За кадром, [[yii\data\Pagination|Pagination]] предоставляет всю необходимую функциональность для постраничной разбивки набора данных:


	В начале [[yii\data\Pagination|Pagination]] показывает первую страницу, которая отражает SELECT запрос стран с параметрами LIMIT 5 OFFSET 0. Как результат, первые пять стран будут получены и отображены.

	Виджет [[yii\widgets\LinkPager|LinkPager]] выводит кнопки страниц используя URL’ы, созданные [[yii\data\Pagination::createUrl()|Pagination]]. Эти URL’ы будут содержать параметр запроса page, который представляет различные номера страниц.

	Если вы кликните по кнопке “2”, сработает и обработается новый запрос для маршрута country/index. Таким образом новый запрос стран будет иметь параметры LIMIT 5 OFFSET 5 и вернет следующие пять стран для отображения.






Заключение 

В этом разделе вы научились работать с базой данных. Также вы научились получать и отображать данные с постраничной разбивкой с помощью [[yii\data\Pagination]] и [[yii\widgets\LinkPager]].

В следующем разделе вы научитесь использовать мощный инструмент генерации кода, называемый Gii, чтобы с его помощью быстро осуществлять некоторые часто используемые функции, такие, как операции Create-Read-Update-Delete (CRUD) для работы с данными в таблице базы данных. На самом деле код, который вы только что написали, в Yii может быть полностью сгенерирован автоматически с использованием Gii.







          

      

      

    

  

  
    
    
    Работа со сторонним кодом
    
    

    
 
  
  

    
      
          
            
  
Работа со сторонним кодом

Иногда необходимо использовать сторонний код в приложениях Yii. Или же есть потребность использовать Yii в качестве библиотеки в сторонних системах. В этом разделе мы рассмотрим, как это происходит.


Использование сторонних библиотек в Yii 

Перед тем, как использовать стороннюю библиотеку в приложении Yii, в первую очередь следует убедиться, что в ней либо явно настроена загрузка классов, либо классы могут загружаться автоматически.


Использование пакетов Composer 

Многие сторонние библиотеки поставляются в виде пакетов Composer [https://getcomposer.org/].
Для установки таких библиотек достаточно проделать два простых шага:


	Изменить файл composer.json своего приложения и указать, какие пакеты Composer нужно устанавливать.

	Выполнить команду composer install, чтобы установить указанные пакеты.



Классы установленных пакетов Composer поддерживают автозагрузку с помощью автозагрузчика Composer. Убедитесь, что во входном скрипте приложения присутствуют следующие строки, подключающие автозагрузчик Composer:

// подключение автозагрузчика Composer
require(__DIR__ . '/../vendor/autoload.php');

// подключение файла класса Yii
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');








Использование отдельных библиотек 

Если библиотека не поставляется в виде пакета Composer, необходимо установить ее согласно ее руководству по установке.
В большинстве случаев потребуется вручную скачать файл с релизом и распаковать его в директорию BasePath/vendor, где BasePath соответствует базовому пути приложения.

Если библиотека использует собственный автозагрузчик классов, его можно подключить во входном скрипте приложения. Желательно подключить его до того, как подключается файл Yii.php, чтобы при автоматической загрузке классов у автозагрузчика классов Yii был приоритет.

Если библиотека не поставляется с автозагрузчиком классов, но конвенция именования ее классов соответствует PSR-4 [http://www.php-fig.org/psr/psr-4/], для загрузки ее классов можно использовать автозагрузчик Yii. Для этого достаточно для каждого корневого пространства имен, которые используются в ее классах, объявить корневой псевдоним. Предположим, что библиотека установлена в директорию vendor/foo/bar, а ее классы объявлены в корневом пространстве имен xyz. В конфигурации приложения можно использовать следующий код:

[
    'aliases' => [
        '@xyz' => '@vendor/foo/bar',
    ],
]





Если ни один из предыдущих вариантов не подходит, скорее всего для использования библиотеки нужно настроить в конфигурации PHP директиву include_path. Настройте ее, следуя инструкциям, которые поставляются с библиотекой.

В наихудшем случае библиотека требует явного подключения всех файлов, содержащих классы. При этом для подключения классов по требованию можно проделать следующее:


	Определить, какие классы входят в состав библиотеки.

	Перечислить классы и пути к соответствующим файлам в Yii::$classMap во входном скрипте приложения. Например,



Yii::$classMap['Class1'] = 'path/to/Class1.php';
Yii::$classMap['Class2'] = 'path/to/Class2.php';










Использование Yii в сторонних системах 

Поскольку в Yii реализована масса полезных функций, они могут пригодиться при разработке или расширении сторонних систем, таких как WordPress и Joomla, или приложений, разработанных с помощью других PHP-фреймворков. Например, в сторонней системе можно задействовать класс [[yii\helpers\ArrayHelper]] или использовать функционал Active Record. Для этого обычно нужно сделать две вещи: установить Yii и подключить Yii.

Если сторонняя система использует для управления зависимостями Composer, Yii можно просто установить с помощью следующих команд:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer require yiisoft/yii2
composer install





Первая команда устанавливает composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/], который позволяет управлять зависимостями пакетов bower и npm через Composer. Даже если вы хотите воспользоваться слоем абстракции баз данных или другими элементами Yii, не связанными с ресурсами, этот плагин все равно придется установить, так как без него не установится пакет Yii.
В разделе об установке Yii более подробно описана работа с Composer и даны решения проблем, которые могут возникнуть при установке.

Также можно скачать [http://www.yiiframework.com/download/] файл релиза Yii и распаковать его в директорию BasePath/vendor.

Далее следует изменить входной скрипт сторонней системы, поместив в его начало следующий код:

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$yiiConfig = require(__DIR__ . '/../config/yii/web.php');
new yii\web\Application($yiiConfig); // НЕ ВЫЗЫВАЙТЕ run() в этом месте





Как видите, этот код очень похож на код входного скрипта типичного приложения Yii. Единственное отличие заключается в том, что после создания экземпляра приложения не вызывается метод run(). Это связано с тем, что при вызове run() Yii захватывает контроль над процессом обработки запроса, что в данном случае не требуется, так как эту задачу выполняет существующее приложение.

Как и в случае с приложением Yii, нужно настроить экземпляр приложения исходя из окружения запущенной сторонней системы. Например, чтобы воспользоваться функционалом Active Record, нужно передать в компонент приложения db настройки для подключения к базе данных, которую использует сторонняя система.

Это позволит задействовать большинство функционала, который предоставляет Yii. Например, можно будет создавать классы типа Active Record, и с их помощью взаимодействовать с базой данных.




Использование Yii 2 в связке с Yii 1 

Если в прошлом вам приходилось использовать Yii 1, не исключено, что у вас до сих пор где-то используются приложения на этой платформе. Вместо того, чтобы переписывать все приложение под Yii 2, может быть целесообразно расширить его используя отдельные функции, которые появились в Yii 2.
Для этого нужно выполнить следующие действия.


Note: Yii 2 требует PHP 5.4 или выше. Убедитесь, что и сервер, и существующее приложение поддерживают это.


Во-первых, установите Yii 2 в существующем приложении, выполняя действия, описанные в предыдущем подразделе.

Во-вторых, внесите следующие изменения во входной скрипт приложения:

// подключение модифицированного класса Yii, описанного ниже
require(__DIR__ . '/../components/Yii.php');

// настройка приложения Yii 2
$yii2Config = require(__DIR__ . '/../config/yii2/web.php');
new yii\web\Application($yii2Config); // НЕ ВЫЗЫВАЙТЕ run()

// настройка приложения Yii 1
$yii1Config = require(__DIR__ . '/../config/yii1/main.php');
Yii::createWebApplication($yii1Config)->run();





Так как класс Yii используется и в Yii 1, и в Yii 2, нужно будет создать его модифицированную версию, обслуживающую обе версии фреймворка.
В приведенном выше коде подключается модифицированный файл класса Yii со следующим содержимым:

$yii2path = '/path/to/yii2';
require($yii2path . '/BaseYii.php'); // Yii 2.x

$yii1path = '/path/to/yii1';
require($yii1path . '/YiiBase.php'); // Yii 1.x

class Yii extends \yii\BaseYii
{
    // скопируйте и вставьте код из YiiBase (1.x)
}

Yii::$classMap = include($yii2path . '/classes.php');
// регистрация автозагрузчика Yii 2 через Yii 1
Yii::registerAutoloader(['Yii', 'autoload']);
// создание контейнера внедрения зависимостей
Yii::$container = new yii\di\Container;





Вот и все! Теперь в любом месте кода можно с помощью конструкции Yii::$app получить доступ к экземпляру приложения Yii 2, а с помощью конструкции Yii::app() - к экземпляру приложения Yii 1:

echo get_class(Yii::app()); // выводит 'CWebApplication'
echo get_class(Yii::$app);  // выводит 'yii\web\Application'











          

      

      

    

  

  
    
    
    Псевдонимы
    
    

    
 
  
  

    
      
          
            
  
Псевдонимы

Псевдонимы используются для обозначения путей к файлам или URL адресов и помогают избежать использования абсолютных путей
или URL в коде. Для того, чтобы не перепутать псевдоним с обычным путём к файлу или URL, он должен начинаться с @. В Yii
имеется множество заранее определённых псевдонимов. Например, @yii указывает на директорию, в которую был установлен
Yii framework, а @web можно использовать для получения базового URL текущего приложения.


Создание псевдонимов 

Для создания псевдонима пути к файлу или URL используется метод [[Yii::setAlias()]]:

// псевдоним пути к файлу
Yii::setAlias('@foo', '/path/to/foo');

// псевдоним URL
Yii::setAlias('@bar', 'http://www.example.com');






Note: псевдоним пути к файлу или URL не обязательно указывает на существующий файл или ресурс.


Используя уже заданный псевдоним, вы можете получить на основе него новый без вызова [[Yii::setAlias()]]. Сделать это
можно, добавив в его конец /, за которым следует один или более сегментов пути. Псевдонимы, определённые при помощи
[[Yii::setAlias()]], являются корневыми псевдонимами, в то время как полученные из них называются производными
псевдонимами. К примеру, @foo является корневым псевдонимом, а @foo/bar/file.php — производным.

Вы можете задать новый псевдоним, используя ранее созданный псевдоним (не важно, корневой он или производный):

Yii::setAlias('@foobar', '@foo/bar');





Корневые псевдонимы, как правило, создаются на этапе предварительной загрузки (bootstrapping).
Например, вы можете вызвать [[Yii::setAlias()]] в входном скрипте. Для удобства, в
приложении (Application) предусмотрено свойство aliases, которое можно задать через
конфигурацию приложения:

return [
    // ...
    'aliases' => [
        '@foo' => '/path/to/foo',
        '@bar' => 'http://www.example.com',
    ],
];








Преобразование псевдонимов 

Метод [[Yii::getAlias()]] преобразует корневой псевдоним в путь к файлу или URL, который этот псевдоним представляет.
Этот же метод может работать и с производными псевдонимами:

echo Yii::getAlias('@foo');               // выведет: /path/to/foo
echo Yii::getAlias('@bar');               // выведет: http://www.example.com
echo Yii::getAlias('@foo/bar/file.php');  // выведет: /path/to/foo/bar/file.php





Путь или URL, представленный производным псевдонимом, определяется путём замены в нём части, соответствующей корневому
псевдониму, на соответствующий ему путь или URL.


Note: Метод [[Yii::getAlias()]] не проверяет фактического существования получаемого пути или URL.


Корневой псевдоним может содержать знаки ‘/’. При этом метод [[Yii::getAlias()]] корректно определит, какая часть
псевдонима является корневой и верно сформирует путь или URL:

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php');  // выведет: /path/to/foo/test/file.php
Yii::getAlias('@foo/bar/file.php');   // выведет: /path2/bar/file.php





Если бы @foo/bar не был объявлен корневым псевдонимом, последняя строка вывела бы  /path/to/foo/bar/file.php.




Использование псевдонимов 

Псевдонимы распознаются во многих частях Yii без необходимости предварительно вызывать [[Yii::getAlias()]] для
получения пути или URL. Например, [[yii\caching\FileCache::cachePath]] принимает как обычный путь к файлу, так и
псевдоним пути благодаря префиксу @, который позволяет их различать.

use yii\caching\FileCache;

$cache = new FileCache([
    'cachePath' => '@runtime/cache',
]);





Для того, чтобы узнать поддерживает ли метод или свойство псевдонимы, обратитесь к документации API.




Заранее определённые псевдонимы 

В Yii заранее определены псевдонимы для часто используемых путей к файлам и URL:


	@yii: директория, в которой находится файл BaseYii.php (директория фреймворка).

	@app: [[yii\base\Application::basePath|базовый путь]] текущего приложения.

	@runtime: [[yii\base\Application::runtimePath|директория runtime]] текущего приложения.

	@vendor: [[yii\base\Application::vendorPath|директория vendor Composer]].

	@webroot: вебрут текущего веб приложения (там где находится входной скрипт index.php).

	@web: базовый URL текущего приложения.



Псевдоним @yii задаётся в момент подключения файла Yii.php во входном скрипте.
Остальные псевдонимы задаются в конструкторе приложения в момент применения конфигурации.




Псевдонимы расширений 

Для каждого расширения, устанавливаемого через Composer, автоматически задаётся псевдоним.
Его имя соответствует корневому пространству имён расширения в соответствии с его composer.json. Псевдоним представляет
путь к корневой директории пакета. Например, если вы установите расширение yiisoft/yii2-jui, то вам автоматически станет
доступен псевдоним @yii/jui. Он создаётся на этапе первоначальной загрузки (bootstrapping)
примерно так:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');











          

      

      

    

  

  
    
    
    Настройка тестового окружения
    
    

    
 
  
  

    
      
          
            
  
Настройка тестового окружения


Note: Данный раздел находится в разработке.


Yii 2 официально поддерживает интеграцию с фреймворком для тестирования Codeception [https://github.com/Codeception/Codeception],
который позволяет вам проводить следующие типы тестов:


	Модульное тестирование - проверяет что отдельный модуль кода работает верно;

	Функциональное тестирование - проверяет пользовательские сценарии через эмуляцию браузера;

	Приёмочное тестирование - проверяет пользовательские сценарии в браузере.



Все три типа тестов представлены в шаблонах проектов
yii2-basic [https://github.com/yiisoft/yii2-app-basic] и
yii2-advanced [https://github.com/yiisoft/yii2-app-advanced].

Для того, чтобы запустить тесты необходимо установить Codeception [https://github.com/Codeception/Codeception].
Сделать это можно как локально, то есть только для текущего проекта, так и глобально для компьютера разработчика.

Для локальной установки используйте следующие команды:

composer require "codeception/codeception=2.1.*"
composer require "codeception/specify=*"
composer require "codeception/verify=*"





Для глобальной установки необходимо добавить директиву global:

composer global require "codeception/codeception=2.1.*"
composer global require "codeception/specify=*"
composer global require "codeception/verify=*"





Если вы никогда не пользовались Composer для установки глобальных пакетов, запустите composer global status.
На выходе вы должны получить:

Changed current directory to <directory>





Затем <directory>/vendor/bin добавьте в переменную окружения PATH. После этого можно использовать codecept глобально
из командной строки.


Note: глобальная установка позволяет вам использовать Codeception для всех проектов на компьютере разработчика
путём запуска команды codecept без указания пути. Тем не менее, данный подход может не подойти. К примеру, в двух
разных проектах может потребоваться установить разные версии Codeception. Для простоты все команды в разделах про
тестирование используются так, будто Codeception установлен глобально.



Настройка веб-сервера Apache

Если вы используете Apache и настроили его как описано в разделе «Установка Yii», то для тестов вам необходимо создать отдельный виртуальный хост который будет работать с той же папкой, но использовать входной скрипт index-test.php:

<VirtualHost *:80>
    DocumentRoot "path/to/basic/webb"
    ServerName mysite-test
    <Directory "path/to/basic/web">
        Order Allow,Deny
        Allow from all
        AddDefaultCharset utf-8
        DirectoryIndex index-test.php
        RewriteEngine on
        RewriteCond %{REQUEST_FILENAME} !-f
        RewriteCond %{REQUEST_FILENAME} !-d
        RewriteRule . index-test.php
    </Directory>
</VirtualHost>





Так мы укажем веб серверу перенаправлять все запросы на скрипт index-test.php.


Note: Обратите внимание, что здесь мы указываем параметр DirectoryIndex, помимо тех параметров, которые были указаны для первого хоста. Это сделано с той целью, чтобы при обращении к главной странице по адресу mysite-test также использовался бы скрипт index-test.php.








          

      

      

    

  

  
    
    
    Url хелпер
    
    

    
 
  
  

    
      
          
            
  
Url хелпер

Url хелпер предоставляет набор статических методов для управления URL.


Получение общих URL 

Вы можете использовать два метода получения общих URL: домашний URL (Home) и базовый URL (Base) текущего запроса.
Используйте следующий код, чтобы получить домашний URL:

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');





Если вы не передали параметров, то получите относительный URL. Вы можете передать true, чтобы получить абсолютный URL
для текущего протокола или явно указать протокол (https, http).

Чтобы получить базовый URL текущего запроса:

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');





Единственный параметр данного метода работает также как и Url::home().




Создание URL 

Чтобы создать URL для соответствующего роута используйте метод Url::toRoute(). Метод использует [[\yii\web\UrlManager]].
Для того чтобы создать URL:

$url = Url::toRoute(['product/view', 'id' => 42]);





Вы можете задать роут строкой, например, site/index. А также вы можете использовать массив, если хотите задать
дополнительные параметры запроса для URL. Формат массива должен быть следующим:

// сгенерирует: /index.php?r=site/index&param1=value1&param2=value2
['site/index', 'param1' => 'value1', 'param2' => 'value2']





Если вы хотите создать URL с якорем, то вы можете использовать параметр массива с ключом #. Например:

// сгенерирует: /index.php?r=site/index&param1=value1#name
['site/index', 'param1' => 'value1', '#' => 'name']





Роут может быть и абсолютным, и относительным. Абсолютный URL начинается со слеша (например, /site/index),
относительный - без (например, site/index or index). Относительный URL будет сконвертирован в абсолютный по следующим
правилам:


	Если роут пустая строка, то будет использовано текущее значение [[\yii\web\Controller::route|route]];

	Если роут не содержит слешей (например, index), то он будет считаться экшеном текущего контролера и будет определен
с помощью [[\yii\web\Controller::uniqueId]];

	Если роут начинается не со слеша (например, site/index), то он будет считаться относительным роутом текущего модуля
и будет определен с помощью [[\yii\base\Module::uniqueId|uniqueId]].



Начиная с версии 2.0.2, вы можете задавать роуты с помощью псевдонимов. В этом случае, сначала
псевдоним будет сконвертирован в соответствующий роут, который будет преобразован в абсолютный в соответствии с вышеописанными
правилами.

Примеры использования метода:

// /index.php?r=site/index
echo Url::toRoute('site/index');

// /index.php?r=site/index&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post/edit&id=100     псевдоним "@postEdit" задан как "post/edit"
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site/index
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site/index
echo Url::toRoute('site/index', 'https');





Другой метод Url::to() очень похож на [[toRoute()]]. Единственное отличие: входным параметром должен быть массив.
Если будет передана строка, то она будет воспринята как URL.

Первый аргумент может быть:


	массивом: будет вызван [[toRoute()]], чтобы сгенерировать URL. Например: ['site/index'], ['post/index', 'page' => 2].
В разделе [[toRoute()]] подробно описано как задавать роут;

	Строка, начинающаяся с @, будет обработана как псевдоним. Будет возвращено соответствующее значение псевдонима;

	Пустая строка: вернет текущий URL;

	Обычная строка: вернет строку без изменений



Когда у метода задан второй параметр $scheme (строка или true), то сгенерированный URL будет с протоколом
(полученным из [[\yii\web\UrlManager::hostInfo]]). Если в $url указан протокол, то его значение будет заменено.

Пример использования:

// /index.php?r=site/index
echo Url::to(['site/index']);

// /index.php?r=site/index&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post/edit&id=100     псевдоним "@postEdit" задан как "post/edit"
echo Url::to(['@postEdit', 'id' => 100]);

// Текущий URL
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');





Начиная с версии 2.0.3, вы можете использовать [[yii\helpers\Url::current()]], чтобы создавать URL на основе текущего
запрошенного роута и его GET-параметров. Вы можете изменить, удалить или добавить новые GET-параметры передав в метод
параметр $params. Например:

// предположим $_GET = ['id' => 123, 'src' => 'google'], а текущий роут "post/view"

// /index.php?r=post/view&id=123&src=google
echo Url::current();

// /index.php?r=post/view&id=123
echo Url::current(['src' => null]);
// /index.php?r=post/view&id=100&src=google
echo Url::current(['id' => 100]);








Запоминание URL 

Существуют задачи, когда вам необходимо запомнить URL и потом использовать его в процессе одного или нескольких
последовательных запросов. Это может быть достигнуто следующим образом:

// Запомнить текущий URL
Url::remember();

// Запомнить определенный URL. Входные параметры смотрите на примере Url::to().
Url::remember(['product/view', 'id' => 42]);

// Запомнить URL под определенным именем
Url::remember(['product/view', 'id' => 42], 'product');





В следующем запросе мы можем получить сохраненный URL следующим образом:

$url = Url::previous();
$productUrl = Url::previous('product');








Проверить относительность URL 

Чтобы проверить относительный URL или нет (например, если в нем не содержится информации о хосте), вы можете использовать
следующий код:

$isRelative = Url::isRelative('test/it');











          

      

      

    

  

  
    
    
    Миграции баз данных
    
    

    
 
  
  

    
      
          
            
  
Миграции баз данных

В ходе разработки и ведения баз данных приложений, которые управляют данными, структуры используемых баз данных развиваются, как и исходный код приложений. Например, при разработке приложения, в будущем может оказаться необходимой новая таблица; уже после того, как приложение будет развернуто в рабочем режиме (продакшене), также может быть обнаружено, что для повышения производительности запросов должен быть создан определённый индекс; и так далее.
В связи с тем, что изменение структуры базы данных часто требует изменение исходного кода, yii поддерживает так
называемую возможность миграции баз данных, которая позволяет отслеживать изменения в базах данных при помощи терминов миграции баз данных, которые являются системой контроля версий вместе с исходным кодом.

Следующие шаги показывают, как миграции базы данных могут быть использованы командой разработчиков в процессе разработки:


	Илья создает новую миграцию (например, создается новая таблица или изменяется определение столбца и т.п.).

	Илья фиксирует новую миграцию в системе управления версиями (например, в Git, Mercurial).

	Алексей обновляет свой репозиторий из системы контроля версий и получает новую миграцию.

	Алексей применяет миграцию к своей локальной базе данных, тем самым синхронизируя свою базу данных, для того чтобы отразить изменения, которые сделал Илья.



А следующие шаги показывают, как развернуть новый релиз с миграциями баз данных в рабочем режиме (продакшена):


	Сергей создаёт новую версию проекта репозитория, которая содержит некоторые новые миграции баз данных.

	Сергей обновляет исходный код на рабочем сервере до новой версии.

	Сергей применяет любую из накопленных миграций баз данных в рабочую базу данных.



Yii предоставляет набор инструментов для миграций из командной строки, которые позволяют:


	создавать новые миграции;

	применять миграции;

	отменять миграции;

	применять миграции повторно;

	показывать историю и статус миграций;



Все эти инструменты доступны через команду yii migrate. В этом разделе мы опишем подробно, как выполнять различные задачи, используя эти инструменты. Вы также можете сами посмотреть как использовать каждый отдельный инструмент при помощи команды yii help migrate.


Tip: Миграции могут не только изменять схему базы данных, но и приводить данные в соответствие с новой схемой, создавать иерархию RBAC или очищать кеш.



Создание миграций 

Чтобы создать новую миграцию, выполните следующую команду:

yii migrate/create <name>





Требуемый аргумент name даёт краткое описание новой миграции. Например, если миграция о создании новой таблицы с именем news, вы можете использовать имя create_news_table и выполнить следующую команду:

yii migrate/create create_news_table






Note: Поскольку аргумент name будет использован как часть имени класса создаваемой миграции, он должен содержать только буквы, цифры и/или символы подчеркивания.


Приведенная выше команда создаст новый PHP класс с именем файла m150101_185401_create_news_table.php в директории @app/migrations. Файл содержит следующий код, который главным образом декларирует класс миграции m150101_185401_create_news_table с следующим каркасом кода:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {

    }

    public function down()
    {
        echo "m101129_185401_create_news_table cannot be reverted.\n";

        return false;
    }

    /*
    // Use safeUp/safeDown to run migration code within a transaction
    public function safeUp()
    {
    }

    public function safeDown()
    {
    }
    */
}





Каждая миграция базы данных определяется как PHP класс расширяющийся от [[yii\db\Migration]]. Имя класса миграции автоматически создается в формате m<YYMMDD_HHMMSS>_<Name> (m<ГодМесяцДень_ЧасыМинутыСекунды>_<Имя>), где


	<YYMMDD_HHMMSS> относится к UTC дате-времени при котором команда создания миграции была выполнена.

	<Name> это тоже самое значение аргумента name которое вы прописываете в команду.



В классе миграции, вы должны прописать код в методе up() когда делаете изменения в структуре базы данных.
Вы также можете написать код в методе down(), чтобы отменить сделанные up() изменения. Метод up вызывается для обновления базы данных с помощью данной миграции, а метод down() вызывается для отката изменений базы данных.
Следующий код показывает как можно реализовать класс миграции, чтобы создать таблицу news:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {
        $this->createTable('news', [
            'id' => Schema::TYPE_PK,
            'title' => Schema::TYPE_STRING . ' NOT NULL',
            'content' => Schema::TYPE_TEXT,
        ]);
    }

    public function down()
    {
        $this->dropTable('news');
    }
}






Info: Не все миграции являются обратимыми. Например, если метод up() удаляет строку из таблицы, возможно что у вас уже не будет возможности вернуть эту строку методом down(). Иногда Вам может быть просто слишком лень реализовывать метод down(), в связи с тем, что это не очень распространено - откатывать миграции базы данных. В этом случае вы должны в методе down() вернуть false, чтобы указать, что миграция не является обратимой.


Базовый класс миграций [[yii\db\Migration]] предоставляет подключение к базе данных через свойство [[yii\db\Migration::db|db]]. Вы можете использовать его для манипулирования схемой базы данных используя методы описанные в работе со схемой базы данных.

Вместо использования физических типов данных, при создании таблицы или столбца, следует использовать абстрактные типы для того, чтобы ваша миграция являлась независимой от конкретной СУБД. Класс [[yii\db\Schema]] определяет набор констант для предоставления поддержки абстрактных типов. Эти константы называются в следующем формате TYPE_<Name>. Например,
TYPE_PK относится к типу автоинкремента (AUTO_INCREMENT) первичного ключа;
TYPE_STRING относится к строковому типу.
Когда миграция применяется к конкретной базе данных, абстрактные типы будут переведены в соответствующие физические типы.
В случае с MySQL, TYPE_PK будет превращено в int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY, а TYPE_STRING станет varchar(255).

Вы можете добавить дополнительные ограничения при использовании абстрактных типов. В приведенном выше примере, NOT NULL добавляется к Schema::TYPE_STRING чтобы указать, что столбец не может быть NULL.


Info: Сопоставление абстрактных типов и физических типов определяется свойством [[yii\db\QueryBuilder::$typeMap|$typeMap]] в каждом конкретном QueryBuilder классе.


Начиная с версии 2.0.6, появился новый построитель схем, который является более удобным инструментом для описания структуры столбцов.
Теперь, при написании миграций, можно использовать такой код:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {
        $this->createTable('news', [
            'id' => $this->primaryKey(),
            'title' => $this->string()->notNull(),
            'content' => $this->text(),
        ]);
    }

    public function down()
    {
        $this->dropTable('news');
    }
}





Весь список методов описания типов столбцов доступен в API документации [[yii\db\SchemaBuilderTrait]].




Генерация миграций 

Начиная с версии 2.0.7 появился удобный способ создания миграций из консоли.

В том случае, если миграция названа особым образом, таким как, например, create_xxx_table или drop_xxx_table сгенерированный
файл миграции будет содержать дополнительный код.


Создание таблицы

yii migrate/create create_post_table





сгенерирует

class m150811_220037_create_post_table extends Migration
{
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey()
        ]);
    }

    public function down()
    {
        $this->dropTable('post');
    }
}





Чтобы сразу создать поля таблицы, укажите их через опцию --fields.

yii migrate/create create_post_table --fields=title:string,body:text





сгенерирует

class m150811_220037_create_post_table extends Migration
{
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(),
            'body' => $this->text()
        ]);
    }

    public function down()
    {
        $this->dropTable('post');
    }
}





Можно указать дополнительные параметры.

yii migrate/create create_post_table --fields=title:string(12):notNull:unique,body:text





сгенерирует

class m150811_220037_create_post_table extends Migration
{
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(12)->notNull()->unique(),
            'body' => $this->text()
        ]);
    }

    public function down()
    {
        $this->dropTable('post');
    }
}






Note: первичный ключ добавляется автоматически и по умолчанию называется id. Если вам необходимо другое имя,
указать его можно через опцию --fields=name:primaryKey.





Внешние ключи

Начиная с версии 2.0.8, генератор поддерживает создание внешних ключей через ключевое слово foreignKey.

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"





сгенерирует

/**
 * Handles the creation for table `post`.
 * Has foreign keys to the tables:
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
    /**
     * @inheritdoc
     */
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'author_id' => $this->integer()->notNull(),
            'category_id' => $this->integer()->defaultValue(1),
            'title' => $this->string(),
            'body' => $this->text(),
        ]);

        // creates index for column `author_id`
        $this->createIndex(
            'idx-post-author_id',
            'post',
            'author_id'
        );

        // add foreign key for table `user`
        $this->addForeignKey(
            'fk-post-author_id',
            'post',
            'author_id',
            'user',
            'id',
            'CASCADE'
        );

        // creates index for column `category_id`
        $this->createIndex(
            'idx-post-category_id',
            'post',
            'category_id'
        );

        // add foreign key for table `category`
        $this->addForeignKey(
            'fk-post-category_id',
            'post',
            'category_id',
            'category',
            'id',
            'CASCADE'
        );
    }

    /**
     * @inheritdoc
     */
    public function down()
    {
        // drops foreign key for table `user`
        $this->dropForeignKey(
            'fk-post-author_id',
            'post'
        );

        // drops index for column `author_id`
        $this->dropIndex(
            'idx-post-author_id',
            'post'
        );

        // drops foreign key for table `category`
        $this->dropForeignKey(
            'fk-post-category_id',
            'post'
        );

        // drops index for column `category_id`
        $this->dropIndex(
            'idx-post-category_id',
            'post'
        );

        $this->dropTable('post');
    }
}





Положение ключевого слова foreignKey в описании поля не изменяет сгенерированный код. Это значит, что:


	author_id:integer:notNull:foreignKey(user)

	author_id:integer:foreignKey(user):notNull

	author_id:foreignKey(user):integer:notNull



Генерируют один и тот же код.

Ключевое слово foreignKey может принимать в скобках параметр, который будет использован в качестве имени таблицы для внешнего ключа. Если параметр не был передан, то имя таблицы будет извлечено из названия поля.

В приведенном выше примере author_id:integer:notNull:foreignKey(user) будет генерировать поле author_id с внешним ключом на таблицу user, а category_id:integer:defaultValue(1):foreignKey сгенерирует поле author_id с внешним ключом на таблицу category.

Начиная с версии 2.0.11, ключевое слово foreignKey может принимать второй параметр, который следует указывать через пробел.
Этот параметр будет использован в качестве имени поля внешнего ключа.
В случае, если второй параметр не будет передан, то поле для внешнего ключа будет извлечено из схемы таблицы.
Тем не менее, это справедливо только в тех случаях, когда таблица имеется в базе данных, первичный ключ задан и не является составным.
В иных случаях будет использоваться имя по умолчанию id.




Удаление таблицы

yii migrate/create drop_post_table --fields=title:string(12):notNull:unique,body:text





сгенерирует

class m150811_220037_drop_post_table extends Migration
{
    public function up()
    {
        $this->dropTable('post');
    }

    public function down()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(12)->notNull()->unique(),
            'body' => $this->text()
        ]);
    }
}








Добавление столбца

Если имя миграции задано как add_xxx_column_to_yyy_table, файл будет содержать необходимые методы addColumn и dropColumn.

Для добавления столбца:

yii migrate/create add_position_column_to_post_table --fields=position:integer





сгенерирует

class m150811_220037_add_position_column_to_post_table extends Migration
{
    public function up()
    {
        $this->addColumn('post', 'position', $this->integer());
    }

    public function down()
    {
        $this->dropColumn('post', 'position');
    }
}








Удаление столбца

Если имя миграции задано как drop_xxx_column_from_yyy_table, файл будет содержать необходимые методы addColumn и dropColumn.

yii migrate/create drop_position_column_from_post_table --fields=position:integer





сгенерирует

class m150811_220037_drop_position_column_from_post_table extends Migration
{
    public function up()
    {
        $this->dropColumn('post', 'position');
    }

    public function down()
    {
        $this->addColumn('post', 'position', $this->integer());
    }
}








Добавление промежуточной таблицы

Если имя миграции задано как create_junction_table_for_xxx_and_yyy_tables, файл будет содержать код для создания промежуточной таблцы.

yii migrate/create create_junction_table_for_post_and_tag_tables





сгенерирует

/**
 * Handles the creation for table `post_tag`.
 * Has foreign keys to the tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
    /**
     * @inheritdoc
     */
    public function up()
    {
        $this->createTable('post_tag', [
            'post_id' => $this->integer(),
            'tag_id' => $this->integer(),
            'created_at' => $this->dateTime(),
            'PRIMARY KEY(post_id, tag_id)',
        ]);

        // creates index for column `post_id`
        $this->createIndex(
            'idx-post_tag-post_id',
            'post_tag',
            'post_id'
        );

        // add foreign key for table `post`
        $this->addForeignKey(
            'fk-post_tag-post_id',
            'post_tag',
            'post_id',
            'post',
            'id',
            'CASCADE'
        );

        // creates index for column `tag_id`
        $this->createIndex(
            'idx-post_tag-tag_id',
            'post_tag',
            'tag_id'
        );

        // add foreign key for table `tag`
        $this->addForeignKey(
            'fk-post_tag-tag_id',
            'post_tag',
            'tag_id',
            'tag',
            'id',
            'CASCADE'
        );
    }

    /**
     * @inheritdoc
     */
    public function down()
    {
        // drops foreign key for table `post`
        $this->dropForeignKey(
            'fk-post_tag-post_id',
            'post_tag'
        );

        // drops index for column `post_id`
        $this->dropIndex(
            'idx-post_tag-post_id',
            'post_tag'
        );

        // drops foreign key for table `tag`
        $this->dropForeignKey(
            'fk-post_tag-tag_id',
            'post_tag'
        );

        // drops index for column `tag_id`
        $this->dropIndex(
            'idx-post_tag-tag_id',
            'post_tag'
        );

        $this->dropTable('post_tag');
    }
}





Начиная с версии 2.0.11, имена полей для внешних ключей промежуточной таблицы будут извлечены из объединяемых таблиц.
Тем не менее, это справедливо только в тех случаях, когда таблица имеется в базе данных, первичный ключ задан и не является составным.
В других иных случаях для поля будет сгенерировано значение по умолчанию id.




Транзакции Миграций 

При выполнении сложных миграций баз данных, важно обеспечить каждую миграцию либо успехом, либо ошибкой, в целом так, чтобы база данных могла поддерживать целостность и непротиворечивость. Для достижения данной цели рекомендуется, заключить операции каждой миграции базы данных в транзакции.

Самый простой способ реализации транзакций миграций это прописать код миграций в методы safeUp() и safeDown(). Эти два метода отличаются от методов up() и down() тем, что они неявно заключены в транзакции. В результате, если какая-либо операция в этих методах не удается, все предыдущие операции будут отменены автоматически.

В следующем примере, помимо создания таблицы news мы также вставляем в этой таблице начальную строку.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function safeUp()
    {
        $this->createTable('news', [
            'id' => $this->primaryKey(),
            'title' => $this->string()->notNull(),
            'content' => $this->text(),
        ]);

        $this->insert('news', [
            'title' => 'test 1',
            'content' => 'content 1',
        ]);
    }

    public function safeDown()
    {
        $this->delete('news', ['id' => 1]);
        $this->dropTable('news');
    }
}





Обратите внимание, что обычно при выполнении нескольких операций в базе данных при помощи метода safeUp(), вы должны
реализовать обратный порядок исполнения в методе safeDown(). В приведенном выше примере мы сначала создали таблицу,
а затем вставили строку в safeUp(); а в safeDown() мы сначала удаляем строку и затем удаляем таблицу.


Note: Не все СУБД поддерживают транзакции. И некоторые запросы к базам данных не могут быть введены в транзакции.
Для различных примеров, пожалуйста, обратитесь к негласным обязательствам [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html].
В этом случае вместо этих методов вы должны реализовать методы up() и down().





Методы доступа к базе данных 

Базовый класс миграции [[yii\db\Migration]] предоставляет набор методов, которые позволяют Вам получить доступ и управлять
базами данных. Вы можете найти эти методы, их названия аналогичны методам DAO, предоставленным в классе [[yii\db\Command]].
Например, метод [[yii\db\Migration::createTable()]] позволяет создать новую таблицу, подобно методу [[yii\db\Command::createTable()]].

Преимущество методов, описанных при помощи [[yii\db\Migration]] заключается в том, что Вам не нужно явно создавать
экземпляр/копию [[yii\db\Command]] и исполнение каждого метода будет автоматически отображать полезные сообщения
говорящие вам, что операции с базой данных выполняются и сколько они идут.

Ниже представлен список всех этих методов доступа к базам данных:


	[[yii\db\Migration::execute()|execute()]]: выполнение SQL инструкции

	[[yii\db\Migration::insert()|insert()]]: вставка одной строки

	[[yii\db\Migration::batchInsert()|batchInsert()]]: вставка нескольких строк

	[[yii\db\Migration::update()|update()]]: обновление строк

	[[yii\db\Migration::delete()|delete()]]: удаление строк

	[[yii\db\Migration::createTable()|createTable()]]: создание таблицы

	[[yii\db\Migration::renameTable()|renameTable()]]: переименование таблицы

	[[yii\db\Migration::dropTable()|dropTable()]]: удаление таблицы

	[[yii\db\Migration::truncateTable()|truncateTable()]]: удаление всех строк в таблице

	[[yii\db\Migration::addColumn()|addColumn()]]: добавление столбца

	[[yii\db\Migration::renameColumn()|renameColumn()]]: переименование столбца

	[[yii\db\Migration::dropColumn()|dropColumn()]]: удаление столбца

	[[yii\db\Migration::alterColumn()|alterColumn()]]: изменения столбца

	[[yii\db\Migration::addPrimaryKey()|addPrimaryKey()]]: добавление первичного ключа

	[[yii\db\Migration::dropPrimaryKey()|dropPrimaryKey()]]: удаление первичного ключа

	[[yii\db\Migration::addForeignKey()|addForeignKey()]]: добавление внешнего ключа

	[[yii\db\Migration::dropForeignKey()|dropForeignKey()]]: удаление внешнего ключа

	[[yii\db\Migration::createIndex()|createIndex()]]: создание индекса

	[[yii\db\Migration::dropIndex()|dropIndex()]]: удаление индекса




Info: [[yii\db\Migration]] не предоставляет методы запросов к базе данных. Это потому, что обычно не требуется отображать дополнительные сообщения об извлечении данных из базы данных. Это также, потому, что можно использовать более мощный Построитель Запросов для построения и выполнения сложных запросов.



Note: при обработке данных внутри миграции, может показаться, что использование существующих классов Active Record, со всей их готовой бизнес логикой, будет разумным решением и упросит код миграции. Однако, следует помнить, что код миграций не должен меняться, по определению. В отличии от миграций, бизнес логика приложений часто изменяется. Это может привести к нарушению работы миграции при определённых изменениях на уровне Active Record. Поэтому рекомендуется делать миграции независимыми от других частей приложения, таких как классы Active Record.







Применение Миграций 

Для обновления базы данных до последней структуры, вы должны применить все новые миграции, используя следующую команду:

yii migrate





Эта команда выведет список всех миграций, которые не применялись до сих пор. Если вы подтвердите, что вы хотите применить эти миграций, то этим самым запустите метод up() или safeUp() в каждом новом классе миграции, один за другим, в порядке их временного значения timestamp.

Для каждой миграции которая была успешно проведена, эта команда будет вставлять строку в таблицу базы данных с именем
migration записав успешное проведение миграции. Это позволяет инструменту миграции выявлять какие миграции были применены, а какие - нет.


Note: Инструмент миграции автоматически создаст таблицу migration в базе данных указанной в параметре [[yii\console\controllers\MigrateController::db|db]]. По умолчанию база данных определяется как компонент приложения db.


Иногда, необходимо применить одну или несколько новых миграций, вместо всех доступных миграций. Это возможно сделать, указав, при выполнении команды, количество миграций, которые необходимо применить. Например, следующая команда будет пытаться применить следующие три доступные миграции:

yii migrate 3





Также можно явно указать конкретную миграцию, которая должна быть применена к базе данных, это можно сделать при помощи команды migrate/to в одном из следующих форматов:

yii migrate/to 150101_185401                      # используя временную метку определяющую миграцию
yii migrate/to "2015-01-01 18:54:01"              # используя строку, которая может быть получена путем использования функции strtotime()
yii migrate/to m150101_185401_create_news_table   # используя полное имя
yii migrate/to 1392853618                         # используя временную метку UNIX





Если раньше имелись какие-либо не применённые миграции, до указанной конкретной миграции, то все они будут применены до данной миграции.
А если указанная миграция уже применялась ранее, то любые более поздние версии данной прикладной миграции будут отменены.




Отмена Миграций 

Чтобы отменить (откатить) одну или несколько миграций, которые применялись ранее, нужно запустить следующую команду:

yii migrate/down     # отменяет самую последнюю применённую миграцию
yii migrate/down 3   # отменяет 3 последних применённых миграции






Note: Не все миграции являются обратимыми. При попытке отката таких миграций произойдёт ошибка и остановится весь процесс отката.





Перезагрузка Миграций 

Под перезагрузкой миграций подразумевается, сначала последовательный откат определённых миграций, а потом применение их снова. Это может быть сделано следующим образом:

yii migrate/redo        # перезагрузить последнюю применённую миграцию
yii migrate/redo 3      # перезагрузить 3 последние применённые миграции






Note: Если миграция не является обратимой, вы не сможете её перезагрузить.





Список Миграций 

Чтобы посмотреть какие миграции были применены, а какие нет, используйте следующие команды:

yii migrate/history     # показать последних 10 применённых миграций
yii migrate/history 5   # показать последних 5 применённых миграций
yii migrate/history all # показать все применённые миграции

yii migrate/new         # показать первых 10 новых миграций
yii migrate/new 5       # показать первых 5 новых миграций
yii migrate/new all     # показать все новые миграции








Изменение Истории Миграций 

Вместо применения или отката миграций, есть возможность просто отметить, что база данных была обновлена до определенной миграции. Это часто используется при ручном изменении базы данных в конкретное состояние и Вам не нужно применять миграции для того, чтобы это изменение было повторно применено позже. Этой цели можно добиться с помощью следующей команды:

yii migrate/mark 150101_185401                      # используя временную метку определённой миграции
yii migrate/mark "2015-01-01 18:54:01"              # используя строку, которая может быть получена путем использования функции strtotime()
yii migrate/mark m150101_185401_create_news_table   # используя полное имя
yii migrate/mark 1392853618                         # используя временную метку UNIX





Эта команда изменит таблицу migration добавив или удалив определенные строки, тем самым указав, что к базе данных была применена указанная миграция. Никаких миграций не будет применяться или отменяться по этой команде.




Настройка Миграций 

Есть несколько способов настроить команду миграции.


Используя параметры командной строки

В команду миграций входит несколько параметров командной строки, которые могут использоваться, для того, чтобы настроить
поведение миграции:


	interactive: логический тип - boolean (по умолчанию true). Указывает, следует ли выполнять миграцию в интерактивном
режиме. Если это значение является - true, то пользователю будет выдан запрос, перед выполнением командой определенных
действий. Вы можете установить это значение в false если команда используется в фоновом режиме.

	migrationPath: строка - string (по умолчанию @app/migrations). Указывает каталог для хранения всех файлов классов
миграций. Этот параметр может быть определён либо как путь до директории, либо как псевдоним пути.
Обратите внимание, что данный каталог должен существовать, иначе команда будет выдавать ошибку.

	migrationTable: строка - string (по умолчанию migration). Определяет имя таблицы в базе данных в которой хранится
информация о истории миграций. Эта таблица будет автоматически создана командой миграции, если её не существует.
Вы также можете создать её вручную, используя структуру version varchar(255) primary key, apply_time integer.

	db: строка - string (по умолчанию db). Определяет ID базы данных компонента приложения.
Этот параметр представляет собой базу данных, которая подвергается миграциям при помощи команды миграций.

	templateFile: строка - string (по умолчанию @yii/views/migration.php). Указывает путь до файла шаблона, который
используется для формирования скелета класса файлов миграции. Этот параметр может быть определён либо как путь до файла,
либо как псевдоним пути. Файл шаблона - это PHP скрипт, в котором можно использовать
предопределенную переменную с именем $className для того, чтобы получить имя класса миграции.

	generatorTemplateFiles: массив (по умолчанию [ 'create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php' ]), в котором указаны файлы шаблонов для генерации миграций. Подробнее в разделе «Генерация миграций».

	fields: массив конфигураций столбцов, который используется для генерации кода миграции. По умолчанию пуст. Формат
каждой конфигурации ИМЯ_СТОЛБЦА:ТИП_СТОЛБЦА:ДЕКОРАТОР_СТОЛБЦА. Например, --fields=name:string(12):notNull даст нам
столбец типа строка размера 12 с ограничением not null.



В следующем примере показано, как можно использовать эти параметры.

Например, если мы хотим перенести модуль forum, чьи файлы миграций расположены в каталоге migrations данного модуля,
для этого мы можем использовать следующую команду:

# не интерактивная миграция модуля форума
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0








Глобальная настройка команд 

Вместо того, чтобы каждый раз вводить одинаковые значения параметров миграции, когда вы запускаете команду миграции,
можно настроить её раз и навсегда в конфигурации приложения, как показано ниже:

return [
    'controllerMap' => [
        'migrate' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationTable' => 'backend_migration',
        ],
    ],
];





С приведённой выше конфигурацией, каждый раз при запуске команды миграции, таблица backend_migration будет использована для записи истории миграций. И Вам больше не нужно указывать её через параметр migrationTable в командной строке.




Миграции с пространсвом имен 

Начиная с версии 2.0.10 вы можете использовать пространства имен при объявлении класса миграции. Вы можете указать список пространств
имен миграций через [[yii\console\controllers\MigrateController::migrationNamespaces|migrationNamespaces]]. Использование пространств
имен для классов миграции позволяет сочетать несколько источников миграций. Например:

return [
    'controllerMap' => [
        'migrate' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationNamespaces' => [
                'app\migrations', // Общие миграции приложения
                'module\migrations', // Миграции одного из модулей проекта
                'some\extension\migrations', // Миграции одного из расширений
            ],
        ],
    ],
];






Замечание: миграции из различных пространств имен образуют единую историю, т.е. вы не сможете
применить или откатить миграции из одного конкретного пространства имен.


Работая с миграциями по пространствам имен: при создании, отмене и т.д., следует указывать полное имя пространства имен
перед именем миграции. Имейте в виду, что символ обратного слеша (\), как правило, является специальным символом в консоли,
так что вам придется экранировать его соответствующим образом во избежании ошибок или неверного поведения. Например:

yii migrate/create 'app\\migrations\\createUserTable'






Замечание: миграции заданные через [[yii\console\controllers\MigrateController::migrationPath|migrationPath]] не могут содержать
пространство имен, миграции, объявленные с пространством имен могут быть применены только используя свойство [[yii\console\controllers\MigrateController::migrationNamespaces]].





Отдельностоящие Миграции 

Иногда использование единой истории для всех миграция проекта не желательно. Например: вы можете установить расширение
‘blog’, которое содержит полностью независимый функционал и содержит собственные миграции, которые не должны затрагивать
миграции связанные с основной функциональностью проекта.

Если необходимо, чтобы миграции из разных источников были независимы друг от друга, вы можете сконфигурировать
несколько команд миграции, которые будут использовать разные пространства имён и разные таблицы для хранения истории
миграций:

return [
    'controllerMap' => [
        // Общие миграции приложения
        'migrate-app' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationNamespaces' => ['app\migrations'],
            'migrationTable' => 'migration_app',
        ],
        // Миграции одного из модулей проекта
        'migrate-module' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationNamespaces' => ['module\migrations'],
            'migrationTable' => 'migration_module',
        ],
        // Миграции одного из расширений
        'migrate-rbac' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationPath' => '@yii/rbac/migrations',
            'migrationTable' => 'migration_rbac',
        ],
    ],
];





Учтите, что для синхронизации базы данных при такой конфигурации потребуется вызвать несколько команд вместо одной:

yii migrate-app
yii migrate-module
yii migrate-rbac










Миграции в Несколько Баз Данных 

По умолчанию, миграции применяются для базы данных, указанной в db компоненте приложения.
Если вы хотите применить миграцию к другой базе данных, вы можете определить параметр db в командной строке как показано ниже,

yii migrate --db=db2





Приведенная выше команда применит миграции к базе данных db2.

Иногда может случиться так, что вы захотите применить некоторые из миграций к одной базе данных, а некоторые другие к другой базе данных. Для достижения этой цели, при реализации класса миграции, необходимо явно указать идентификатор ID компонента базы данных, который миграция будет использовать, следующим образом:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function init()
    {
        $this->db = 'db2';
        parent::init();
    }
}





Вышеуказанная миграция будет применена к db2 даже если указать другую базу данных через параметр db командной строки. Обратите внимание, что история миграций в этом случае будет записана в базу данных, указанную в параметре db командной строки.

Если у вас есть несколько миграций, которые используют ту же другую базу данных, то рекомендуется создать базовый класс миграций выше кода init(). Затем каждый класс миграции может расширяться от этого базового класса.


Совет: Кроме установки свойства [[yii\db\Migration::db|db]], вы также можете работать с разными базами данных путем создания нового соединения с конкретной базой данных в классе Вашей миграции. Можно использовать DAO методы с этими соединениями для манипулирования различными базами данных.


Другая стратегия, которую вы можете выбрать, чтобы перенести (мигрировать) несколько баз данных - это сохранить миграции различных баз данных в разные директории. Затем вы можете перенести эти базы данных в нужные базы следующими командами:

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...





Первая команда применит миграции в директории @app/migrations/db1 к базе данных db1, а вторая команда применит миграции в директории @app/migrations/db2 к базе данных db2 и так далее.







          

      

      

    

  

  
    
    
    Сортировка
    
    

    
 
  
  

    
      
          
            
  
Сортировка

Иногда выводимые данные требуется отсортировать в соответствии с одним или несколькими атрибутами.
Если вы используете провайдер данных с одним из виджетов данных,
сортировка будет применена автоматически. В противном случае вы должны создать экземпляр [[yii\data\Sort]],
настроить его и применить к запросу. Он также может быть передан в представление, где будет использован
для создания ссылок на сортировку по определенным атрибутам.

Ниже приведен типичный пример использование сортировки,

function actionIndex()
{
    $sort = new Sort([
        'attributes' => [
            'age',
            'name' => [
                'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],
                'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],
                'default' => SORT_DESC,
                'label' => 'Name',
            ],
        ],
    ]);

    $models = Article::find()
        ->where(['status' => 1])
        ->orderBy($sort->orders)
        ->all();

    return $this->render('index', [
         'models' => $models,
         'sort' => $sort,
    ]);
}





В представлении:

// Отображение ссылок на различные действия сортировок
echo $sort->link('name') . ' | ' . $sort->link('age');

foreach ($models as $model) {
    // здесь отображаем модель $model
}





В примере выше, мы объявляем два атрибута, которые поддерживают сортировку: name и age.
Мы передаем информацию о сортировке в запрос статьи, поэтому результаты запроса будут отсортированы
согласно сортировке, установленной в объекте Sort. В представлении, мы отображаем две ссылки,
которые ведут на страницы с данными, отсортированными по соответствующим атрибутам.

Класс [[yii\data\Sort|Sort]] будет автоматически принимать параметры, переданные с запросом
и в соответствии с ними настраивать параметры сортировки. Вы можете регулировать список принимаемых
параметров через настройку свойства  [[yii\data\Sort::$params|$params]].





          

      

      

    

  

  
    
    
    Построитель запросов
    
    

    
 
  
  

    
      
          
            
  
Построитель запросов

Построенный поверх DAO, построитель запросов позволяет конструировать SQL выражения в программируемом и
независимом от СУБД виде. В сравнении с написанием чистого SQL выражения, использование построителя помогает
вам писать более читаемый связанный с SQL код и генерировать более безопасные SQL выражения.

Использование построителя запросов, как правило, включает два этапа:


	Создание объекта [[yii\db\Query]] представляющего различные части (такие как SELECT, FROM) SQL выражения SELECT.

	Выполнить запрос методом [[yii\db\Query]] (таким как all()) для извлечения данных из базы данных.



Следующий код показывает обычное использование построителя запросов:

$rows = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->limit(10)
    ->all();





Приведённый выше код создаёт и выполняет следующее SQL выражение, где параметр :last_name привязывается к строке 'Smith'.

SELECT `id`, `email` 
FROM `user`
WHERE `last_name` = :last_name
LIMIT 10






Info: В основном вы будете работать с [[yii\db\Query]] вместо [[yii\db\QueryBuilder]]. Последний вызывается
неявно при вызове одного из методов запроса. [[yii\db\QueryBuilder]] это класс, отвечающий за генерацию зависимого
от СУБД SQL выражения (такие как экранирование имён таблиц/столбцов) из независимых от СУБД объектов [[yii\db\Query]].



Построение запросов 

Создав объект [[yii\db\Query]], вы можете вызвать различные методы для создания различных частей SQL выражения.
Имена методов напоминают ключевые слова SQL, используемые в соответствующих частях SQL запроса. Например,
чтобы указать FROM часть запроса, вам нужно вызвать метод [[yii\db\Query::from()|from()]]. Все методы построителя
запросов возвращают свой объект, который позволяет объединять несколько вызовов в цепочку.

Далее будет описание каждого метода построителя запросов.


[[yii\db\Query::select()|select()]] 

Метод [[yii\db\Query::select()|select()]] определяет фрагмент SELECT SQL запроса. Вы можете указать столбцы, которые
должны быть выбраны, они должны быть указаны в виде массива или строки. Имена столбцов автоматически экранируются
при создании SQL-запроса при его генерации из объекта [[yii\db\Query]].

$query->select(['id', 'email']);

// эквивалентно:

$query->select('id, email');





Имена столбцов могут быть выбраны вместе с префиксами таблиц и/или алиасами столбцов, также как при записи обычного SQL выражения.
Например,

$query->select(['user.id AS user_id', 'email']);

// эквивалентно:

$query->select('user.id AS user_id, email');





Если вы используете формат массива для указания столбцов, вы можете также указать ключи массива для указания алиасов столбцов.
Например, приведённый выше код может быть переписан:

$query->select(['user_id' => 'user.id', 'email']);





Если вы не вызываете метод [[yii\db\Query::select()|select()]] при создании запроса, будет использована *, что означает
выбрать все столбцы.

Кроме имён столбцов, вы можете также использовать SQL выражения. Вы должны использовать формат массива для использования
выражений, которые содержат запятые для предотвращения некорректного автоматического экранирования. Например,

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email']); 





Начиная с версии 2.0.1, вы также можете использовать подзапросы. Вы должны указывать каждый подзапрос в выражении как
объект [[yii\db\Query]]. Например,

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');





Чтоб выбрать конкретные строки, вы можете вызвать метод [[yii\db\Query::distinct()|distinct()]]:

// SELECT DISTINCT `user_id` ...
$query->select('user_id')->distinct();





Вы можете вызвать [[yii\db\Query::addSelect()|addSelect()]] для добавления полей. Например,

$query->select(['id', 'username'])
    ->addSelect(['email']);








[[yii\db\Query::from()|from()]] 

Метод [[yii\db\Query::from()|from()]] указывает фрагмент FROM SQL запроса. Например,

// SELECT * FROM `user`
$query->from('user');





Вы можете указать имена таблиц в виде строки или массива. Имена таблиц могут содержать префикс схемы и/или алиасы
таблиц, как при написании обычного SQL выражения. Например,

$query->from(['public.user u', 'public.post p']);

// эквивалентно:

$query->from('public.user u, public.post p');





Если вы используете формат массива, вы можете использовать ключи массива для указания алиасов:

$query->from(['u' => 'public.user', 'p' => 'public.post']);





Кроме имён таблиц, вы можете, также, как и в select, указывать подзапросы в виде объекта [[yii\db\Query]].

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u 
$query->from(['u' => $subQuery]);






Префиксы

Также может применяться [[yii\db\Connection::$tablePrefix|tablePrefix]] по умолчанию. Подробное описание смотрите
в подразделе «Экранирование имён таблиц и столбцов» раздела «Объекты доступа к данным (DAO)».






[[yii\db\Query::where()|where()]] 

Метод [[yii\db\Query::where()|where()]] определяет фрагмент WHERE SQL выражения. Вы можете использовать один из
трёх форматов:


	строковый формат, Например, 'status=1'

	формат массива, Например, ['status' => 1, 'type' => 2]

	формат операторов, Например, ['like', 'name', 'test']




Строковый формат 

Строковый формат - это лучший выбор для простых условий. Он работает так, будто вы просто пишете SQL запрос. Например,

$query->where('status=1');

// или используя привязку параметров
$query->where('status=:status', [':status' => $status]);





Не встраивайте переменные непосредственно в условие, особенно если значение переменной получено от пользователя,
потому что это делает ваше приложение подверженным атакам через SQL инъекции.

// Опасность! Не делайте так если вы не уверены, что $status это действительно число.
$query->where("status=$status");





При использовании привязки параметров, вы можете вызывать [[yii\db\Query::params()|params()]] или
[[yii\db\Query::addParams()|addParams()]] для раздельного указания параметров.

$query->where('status=:status')
    ->addParams([':status' => $status]);








Формат массива 

Формат массива лучше всего использовать для указания нескольких объединяемых через AND условий, каждое из которых
является простым равенством. Он описывается в виде массива, ключами которого являются имена столбцов, а значения
соответствуют значениям столбцов.

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))
$query->where([
    'status' => 10,
    'type' => null,
    'id' => [4, 8, 15],
]);





Как вы можете видеть, построитель запросов достаточно умен, чтобы правильно обрабатывать значения null или массивов.

Вы также можете использовать подзапросы:

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)
$query->where(['id' => $userQuery]);








Формат операторов 

Формат оператора позволяет задавать произвольные условия в программном стиле. Он имеет следующий вид:

[operator, operand1, operand2, ...]





Операнды могут быть заданы в виде строкового формата, формата массива или формата операторов рекурсивно, в то время
как оператор может быть одним из следующих:


	and: операнды должны быть объединены с помощью оператора AND. Например,
['and', 'id=1', 'id=2'] сгенерирует id=1 AND id=2. Если операнд массив,
он будет сконвертирован в строку по правилам описанным ниже. Например,
['and', 'type=1', ['or', 'id=1', 'id=2']] сгенерирует type=1 AND (id=1 OR id=2).
Этот метод не производит никакого экранирования.



	or: похож на оператор and за исключением того, что будет использоваться оператор OR.



	between: первый операнд должен быть именем столбца, а второй и третий оператор должны быть начальным и конечным
значением диапазона. Например, ['between', 'id', 1, 10] сгенерирует id BETWEEN 1 AND 10.



	not between: похож на between за исключением того, что BETWEEN заменяется на NOT BETWEEN
в сгенерированном условии.



	in: первый операнд должен быть столбцом или выражением БД. Второй операнд может быть либо массивом, либо объектом Query.
Будет сгенерировано условие IN. Если второй операнд массив, он будет представлять набор значений, которым может быть
равен столбец или выражение БД; Если второй операнд объект Query, будет сформирован подзапрос, который будет использован
как диапазон для столбца или выражения БД. Например, ['in', 'id', [1, 2, 3]] сформирует id IN (1, 2, 3).
Метод будет правильно экранировать имя столбца и значения диапазона. Оператор in также поддерживает составные столбцы.
В этом случае, первый операнд должен быть массивом названий столбцов, в то время как операнд 2 должен быть массивом
массивов или объектом Query представляющим диапазоны для столбцов.



	not in: похож на оператор in, кроме того что IN будет заменён на NOT IN в сформированном условии.



	like: первый операнд должен быть столбцом или выражением БД, а второй операнд будет строкой или массивом представляющим
значения, на которые должны быть похожи столбцы или выражения БД. Например, ['like', 'name', 'tester']
сформирует name LIKE '%tester%'.
Когда диапазон значений задан в виде массива, несколько LIKE утверждений будут сформированы и соединены с помощью AND.
Например, ['like', 'name', ['test', 'sample']] сформирует name LIKE '%test%' AND name LIKE '%sample%'.
Вы также можете передать третий необязательный операнд, для указания способа экранирования специальных символов в значениях.
Операнд должен быть представлен массивом соответствия специальных символов их экранированным аналогам. Если этот
операнд не задан, то будет использовано соответствие по умолчанию. Вы можете также использовать значение false
или пустой массив, чтоб указать что значения уже экранированы. Обратите внимание, что при использовании массива соответствия
экранирования (или если третий операнд не передан), значения будут автоматически заключены в символы процентов.


Note: При использовании PostgreSQL вы можете использовать также ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE]
вместо like для регистронезависимого поиска.






	or like: похож на оператор like, только утверждения LIKE будут объединяться с помощью оператора OR, если
второй операнд будет представлен массивом.



	not like: похож на оператор like, только LIKE будет заменён на NOT LIKE в сгенерированном условии.



	or not like: похож на оператор not like, только утверждения NOT LIKE будут объединены с помощью OR.



	exists: требует один операнд, который должен быть экземпляром [[yii\db\Query]] представляющим подзапрос. Будет
сгенерировано выражение EXISTS (sub-query).



	not exists: похож на оператор exists и сформирует выражение NOT EXISTS (sub-query).



	>, <=, или другие валидные операторы БД, которые требуют двух операндов: первый операнд должен быть именем
столбца, второй операнд это значение. Например, ['>', 'age', 10] сформирует age>10.








Добавление условий 

Вы можете использовать [[yii\db\Query::andWhere()|andWhere()]] или [[yii\db\Query::orWhere()|orWhere()]] для добавления
дополнительных условий. Вы можете использовать эти вызовы несколько раз для добавления нескольких условий.
Например,

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
    $query->andWhere(['like', 'title', $search]);
}





Если $search не пустое, то будет сформировано следующее условие WHERE:

WHERE (`status` = 10) AND (`title` LIKE '%yii%')








Условия для фильтров 

Когда условие WHERE формируется на основе пользовательского ввода, обычно, хочется проигнорировать не заданные значения.
Например, в форме поиска, которая позволяет осуществлять поиск по имени пользователя или email, вы хотели бы игнорировать
username/email условие, если пользователь ничего не ввёл в поле ввода. Вы можете достичь этого используя метод
[[yii\db\Query::filterWhere()|filterWhere()]].

// $username и $email вводит пользователь
$query->filterWhere([
    'username' => $username,
    'email' => $email,
]);





Единственное отличие между [[yii\db\Query::filterWhere()|filterWhere()]] и [[yii\db\Query::where()|where()]]
заключается в игнорировании пустых значений, переданных в условие в форме массива. Таким образом
если $email будет пустым, а $username нет, то приведённый выше код сформирует условие WHERE username=:username.


Info: значение признаётся пустым, если это null, пустой массив, пустая строка или строка состоящая из одних пробельных символов.


Также вместо [[yii\db\Query::andWhere()|andWhere()]] и [[yii\db\Query::orWhere()|orWhere()]], вы можете использовать
[[yii\db\Query::andFilterWhere()|andFilterWhere()]] и [[yii\db\Query::orFilterWhere()|orFilterWhere()]]
для добавления дополнительных условий фильтрации.






[[yii\db\Query::orderBy()|orderBy()]] 

Метод [[yii\db\Query::orderBy()|orderBy()]] определяет фрагмент ORDER BY SQL выражения. Например,

// ... ORDER BY `id` ASC, `name` DESC
$query->orderBy([
    'id' => SORT_ASC,
    'name' => SORT_DESC,
]);





В данном коде, ключи массива - это имена столбцов, а значения массива - это соответствующее направление сортировки.
PHP константа SORT_ASC определяет сортировку по возрастанию и SORT_DESC сортировка по умолчанию.

Если ORDER BY содержит только простые имена столбцов, вы можете определить их с помощью столбцов, также
как и при написании обычного SQL. Например,

$query->orderBy('id ASC, name DESC');






Note: Вы должны использовать массив для указания ORDER BY содержащих выражения БД.


Вы можете вызывать [[yii\db\Query::addOrderBy()|addOrderBy()]] для добавления столбцов в фрагмент ORDER BY.

$query->orderBy('id ASC')
    ->addOrderBy('name DESC');








[[yii\db\Query::groupBy()|groupBy()]] 

Метод [[yii\db\Query::groupBy()|groupBy()]] определяет фрагмент GROUP BY SQL запроса.

// ... GROUP BY `id`, `status`
$query->groupBy(['id', 'status']);





Если фрагмент GROUP BY содержит только простые имена столбцов, вы можете указать их используя строку, также как в
обычном SQL выражении.

$query->groupBy('id, status');






Note: Вы должны использовать массив для указания GROUP BY содержащих выражения БД.


Вы можете вызывать [[yii\db\Query::addGroupBy()|addGroupBy()]] для добавления имён столбцов в фрагмент GROUP BY.
For example,

$query->groupBy(['id', 'status'])
    ->addGroupBy('age');








[[yii\db\Query::having()|having()]] 

Метод [[yii\db\Query::having()|having()]] определяет фрагмент HAVING SQL запроса. Он принимает условия, которое
может быть определено тем же способом, что и для where().

// ... HAVING `status` = 1
$query->having(['status' => 1]);





Пожалуйста, обратитесь к документации для where() для более подробной информации о определении условий.

Вы можете вызывать [[yii\db\Query::andHaving()|andHaving()]] или [[yii\db\Query::orHaving()|orHaving()]] для добавления
дополнительных условий в фрагмент HAVING.

// ... HAVING (`status` = 1) AND (`age` > 30)
$query->having(['status' => 1])
    ->andHaving(['>', 'age', 30]);








[[yii\db\Query::limit()|limit()]] и [[yii\db\Query::offset()|offset()]] 

Методы [[yii\db\Query::limit()|limit()]] и [[yii\db\Query::offset()|offset()]] определяют фрагменты LIMIT
и OFFSET SQL запроса.

// ... LIMIT 10 OFFSET 20
$query->limit(10)->offset(20);





Если вы определяете неправильный limit или offset (например отрицательное значение), они будут проигнорированы.


Info: Для СУБД, которые не поддерживают LIMIT и OFFSET (такие как MSSQL), построитель запросов будет
генерировать SQL выражения, которые эмулирует поведение LIMIT/OFFSET.





[[yii\db\Query::join()|join()]] 

Метод [[yii\db\Query::join()|join()]] определяет фрагмент JOIN SQL запроса.

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');





Метод [[yii\db\Query::join()|join()]] принимает четыре параметра:


	$type: тип объединения, например, 'INNER JOIN', 'LEFT JOIN'.

	$table: имя таблицы, которая должна быть присоединена.

	$on: необязательное условие объединения, то есть фрагмент ON. Пожалуйста, обратитесь к документации для
where() для более подробной информации о определении условий. Отметим, что синтаксис массивов не работает
для задания условий для столбцов, то есть ['user.id' => 'comment.userId'] будет означать условие, где ID пользователя
должен быть равен строке 'comment.userId'. Вместо этого стоит указывать условие в виде строки 'user.id = comment.userId'.

	$params: необязательные параметры присоединяемые к условию объединения.



Вы можете использовать следующие сокращающие методы для указания INNER JOIN, LEFT JOIN и RIGHT JOIN, в указанном порядке.


	[[yii\db\Query::innerJoin()|innerJoin()]]

	[[yii\db\Query::leftJoin()|leftJoin()]]

	[[yii\db\Query::rightJoin()|rightJoin()]]



Например,

$query->leftJoin('post', 'post.user_id = user.id');





Для соединения с несколькими таблицами, вызовите вышеуказанные методы несколько раз.

Кроме соединения с таблицами, вы можете также присоединять подзапросы. Чтобы это сделать, укажите объединяемый подзапрос
как объект [[yii\db\Query]].

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');





В этом случае, вы должны передать подзапросы в массиве и использовать ключи для определения алиасов.




[[yii\db\Query::union()|union()]] 

Метод [[yii\db\Query::union()|union()]] определяет фрагмент UNION SQL запроса.

$query1 = (new \yii\db\Query())
    ->select("id, category_id AS type, name")
    ->from('post')
    ->limit(10);

$query2 = (new \yii\db\Query())
    ->select('id, type, name')
    ->from('user')
    ->limit(10);

$query1->union($query2);





Вы можете вызвать [[yii\db\Query::union()|union()]] несколько раз для присоединения фрагментов UNION.






Методы выборки 

[[yii\db\Query]] предоставляет целый набор методов для разных вариантов выборки:


	[[yii\db\Query::all()|all()]]: возвращает массив строк, каждая из которых это ассоциативный массив пар ключ-значение.

	[[yii\db\Query::one()|one()]]: возвращает первую строку запроса.

	[[yii\db\Query::column()|column()]]: возвращает первый столбец результата.

	[[yii\db\Query::scalar()|scalar()]]: возвращает скалярное значение первого столбца первой строки результата.

	[[yii\db\Query::exists()|exists()]]: возвращает значение указывающее, что выборка содержит результат.

	[[yii\db\Query::count()|count()]]: возвращает результат COUNT запроса.

	Другие методы агрегирования запросов, включая [[yii\db\Query::sum()|sum($q)]], [[yii\db\Query::average()|average($q)]],
[[yii\db\Query::max()|max($q)]], [[yii\db\Query::min()|min($q)]]. Параметр $q обязателен для этих методов и могут
содержать либо имя столбца, либо выражение БД.



Например,

// SELECT `id`, `email` FROM `user`
$rows = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->all();
    
// SELECT * FROM `user` WHERE `username` LIKE `%test%`
$row = (new \yii\db\Query())
    ->from('user')
    ->where(['like', 'username', 'test'])
    ->one();






Note: метод [[yii\db\Query::one()|one()]] вернёт только первую строку результата запроса. Он НЕ добавляет
LIMIT 1 в генерируемый SQL. Это хорошо и предпочтительно если вы знаете, что запрос вернёт только одну или несколько
строк данных (например, при запросе по первичному ключу). Однако, если запрос потенциально может вернут много
строк данных, вы должны вызвать limit(1) для повышения производительности, Например,
(new \yii\db\Query())->from('user')->limit(1)->one().


Все методы выборки могут получать необязательный параметр $db, представляющий [[yii\db\Connection|соединение с БД]],
которое должно использоваться, чтобы выполнить запрос к БД. Если вы упускаете этот параметр, будет использоваться
компонент приложения $db. Ниже приведён ещё один пример использования метода
[[yii\db\Query::count()|count()]]:

// executes SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name
$count = (new \yii\db\Query())
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->count();





При вызове методов выборки [[yii\db\Query]], внутри на самом деле проводится следующая работа:


	Вызывается [[yii\db\QueryBuilder]] для генерации SQL запроса на основе текущего [[yii\db\Query]];

	Создаёт объект [[yii\db\Command]] с сгенерированным SQL запросом;

	Вызывается выбирающий метод (например [[yii\db\Command::queryAll()|queryAll()]]) из [[yii\db\Command]] для выполнения SQL запроса и извлечения данных.



Иногда вы можете захотеть увидеть или использовать SQL запрос построенный из объекта [[yii\db\Query]]. Этой цели можно
добиться с помощью следующего кода:

$command = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->limit(10)
    ->createCommand();
    
// показать SQL запрос
echo $command->sql;
// показать привязываемые параметры
print_r($command->params);

// возвращает все строки запроса
$rows = $command->queryAll();






Индексация результатов запроса 

При вызове [[yii\db\Query::all()|all()]] возвращается массив строк индексированный последовательными целыми числами.
Иногда вам может потребоваться индексировать его по-другому, например, сделать индекс по указанному столбцу или
значением выражения. Вы можете реализовать такое поведение через вызов [[yii\db\Query::indexBy()|indexBy()]] перед
вызовом [[yii\db\Query::all()|all()]].

// возвращает [100 => ['id' => 100, 'username' => '...', ...], 101 => [...], 103 => [...], ...]
$query = (new \yii\db\Query())
    ->from('user')
    ->limit(10)
    ->indexBy('id')
    ->all();





Для индексации по значению выражения, передайте анонимную функцию в метод [[yii\db\Query::indexBy()|indexBy()]]:

$query = (new \yii\db\Query())
    ->from('user')
    ->indexBy(function ($row) {
        return $row['id'] . $row['username'];
    })->all();





Анонимная функция должна принимать параметр $row, который содержит текущую строку запроса и должна вернуть скалярное
значение, которое будет использоваться как значение индекса для текущей строки.




Пакетная выборка 

При работе с большими объемами данных, методы на подобие [[yii\db\Query::all()]] не подходят, потому что они требуют
загрузки всех данных в память. Чтобы сохранить требования к памяти минимальными, Yii предоставляет поддержку
так называемых пакетных выборок. Пакетная выборка делает возможным курсоры данных и выборку данных пакетами.

Пакетная выборка может использоваться следующим образом:

use yii\db\Query;

$query = (new Query())
    ->from('user')
    ->orderBy('id');

foreach ($query->batch() as $users) {
    // $users это массив из 100 или менее строк из таблицы пользователей
}

// или если вы хотите перебрать все строки по одной
foreach ($query->each() as $user) {
    // $user представляет одну строку из выборки
}





Метод [[yii\db\Query::batch()]] и [[yii\db\Query::each()]] возвращает объект [[yii\db\BatchQueryResult]], который
реализует интерфейс Iterator и может использоваться в конструкции foreach. Во время первой итерации будет выполнен
SQL запрос к базе данных. Данные будут выбираться пакетами в следующих итерациях. По умолчанию, размер пакета имеет
размер 100, то есть при каждой выборке будет выбираться по 100 строк. Вы можете изменить размер пакета, передав
первый параметр в метод batch() или each().

По сравнению с [[yii\db\Query::all()]], пакетная выборка загружает только по 100 строк данных за раз в память.
Если вы обрабатываете данные и затем сразу выбрасываете их, пакетная выборка может помочь уменьшить использование памяти.

Если указать индексный столбец через [[yii\db\Query::indexBy()]], в пакетной выборке индекс будет сохранятся.
Например,

$query = (new \yii\db\Query())
    ->from('user')
    ->indexBy('username');

foreach ($query->batch() as $users) {
    // $users индексируется по столбцу "username"
}

foreach ($query->each() as $username => $user) {
    // ...
}













          

      

      

    

  

  
    
    
    Форматирование ответа
    
    

    
 
  
  

    
      
          
            
  
Форматирование ответа

При обработке RESTful API запросов приложение обычно выполняет следующие шаги, связанные с форматированием ответа:


	Определяет различные факторы, которые могут повлиять на формат ответа, такие как media type, язык, версия и т.д.
Этот процесс также известен как согласование содержимого [http://en.wikipedia.org/wiki/Content_negotiation].

	Конвертирует объекты ресурсов в массивы, как описано в секции Ресурсы.
Этим занимается [[yii\rest\Serializer]].

	Конвертирует массивы в строки исходя из формата, определенного на этапе согласование содержимого. Это задача для
[[yii\web\ResponseFormatterInterface|форматтера ответов]], регистрируемого с помощью компонента приложения
[[yii\web\Response::formatters|response]].




Согласование содержимого 

Yii поддерживает согласование содержимого с помощью фильтра [[yii\filters\ContentNegotiator]]. Базовый класс
контроллера RESTful API - [[yii\rest\Controller]] - использует этот фильтр под именем contentNegotiator.
Фильтр обеспечивает соответствие формата ответа и определяет используемый язык. Например, если RESTful API запрос
содержит следующий заголовок:

Accept: application/json; q=1.0, */*; q=0.1





Он получит ответ в JSON-формате такого вида:

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
      <http://localhost/users?page=2>; rel=next,
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
    {
        "id": 1,
        ...
    },
    {
        "id": 2,
        ...
    },
    ...
]





Под капотом происходит следующее: прежде, чем действие RESTful API контроллера будет выполнено, фильтр
[[yii\filters\ContentNegotiator]] проверит HTTP-заголовок Accept в запросе и установит, что
[[yii\web\Response::format|формат ответа]] должен быть в 'json'. После того, как действие будет выполнено и вернет
итоговый объект ресурса или коллекцию, [[yii\rest\Serializer]] конвертирует результат в массив.
И, наконец, [[yii\web\JsonResponseFormatter]] сериализует массив в строку в формате JSON и включит ее в тело ответа.

По умолчанию, RESTful API поддерживает и JSON, и XML форматы. Для того, чтобы добавить поддержку нового формата,
вы должны установить свою конфигурацию для свойства [[yii\filters\ContentNegotiator::formats|formats]] у фильтра
contentNegotiator, например, с использованием поведения такого вида:

use yii\web\Response;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['contentNegotiator']['formats']['text/html'] = Response::FORMAT_HTML;
    return $behaviors;
}





Ключи свойства formats - это поддерживаемые MIME-типы, а их значения должны соответствовать именам
форматов ответа, которые установлены в [[yii\web\Response::formatters]].




Сериализация данных 

Как уже описывалось выше, [[yii\rest\Serializer]] - это центральное место, отвечающее за конвертацию объектов ресурсов
или коллекций в массивы. Он реализует интерфейсы [[yii\base\Arrayable]] и [[yii\data\DataProviderInterface]].
Для объектов ресурсов как правило реализуется интерфейс [[yii\base\Arrayable]], а для коллекций -
[[yii\data\DataProviderInterface]].

Вы можете переконфигурировать сериализатор с помощью настройки свойства [[yii\rest\Controller::serializer]], используя
конфигурационный массив. Например, иногда вам может быть нужно помочь упростить разработку клиентской части
приложения с помощью добавления информации о пагинации непосредственно в тело ответа. Чтобы сделать это,
переконфигурируйте свойство [[yii\rest\Serializer::collectionEnvelope]] следующим образом:

use yii\rest\ActiveController;

class UserController extends ActiveController
{
    public $modelClass = 'app\models\User';
    public $serializer = [
        'class' => 'yii\rest\Serializer',
        'collectionEnvelope' => 'items',
    ];
}





Тогда вы можете получить следующий ответ на запрос http://localhost/users:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
      <http://localhost/users?page=2>; rel=next,
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "items": [
        {
            "id": 1,
            ...
        },
        {
            "id": 2,
            ...
        },
        ...
    ],
    "_links": {
        "self": {
            "href": "http://localhost/users?page=1"
        },
        "next": {
            "href": "http://localhost/users?page=2"
        },
        "last": {
            "href": "http://localhost/users?page=50"
        }
    },
    "_meta": {
        "totalCount": 1000,
        "pageCount": 50,
        "currentPage": 1,
        "perPage": 20
    }
}






Настройка форматирования JSON

Ответ в формате JSON генерируется при помощи класса [[yii\web\JsonResponseFormatter|JsonResponseFormatter]], который
использует внутри [[yii\helpers\Json|хелпер JSON]]. Данный форматтер гибко настраивается. Например,
опция [[yii\web\JsonResponseFormatter::$prettyPrint|$prettyPrint]] полезна на время разработки так как при
её использовании ответы получаются более читаемыми. [[yii\web\JsonResponseFormatter::$encodeOptions|$encodeOptions]]
может пригодиться для более тонкой настройки кодирования.

Свойство [[yii\web\Response::formatters|formatters]] компонента приложения response может быть
сконфигурировано следующим образом:

'response' => [
    // ...
    'formatters' => [
        \yii\web\Response::FORMAT_JSON => [
            'class' => 'yii\web\JsonResponseFormatter',
            'prettyPrint' => YII_DEBUG, // используем "pretty" в режиме отладки
            'encodeOptions' => JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE,
            // ...
        ],
    ],
],





При работе с базой данных через DAO все данные представляются в виде строк, что не всегда корректно.
Особенно учитывая, что в JSON для чисел есть соответствующий тип. При использовании ActiveRecord значения числовых
столбцов приводятся к integer на этапе выборки из базы: [[yii\db\ActiveRecord::populateRecord()]].









          

      

      

    

  

  
    
    
    Маршрутизация
    
    

    
 
  
  

    
      
          
            
  
Маршрутизация

Имея готовые классы ресурсов и контроллеров, можно получить доступ к ресурсам, используя URL вроде
http://localhost/index.php?r=user/create, подобно тому, как вы это делаете с обычными Web-приложениями.

На деле вам обычно хочется включить «красивые» URL-адреса и использовать все преимущества HTTP-методов (HTTP-verbs).
Например, чтобы запрос POST /users означал обращение к действию user/create.
Это может быть легко сделано с помощью настройки компонента приложения
urlManager в конфигурации приложения следующим образом:

'urlManager' => [
    'enablePrettyUrl' => true,
    'enableStrictParsing' => true,
    'showScriptName' => false,
    'rules' => [
        ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
    ],
]





Главная новинка в коде выше по сравнению с управлением URL-адресами в Web-приложениях состоит в использовании
[[yii\rest\UrlRule]] для маршрутизации запросов к RESTful API. Этот особый класс URL-правил будет
создавать целый набор дочерних URL-правил для поддержки маршрутизации и создания URL-адресов для указанного контроллера (или контроллеров).
Например, приведенный выше код является приближенным аналогом следующего набора правил:

[
    'PUT,PATCH users/<id>' => 'user/update',
    'DELETE users/<id>' => 'user/delete',
    'GET,HEAD users/<id>' => 'user/view',
    'POST users' => 'user/create',
    'GET,HEAD users' => 'user/index',
    'users/<id>' => 'user/options',
    'users' => 'user/options',
]





Этим правилом поддерживаются следующие точки входа в API:


	GET /users: разбитый на страницы список всех пользователей;

	HEAD /users: общая информация по списку пользователей;

	POST /users: создание нового пользователя;

	GET /users/123: подробная информация о пользователе 123;

	HEAD /users/123: общая информация о пользователе 123;

	PATCH /users/123 и PUT /users/123: обновление пользователя 123;

	DELETE /users/123: удаление пользователя 123;

	OPTIONS /users: список HTTP-методов, поддерживаемые точкой входа /users;

	OPTIONS /users/123: список HTTP-методов, поддерживаемые точкой входа /users/123.



Вы можете настроить опции only и except, явно указав для них список действий, которые поддерживаются или
которые должны быть отключены, соответственно. Например:

[
    'class' => 'yii\rest\UrlRule',
    'controller' => 'user',
    'except' => ['delete', 'create', 'update'],
],





Вы также можете настроить опции patterns или extraPatterns для переопределения существующих шаблонов или добавления новых шаблонов, поддерживаемых этим правилом.
Например, для включения нового действия search в точке входа GET /users/search настройте опцию extraPatterns следующим образом:

[
    'class' => 'yii\rest\UrlRule',
    'controller' => 'user',
    'extraPatterns' => [
        'GET search' => 'search',
    ],
]





Как вы могли заметить, ID контроллера user в этих точках входа используется в форме множественного числа (как users).
Это происходит потому, что [[yii\rest\UrlRule]] автоматически приводит идентификаторы контроллеров к множественной форме.
Вы можете отключить такое поведение, назначив свойству [[yii\rest\UrlRule::pluralize]] значение false.


Info: Приведение ID контроллера к множественной форме производится в методе [[yii\helpers\Inflector::pluralize()]].
При этом соблюдаются правила английского языка. Например, box будет преобразован в boxes, а не в boxs.


В том случае, если автоматическое приведение к множественному числу вам не подходит, вы можете настроить
свойство [[yii\rest\UrlRule::controller]], где указать явное соответствие имени в URL и ID контроллера.
Например, код ниже ставит в соответствие имя u и ID контроллера user.

[
    'class' => 'yii\rest\UrlRule',
    'controller' => ['u' => 'user'],
]









          

      

      

    

  

  
    
    
    Тестирование
    
    

    
 
  
  

    
      
          
            
  
Тестирование

Тестирование является важной составляющей разработки программного обеспечения. Мы проводим тестирование непрерывно, осознаем мы это или нет.
Например, когда мы пишем класс на языке PHP, мы можем отлаживать его шаг за шагом или просто использовать echo или die для проверки, что
реализация работает в соответствии с намеченным планом. В случае веб приложения, мы вводим некоторые тестовые данные в форму для того, чтобы
убедиться, что страница взаимодействует с нами, как ожидается.

Процесс тестирования может быть автоматизирован так, что каждый раз когда нам нужно что-то проверить, мы просто должны
вызвать код, который сделает это за нас. Код, который проверяет, что результат совпадает с тем, что мы планировали, называется тестом, а процесс
создания тестов и их последующего использования - автоматизированным тестированием, что и является главной темой данного раздела.


Разработка с тестами

Разработка через тестирование (TDD) и разработка через поведение (BDD) - это подходы разработки программного обеспечения, в рамках которых
поведение части кода или целая фича описывается в виде набора сценариев или тестов ДО написания фактического кода и только
затем создается реализация. Тем самым мы можем использовать данные тесты для проверки, что достигается заданное поведение.

Процесс разработки фичи следующий:


	Создать новый тест, который описывает функцию, которая будет реализована.

	Запустить новый тест и убедиться, что он терпит неудачу. Это ожидаемо, т.к. на данный момент еще нет конкретной реализации.

	Написать простой код, чтобы новый тест отрабатывал без ошибок.

	Запустить все тесты и убедиться, что они отрабатывают без ошибок

	Улучшить код и убедиться, что все тесты все еще отрабатывают без ошибок



После того как это завершено процесс повторяется снова для другой фичи или улучшения. Если существующая фича должна быть изменена, то и тесты
также должны быть изменены.


Tip: Если вы чувствуете, что вы теряете время выполняя много мелких и простых итераций, попробуйте покрыть это
вашим тестовым сценарием перед следующим выполнением тестов. Если вы слишком много отлаживаете, попробуйте сделать обратное.


Написание тестов до реализации конкретного функционала позволяет нам сосредоточиться на том, что мы хотим достичь и полностью
погрузиться в “как это сделать” впоследствии.

Обычно это приводит к лучшим абстракциям и более легкой поддержке тестов, когда речь идет о корректировки фичи или уменьшении связанности компонентов.

Таким образом плюсы этого подхода следующие:


	Позволяет вам сосредоточиться на одной вещи, что в свою очередь приводит к улучшению планирования и реализации.

	Более подробное покрытие тестами функционала, таким образом, если все тесты отрабатывают без ошибок, скорее всего, ничего не сломано.



В долгосрочной перспективе это, как правило, дает вам хороший эффект экономии времени.


Tip: Если вы хотите узнать больше о принципах сбора требования программного обеспечения и моделирования
предметной области, рекомендуем изучить Проблемно-ориентированное проектирование (DDD) [https://en.wikipedia.org/wiki/Domain-driven_design].





Когда и как тестировать

Принцип разработки описанный выше имеет смысл применять для долгосрочных и относительно сложных проектов, в то время как для простых это может быть
излишним. Есть несколько показателей того, когда данный подход уместен:


	Проект уже большой и сложный.

	Требования к проекту начинают усложняться. Проект постоянно растет.

	Долгосрочный проект.

	Цена ошибки очень высока



Нет ничего плохого в создании тестов, покрывающих поведение существующей реализации.


	Legacy-проект который постоянно обновляется.

	Вам поручили работу над проектом, в котором нет ни одного теста.



В некоторых случаях автоматизированно тестирование может быть излишним:


	Проект простой и не станет более сложным.

	Это одноразовый проект, который больше не будет дорабатываться.



Тем не менее, если у вас есть время, было бы хорошо автоматизировать тестирование и в этих случаях.




Что почитать


	Экстремальное программирование. Разработка через тестирование / Кент Бек. ISBN: 0321146530.









          

      

      

    

  

  
    
    
    Консольное приложение
    
    

    
 
  
  

    
      
          
            
  
Консольное приложение

Кроме богатых возможностей для построения веб приложений, Yii также имеет полноценную поддержку консольных приложений,
которые обычно используются для создания фоновых и служебных задач, поддерживающих сайт.

Структура консольных приложений очень похожа на структуру веб приложения. Она состоит из одного и более классов
[[yii\console\Controller]], которые часто называют командами в консольной среде. Каждый контроллер может иметь одно
или более действий, как и веб контроллеры.

В обоих шаблонах проектов уже есть консольное приложение.
Вы можете запустить его, вызвав скрипт yii, который находится в основной директории вашего приложения.
Вы получите список доступных команд, если вызовете его без параметров:

[image: Запуск команды ./yii для вывода помощи]

Как вы можете видеть на скриншоте, в Yii уже определён набор доступных по умолчанию команд:


	[[yii\console\controllers\AssetController|AssetController]] - Позволяет вам объединять и сжимать ваши JavaScript и CSS файлы.
Больше об этой команде вы можете узнать в Assets Section.

	[[yii\console\controllers\CacheController|CacheController]] - Позволяет вам сбрасывать кеш приложения.

	[[yii\console\controllers\FixtureController|FixtureController]] - Управляет загрузкой и выгрузкой данных фикстур для тестирования.
Данная команда более подробно описана в Testing Section about Fixtures.

	[[yii\console\controllers\HelpController|HelpController]] - Обеспечивает справочную информацию о консольных командах,
это команда по умолчанию и она печатает текст, который вы видели выше.

	[[yii\console\controllers\MessageController|MessageController]] - Извлекает сообщения для перевода из файлов с исходными тестами.
Больше об этой команде вы можете узнать в I18N Section.

	[[yii\console\controllers\MigrateController|MigrateController]] - Управление миграциями приложения.
Миграции базы данных более детально описаны в Database Migration Section.

	[[yii\console\controllers\ServeController|ServeController]] - Позволяет запускать встроенный вебсервер PHP.




Использование 

Вы можете запустить действие консольного контроллера, используя следующий синтаксис:

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]





В приведённом выше примере, <route> относится к действию контроллера. Параметры будут подставляться в свойства
класса и в аргументы метода действия.

Для примера, [[yii\console\controllers\MigrateController::actionUp()|MigrateController::actionUp()]]
с [[yii\console\controllers\MigrateController::$migrationTable|MigrateController::$migrationTable]] установкой migrations
и лимитом в 5 миграций может быть вызвано следующим образом:

yii migrate/up 5 --migrationTable=migrations






Note: При использовании в консоли *, не забудьте поместить её в кавычки "*" чтобы избежать её интерпретации
и замены на все имена файлов в данной директории.





Входной скрипт 

Входной скрипт консольного приложения - это подобие файла index.php, используемого в веб приложении.
Входной скрипт консоли, как правило, называется yii и располагается в основной директории приложения.
Он содержит код похожий на следующее:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/vendor/autoload.php');
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);





Этот скрипт будет создан как часть вашего приложения; вы можете его редактировать, если вам это необходимо.
YII_DEBUG можете установить в false если вам не нужно видеть отладочный вывод при ошибке, и/или если вы хотите
улучшить общую производительность. В обоих шаблонах приложения, во входном скрипте приложения отладка включена по
умолчанию для обеспечения более дружественного к разработчику окружения.




Настройка 

Как видно из приведённого выше кода, консольное приложение использует свой собственный файл конфигурации, названый console.php.
В этом файле вы должны произвести настройку различных компонентов приложения и
свойств консольного приложения.

Если ваше веб и консольное приложение имеет много общих параметров конфигурации, вы можете выделить общую часть в
отдельный файл, и включить его в оба файла конфигурации (веб и консоль).
Вы можете посмотреть пример в “продвинутом” шаблоне проекта.


Tip: Иногда, вам может потребоваться запустить консольную команду используя конфигурацию, отличную от той, что
указано во входном скрипте. Для примера, вы можете использовать команду yii migrate для обновления тестовой
базы данных, которая настраивается для каждого отдельного набора тестов. Для изменения файла конфигурации,
просто укажите свой конфигурационный файл через опцию appconfig при запуске команды:

yii <route> --appconfig=path/to/config.php ...











Автодополнение консольных команд 

Автодополнение аргументов команд является полезной возможностью при работе в командной строке.
Начиная с версии 2.0.11, команда ./yii поддерживает автодополнение для Bash и ZSH.


Автодополнение для Bash

Убедитесь, что средства автодополнения для Bash установлены. В большинстве дистрибутивов они поставляются по умолчанию.

Сохраните скрипт для автодополнения в директорию /etc/bash_completion.d/:

 curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/bash/yii -o /etc/bash_completion.d/yii





Для временного использования, вы можете сохранить файл в произвольную директорию и подключить его на время работы сессии,
вызвав команду source yii.

Если скрипт был установлен глобально, вам потребуется перезапустить терминал или выполнить команду source ~/.bashrc
для активации автодополнения.

Обратитесь к инструкции по автодополнению в Bash [https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html]
чтобы узнать о других способах подключения скриптов автодополнения в ваше окружение.




Автодополнение для ZSH

Сохраните скрипт автодополнения в директорию для скриптов автодополнения. Например, ~/.zsh/completion/

mkdir -p ~/.zsh/completion
curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/zsh/_yii -o ~/.zsh/completion/_yii





Добавьте эту директорию в переменную среды $fpath, например добавив в конец ~/.zshrc следующую строку:

fpath=(~/.zsh/completion $fpath)





Убедитесь, что программа compinit запущена. Если это не так - добавьте в ~/.zshrc следующие строки:

autoload -Uz compinit && compinit -i





Затем перезапустите ваш терминал, либо выполните команду

exec $SHELL -l










Создание ваших собственных команд 


Консольный контроллер и действие

Консольная команда определяется как класс контроллера расширяющий [[yii\console\Controller]]. В классе контроллера,
вы определяете одно или несколько действий, которые соответствуют суб-командам контроллера. В каждом действии
вы пишете код, который реализует соответствующие данной суб-команде задачи.

При запуске команды, вам необходимо указать маршрут к действию. Например, маршрут migrate/create вызывает суб-команду,
которая соответствует методу [[yii\console\controllers\MigrateController::actionCreate()|MigrateController::actionCreate()]].
Если маршрут, предложенный при вызове команды, не содержит указания идентификатора действия, будет вызвано действие
по умолчанию (так же как и в веб приложении).




Опции

Для переопределения [[yii\console\Controller::options()]] метода, вы можете указать опции, которые доступны в консольной
команде (controller/actionID). Метод должен возвращать список публичных атрибутов класса. При запуске команды вы
можете указать значение опций, используя синтаксис --OptionName=OptionValue. Это свяжет OptionValue с атрибутом
OptionName класса контроллера.

Если значение по умолчанию опции - это массив, то при установке этой опции, при выполнении команды, значение будет
преобразовано в массив путём разделения входящей строки по запятым.




Аргументы

Кроме опций, команда может получать аргументы. Аргументы будут переданы в качестве параметров в метод действия,
соответствующего запрошенной суб-команде. Первый аргумент соответствует первому параметру, второй соответственно второму,
и так далее. Если переданных аргументов при вызове команды будет недостаточно, то параметрам будут назначены по
умолчанию, если они определены. Если значения по умолчанию не определены, и не были переданы, команда завершит
выполнение с ошибкой.

Вы можете использовать указание типа array, чтобы указать, что аргумент должен рассматриваться как массив. Массив
будет сгенерирован путём разделения входной строки по запятым.




Псевдонимы опций

Начиная с версии 2.0.8 в классе консольной команды  доступен метод [[yii\console\Controller::optionAliases()]],
позволяющий добавлять псевдонимы для опций.

Для того, чтобы задать псевдоним, перекройте метод [[yii\console\Controller::optionAliases()]] в вашем контроллере:

namespace app\commands;

use yii\console\Controller;

class HelloController extends Controller
{
    public $message;
    
    public function options($actionID)
    {
        return ['message'];
    }
    
    public function optionAliases()
    {
        return ['m' => 'message'];
    }
    
    public function actionIndex()
    {
        echo $this->message . "\n";
    }
}





Теперь для запуска команды можно использовать следующий синтаксис:

yii hello -m=hello





Следующий пример показывает как описывать аргументы:

class ExampleController extends \yii\console\Controller
{
    // Команда "yii example/create test" вызовет "actionCreate('test')"
    public function actionCreate($name) { ... }

    // Команда "yii example/index city" вызовет "actionIndex('city', 'name')"
    // Команда "yii example/index city id" вызовет "actionIndex('city', 'id')"
    public function actionIndex($category, $order = 'name') { ... }

    // Команда "yii example/add test" вызовет "actionAdd(['test'])"
    // Команда "yii example/add test1,test2" вызовет "actionAdd(['test1', 'test2'])"
    public function actionAdd(array $name) { ... }
}








Код возврата

При разработке консольного приложения принято использовать код возврата. Принято, код 0 означает, что команда выполнилась
удачно. Если команда вернула код больше нуля, то это говорит об ошибке. Номер, который был возвращён при ошибке,
потенциально может быть использован для поиска более детальной информации об ошибке.
Для примера 1 может указывать на неизвестную ошибку, а все коды выше могут быть зарезервированы под специфичные
ошибки: ошибки ввода, повреждённые файлы, и что-то другое.

Для того, чтобы ваша консольная команда возвращала код возврата, просто верните целое число в методе действия контроллера:

public function actionIndex()
{
    if (/* возникла проблема */) {
        echo "Возникла проблема!\n";
        return 1;
    }
    // делаем что-нибудь
    return 0;
}





Есть несколько предопределённых констант, которые вы можете использовать:


	[[yii\console\Controller::EXIT_CODE_NORMAL|Controller::EXIT_CODE_NORMAL]] со значением 0;

	[[yii\console\Controller::EXIT_CODE_ERROR|Controller::EXIT_CODE_ERROR]] со значением 1.



Хорошая практика, определять значимые для вашего контроллера константы в случае, если вы используете больше типов ошибок.




Форматирование и цвета

Консоль Yii поддерживает форматирование вывода, который автоматически деградирует до не форматированного, если это не поддерживается
в терминале, где запускается команда.

Вывод форматированных строк прост. Вот как можно вывести некоторый жирный текст:

$this->stdout("Hello?\n", Console::BOLD);





Если вам нужно собрать строку динамически объединяя несколько стилей, лучше использовать
[[yii\helpers\Console::ansiFormat()|ansiFormat()]]:

$name = $this->ansiFormat('Alex', Console::FG_YELLOW);
echo "Hello, my name is $name.";













          

      

      

    

  

  
    
    
    Входные скрипты
    
    

    
 
  
  

    
      
          
            
  
Входные скрипты

Входные скрипты это первое звено в процессе начальной загрузки приложения. Приложение (веб приложение или консольное приложение)
включает единый входной скрипт. Конечные пользователи делают запросы к входному скрипту,
который создает объекты приложения и перенаправляет запрос к ним.

Входные скрипты для веб приложений должны быть сохранены в папках, доступных из веб, таким образом они могут быть
доступны конечным пользователям. Такие скрипты обычно именуются index.php, но так же могут использовать другие имена,
которые могут быть распознаны используемыми веб-серверами.

Входные скрипты для консольных приложений обычно расположены в базовой папке приложений и имеют название
yii (с суффиксом .php). Они должны иметь права на выполнение, таким образом пользователи смогут запускать консольные приложения
через команду ./yii <маршрут> [аргументы] [опции].

Входные скрипты в основном делают следующую работу:


	Объявляют глобальные константы;

	Регистрируют загрузчик классов Composer [https://getcomposer.org/doc/01-basic-usage.md#autoloading];

	Подключают файл класса [[Yii]];

	Загружают конфигурацию приложения;

	Создают и конфигурируют объект приложения;

	Вызывают метод [[yii\base\Application::run()]] приложения для обработки входящего запроса.




Веб приложения 

Ниже представлен код входного скрипта для базового шаблона приложения.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// регистрация загрузчика классов Composer
require(__DIR__ . '/../vendor/autoload.php');

// подключение файла класса Yii
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// загрузка конфигурации приложения
$config = require(__DIR__ . '/../config/web.php');

// создание и конфигурация приложения, а также вызов метода для обработки входящего запроса
(new yii\web\Application($config))->run();








Консольные приложения 

Ниже представлен аналогичный код входного скрипта консольного приложения:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);

// регистрация загрузчика классов Composer
require(__DIR__ . '/vendor/autoload.php');

// подключение файла класса Yii
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

// загрузка конфигурации приложения
$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);








Объявление констант 

Входные скрипты являются наилучшим местом для объявления глобальных констант. Yii поддерживают следующие три константы:


	YII_DEBUG: указывает работает ли приложение в отладочном режиме. Находясь в отладочном режиме, приложение будет собирать
больше информации в логи и покажет детальный стек вызовов если возникнет исключение. По этой причине, отладочный режим должен
быть использован только в процессе разработки. По-умолчанию значение YII_DEBUG равно false;

	YII_ENV: указывает в каком окружении запущено приложение. Данная тема подробно описана в разделе Конфигурации.
По-умолчанию значение YII_ENV равно 'prod', означающие, что приложение запущено в производственном режиме;

	YII_ENABLE_ERROR_HANDLER: указывает нужно ли включать имеющийся в Yii обработчик ошибок. По-умолчанию значение данной константы
равно true.



При определении константы, мы обычно используем следующий код:

defined('YII_DEBUG') or define('YII_DEBUG', true);





который равнозначен коду, приведенному ниже:

if (!defined('YII_DEBUG')) {
    define('YII_DEBUG', true);
}





Первый способ является более кратким и понятным.

Константы должны быть определены как можно раньше, в самом начале входного скрипта, таким образом они могут оказать влияние,
когда остальные PHP файлы будут подключены.







          

      

      

    

  

  
    
    
    Генерация кода при помощи Gii
    
    

    
 
  
  

    
      
          
            
  
Генерация кода при помощи Gii

В этом разделе мы опишем, как использовать Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ru/README.md] для автоматической генерации кода,
реализующего некоторые общие функции вебсайта. Для достижения этой цели всё, что вам нужно, это просто ввести необходимую информацию в соответствии с инструкциями, отображаемыми на веб-страницах Gii.

В этом руководстве вы узнаете:


	Как активировать Gii в приложении;

	Как использовать Gii для создания Active Record класса;

	Как использовать Gii для генерации кода, реализующего CRUD для таблицы БД.

	Как настроить код, генерируемый Gii.




Запускаем Gii 

Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ru/README.md] представлен в Yii как модуль. Вы можете активировать Gii,
настроив его в свойстве [[yii\base\Application::modules|modules]]. В зависимости от того, каким образом вы создали приложение, вы можете удостовериться в наличии следующего кода в конфигурационном файле config/web.php,

$config = [ ... ];

if (YII_ENV_DEV) {
    $config['bootstrap'][] = 'gii';
    $config['modules']['gii'] = [
        'class' => 'yii\gii\Module',
    ];
}





Приведенная выше конфигурация показывает, что находясь в режиме разработки,
приложение должно включать в себя модуль с именем gii, который реализует класс [[yii\gii\Module]].

Если вы посмотрите входной скрипт web/index.php вашего приложения, вы
увидите следующую строку, устанавливающую константу YII_ENV_DEV в значение true.

defined('YII_ENV') or define('YII_ENV', 'dev');





Благодаря этой строке ваше приложение находится в режиме разработки, и Gii уже активирован в соответствии с описанной выше конфигурацией. Теперь вы можете получить доступ к Gii по следующему адресу:

http://hostname/index.php?r=gii






Note: Если вы пытаетесь получить доступ к Gii не с локального хоста, по умолчанию, в целях обеспечения безопасности,
доступ будет запрещён. Вы можете изменить настройки Gii, чтобы добавить разрешённые IP адреса, как указано ниже


'gii' => [
    'class' => 'yii\gii\Module',
    'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // регулируйте в соответствии со своими нуждами
],





[image: Gii]




Генерация класса Active Record 

Чтобы использовать Gii для генерации класса Active Record, выберите “Генератор модели” (нажав на ссылку на главной странице Gii). И заполните форму следующим образом:


	Имя таблицы: country

	Класс модели : Country



[image: Генератор модели]

Затем нажмите на кнопку “Предварительный просмотр”. Вы увидите, что models/Country.php перечислен в результатах создаваемых файлов классов. Вы можете нажать на имя файла класса для просмотра его содержимого.

Если вы уже создали такой же файл и хотите перезаписать его, нажмите кнопку diff рядом с именем файла, чтобы увидеть различия между генерируемым кодом и существующей версией.

[image: Предварительный просмотр генератора модели]

Для перезаписи существующего файла установите флажок рядом с “overwrite” и нажмите кнопку “Generate”. Для создания нового файла вы можете просто нажать “Generate”.

После этого вы увидите страницу подтверждения, указывающую на то, что код был успешно сгенерирован. Если файл существовал до этого, вы также увидите сообщение о том, что он был перезаписан заново сгенерированным кодом.




Создание CRUD кода 

CRUD расшифровывается как Create, Read, Update и Delete, предоставляющий четыре основные функции, выполняемые над данными на большинстве веб-сайтов. Чтобы создать функциональность CRUD используя Gii, выберите “CRUD Генератор” (нажав на ссылку на главной странице Gii). Для нашей таблицы «country» заполните полученную форму следующим образом:


	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController



[image: CRUD генератор]

Затем нажмите на кнопку “Preview”. Вы увидите список файлов, которые будут созданы, как показано ниже.

[image: CRUD генератор: предпросмотр]

Если вы уже создали файлы controllers/CountryController.php и views/country/index.php (в разделе о базах данных), установите флажок “overwrite”, чтобы заменить их. (Предыдущие версии не поддерживают CRUD полностью)




Испытываем в действии 

Чтобы увидеть как всё это работает, перейдите по следующему URL, используя ваш браузер:

http://hostname/index.php?r=country%2Findex





Вы увидите таблицу, показывающую страны из таблицы БД. Вы можете сортировать, а также фильтровать данные, указывая условия фильтрации в заголовках столбцов.

Для каждой отображающейся в таблице страны вы можете просмотреть подробную информацию, обновить или удалить её.
Вы также можете нажать на кнопку “Создать страну” в верхней части таблицы для получения формы создания новой страны.

[image: Таблица данных стран]

[image: Обновление страны]

Ниже приведен список файлов, созданных с помощью Gii, в том случае, если вы захотите исследовать реализацию этих функций, или изменить их:


	Контроллер: controllers/CountryController.php

	Модели: models/Country.php и models/CountrySearch.php

	Вид: views/country/*.php




Info: Gii разработан как тонконастраиваемый и расширяемый инструмент генерации кода. Используя его с умом, вы можете значительно ускорить скорость разработки приложений. Для более подробной информации, пожалуйста, обратитесь к разделу Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide-ru/README.md].





Заключение 

В этом разделе вы узнали, как использовать Gii для генерации кода, реализующего полную функциональность CRUD для данных, хранящихся в таблице базы данных.







          

      

      

    

  

  
    
    
    Модели
    
    

    
 
  
  

    
      
          
            
  
Модели

Модели являются частью архитектуры MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] (Модель-Вид-Контроллер). Они представляют собой объекты бизнес данных, правил и логики.

Вы можете создавать классы моделей путём расширения класса [[yii\base\Model]] или его дочерних классов. Базовый класс [[yii\base\Model]] поддерживает много полезных функций:


	Атрибуты: представляют собой рабочие данные и могут быть доступны как обычные свойства объекта или элементы массива;

	Метки атрибутов: задают отображение атрибута;

	Массовое присвоение: поддержка заполнения нескольких атрибутов в один шаг;

	Правила проверки: обеспечивают ввод данных на основе заявленных правил проверки;

	Экспорт Данных: разрешает данным модели быть экспортированными в массивы с настройкой форматов.



Класс Model также является базовым классом для многих расширенных моделей, таких как Active Record. Пожалуйста, обратитесь к соответствующей документации для более подробной информации об этих расширенных моделях.


Info: Вы не обязаны основывать свои классы моделей на [[yii\base\Model]]. Однако, поскольку в yii есть много компонентов, созданных для поддержки [[yii\base\Model]], обычно так делать предпочтительнее для базового класса модели.



Атрибуты 

Модели предоставляют рабочие данные в терминах атрибутах. Каждый атрибут представляет собой публично доступное свойство модели. Метод [[yii\base\Model::attributes()]] определяет какие атрибуты имеет класс модели.

Вы можете получить доступ к атрибуту как к обычному свойству объекта:

$model = new \app\models\ContactForm;

// "name" - это атрибут модели ContactForm
$model->name = 'example';
echo $model->name;





Также возможно получить доступ к атрибутам как к элементам массива, спасибо поддержке ArrayAccess [http://php.net/manual/ru/class.arrayaccess.php] и Traversable [http://php.net/manual/ru/class.traversable.php]
в [[yii\base\Model]]:

$model = new \app\models\ContactForm;

// доступ к атрибутам как к элементам массива
$model['name'] = 'example';
echo $model['name'];

// Модель является обходимой(traversable) с использованием foreach.
foreach ($model as $name => $value) {
    echo "$name: $value\n";
}






Определение Атрибутов 

По умолчанию, если ваш класс модели расширяется напрямую от [[yii\base\Model]], то все не статичные публичные переменные являются атрибутами. Например, у класса модели ContactForm , который находится ниже, четыре атрибута: name, email, subject и body. Модель ContactForm используется для представления входных данных, полученных из HTML формы.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
    public $name;
    public $email;
    public $subject;
    public $body;
}





Вы можете переопределить метод [[yii\base\Model::attributes()]], чтобы определять атрибуты другим способом. Метод должен возвращать имена атрибутов в модели. Например [[yii\db\ActiveRecord]] делает так, возвращая имена столбцов из связанной таблицы базы данных в качестве имён атрибутов. Также может понадобиться переопределить магические методы, такие как __get(), __set() для того, что бы атрибуты могли быть доступны как обычные свойства объекта.




Метки атрибутов 

При отображении значений или при получении ввода значений атрибутов, часто требуется отобразить некоторые надписи, связанные с атрибутами. Например, если атрибут назван firstName, Вы можете отобразить его как First Name, что является более удобным для пользователя, в тех случаях, когда атрибут отображается конечным пользователям в таких местах, как форма входа и сообщения об ошибках.

Вы можете получить метку атрибута, вызвав [[yii\base\Model::getAttributeLabel()]]. Например,

$model = new \app\models\ContactForm;

// отобразит "Name"
echo $model->getAttributeLabel('name');





По умолчанию, метки атрибутов автоматически генерируются из названия атрибута. Генерация выполняется методом [[yii\base\Model::generateAttributeLabel()]]. Он превращает первую букву каждого слова в верхний регистр, если имена переменных состоят из нескольких слов. Например, username станет Username, а firstName станет First Name.

Если Вы не хотите использовать автоматически сгенерированные метки, Вы можете переопределить метод [[yii\base\Model::attributeLabels()]], чтобы явно объявить метку атрибута. Например,

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
    public $name;
    public $email;
    public $subject;
    public $body;

    public function attributeLabels()
    {
        return [
            'name' => 'Your name',
            'email' => 'Your email address',
            'subject' => 'Subject',
            'body' => 'Content',
        ];
    }
}





Для приложений поддерживающих мультиязычность, Вы можете перевести метки атрибутов. Это можно сделать в методе [[yii\base\Model::attributeLabels()|attributeLabels()]] как показано ниже:

public function attributeLabels()
{
    return [
        'name' => \Yii::t('app', 'Your name'),
        'email' => \Yii::t('app', 'Your email address'),
        'subject' => \Yii::t('app', 'Subject'),
        'body' => \Yii::t('app', 'Content'),
    ];
}





Можно даже условно определять метки атрибутов. Например, на основе сценариев и использованной в нём модели , Вы можете возвращать различные метки для одного и того же атрибута.


Для справки: Строго говоря, метки атрибутов являются частью видов. Но объявление меток в моделях часто очень удобно и приводит к чистоте кода и повторному его использованию.







Сценарии 

Модель может быть использована в различных сценариях. Например, модель User может быть использована для коллекции входных логинов пользователей, а также может быть использована для цели регистрации пользователей.В различных сценариях, модель может использовать различные бизнес-правила и логику. Например, атрибут email может потребоваться во время регистрации пользователя, но не во время входа пользователя в систему.

Модель использует свойство [[yii\base\Model::scenario]], чтобы отслеживать сценарий, в котором она используется. По умолчанию, модель поддерживает только один сценарий с именем default. В следующем коде показано два способа установки сценария модели:

// сценарий задается как свойство
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// сценарий задается через конфигурацию
$model = new User(['scenario' => User::SCENARIO_LOGIN]);





По умолчанию сценарии, поддерживаемые моделью, определяются правилами валидации объявленными
в модели. Однако, Вы можете изменить это поведение путем переопределения метода [[yii\base\Model::scenarios()]] как показано ниже:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
    const SCENARIO_LOGIN = 'login';
    const SCENARIO_REGISTER = 'register';

    public function scenarios()
    {
        return [
            self::SCENARIO_LOGIN => ['username', 'password'],
            self::SCENARIO_REGISTER => ['username', 'email', 'password'],
        ];
    }
}






Info: В приведенном выше и следующих примерах, классы моделей расширяются от [[yii\db\ActiveRecord]] потому, что использование нескольких сценариев обычно происходит от классов Active Record.


Метод scenarios() возвращает массив, ключами которого являются имена сценариев, а значения - соответствующие активные атрибуты. Активные атрибуты могут быть массово присвоены и подлежат валидации. В приведенном выше примере, атрибуты username и password это активные атрибуты сценария login, а в сценарии register так же активным атрибутом является email вместе с username и password.

По умолчанию реализация scenarios() вернёт все найденные сценарии в правилах валидации задекларированных в методе [[yii\base\Model::rules()]]. При переопределении метода scenarios(), если Вы хотите ввести новые сценарии помимо стандартных, Вы можете написать код на основе следующего примера:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
    const SCENARIO_LOGIN = 'login';
    const SCENARIO_REGISTER = 'register';

    public function scenarios()
    {
        $scenarios = parent::scenarios();
        $scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];
        $scenarios[self::SCENARIO_REGISTER] = ['username', 'email', 'password'];
        return $scenarios;
    }
}





Возможности сценариев в основном используются валидацией и массовым присвоением атрибутов. Однако, Вы можете использовать их и для других целей. Например, Вы можете различным образом объявлять метки атрибутов на основе текущего сценария.




Правила валидации 

Когда данные модели, получены от конечных пользователей, они должны быть проверены, для того чтобы убедиться, что данные удовлетворяют определенным правилам (так называемым правилам валидации также известными как бизнес-правила). Например, дана модель ContactForm, возможно Вы захотите убедиться, что все атрибуты являются не пустыми значениями, а атрибут email содержит допустимый адрес электронной почты. Если значения нескольких атрибутов не удовлетворяют соответствующим бизнес-правилам, то должны быть показаны соответствующие сообщения об ошибках, чтобы помочь конечному пользователю исправить допущенные ошибки.

Вы можете вызвать [[yii\base\Model::validate()]] для проверки полученных данных. Данный метод будет использовать
правила валидации определённые в [[yii\base\Model::rules()]] для проверки каждого соответствующего атрибута. Если ошибок не найдено, то возвращается true, в противном случае возвращается false, а ошибки содержит свойство [[yii\base\Model::errors]]. Например,

$model = new \app\models\ContactForm;

// модель заполнения атрибутов данными, вводимыми пользователем
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
    // все данные верны
} else {
    // проверка не удалась:  $errors - это массив содержащий сообщения об ошибках
    $errors = $model->errors;
}





Объявляем правила валидации связанные с моделью, переопределяем метод [[yii\base\Model::rules()]] возврата правил атрибутов модели которые следует удовлетворить. В следующем примере показаны правила проверки объявленные в модели ContactForm:

public function rules()
{
    return [
        // name, email, subject и body атрибуты обязательны
        [['name', 'email', 'subject', 'body'], 'required'],

        // атрибут email должен быть правильным email адресом
        ['email', 'email'],
    ];
}





Правило может использоваться для проверки одного или нескольких атрибутов, также и атрибут может быть проверен одним или несколькими правилами. Пожалуйста, обратитесь к разделу Проверка входных значений для более подробной информации о том, как объявлять правила проверки.

Иногда необходимо, чтобы правила применялись только в определенных сценариях. Чтобы это сделать необходимо указать свойство on в правилах, следующим образом:

public function rules()
{
    return [
        // username, email и password требуются в сценарии "register"
        [['username', 'email', 'password'], 'required', 'on' => self::SCENARIO_REGISTER],

        // username и password требуются в сценарии "login"
        [['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN],
    ];
}





Если не указать свойство on, то правило применяется во всех сценариях. Правило называется активным правилом если оно может быть применено в текущем сценарии [[yii\base\Model::scenario|scenario]].

Атрибут будет проверяться тогда и только тогда если он является активным атрибутом объявленным в scenarios() и
связанным с одним или несколькими активными правилами, объявленными в rules().




Массовое Присвоение 

Массовое присвоение - это удобный способ заполнения модели данными вводимыми пользователем с помощью одной строки кода. Он заполняет атрибуты модели путем присвоения входных данных непосредственно свойству [[yii\base\Model::$attributes]]. Следующие два куска кода эквивалентны, они оба пытаются присвоить данные из формы представленные конечными пользователями атрибутам модели ContactForm. Ясно, что первый код гораздо чище и менее подвержен ошибкам, чем второй:

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');





$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;






Безопасные Атрибуты 

Массовое присвоение применяется только к так называемым безопасным атрибутам, которые являются атрибутами, перечисленными в [[yii\base\Model::scenarios()]] в текущем сценарии [[yii\base\Model::scenario|scenario]] модели. Например, если модель User имеет следующий заданный сценарий, в данном случае это сценарий login, то только username и password могут быть массово присвоены. Любые другие атрибуты останутся нетронутыми.

public function scenarios()
{
    return [
        self::SCENARIO_LOGIN => ['username', 'password'],
        self::SCENARIO_REGISTER => ['username', 'email', 'password'],
    ];
}






Info: Причиной того, что массовое присвоение атрибутов применяется только к безопасным атрибутам, является то, что необходимо контролировать какие атрибуты могут быть изменены конечными пользователями. Например, если модель User имеет атрибут permission, который определяет разрешения, назначенные пользователю, то необходимо быть уверенным, что данный атрибут может быть изменён только администраторами через бэкэнд-интерфейс.


По умолчанию [[yii\base\Model::scenarios()]] будет возвращать все сценарии и атрибуты найденные в [[yii\base\Model::rules()]], если не переопределить этот метод, атрибут будет считаться безопасным только в случае, если он участвует в любом из активных правил проверки.

По этой причине существует специальный валидатор с псевдонимом safe, он предоставляет возможность объявить атрибут безопасным без фактической его проверки. Например, следующие правила определяют, что оба атрибута title и description являются безопасными атрибутами.

public function rules()
{
    return [
        [['title', 'description'], 'safe'],
    ];
}








Небезопасные атрибуты 

Как сказано выше, метод [[yii\base\Model::scenarios()]] служит двум целям: определения, какие атрибуты должны быть проверены, и определения, какие атрибуты являются безопасными (т.е. не требуют проверки). В некоторых случаях необходимо проверить атрибут не объявляя его безопасным. Вы можете сделать это с помощью префикса восклицательный знак ! в имени атрибута при объявлении его в scenarios() как атрибут secret в следующем примере:

public function scenarios()
{
    return [
        self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
    ];
}





Когда модель будет присутствовать в сценарии login, то все три эти атрибута будут проверены. Однако, только атрибуты username и password могут быть массово присвоены. Назначить входное значение атрибуту secret нужно явно следующим образом,

$model->secret = $secret;










Экспорт Данных 

Часто нужно экспортировать модели в различные форматы. Например, может потребоваться преобразовать коллекцию моделей в JSON или Excel формат. Процесс экспорта может быть разбит на два самостоятельных шага. На первом этапе модели преобразуются в массивы; на втором этапе массивы преобразуются в целевые форматы. Вы можете сосредоточиться только на первом шаге потому, что второй шаг может быть достигнут путем универсального инструмента форматирования данных, такого как [[yii\web\JsonResponseFormatter]].

Самый простой способ преобразования модели в массив - использовать свойство [[yii\base\Model::$attributes]].
Например,

$post = \app\models\Post::findOne(100);
$array = $post->attributes;





По умолчанию, свойство [[yii\base\Model::$attributes]] возвращает значения всех атрибутов объявленных в [[yii\base\Model::attributes()]].

Более гибкий и мощный способ конвертирования модели в массив - использовать метод [[yii\base\Model::toArray()]]. Его поведение по умолчанию такое же как и у [[yii\base\Model::$attributes]]. Тем не менее, он позволяет выбрать, какие элементы данных, называемые полями, поставить в результирующий массив и как они должны быть отформатированы. На самом деле, этот способ экспорта моделей по умолчанию применяется при разработке в RESTful Web service, как описано в Response Formatting.


Поля 

Поле - это просто именованный элемент в массиве, который может быть получен вызовом метода [[yii\base\Model::toArray()]] модели.

По умолчанию имена полей эквивалентны именам атрибутов. Однако, это поведение можно изменить, переопределив методы
[[yii\base\Model::fields()|fields()]] и/или [[yii\base\Model::extraFields()|extraFields()]]. Оба метода должны возвращать список определенных полей. Поля определённые fields() являются полями по умолчанию, это означает, что toArray() будет возвращать эти поля по умолчанию. Метод extraFields() определяет дополнительно доступные поля, которые также могут быть возвращены toArray() так много, как Вы укажите их через параметр $expand. Например, следующий код будет возвращать все поля определённые в fields(), а также поля prettyName и fullAddress, если они определены в extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);





Вы можете переопределить fields() чтобы добавить, удалить, переименовать или переопределить поля. Возвращаемым значением fields() должен быть массив. Ключами массива являются имена полей, а значениями - соответствующие определения полей, которые могут быть либо именами свойств/атрибутов, либо анонимными функциями, возвращающими соответствующие значения полей. В частном случае, когда имя поля совпадает с именем его атрибута, возможно опустить ключ массива. Например,

// использовать явное перечисление всех полей, лучше всего тогда, когда вы хотите убедиться,
// что изменения в вашей таблице базы данных или атрибуте модели не вызывают изменение вашего поля
// (для поддержания обратной совместимости API интерфейса).

public function fields()
{
    return [
        // здесь имя поля совпадает с именем атрибута
        'id',

        // здесь имя поля - "email", соответствующее ему имя атрибута - "email_address"
        'email' => 'email_address',

        // здесь имя поля - "name", а значение определяется обратным вызовом PHP
        'name' => function () {
            return $this->first_name . ' ' . $this->last_name;
        },
    ];
}

// использовать фильтрование нескольких полей лучше тогда, когда вы хотите наследовать
// родительскую реализацию и черный список некоторых "чувствительных" полей.

public function fields()
{
    $fields = parent::fields();

    // удаляем поля, содержащие конфиденциальную информацию
    unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

    return $fields;
}






Warning: по умолчанию все атрибуты модели будут включены в экспортируемый массив, вы должны проверить ваши данные и убедиться, что они не содержат конфиденциальной информации. Если такая информация присутствует, вы должны переопределить fields() и отфильтровать поля. В приведенном выше примере мы выбираем и отфильтровываем auth_key, password_hash и password_reset_token.







Лучшие практические методики разработки моделей 

Модели являются центральным местом представления бизнес-данных, правил и логики. Они часто повторно используются в разных местах. В хорошо спроектированном приложении, модели, как правило, намного больше, чем контроллеры.

В целом, модели


	могут содержать атрибуты для представления бизнес-данных;

	могут содержать правила проверки для обеспечения целостности и достоверности данных;

	могут содержать методы с реализацией бизнес-логики;

	не следует напрямую задавать запрос на доступ, либо сессии, либо любые другие данные об окружающей среде. Эти данные должны быть введены контроллерами в модели;

	следует избегать встраивания HTML или другого отображаемого кода - это лучше делать в видах;

	избегайте слишком большого количества сценариев в одной модели.



Рекомендации выше обычно учитываются при разработке больших сложных систем. В таких системах, модели могут быть очень большими, в связи стем, что они используются во многих местах и поэтому могут содержать множество наборов правил и бизнес-логики. Это часто заканчивается кошмаром при поддержании кода модели, поскольку одним касанием кода можно повлиять на несколько разных мест. Чтобы сделать код модели более легким в обслуживании, Вы можете предпринять следующую стратегию:


	Определить набор базовых классов моделей, которые являются общими для разных приложений или модулей. Эти классы моделей должны содержать минимальный набор правил и логики, которые являются общими среди всех используемых приложений или модулей.

	В каждом приложении или модуле в котором используется модель, определить конкретный класс модели (или классы моделей), отходящий от соответствующего базового класса модели. Конкретный класс модели должен содержать правила и логику, которые являются специфическими для данного приложения или модуля.



Например, в шаблоне приложения advanced [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], Вы можете определить базовым классом модели common\models\Post. Тогда для frontend приложения, Вы определяете и используете конкретный класс модели frontend\models\Post, который расширяется от common\models\Post. И аналогичным образом для backend приложения, Вы определяете backend\models\Post. С помощью такой стратегии, можно быть уверенным, что код в frontend\models\Post используется только для конкретного frontend приложения, и если делаются любые изменения в нём, то не нужно беспокоиться, что изменения могут сломать backend приложение.







          

      

      

    

  

  
    
    
    Приёмочное тестирование
    
    

    
 
  
  

    
      
          
            
  
Приёмочное тестирование


Note: Данный раздел находится в разработке.



	Codeception Acceptance Tests [http://codeception.com/docs/03-AcceptanceTests]




Запуск тестов в шаблонах проектов basic и advanced

Инструкции приведены в apps/advanced/tests/README.md и apps/basic/tests/README.md.







          

      

      

    

  

  
    
    
    Окружение виртуального хостинга
    
    

    
 
  
  

    
      
          
            
  
Окружение виртуального хостинга

Зачастую окружение виртуальных хостингов весьма ограничено как в настройках конфигурации, так и в настройках структуры директорий. В большинстве случаев, однако, возможно запустить Yii 2 на виртуальном хостинге, внеся некоторые корректировки.


Установка приложения Basic.

Поскольку на виртуальном хостинге обычно только один webroot, то лучше использовать шаблонное приложение Basic. Прочитайте раздел Установка Yii и локально установите приложение. После того как оно начнет работать, можно внести необходимые корректировки, которые помогут разместить Basic на виртуальном хостинге.


Переименование webroot 

Подключитесь к вашему виртуальному хостингу, используя FTP или другой способ. Скорее всего вы увидите следующее:

config
logs
www





В приведенном выше описании www - это webroot директория веб-сервера. Она может называться по-другому. Возможные названия: www, htdocs или public_html.

В Basic webroot называется web. Перед загрузкой своего приложения на виртуальный хостинг, переименуйте локальный webroot на название webroot виртуального хостинга. Например, web в www или public_html, в зависимости от наименования webroot вашего хостинга.




Корневая директория FTP доступна для записи

Если вы можете записать в корневую директорию, где располагаются config, logs и www, то загрузите сюда же assets, commands и остальные директории, так же, как и у вас, локально.




Добавим настройки для веб-сервера 

В случае, если ваш сервер Apache, добавьте в директорию web или аналогичную, где располагается index.php, файл .htaccess со следующим содержимым:

Options +FollowSymLinks
IndexIgnore */*

RewriteEngine on

# if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

# otherwise forward it to index.php
RewriteRule . index.php





В случае использования nginx не требуется каких-либо дополнительных настроек.




Проверка требований

Для того чтобы запустить Yii, ваш веб-сервер должен соответствовать его требованиям. Минимальное требование к PHP - это его версия 5.4. Для того чтобы проверить требования, скопируйте requirements.php из корневого каталога в каталог webroot и запустите его с помощью браузера, используя url http://example.com/requirements.php. Не забудьте после проверки требований удалить файл requirements.php.






Установка шаблона приложения Advanced

Установка шаблона Advanced немного сложнее, чем установка Basic, из-за того, что в Advanced имеются две директории webroot, работа с которыми на виртуальном хостинге не поддерживается. По этой причине нам потребуется внести изменения в структуру директорий.


Перемещение входных скриптов в одну директорию webroot

Для начала нам необходима директория webroot. Создайте новую директорию и назовите её так же, как на виртуальном хостинге, например, www или public_html, как описывалось выше в разделе Переименование webroot. Затем создайте следующую структуру в www:

www
    admin
backend
common
console
environments
frontend
...





Нашей фронтенд директорией будет www. Переместите в неё всё из frontend/web. Так же поступите и для backend/web, скопировав всё в www/admin. В каждом случае нужно настроить пути внутри файлов index.php и index-test.php.




Отдельные сессии и куки

Изначально подразумевалось, что приложения бекенд и фронтенд располагаются на разных доменах. Теперь, когда мы перенесли всё на один домен, куки и сессии из бекенда и фронтенда стали пересекаться. Для решения этой проблемы требуется внести следующие настройки в конфигурацию бекенд-приложения backend/config/main.php:

'components' => [
    'request' => [
        'csrfParam' => '_backendCSRF',
        'csrfCookie' => [
            'httpOnly' => true,
            'path' => '/admin',
        ],
    ],
    'user' => [
        'identityCookie' => [
            'name' => '_backendIdentity',
            'path' => '/admin',
            'httpOnly' => true,
        ],
    ],
    'session' => [
        'name' => 'BACKENDSESSID',
        'cookieParams' => [
            'path' => '/admin',
        ],
    ],
],













          

      

      

    

  

  
    
    
    Фикстуры
    
    

    
 
  
  

    
      
          
            
  
Фикстуры

Фикстуры (англ. fixtures) - это важная составляющая тестирования. Их основная задача заключается в подготовке окружения
с заранее фиксированным/известным состоянием для гарантии повторяемости процесса тестирования. Yii предоставляет
фреймворк, который позволяет легко и точно определять фикстуры и использовать их в ваших тестах.

Ключевым понятием в фреймворке фикстур Yii является так называемый объект фикстуры. Объект фикстуры представляет собой
особый аспект тестового окружения, который наследуется от [[yii\test\Fixture]] или его наследников. Например, вы можете
использовать UserFixture для того, чтобы быть уверенным, что таблица пользователей содержит известный набор данных. Вы
загружаете один или несколько объектов фикстур перед запуском теста и выгружаете их после его завершения.

Фикстура может зависеть от других фикстур, заданных через свойство [[yii\test\Fixture::depends]].
Когда фикстура загружается, фикстуры от которых она зависит будут автоматически загружены ДО нее, а когда она
выгружается все зависимые фикстуры будут выгружены ПОСЛЕ нее.


Объявление фикстуры

Для объявления фикстуры создайте новый класс унаследованный от [[yii\test\Fixture]] или [[yii\test\ActiveFixture]].
Первый лучше всего подходит для фикстур общего назначения, в то время как последний имеет расширенные функции,
специально предназначенные для работы с базой данных и ActiveRecord.

Следующий код показывает как объявить фикстуру для модели ActiveRecord User, которая соответствует таблице пользователей.

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
    public $modelClass = 'app\models\User';
}






Tip: каждая ActiveFixture предназначена для подготовки таблицы базы данных для тестирования. Вы можете указать
таблицу как через свойство [[yii\test\ActiveFixture::tableName]], так и через свойство [[yii\test\ActiveFixture::modelClass]].
Если последнее, то в этом случае имя таблицы будет взято из модели ActiveRecord, указанной в modelClass.



Note: [[yii\test\ActiveFixture]] используется только для реляционных баз данных. Для NoSQL решений Yii
предоставляет следующие классы ActiveFixture:


	Mongo DB: [[yii\mongodb\ActiveFixture]]

	Elasticsearch: [[yii\elasticsearch\ActiveFixture]] (начиная с версии 2.0.2)






Данные для фикстуры ActiveFixture как правило находятся в файле FixturePath/data/TableName.php,где FixturePath указывает на директорию в которой располагается файл класса фикстуры, а TableName имя таблицы
с которой она ассоциируется. Для примера выше, данные должны должны быть в файле @app/tests/fixtures/data/user.php.
Данный файл должен вернуть массив данных для строк, которые будут вставлены в таблицу пользователей. Например

<?php
return [
    'user1' => [
        'username' => 'lmayert',
        'email' => 'strosin.vernice@jerde.com',
        'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
        'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
    ],
    'user2' => [
        'username' => 'napoleon69',
        'email' => 'aileen.barton@heaneyschumm.com',
        'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
        'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
    ],
];





Вы можете задать псевдоним строке для того, чтобы в будущем вы могли ссылаться на нее в ваших тестах. В примере выше
2 строки имеют псевдонимы user1 и user2, соответственно.

Также вам не нужно указывать данные для столбцов с авто-инкрементом. Yii автоматически заполнит значения данных столбцов
в момент загрузки фикстуры.


Tip: вы можете указать свой путь до файла данных через свойство [[yii\test\ActiveFixture::dataFile]].
Вы также можете переопределить метод [[yii\test\ActiveFixture::getData()]], чтобы предоставить данные.


Как мы описали ранее, фикстура может зависеть от других фикстур. Например, для UserProfileFixture возможно потребуется
зависимость от UserFixture так как таблица пользовательских профилей содержит внешний ключ, указывающий на таблицу пользователей.
Зависимость указывается через свойство [[yii\test\Fixture::depends]], как в следующем примере

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture
{
    public $modelClass = 'app\models\UserProfile';
    public $depends = ['app\tests\fixtures\UserFixture'];
}





Зависимость также гарантирует, что фикстуры загружаются и выгружаются в определенном порядке. В предыдущем примере UserFixture
будет автоматически загружена до UserProfileFixture, тем самым гарантируя существование всех внешних ключей, и будет выгружена
после того как выгрузится UserProfileFixture по тем же причинам.

Выше мы показали как объявить фикстуру для таблицы базы данных. Для объявления фикстуры не связанной с базой данных (например,
фикстуры для определенных файлов и директорий), вам следует унаследовать ее от класса [[yii\test\Fixture]]
и переопределить методы [[yii\test\Fixture::load()|load()]] и [[yii\test\Fixture::unload()|unload()]].




Использование фикстур

Если вы используете Codeception [http://codeception.com/] для тестирования вашего кода, вам следует рассмотреть вопрос
об использовании расширения yii2-codeception, которое имеет встроенную поддержку загрузки фикстур и доступа к ним.
Если вы используете другой фреймворк для тестирования, вы можете использовать [[yii\test\FixtureTrait]] в ваших тестах для
этих целей.

Далее мы опишем как написать класс модульного тестирования для модели UserProfile с использованием расширения yii2-codeception.

Объявите какие фикстуры вы хотите использовать в методе [[yii\test\FixtureTrait::fixtures()|fixtures()]] вашего класса модульного
тестирования, унаследованного от [[yii\codeception\DbTestCase]] или [[yii\codeception\TestCase]]. Например,

namespace app\tests\unit\models;

use yii\codeception\DbTestCase;
use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends DbTestCase
{
    public function fixtures()
    {
        return [
            'profiles' => UserProfileFixture::className(),
        ];
    }

    // ...методы тестирования...
}





Фикстуры перечисленные в методе fixtures() будут автоматически загружены перед выполнением каждого метода тестирования тест-кейса
и выгружены после завершения каждого метода тестирования. И, как мы описали ранее, когда фикстура загружается, все зависимые от нее
фикстуры будут автоматически загружены в первую очередь. В приведенном выше примере, при выполнении любого метода тестирования
в тест-кейсе последовательно будут загружены две фикстуры: UserFixture и UserProfileFixture, поскольку UserProfileFixture
зависит от UserFixture.

Для определения фикстур в методе fixtures() вы можете использовать либо имя класса, либо массив настроек. С помощью массива
настроек вы можете настроить свойства фикстуры, которые будут установлены при ее загрузке.

Вы также можете назначить фикстуре псевдоним. В примере выше, profiles является псевдонимом фикстуры UserProfileFixture.
С помощью псевдонима вы можете получить объект фикстуры в ваших методах тестирования. Например, $this->profiles вернет
объект UserProfileFixture.

Поскольку UserProfileFixture наследуется от ActiveFixture, вы можете также использовать следующий синтаксис для доступа к
данным фикстуры:

// вернет строку данных для псевдонима 'user1'
$row = $this->profiles['user1'];
// вернет модель UserProfile, соответствующую строке данных для псевдонима 'user1'
$profile = $this->profiles('user1');
// обход данных фикстуры в цикле
foreach ($this->profiles as $row) ...






Info: $this->profiles продолжает быть объектом класса UserProfileFixture. Указанные особенности доступа реализуются
через магические методы PHP.





Определение и использование глобальных фикстур

Фикстуры, описанные выше, в основном используются в рамках определенных тест-кейсов. В большинстве случаев, вам также нужны
глобальные фикстры, которые применяются во ВСЕХ или большинстве тест-кейсов. Примером является фикстура [[yii\test\InitDbFixture]],
которая делает 2 вещи:


	Запускает скрипт @app/tests/fixtures/initdb.php для выполнения ряда общих задач инициализации тестового окружения;

	Отключает проверку целостности данных перед загрузкой остальных фикстур, и включает ее обратно после того как все остальные фикстуры будут выгружены.



Использование глобальных фикстур схоже с использованием не глобальных. Единственное отличие в том, что вы должны объявить эти
фикстуры в методе [[yii\codeception\TestCase::globalFixtures()]], а не fixtures(). Когда тест-кейс загружает фикстуры, сначала
загружаются глобальные фикстуры, затем все остальные.

По умолчанию, фикстура InitDbFixture уже обяъвлена в методе globalFixtures() класса [[yii\codeception\DbTestCase]].
Это означает, что вы должны работать только с файлом @app/tests/fixtures/initdb.php, если вы хотите чтобы перед каждым тестом
выполнялись определенные подготовительные работы. В противном случае вы просто можете сфокусироваться на разработке
конкретных тест-кейсов и соответствующих фикстур.




Организация классов фикстур и файлов с данными

По умолчанию, классы фикстур ищут соответствующие файлы данных в директории data, которая является подпапкой папки, содержащей
файлы классов фикстур. Вы можете следовать этому соглашению при работе над простыми проектами. Есть вероятность, что на больших
проектах вам потребуется менять набор данных для одного и того же класса фикстур в разных тестах. Таким образом, мы рекомендуем
вам организовать файлы данных иерархически, подобно пространству имен ваших классов. Например,

# в папке tests\unit\fixtures

data\
    components\
        fixture_data_file1.php
        fixture_data_file2.php
        ...
        fixture_data_fileN.php
    models\
        fixture_data_file1.php
        fixture_data_file2.php
        ...
        fixture_data_fileN.php
# и так далее





Таким образом вы избежите коллизий файлов данных фикстур между тестами и будете использовать их, как вам нужно.


Note: в примере выше файлы данных фикстур названы так только в качестве примера. В реальных жизни вам следует
называть их в соответствии с тем от какого класса наследуется ваш класс фикстуры. Например, при наследовании от [[yii\test\ActiveFixture]]
для фикстур БД вам следует использовать имя таблицы в качестве имени файла данных; при наследовании от [[yii\mongodb\ActiveFixture]]
для фикстур MongoDB вам следует использовать имя коллекции в качестве имени файла.


Вы можете использовать похожую иерархию для организации файлов классов фикстур. Чтобы избежать конфликта с файлами данных
вы можете использовать в качестве корневой директории fixtures вместо data.




Резюме


Note: Этот раздел находится в разработке.


Выше мы описали как объявлять и использовать фикстуры. Ниже приведен типовой сценарий выполнения модульных тестов, связанных с БД:


	Используйте команду yii migrate для обновления тестовой БД до последней версии;

	Выполнить тест-кейс:
	Загрузка фикстур: очищение соответствующих таблиц БД и заполнение их данными фикстур;

	Выполнение теста;

	Выгрузка фикстур.





	Повторение шага 2 до тех пор, пока не выполнятся все тесты.



Будет доработано






Управление фикстурами


Note: Данный раздел находится в разработке.

todo: данный раздел может быть объединен с предыдущими частями test-fixtures.md




Фикстуры являются важной составляющей тестирования. Их основная задача в предоставлении набора данных, необходимого для тестирования
различных сценариев работы вашего приложения. С этими данными использование ваших тестов становятся более эффективным и полезным.

Yii поддерживает фикстуры через утилиту командной строки yii fixture. Эта утилита поддерживает:


	Загрузку фикстур в различные хранилища, такие как: RDBMS, NoSQL и другие;

	Выгрузку фикстур разными способами (как правило очищает хранилище);

	Автоматическую генерацию фикстур и наполнение их случайными данными




Формат фикстуры

Фикстуры - это объекты с различными методами и конфигурацией, с которыми вы можете ознакомиться в официальной документации [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixture.md].

Давайте предположим, что у нас есть следующий набор данных фикстуры для загрузки:

# файл users.php в директории файлов данных фикстур, по умолчанию @tests\unit\fixtures\data

return [
    [
        'name' => 'Chase',
        'login' => 'lmayert',
        'email' => 'strosin.vernice@jerde.com',
        'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
        'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
    ],
    [
        'name' => 'Celestine',
        'login' => 'napoleon69',
        'email' => 'aileen.barton@heaneyschumm.com',
        'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
        'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
    ],
];





Если вы используете фикстуру, которая загружает данные в базу данных, то эти строки будут применены к таблице users.
Если вы используете фикстуру для загрузки данных в nosql, например, фикстура для mongodb, то данные будут применены к коллекции users.
Для того, чтобы узнать о реализации различных сценариях загрузки фикстур, обратитесь к официальной документации [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixture.md].
Предыдущий пример фикстуры был сгенерирован автоматически с использованием расширения yii2-faker, подробнее про это читайте в этом разделе.
Имя класса фикстуры должно быть в единственном числе.




Загрузка фикстур

Класс фикстур должны содержать суффикс Fixture. По умолчанию поиск фикстур выполняется в пространстве имен tests\unit\fixtures, но вы можете изменить это поведение
через конфигурационный файл или параметры команды. Вы можете исключить некоторые фикстуры из загрузки или выгрузки добавив - перед их именем, например -User.

Чтобы загрузить фикстуру, выполните следующую команду::

yii fixture/load <fixture_name>





Обязательный параметр fixture_name указываем на имя фикстуры, которая должна быть загружена. Вы можете загрузить несколько фикстур за раз.
Ниже указаны примеры корректного использования данной команды:

// загрузить фикстуру `User`
yii fixture/load User

// тоже что и выше, т.к. "load" является действие по умолчанию для команды "fixture"
yii fixture User

// загрузить нескольких фикстур
yii fixture "User, UserProfile"

// загрузить все фикстуры
yii fixture/load "*"

// тоже что и выше
yii fixture "*"

// загрузить все фикстуры кроме указанной
yii fixture "*, -DoNotLoadThisOne"

// загрузка фикстур, но искать их следует в другом пространстве имен. Пространство имен по умолчанию: tests\unit\fixtures.
yii fixture User --namespace='alias\my\custom\namespace'

// загрузить глобальную фикстуру `some\name\space\CustomFixture` перед загрузкой остальных фикстур.
// По умолчанию данный параметр установлен в `InitDbFixture` для включения/отключения проверки целостности данных.
// Вы можете задать несколько глобальных фикстур, указав их через запятую
yii fixture User --globalFixtures='some\name\space\Custom'








Выгрузка фикстур

Для выгрузки фикстур выполните следующую команду:

// выгрузить фикстуру `Users`, по умолчанию будут удалены все данные из таблицы "users", или из коллекции "users" если это фикстура mongodb
yii fixture/unload User

// выгрузить несколько фикстур
yii fixture/unload "User, UserProfile"

// выгрузить все фикстуры
yii fixture/unload "*"

// выгрузить все фикстуры за исключением указанной
yii fixture/unload "*, -DoNotUnloadThisOne"





При выгрузке фикстур вы также можете использовать параметры namespace и globalFixtures.




Глобальная настройка команды

Хотя параметры командой строки и позволяют нам настраивать команду миграции на лету, иногда нам может понадобиться настроить
команду один раз для всех сценариев запуска. Например, вы можете настроить различные пути до файлов с фикстурами как в примере ниже:

'controllerMap' => [
    'fixture' => [
        'class' => 'yii\console\controllers\FixtureController',
        'namespace' => 'myalias\some\custom\namespace',
        'globalFixtures' => [
            'some\name\space\Foo',
            'other\name\space\Bar'
        ],
    ],
]








Автоматическая генерация фикстур

Yii также может автоматически генерировать для вас фикстуры на основе некоторого шаблона. Вы можете генерировать фикстуры с
различным набором данных на разных языках и в разных форматах. Данная возможность основана на использовании библиотеки Faker [https://github.com/fzaninotto/Faker]
и расширения yii2-faker.

Для получения дополнительной информации ознакомьтесь с руководством [https://github.com/yiisoft/yii2-faker].







          

      

      

    

  

  
    
    
    Логгирование
    
    

    
 
  
  

    
      
          
            
  
Логгирование

Yii предоставляет мощную, гибко настраиваемую и легко расширяемую систему логгирования. Эта система логгирования позволяет удобным способом сохранять сообщения разных типов и фильтровать их. Сообщения могут быть сохранены в файлы, базы данных или отправлены на email.

Использование Системы логгирования Yii включает следующие шаги:


	Запись сообщений лога в различных частях кода приложения;

	Настройка целей лога в конфигурации приложения;

	Изучение отфильтрованных сообщений лога, например, при помощи Отладчика Yii.



В данном разделе, будем рассматривать первые два шага.


Сообщения лога 

Запись сообщений лога осуществляется вызовом одного из следующих методов:


	[[Yii::trace()]]: записывает сообщения для отслеживания выполнения кода приложения. Используется, в основном, при разработке.

	[[Yii::info()]]: записывает сообщение, содержащее какую-либо полезную информацию.

	[[Yii::warning()]]: записывает тревожное сообщение при возникновении неожиданного события.

	[[Yii::error()]]: записывает критическую ошибку, на которую нужно, как можно скорее, обратить внимаение.



Эти методы позволяют записывать сообщения разных уровней важности и категорий. Они имеют одинаковое описание функции function ($message, $category = 'application'), где $message передает сообщение для записи, а $category - категорию сообщения. В следующем примере будет записано trace сообщение с категорией по умолчанию application:

Yii::trace('start calculating average revenue');






Note: Сообщение может быть как строкой так и объектом или массивом. За корректную работу с содержимым сообщения отвечают цели лога. По умолчанию, если сообщение не является строкой, оно будет приведено к строковому типу при помощи [[yii\helpers\VarDumper::export()]].


Для упрощения работы с сообщениями лога и их фильтрации, рекомендуется явно указывать подходящую категорию для каждого сообщения. Возможно использование иерархической системы именования категорий, что значительно упростит целям лога фильтрацию сообщений по категориям. Простым и эффективным способом именования категорий является использование магической PHP константы __METHOD__. Такой подход используется в ядре фреймворка Yii. Например,

Yii::trace('начало вычисления среднего дохода', __METHOD__);





Константа __METHOD__ вычисляется как имя метода (включая полное имя класса), в котором она использована. Например, её значение будет вычислено как 'app\controllers\RevenueController::calculate', если показанный выше код вызывается в соответствующем методе.


Info: методы логгирования, описанные выше являются, на самом деле, ярлыками для метода [[yii\log\Logger::log()|log()]] [[yii\log\Logger|объекта логгера]], который доступен как синглтон Yii::getLogger().
При определенном количестве записанных сообщений или завершении приложения, объект логгера вызывает [[yii\log\Dispatcher|message dispatcher]] для отправки записанных сообщений зарегистрированным целям логов.





Цели логов 

Цель логов - это экземпляр класса [[yii\log\Target]] или класса, унаследованного от него. Цель фильтрует сообщения логов по уровню важности и категории, а затем выгружает их в соответствующее хранилище. Например, [[yii\log\DbTarget|database target]] выгружает отфильтрованные сообщения логов в таблицу базы данных, а [[yii\log\EmailTarget|email target]] отправляет сообщения логов на заданные адреса email.

При помощи компонента приложения log возможна регистрация нескольких целей логов. Пример конфигурации приложения:

return [
    // Компонент "log" должен быть загружен на этапе предзагрузки
    'bootstrap' => ['log'],
    
    'components' => [
        'log' => [
            'targets' => [
                [
                    'class' => 'yii\log\DbTarget',
                    'levels' => ['error', 'warning'],
                ],
                [
                    'class' => 'yii\log\EmailTarget',
                    'levels' => ['error'],
                    'categories' => ['yii\db\*'],
                    'message' => [
                       'from' => ['log@example.com'],
                       'to' => ['admin@example.com', 'developer@example.com'],
                       'subject' => 'Ошибки базы данных на сайте example.com',
                    ],
                ],
            ],
        ],
    ],
];






Note: Компонент log должен быть загружен в процессе предзагрузки, тогда он сможет оперативно передавать сообщения целям логов. Поэтому он указан в массиве bootstrap.


В приведенном выше коде в свойстве [[yii\log\Dispatcher::targets]] зарегистрированы две цели логов:


	первая цель выбирает ошибки и предупреждения и сохраняет их в базу данных;

	вторая цель выбирает ошибки с категорией, имя которой начинается с yii\db\ и шлет сразу на два адреса email admin@example.com и developer@example.com.



На данный момент, Yii содержит следующие встроенные цели логов. В документации по API подробно описана настройка и использование этих классов.


	[[yii\log\DbTarget]]: сохраняет сообщения логов в таблицу базы данных.

	[[yii\log\EmailTarget]]: шлет сообщения логов на заранее указанный email.

	[[yii\log\FileTarget]]: сохраняет сообщения логов в файлы.

	[[yii\log\SyslogTarget]]: сохраняет сообщения логов в системный лог используя функцию PHP syslog().



Дальше рассмотрим общие для этих четырех классов возможности.


Фильтрация сообщений 

Для каждой цели можно настроить свойства [[yii\log\Target::levels|levels]] и [[yii\log\Target::categories|categories]], которые указывают уровни важности и категории сообщений логов, которые цель должна обрабатывать.

Свойство [[yii\log\Target::levels|levels]] принимает массив, содержащий одно или несколько следующих значений:


	error: соответствует сообщениям, сохраненным методом [[Yii::error()]].

	warning: соответствует сообщениям, сохраненным методом [[Yii::warning()]].

	info: соответствует сообщениям, сохраненным методом [[Yii::info()]].

	trace: соответствует сообщениям, сохраненным методом [[Yii::trace()]].

	profile: соответствует сообщениям, сохраненным методами [[Yii::beginProfile()]] и [[Yii::endProfile()]], подробнее о которых написано в подразделе Профилирование производительности.



Если свойство [[yii\log\Target::levels|levels]] не задано, цель логов будет обрабатывать сообщения с любым уровнем важности.

Свойство [[yii\log\Target::categories|categories]] принимает массив, содержащий имена категорий или шаблоны.
Цель будет обрабатывать только те сообщения, категория которых совпадает с одним из значений или шаблонов этого массива. Шаблон категории должен состоять из префикса имени категории и звездочки * на конце. Имя категории совпадает с шаблоном, если оно начинается с префикса шаблона. Например, yii\db\Command::execute и yii\db\Command::query используются в качестве имен категорий сообщений, записанных в классе [[yii\db\Command]]. Оба они совпадают с шаблоном yii\db\*.

Если свойство [[yii\log\Target::categories|categories]] не задано, цель будет обрабатывать сообщения любой категории.

Кроме списка включаемый категорий, заданного свойством [[yii\log\Target::categories|categories]], при помощи свойства [[yii\log\Target::except|except]] возможно задать список исключаемых категорий. Если категория сообщения совпадает со значением или шаблоном из списка исключаемых категорий, такое сообщение не будет обработано.

В следующем примере показан вариант конфигурации цели логов, которая должна обрабатывать только сообщения об ошибках и предупреждениях в категориях yii\db\* и yii\web\HttpException:*, за исключением yii\web\HttpException:404.

[
    'class' => 'yii\log\FileTarget',
    'levels' => ['error', 'warning'],
    'categories' => [
        'yii\db\*',
        'yii\web\HttpException:*',
    ],
    'except' => [
        'yii\web\HttpException:404',
    ],
]






Note: При обработке HTTP исключения обработчиком ошибок, сообщение будет сохранено с категорией вида yii\web\HttpException:ErrorCode. Например, исключение [[yii\web\NotFoundHttpException]] вызовет сообщение об ошибке с категорией yii\web\HttpException:404.





Форматирование сообщений 

Цели логов выгружают отфильтрованные сообщения в определенном формате. Например, цель класса [[yii\log\FileTarget]] сохранит сообщение следующего формата в файле runtime/log/app.log:

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug





По умолчанию сообщения логов форматируются методом [[yii\log\Target::formatMessage()]]:

Временная метка [IP адрес][ID пользователя][ID сессии][Уровень важности][Категория] Текст сообщения





Этот формат может быть изменен при помощи свойства [[yii\log\Target::prefix]], которое получает анонимную функцию, возвращающую нужный префикс сообщения. Например, следующий код позволяет настроить вывод идентификатор текущего пользователя в качестве префикса для всех сообщений.

[
    'class' => 'yii\log\FileTarget',
    'prefix' => function ($message) {
        $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
        $userID = $user ? $user->getId(false) : '-';
        return "[$userID]";
    }
]





Кроме префиксов сообщений, также возможно добавление общей информации для каждого набора сообщений лога.
По умолчанию, включаются значения следующих глобальных PHP переменных: $_GET, $_POST, $_FILES, $_COOKIE,
$_SESSION и $_SERVER. Эта возможность настраивается при помощи свойства [[yii\log\Target::logVars]], содержащего массив имен переменных, которые необходимо включить в лог. Например, следующий код позволяет настроить цель логов так, чтобы к сообщениям присоединялось только содержимое переменной $_SERVER.

[
    'class' => 'yii\log\FileTarget',
    'logVars' => ['_SERVER'],
]





При задании значением свойства logVars пустого массива, общая информация не будет выводиться.
Для определения собственного алгоритма подключения общей информации, следует переопределить метод [[yii\log\Target::getContextMessage()]].




Уровень отслеживания выполнения кода 

В процессе разработки, часто бывает необходимость видеть источники сообщений. Для этого нужно использовать свойство [[yii\log\Dispatcher::traceLevel|traceLevel]] компонента log. Например,

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'traceLevel' => YII_DEBUG ? 3 : 0,
            'targets' => [...],
        ],
    ],
];





При такой настройке свойство [[yii\log\Dispatcher::traceLevel|traceLevel]] будет равно 3 при YII_DEBUG равном true  и 0 при YII_DEBUG равном false. Это означает, что при включенном YII_DEBUG, каждое сообщение лога будет содержать до трех уровней стека вызовов, а при выключенном YII_DEBUG информация о стеке вызовов не будет включаться в лог.


Info: Получение информации стека вызовов является не простым процессом. Поэтому такую возможность следует использовать только при разработке или отладке приложения.





Передача на обработку и выгрузка сообщений 

Как упоминалось выше, сообщения логов обрабатываются в массиве [[yii\log\Logger|объектом логгера]]. Для ограничения объема памяти, занятого этим массивом, при накоплении определенного числа сообщений, логгер передает их на обработку целям логов. Максимальное количество сообщений определяется свойством [[yii\log\Dispatcher::flushInterval|flushInterval]] компонента log:

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'flushInterval' => 100,   // по умолчанию 1000
            'targets' => [...],
        ],
    ],
];






Info: При завершении приложения, так же происходит передача сообщений на обработку.


После передачи сообщений [[yii\log\Logger|объектом логгера]] в цели логов, сообщения не выгружаются немедленно. Вместо этого, выгрузка сообщений происходит когда цель логов накопит определенное количество фильтрованных сообщений. Максимальное количество сообщений определяется свойством [[yii\log\Target::exportInterval|exportInterval]] цели логов. Например,

[
    'class' => 'yii\log\FileTarget',
    'exportInterval' => 100,  // по умолчанию 1000
]





Из-за того, что значения максимального количества сообщений для передачи и выгрузки по умолчанию достаточно велико, при вызове метода Yii::trace(), или любого другого метода логгирования, сообщение не появится сразу в файле или таблице базы данных. Такое поведение может стать проблемой, например, в консольных приложениях с большим временем исполнения. Для того, чтобы все сообщения логов сразу же попадали в лог, необходимо установить значения свойств [[yii\log\Dispatcher::flushInterval|flushInterval]] и [[yii\log\Target::exportInterval|exportInterval]] равными 1, например так:

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'flushInterval' => 1,
            'targets' => [
                [
                    'class' => 'yii\log\FileTarget',
                    'exportInterval' => 1,
                ],
            ],
        ],
    ],
];






Note: Частая передача и выгрузка сообщений может сильно снизить производительность приложения.





Переключение целей логов 

Свойство [[yii\log\Target::enabled|enabled]] отвечает за включение или отключение цели логов. Возможно управлением этим свойством как в конфигурации приложения, так и при помощи следующего PHP кода:

Yii::$app->log->targets['file']->enabled = false;





В данном примере используется цель логов file, которая может быть настроена в конфигурации приложения следующим образом:

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'targets' => [
                'file' => [
                    'class' => 'yii\log\FileTarget',
                ],
                'db' => [
                    'class' => 'yii\log\DbTarget',
                ],
            ],
        ],
    ],
];








Создание новых целей 

Создание новой цели логов не является сложной задачей. В общем случае, нужно реализовать метод [[yii\log\Target::export()]], выгружающий массив [[yii\log\Target::messages]] в место хранения логов. Возможно использование метода [[yii\log\Target::formatMessage()]] для форматирования сообщения. Детали реализации можно подсмотреть в исходном коде любого из классов целей логов, включенных в состав Yii.






Профилирование производительности 

Профилирование производительности - это специальный тип сообщений логов, используемый для измерения времени выполнения определенных участков кода и определения проблем производительности. Например, класс [[yii\db\Command]] использует профилирование производительности для определения времени исполнения каждого запроса базы данных.

Для использования профилирования производительности нужно определить участок кода для измерения и обернуть его вызовами методов [[Yii::beginProfile()]] и [[Yii::endProfile()]]. Например,

\Yii::beginProfile('myBenchmark');

...участок кода для профилирования...

\Yii::endProfile('myBenchmark');





где myBenchmark является уникальным идентификатором данного измеряемого участка кода.
В дальнейшем, при изучении результатов профилирования, уникальный идентификатор поможет определить время выполнения соответствующего участка кода.

Очень важно соблюдать уровни вложенности пар beginProfile и endProfile. Например,

\Yii::beginProfile('block1');

    // код для профилирования

    \Yii::beginProfile('block2');
        // другой код для профилирования
    \Yii::endProfile('block2');

\Yii::endProfile('block1');





Если пропустить \Yii::endProfile('block1') или поменять местами \Yii::endProfile('block1') и
\Yii::endProfile('block2'), профилирование производительности не будет работать.

Для каждого участка кода, будет записано сообщение лога с уровнем важности profile. Для сбора таких сообщений можно настроить цель логов или воспользоваться Отладчиком Yii, который имеет встроенную панель профилирования производительности, отображающую результаты измерений.







          

      

      

    

  

  
    
    
    Контейнер внедрения зависимостей
    
    

    
 
  
  

    
      
          
            
  
Контейнер внедрения зависимостей

Контейнер внедрения зависимостей — это объект, который знает, как создать и настроить экземпляр класса и зависимых от него объектов.
Статья Мартина Фаулера [http://martinfowler.com/articles/injection.html] хорошо объясняет, почему контейнер внедрения зависимостей является полезным. Здесь, преимущественно, будет объясняться использование контейнера внедрения зависимостей, предоставляемого в Yii.


Внедрение зависимостей 

Yii обеспечивает функционал контейнера внедрения зависимостей через класс [[yii\di\Container]]. Он поддерживает следующие виды внедрения зависимостей:


	Внедрение зависимости через конструктор;

	Внедрение зависимости через метод;

	Внедрение зависимости через сеттер и свойство;

	Внедрение зависимости через PHP callback;




Внедрение зависимости через конструктор 

Контейнер внедрения зависимостей поддерживает внедрение зависимости через конструктор при помощи указания типов для параметров конструктора.
Указанные типы сообщают контейнеру, какие классы или интерфейсы зависят от него при создании нового объекта.
Контейнер попытается получить экземпляры зависимых классов или интерфейсов, а затем передать их в новый объект через конструктор. Например,

class Foo
{
    public function __construct(Bar $bar)
    {
    }
}

$foo = $container->get('Foo');
// что равносильно следующему:
$bar = new Bar;
$foo = new Foo($bar);








Внедрение зависимости через метод 

Обычно зависимости класса передаются в конструктор и становятся доступными внутри класса в течение всего времени
его существования. При помощи инъекции через метод возможно задать зависимость, которая необходима в единственном
методе класса. Передавать такую зависимость через конструктор либо невозможно, либо это влечёт за собой ненужные
накладные расходы в большинстве случаев.

Метод класса может быть определён так же, как doSomething() в примере ниже:

class MyClass extends \yii\base\Component
{
    public function __construct(/*Легковесные зависимости тут*/, $config = [])
    {
        // ...
    }

    public function doSomething($param1, \my\heavy\Dependency $something)
    {
        // Работаем с $something
    }
}





Метод можно вызвать либо передав экземпляр \my\heavy\Dependency самостоятельно, либо использовава
[[yii\di\Container::invoke()]]:

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something будет предоставлено DI-контейнером








Внедрение зависимости через сеттер и свойство 

Внедрение зависимости через сеттер и свойство поддерживается через конфигурации.
При регистрации зависимости или при создании нового объекта, вы можете предоставить конфигурацию, которая
будет использована контейнером для внедрения зависимостей через соответствующие сеттеры или свойства.
Например,

use yii\base\Object;

class Foo extends Object
{
    public $bar;

    private $_qux;

    public function getQux()
    {
        return $this->_qux;
    }

    public function setQux(Qux $qux)
    {
        $this->_qux = $qux;
    }
}

$container->get('Foo', [], [
    'bar' => $container->get('Bar'),
    'qux' => $container->get('Qux'),
]);






Info: Метод [[yii\di\Container::get()]] третьим аргументом принимает массив конфигурации, которым инициализируется создаваемый объект. Если класс реализует интерфейс [[yii\base\Configurable]] (например, [[yii\base\Object]]), то массив конфигурации передается в последний параметр конструктора класса. Иначе конфигурация применяется уже после создания объекта.







Более сложное практическое применение 

Допустим, мы работаем над API и у нас есть:


	app\components\Request, наследуемый от yii\web\Request и реализующий дополнительные возможности.



	app\components\Response, наследуемый от yii\web\Response с свойством format, по умолчанию инициализируемом как json.



	app\storage\FileStorage и app\storage\DocumentsReader, где реализована некая логика для работы с документами в
неком файловом хранилище:

class FileStorage
{
    public function __contruct($root) {
        // делаем что-то
    }
}

class DocumentsReader
{
    public function __contruct(FileStorage $fs) {
        // делаем что-то
    }
}









Возможно настроить несколько компонентов сразу передав массив конфигурации в метод
[[yii\di\Container::setDefinitions()|setDefinitions()]] или [[yii\di\Container::setSingletons()|setSingletons()]].
Внутри метода фреймворк обойдёт массив конфигурации и вызовет для каждого элемента [[yii\di\Container::set()|set()]] или
[[yii\di\Container::setSingleton()|setSingleton()]] соответственно.

Формат массива конфигурации следующий:


	Ключ: имя класса, интерфейса или псевдонима. Ключ передаётся в первый аргумент $class метода
[[yii\di\Container::set()|set()]].

	Значение: конфигурация для класса. Возможные значения описаны в документации параметра $definition метода
[[yii\di\Container::set()|set()]]. Значение передаётся в аргумент $definition метода [[set()]].



Для примера, давайте настроим наш контейнер:

$container->setDefinitions([
    'yii\web\Request' => 'app\components\Request',
    'yii\web\Response' => [
        'class' => 'app\components\Response',
        'format' => 'json'
    ],
    'app\storage\DocumentsReader' => function () {
        $fs = new app\storage\FileStorage('/var/tempfiles');
        return new app\storage\DocumentsReader($fs);
    }
]);

$reader = $container->get('app\storage\DocumentsReader); 
// Создаст объект DocumentReader со всеми зависимостями 






Tip: Начиная с версии 2.0.11 контейнер может быть настроен в декларативном стиле через конфигурацию приложения.
Как это сделать ищите в подразделе Конфигурация приложения
раздела Конфигурации.


Вроде всё работает, но если нам необходимо создать экземпляр класса DocumentWriter, придётся скопировать код,
создающий экземплярFileStorage, что, очевидно, не является оптимальным.

Как описано в подразделе Разрешение зависимостей, [[yii\di\Container::set()|set()]]
и [[yii\di\Container::setSingleton()|setSingleton()]] могут опционально принимать третьим аргументов параметры
для конструктора. Формат таков:


	Ключ: имя класса, интерфейса или псевдонима. Ключ передаётся в первый аргумент $class метода [[yii\di\Container::set()|set()]].

	Значение: массив из двух элементов. Первый элемент передаётся в метод [[yii\di\Container::set()|set()]] вторым
аргументом $definition, второй элемент — аргументом $params.



Исправим наш пример:

$container->setDefinitions([
    'tempFileStorage' => [ // для удобства мы задали псевдоним
        ['class' => 'app\storage\FileStorage'],
        ['/var/tempfiles']
    ],
    'app\storage\DocumentsReader' => [
        ['class' => 'app\storage\DocumentsReader'],
        [Instance::of('tempFileStorage')]
    ],
    'app\storage\DocumentsWriter' => [
        ['class' => 'app\storage\DocumentsWriter'],
        [Instance::of('tempFileStorage')]
    ]
]);

$reader = $container->get('app\storage\DocumentsReader); 
// Код будет работать ровно так же, как и в предыдущем примере.





Вы могли заметить вызов Instance::of('tempFileStorage'). Он означает, что [[yii\di\Container|Container]]
наявно предоставит зависимость, зарегистрированную с именем tempFileStorage и передаст её первым аргументом
в конструктор app\storage\DocumentsWriter.


Note: Методы [[yii\di\Container::setDefinitions()|setDefinitions()]] и [[yii\di\Container::setSingletons()|setSingletons()]]
доступны с версии 2.0.11.


Ещё один шаг по оптимизации конфигурации — регистрировать некоторые зависимости как синглтоны. Зависимость, регистрируемая
через метод [[yii\di\Container::set()|set()]] будет созаваться каждый раз при обращении к ней. Некоторые классы не меняют
своего состояния на протяжении всей работы приложения, поэтому могут быть зарегистрированы как синглтоны. Это увеличит
производительность приложения.

Хорошим примером может быть класс app\storage\FileStorage, который выполняет некие операции над файловой системой
через простой API: $fs->read(), $fs->write(). Обе операции не меняют внутреннее состояние класса, поэтому мы можем
создать класс один раз и далее использовать его.

$container->setSingletons([
    'tempFileStorage' => [
        ['class' => 'app\storage\FileStorage'],
        ['/var/tempfiles']
    ],
]);

$container->setDefinitions([
    'app\storage\DocumentsReader' => [
        ['class' => 'app\storage\DocumentsReader'],
        [Instance::of('tempFileStorage')]
    ],
    'app\storage\DocumentsWriter' => [
        ['class' => 'app\storage\DocumentsWriter'],
        [Instance::of('tempFileStorage')]
    ]
]);

$reader = $container->get('app\storage\DocumentsReader');






Внедрение зависимости через PHP callback 

В данном случае, контейнер будет использовать зарегистрированный PHP callback для создания новых экземпляров класса.
Каждый раз при вызове [[yii\di\Container::get()]] вызывается соответствующий callback.
Callback отвечает за разрешения зависимостей и внедряет их в соответствии с вновь создаваемыми объектами. Например,

$container->set('Foo', function () {
    $foo = new Foo(new Bar);
    // ... дополнительная инициализация
    return $foo;
});

$foo = $container->get('Foo');





Для того, чтобы скрыть сложную логику инициализации нового объекта, можно использовать статический метод, возвращающий
callable:

class FooBuilder
{
    public static function build()
    {
        $foo = new Foo(new Bar);
        // ... дополнительная инициализация ...
        return $foo;
    }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');





Теперь тот, кто будет настраивать класс Foo, не обязан знать, как этот класс устроен.






Регистрация зависимостей 

Вы можете использовать [[yii\di\Container::set()]] для регистрации зависимостей. При регистрации требуется имя зависимости, а также определение зависимости. Именем зависимости может быть имя класса, интерфейса или алиас,
так же определением зависимости может быть имя класса, конфигурационным массивом, или PHP callback’ом.

$container = new \yii\di\Container;

// регистрация имени класса, как есть. это может быть пропущено.
$container->set('yii\db\Connection');

// регистрация интерфейса
// Когда класс зависит от интерфейса, соответствующий класс
// будет использован в качестве зависимости объекта
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// регистрация алиаса. Вы можете использовать $container->get('foo')
// для создания экземпляра Connection
$container->set('foo', 'yii\db\Connection');

// Регистрация класса с конфигурацией. Конфигурация
// будет применена при создании экземпляра класса через get()
$container->set('yii\db\Connection', [
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);

// регистрация алиаса с конфигурацией класса
// В данном случае, параметр "class" требуется для указания класса
$container->set('db', [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);

// регистрация PHP callback'a
// Callback будет выполняться каждый раз при вызове $container->get('db')
$container->set('db', function ($container, $params, $config) {
    return new \yii\db\Connection($config);
});

// регистрация экземпляра компонента
// $container->get('pageCache') вернёт тот же экземпляр при каждом вызове
$container->set('pageCache', new FileCache);






Tip: Если имя зависимости такое же, как и определение соответствующей зависимости, то её повторная регистрация в контейнере внедрения зависимостей не нужна.


Зависимость, зарегистрированная через set() создаёт экземпляр каждый раз, когда зависимость необходима.
Вы можете использовать [[yii\di\Container::setSingleton()]] для регистрации зависимости, которая создаст только один экземпляр:

$container->setSingleton('yii\db\Connection', [
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);








Разрешение зависимостей 

После регистрации зависимостей, вы можете использовать контейнер внедрения зависимостей для создания новых объектов,
и контейнер автоматически разрешит зависимости их экземпляра и их внедрений во вновь создаваемых объектах. Разрешение
зависимостей рекурсивно, то есть если зависимость имеет другие зависимости, эти зависимости также будут автоматически
разрешены.

Вы можете использовать [[yii\di\Container::get()]] для создания или получения объектов. Метод принимает имя зависимости,
которым может быть имя класса, имя интерфейса или псевдоним. Имя зависимости может быть зарегистрировано через
set() или setSingleton(). Вы можете опционально предоставить список параметров конструктора класса и
конфигурацию для настройки созданного объекта.

Например:

// "db" ранее зарегистрированный псевдоним
$db = $container->get('db');

// эквивалентно: $engine = new \app\components\SearchEngine($apiKey, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey], ['type' => 1]);





За кулисами, контейнер внедрения зависимостей делает гораздо больше работы, чем просто создание нового объекта.
Прежде всего, контейнер, осмотрит конструктор класса, чтобы узнать имя зависимого класса или интерфейса, а затем
автоматически разрешит эти зависимости рекурсивно.

Следующий код демонстрирует более сложный пример. Класс UserLister зависит от объекта, реализующего интерфейс
UserFinderInterface; класс UserFinder реализует этот интерфейс и зависит от объекта Connection. Все эти зависимости
были объявлены через тип подсказки параметров конструктора класса. При регистрации зависимости через свойство, контейнер
внедрения зависимостей позволяет автоматически разрешить эти зависимости и создаёт новый экземпляр UserLister простым
вызовом get('userLister').

namespace app\models;

use yii\base\Object;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
    function findUser();
}

class UserFinder extends Object implements UserFinderInterface
{
    public $db;

    public function __construct(Connection $db, $config = [])
    {
        $this->db = $db;
        parent::__construct($config);
    }

    public function findUser()
    {
    }
}

class UserLister extends Object
{
    public $finder;

    public function __construct(UserFinderInterface $finder, $config = [])
    {
        $this->finder = $finder;
        parent::__construct($config);
    }
}

$container = new Container;
$container->set('yii\db\Connection', [
    'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
    'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// что эквивалентно:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);








Практическое применение 

Yii создаёт контейнер внедрения зависимостей когда вы подключаете файл Yii.php во входном скрипте
вашего приложения. Контейнер внедрения зависимостей доступен через [[Yii::$container]]. При вызове [[Yii::createObject()]],
метод на самом деле вызовет метод контейнера [[yii\di\Container::get()|get()]], чтобы создать новый объект.
Как упомянуто выше, контейнер внедрения зависимостей автоматически разрешит зависимости (если таковые имеются) и внедрит их
получаемый объект. Поскольку Yii использует [[Yii::createObject()]] в большей части кода своего ядра для создания новых
объектов, это означает, что вы можете настроить глобальные объекты, имея дело с [[Yii::$container]].

Например, давайте настроим количество кнопок в пейджере [[yii\widgets\LinkPager]] по умолчанию глобально:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);





Теперь, если вы вызовете в представлении виджет, используя следующий код, то свойство maxButtonCount будет инициализировано, как 5, вместо значения по умолчанию 10, как это определено в классе.

echo \yii\widgets\LinkPager::widget();





Хотя, вы всё ещё можете переопределить установленное значение через контейнер внедрения зависимостей:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);





Другим примером является использование автоматического внедрения зависимости через конструктор контейнера внедрения зависимостей.
Предположим, ваш класс контроллера зависит от ряда других объектов, таких как сервис бронирования гостиницы. Вы
можете объявить зависимость через параметр конструктора и позволить контейнеру внедрения зависимостей, разрешить её за вас.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
    protected $bookingService;

    public function __construct($id, $module, BookingInterface $bookingService, $config = [])
    {
        $this->bookingService = $bookingService;
        parent::__construct($id, $module, $config);
    }
}





Если у вас есть доступ к этому контроллеру из браузера, вы увидите сообщение об ошибке, который жалуется на то, что BookingInterface
не может быть создан. Это потому что вы должны указать контейнеру внедрения зависимостей, как обращаться с этой зависимостью:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');





Теперь, если вы попытаетесь получить доступ к контроллеру снова, то экземпляр app\components\BookingService будет создан и введён в качестве 3-го параметра конструктора контроллера.




Когда следует регистрировать зависимости 

Поскольку зависимости необходимы тогда, когда создаются новые объекты, то их регистрация должна быть сделана
как можно раньше. Ниже приведены рекомендуемые практики:


	Если вы разработчик приложения, то вы можете зарегистрировать зависимости в конфигурации вашего приложения.
Как это сделать описано в подразделе Конфигурация приложения
раздела Конфигурации.

	Если вы разработчик распространяемого расширения, то вы можете зарегистрировать зависимости
в загрузочном классе расширения.






Итог 

Как dependency injection, так и service locator являются популярными паттернами проектирования, которые позволяют
создавать программное обеспечение в слабосвязанной и более тестируемой манере.
Мы настоятельно рекомендуем к прочтению
статью Мартина Фаулера [http://martinfowler.com/articles/injection.html], для более глубокого понимания dependency injection и service locator.

Yii реализует свой service locator поверх контейнера внедрения зависимостей.
Когда service locator пытается создать новый экземпляр объекта, он перенаправляет вызов на контейнер внедрения зависимостей.
Последний будет разрешать зависимости автоматически, как описано выше.







          

      

      

    

  

  
    
    
    Хелперы
    
    

    
 
  
  

    
      
          
            
  
Хелперы


Note: Этот раздел находиться в стадии разработки.


Yii предоставляет много классов, которые помогают упростить общие задачи программирования, такие как манипуляция со строками или массивами, генерация HTML кода, и так далее. Все helper классы организованны в рамках пространства имен yii\helpers и являются статическими методами
(это означает, что они содержат в себе только статические свойства и методы и объекты статического класса создать нельзя).

Вы можете использовать helper класс с помощью вызова одного из статических методов, как показано ниже:

use yii\helpers\Html;

echo Html::encode('Test > test');






Note: Помощь в настройке helper классов, в Yii каждый основной helper состоит из двух классов: базовый класс (например BaseArrayHelper) и конкретный класс (например ArrayHelper).
Когда вы используете helper, вы должны использовать только конкретные версии классов и никогда не использовать базовые классы.



Встроенные хелперы

В этой версии Yii предоставляются следующие основные helper классы:


	ArrayHelper

	Console

	FileHelper

	FormatConverter

	Html

	HtmlPurifier

	Imagine (provided by yii2-imagine extension)

	Inflector

	Json

	Markdown

	StringHelper

	Url

	VarDumper






Настройка хелперов 

Для настройки основных helper классов (например [[yii\helpers\ArrayHelper]]), вы должны создать расширяющийся класс из помощников соответствующих базовых классов (например [[yii\helpers\BaseArrayHelper]]) и дать похожее название, вашему классу, с соответствующим конкретному классу (например [[yii\helpers\ArrayHelper]]), в том числе его пространство имен. Тогда созданный класс заменит оригинальную реализацию в фреимворке.

В следующих примерах показывается как настроить [[yii\helpers\ArrayHelper::merge()|merge()]] метод
[[yii\helpers\ArrayHelper]] класса:

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
    public static function merge($a, $b)
    {
        // your custom implementation
    }
}





Сохраните ваш класс в файле с именем ArrayHelper.php. Файл должен находиться в другой директории, например @app/components.

Далее, в приложении входной скрипт, добавьте следующую строчку кода
после подключения yii.php файла, которая сообщит автозагрузка классов Yii загрузить
ваш класс вместо оригинального helper класса фреимворка:

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';





Обратите внимание что пользовательская настройка helper классов полезна только, если вы хотите изменить поведение существующей функции helper классов. Если вы хотите добавить дополнительные функции, для использования в вашем приложении, будет лучше создать отдельный helper.







          

      

      

    

  

  
    
    
    Установка Yii
    
    

    
 
  
  

    
      
          
            
  
Установка Yii 

Вы можете установить Yii двумя способами: используя Composer [https://getcomposer.org/] или скачав архив.
Первый способ предпочтительнее так как позволяет установить новые расширения
или обновить Yii одной командой.


Note: В отличие от Yii 1, после стандартной установки Yii 2 мы получаем как фреймворк, так и шаблон приложения.



Установка при помощи Composer 


Установка Composer

Если Composer еще не установлен это можно сделать по инструкции на
getcomposer.org [https://getcomposer.org/download/], или одним из нижеперечисленных способов. На Linux или Mac
используйте следующую команду:

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer





На Windows, скачайте и запустите Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

В случае возникновения проблем читайте
раздел “Troubleshooting” в документации Composer [https://getcomposer.org/doc/articles/troubleshooting.md].
Если вы только начинаете использовать Composer, рекомендуем прочитать как минимум
раздел “Basic usage” [https://getcomposer.org/doc/01-basic-usage.md].

В данном руководстве предполагается, что Composer установлен глобально [https://getcomposer.org/doc/00-intro.md#globally].
То есть он доступен через команду composer. Если вы используете composer.phar из локальной директории,
изменяйте команды соответственно.

Если у вас уже установлен Composer, обновите его при помощи composer self-update.


Note: Во время установки Yii Composer запрашивает довольно большое количество информации через Github API.
Количество запросов варьируется в зависимости от количества зависимостей вашего проекта и может превысить
ограничения Github API. Если это произошло, Composer спросит логин и пароль от Github. Это необходимо для
получения токена для Github API. На быстрых соединениях это может прозойти ещё до того, как Composer сможет
обработать ошибку, поэтому мы рекомендум настроить токен доступа до установки Yii.
Инструкции приведены в документации Composer о токенах Github API [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens].


После установки Composer устанавливать Yii можно запустив следующую команду в папке доступной через веб:




Установка Yii

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic





Первая команда устанавливает composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/],
который позволяет управлять зависимостями пакетов bower и npm через Composer. Эту команду достаточно выполнить один раз.
Вторая команда устанавливает последнюю стабильную версию Yii в директорию basic. Если хотите, можете выбрать другое
имя директории.


Info: Если команда composer create-project не выполняется нормально, убедитесь, что вы корректно установили composer
asset plugin. Вы можете сделать это выполнив composer global show. Вывод должен содержать fxp/composer-asset-plugin.
Также можно обратиться к разделу “Troubleshooting” документации Composer [https://getcomposer.org/doc/articles/troubleshooting.md].
Там описаны другие типичные ошибки. После того, как вы исправили ошибку, запустите composer update в директории basic.



Tip: Если вы хотите установить последнюю нестабильную ревизию Yii, можете использовать следующую команду,
в которой присутствует опция stability [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic





Старайтесь не использовать нестабильную версию Yii на рабочих серверах потому как она может внезапно поломать код.









Установка из архива 

Установка Yii из архива состоит из трёх шагов:


	Скачайте архив с yiiframework.com [http://www.yiiframework.com/download/];

	Распакуйте скачанный архив в папку, доступную из Web.

	В файле config/web.php добавьте секретный ключ в значение cookieValidationKey (при установке через Composer
это происходит автоматически):



// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',








Другие опции установки 

Выше приведены инструкции по установке Yii в виде базового приложения готового к работе.
Это отличный вариант для небольших проектов или для тех, кто только начинает изучать Yii.

Есть два основных варианта такой установки:


	Если вам нужен только сам фреймворк и вы хотели бы создать приложение с нуля, воспользуйтесь инструкцией, описанной в
разделе «Создание приложения с нуля».

	Если хотите начать с более продвинутого приложения, хорошо подходящего для работы в команде, используйте
шаблон приложения advanced [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md].






Проверка установки 

После установки приложение будет доступно по следующему URL:

http://localhost/basic/web/index.php





Здесь подразумевается, что вы установили приложение в директорию basic в корневой директории вашего веб сервера
сервер работает локально (localhost). Вам может потребоваться предварительно его настроить.

[image: Успешно установленный Yii]

Вы должны увидеть страницу приветствия «Congratulations!». Если нет — проверьте требования Yii одним из способов:


	Браузером перейдите по адресу http://localhost/basic/requirements.php

	Или выполните команду в консоли:



cd basic
php requirements.php





Для корректной работы фреймворка вам необходима установка PHP, соответствующая его минимальным требованиям. Основное
требование — PHP версии 5.4 и выше. Если ваше приложение работает с базой данных, необходимо установить
расширение PHP PDO [http://www.php.net/manual/ru/pdo.installation.php] и соответствующий драйвер
(например, pdo_mysql для MySQL).




Настройка веб сервера 


Info: можете пропустить этот подраздел если вы только начали знакомиться с фреймворком и пока не разворачиваете
его на рабочем сервере.


Приложение, установленное по инструкциям, приведённым выше, будет работать сразу как с Apache [http://httpd.apache.org/],
так и с Nginx [http://nginx.org/] под Windows и Linux с установленным PHP 5.4 и выше. Yii 2.0 также совместим с
HHVM [http://hhvm.com/]. Тем не менее, в некоторых случаях поведение при работе с HHVM отличается от обычного PHP.
Будьте внимательны.

На рабочем сервере вам наверняка захочется изменить URL приложения с http://www.example.com/basic/web/index.php
на http://www.example.com/index.php. Для этого необходимо изменить корневую директорию в настройках веб сервера так,
чтобы та указывала на basic/web. Дополнительно можно спрятать index.php следуя описанию в разделе
«Разбор и генерация URL». Далее будет показано как настроить Apache и Nginx.


Info: Устанавливая basic/web корневой директорией веб сервера вы защищаете от нежелательного доступа код и данные,
находящиеся на одном уровне с basic/web. Это делает приложение более защищенным.



Info: Если приложение работает на хостинге где нет доступа к настройкам веб сервера, то можно изменить структуру
приложения как описано в разделе «Работа на Shared хостинге».



Рекомендуемые настройки Apache 

Добавьте следующее в httpd.conf Apache или в конфигурационный файл виртуального хоста. Не забудьте заменить
path/to/basic/web на корректный путь к basic/web.

# Устанавливаем корневой директорией "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
    RewriteEngine on

    # Если запрашиваемая в URL директория или файл существуют обращаемся к ним напрямую
    RewriteCond %{REQUEST_FILENAME} !-f
    RewriteCond %{REQUEST_FILENAME} !-d
    # Если нет - перенаправляем запрос на index.php
    RewriteRule . index.php

    # ...прочие настройки...
</Directory>








Рекомендуемые настройки Nginx 

PHP должен быть установлен как FPM SAPI [http://php.net/manual/ru/install.fpm.php] для Nginx [http://wiki.nginx.org/].
Используйте следующие параметры Nginx и не забудьте заменить path/to/basic/web на корректный путь к basic/web и
mysite.local на ваше имя хоста.

server {
    charset utf-8;
    client_max_body_size 128M;

    listen 80; ## listen for ipv4
    #listen [::]:80 default_server ipv6only=on; ## слушаем ipv6

    server_name mysite.local;
    root        /path/to/basic/web;
    index       index.php;

    access_log  /path/to/project/log/access.log;
    error_log   /path/to/project/log/error.log;

    location / {
        # Перенаправляем все запросы к несуществующим директориям и файлам на index.php
        try_files $uri $uri/ /index.php?$args;
    }

    # раскомментируйте строки ниже во избежание обработки Yii обращений к несуществующим статическим файлам
    #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
    #    try_files $uri =404;
    #}
    #error_page 404 /404.html;

    location ~ \.php$ {
        include fastcgi.conf;
        fastcgi_pass   127.0.0.1:9000;
        #fastcgi_pass unix:/var/run/php5-fpm.sock;
    }

    location ~ /\.(ht|svn|git) {
        deny all;
    }
}





Используя данную конфигурацию установите cgi.fix_pathinfo=0 в php.ini чтобы предотвратить лишние системные
вызовы stat().

Учтите, что используя HTTPS необходимо задавать fastcgi_param HTTPS on; чтобы Yii мог корректно определять защищенное
соединение.









          

      

      

    

  

  
    
    
    Взгляд в будущее
    
    

    
 
  
  

    
      
          
            
  
Взгляд в будущее

В итоге вы создали полноценное приложение на Yii и узнали, как реализовать некоторые
наиболее часто используемые функции, такие, как получение данных от пользователя
при помощи HTML форм, выборки данных из базы данных и их отображения в разбитом на страницы виде.
Так же вы узнали,  как использовать Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] для
автоматической генерации кода, что превращает программирование в настолько простую задачу, как простое заполнение
какой-либо формы. В этом разделе мы обобщим ресурсы о Yii, которые помогут вам быть более продуктивным при использовании Yii.


	Документация
	Подробное руководство:
как следует из названия, руководство точно определяет,
как Yii должен работать и дает вам общие указания по его использованию.
Это самый важный учебник по Yii, который вы должны прочитать, прежде чем писать различный Yii код.

	Описание классов:
определяет использование каждого класса, представленного в Yii.
Им следует пользоваться, когда вы пишете код и хотите разобраться в использовании конкретного класса, метода, свойства.

	Вики статьи:
написаны пользователями Yii на основе их собственного опыта.
Большинство из них составлены для сборника рецептов, показывая, как решить конкретные проблемы с использованием Yii.
Причём качество этих статей может быть таким же хорошим, как в Подробном руководстве.
Они полезны тем, что охватывают более широкие темы и часто могут предоставить вам готовые решения для дальнейшего использования.

	Книги





	Расширения [http://www.yiiframework.com/extensions/]:
Yii гордится библиотекой из тысяч внесённых пользователями расширений,
которые могут быть легко подключены в ваши приложения и сделать разработку приложений ещё быстрее и проще.

	Сообщество
	Форум [http://www.yiiframework.com/forum/]

	Чат Gitter [https://gitter.im/yiisoft/yii2/rus]

	GitHub [https://github.com/yiisoft/yii2]

	Facebook [https://www.facebook.com/groups/yiitalk/]

	Twitter [https://twitter.com/yiiframework]

	LinkedIn [https://www.linkedin.com/groups/yii-framework-1483367]











          

      

      

    

  

  
    
    
    Html-помощник
    
    

    
 
  
  

    
      
          
            
  
Html-помощник

Каждое веб-приложение формирует большое количество HTML-разметки. Если разметка статическая, её можно эффективно
сформировать смешиванием PHP и HTML в одном файле [http://php.net/manual/ru/language.basic-syntax.phpmode.php], но
когда разметка динамическая, становится сложно формировать её без дополнительной помощи. Yii предоставляет такую помощь
в виде Html-помощника, который обеспечивает набор статических методов для обработки часто-используемых HTML тэгов, их
атрибутов и содержимого.


Note: Если ваша разметка близка к статической, лучше использовать непосредственно HTML. Нет никакой
необходимости в том, чтобы всё подряд оборачивать вызовами Html-помощника.



Основы 

Так как формирование динамической HTML-разметки при помощи конкатенации строк очень быстро вносит хаос в проект, Yii
предоставляет набор методов для управления атрибутами тэгов и формирования тэгов на основе этих атрибутов.


Формирование тэгов 

Код формирования тэга выглядит следующим образом:

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>





Здесь первый аргумент - это название тэга. Второй - содержимое, которое будет заключено между открывающим и закрывающим
тэгами. Заметьте, что мы используем Html::encode. Это связано с тем, что содержимое не экранируется автоматически,
чтобы можно было по-необходимости использовать чистый HTML. Третий аргумент - это массив настроек для HTML-кода, а
другими словами - массив атрибутов для тэга. В этом массиве ключи являются названиями атрибутов, например class,
href или target, а значения в массиве являются значениями этих атрибутов.

Вышеприведённый код сформирует следующую HTML-разметку:

<p class="username">samdark</p>





В тех случаях, когда вам необходимо только закрыть или открыть тэг, можно использовать методы Html::beginTag() и
Html::endTag().

Дополнительные атрибуты используются во многих методах Html-помощника и в различных виджетах. Во всех этих случаях в
дело вступают механизмы дополнительной обработки данных, о которых следует знать:


	Если значение равно null, соответствующий атрибут не будет выведен.

	Атрибуты, значения которых имеют тип boolean, будут интерпретированы как
логические атрибуты [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes].

	Значения атрибутов будут экранированы с использованием метода [[yii\helpers\Html::encode()|Html::encode()]].

	Если в качестве значения атрибута передан массив, он будет обработан следующим образом:
	Если атрибут является одним из атрибутов данных, указанных в [[yii\helpers\Html::$dataAttributes]], например data
или ng, то будет сформирован список атрибутов по одному для каждого элемента массива. Например, код
'data' => ['id' => 1, 'name' => 'yii'] сформирует data-id="1" data-name="yii"; а код
'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] сформирует
data-params='{"id":1,"name":"yii"}' data-status="ok". Заметьте, что в последнем примере используется формат JSON
для формирования вывода вложенного массива.

	Если атрибут НЕ является атрибутом данных, значение будет сконвертировано в формат JSON. Например, код
['params' => ['id' => 1, 'name' => 'yii'] сформирует params='{"id":1,"name":"yii"}'.










Формирование CSS классов и стилей 

При формировании атрибутов для HTML-тэгов часто приходится начинать с некоторых атрибутов по умолчанию, которые затем
необходимо изменять. Для того, чтобы добавить или удалить CSS-класс, можно использовать следующий подход:

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
    Html::removeCssClass($options, 'btn-default');
    Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Всё получилось!', $options);

// в случае, если $type содержит строку 'success', будет сформирован вывод
// <div class="btn btn-success">Всё получилось!</div>





Можно указать несколько CSS-классов, используя синтаксис массива:

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Сохранить', $options);
// выведет '<div class="btn btn-default">Сохранить</div>'





При добавлении или удалении классов тоже можно использовать массивы:

$options = ['class' => 'btn'];

if ($type === 'success') {
    Html::addCssClass($options, ['btn-success', 'btn-lg']);
}

echo Html::tag('div', 'Сохранить', $options);
// выведет '<div class="btn btn-success btn-lg">Сохранить</div>'





Html::addCssClass() предотвращает дублирование классов, поэтому можно не беспокоиться о том, что какой-либо класс
будет добавлен дважды:

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // класс 'btn-default' уже добавлен

echo Html::tag('div', 'Сохранить', $options);
// выведет '<div class="btn btn-default">Сохранить</div>'





Если CSS-класс задаётся с помощью массива, можно использовать именованные ключи массива для обозначения логического
предназначения класса. В этом случае класс с таким же ключом будет проигнорирован во время использования
Html::addCssClass():

$options = [
    'class' => [
        'btn',
        'theme' => 'btn-default',
    ]
];

Html::addCssClass($options, ['theme' => 'btn-success']); // ключ 'theme' уже использован

echo Html::tag('div', 'Сохранить', $options);
// отобразит '<div class="btn btn-default">Сохранить</div>'





CSS-стили могут быть установлены схожим образом с помощью атрибута style:

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// в результате будет style="width: 100px; height: 200px; position: absolute;"
Html::addCssStyle($options, 'height: 200px; position: absolute;');

// в результате будет style="position: absolute;"
Html::removeCssStyle($options, ['width', 'height']);





При использовании метода [[yii\helpers\Html::addCssStyle()|addCssStyle()]] можно указать массив, пары ключ-значение
которого соответствуют названиям и значениям CSS-свойств, или строку, например width: 100px; height: 200px;. Эти два
формата могут быть преобразованы друг в друга с помощью методов
[[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] и
[[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]]. Метод
[[yii\helpers\Html::removeCssStyle()|removeCssStyle()]] принимает на вход массив атрибутов, которые следует удалить.
Если удаляется всего один атрибут, его можно передать строкой.




Экранирование контента 

Для корректного и безопасного отображения контента специальные символы в HTML-коде должны быть экранированы. В чистом
PHP это осуществляется с помощью функций htmlspecialchars [http://www.php.net/manual/ru/function.htmlspecialchars.php]
и htmlspecialchars_decode [http://www.php.net/manual/ru/function.htmlspecialchars-decode.php]. Проблема использования
этих функций заключается в том, что приходится указывать кодировку и дополнительные флаги во время каждого вызова.
Поскольку флаги всё время одинаковы, а кодировка остаётся одной и той же в пределах приложения, Yii в целях
безопасности предоставляет два компактных и простых в использовании метода:

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);










Формы 

Разметка форм состоит из повторяющихся действий и часто приводит к ошибкам, поэтому есть целый набор методов, которые
помогают справиться с этой задачей.


Note: Рассмотрите возможность использования [[yii\widgets\ActiveForm|ActiveForm]], если работаете с моделями и
нуждаетесь в валидации данных.



Создание форм 

Открывающий тэг формы может быть выведен с помощью метода [[yii\helpers\Html::beginForm()|beginForm()]] как показано
ниже:

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>





Первый аргумент - это URL-адрес, на который будет отправлена форма. Он может быть задан в виде Yii-маршрута и
параметров, подходящих для передачи в метод [[yii\helpers\Url::to()|Url::to()]]. Второй аргумент - способ отправки
данных: по умолчанию это post. Третий аргумент - массив атрибутов формы. В данном примере мы изменяем способ
кодирования данных в POST-запросе на multipart/form-data. Это необходимо для загрузки файлов.

Закрыть тэг формы можно простым кодом:

<?= Html::endForm() ?>








Кнопки 

Для формирования кнопок можно использовать следующий код:

<?= Html::button('Нажми меня!', ['class' => 'teaser']) ?>
<?= Html::submitButton('Отправить', ['class' => 'submit']) ?>
<?= Html::resetButton('Сбросить', ['class' => 'reset']) ?>





Первый аргумент во всех трёх методах - это название кнопки, а второй - её атрибуты. Название кнопки не экранируется,
поэтому при получении данных от конечных пользователей экранируйте их с помощью метода
[[yii\helpers\Html::encode()|Html::encode()]].




Поля ввода 

Методы формирования полей ввода делятся на две группы. Первые начинаются со слова active и называются “active inputs”,
а вторые не содержат в своём названии слова active. “Active inputs” формируют поля ввода, которые получают данные из
указанного атрибута модели, в то время как обычные методы формирования полей ввода непосредственно принимают данные.

Наиболее общие методы для формирования полей ввода:

// тип, название поля ввода, установленное в поле значение, атрибуты поля ввода
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

// тип, модель, атрибут модели, атрибуты поля ввода
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>





Если вам заранее известен тип поля ввода, удобнее будет пользоваться этими вспомогательными методами:


	[[yii\helpers\Html::buttonInput()]]

	[[yii\helpers\Html::submitInput()]]

	[[yii\helpers\Html::resetInput()]]

	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]

	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]

	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]

	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]

	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]



Сигнатура методов для формирования радио-переключателей и чекбоксов немного отличается:

<?= Html::radio('agree', true, ['label' => 'Я согласен']);
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => 'Я согласен']);
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])





Выпадающие и обычные списки могут быть сформированы следующим образом:

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>





Первый аргумент - это значение атрибута name для поля ввода, второй - выбранное в нём значение и, наконец,
третий аргумент - это массив, ключами которого является список значений для формирования списка, а значениями массива
являются названия пунктов в нём.

Если вы хотите сделать в списке доступными для выбора несколько вариантов, хорошим выбором будет список чекбоксов:

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>





Если же нет, используйте радио-переключатель:

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>








Тэги label и отображение ошибок 

Также как и для полей ввода, есть два метода формирования тэгов label для форм. Есть “active label”, считывающий
данные из модели и обычный тэг “label”, принимающий на вход непосредственно сами данные:

<?= Html::label('Имя пользователя', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username'])





Для отображения общего списка ошибок формы на основе модели или моделей можно использовать следующий подход:

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>





Для отображения одной отдельной ошибки:

<?= Html::error($post, 'title', ['class' => 'error']) ?>








Атрибуты name и value для полей ввода 

Также имеются методы для получения значений атрибутов id, name и value для полей ввода, сформированных на основе
моделей. Эти методы используются в основном внутренними механизмами, но иногда могут оказаться подходящими и для прямого
использования:

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// моё первое сообщение
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');





В вышеприведённом коде первый аргумент - это модель, а второй аргумент - выражение для поиска атрибута модели. В самом
простом случае оно представляет собой название атрибута модели, а вообще это может быть название, которому предшествует
(и/или после которого следует) индекс массива. Такой формат используется в основном для табличного ввода данных:


	[0]content используется для табличного ввода данных, чтобы указать на атрибут “content” первой модели табличного
ввода;

	dates[0] указывает на первый элемент массива, с помощью которого задан атрибут модели “dates”;

	[0]dates[0] указывает на первый элемент массива, с помощью которого задан атрибут “dates” первой модели табличного
ввода.



Для того, чтобы получить название атрибута модели в чистом виде (без суффиксов и префиксов), можно использовать
следующий подход:

// dates
echo Html::getAttributeName('dates[0]');










Подключение встроенных стилей и скриптов 

Для формирования встроенных скриптов и стилей есть два метода:

<?= Html::style('.danger { color: #f00; }') ?>

Результатом будет:

<style>.danger { color: #f00; }</style>


<?= Html::script('alert("Привет!");', ['defer' => true]);

Результатом будет:

<script defer>alert("Привет!");</script>





Если вы хотите подключить внешний CSS-файл:

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

В результате получится:

<!--[if IE 5]>
    <link href="http://example.com/css/ie5.css" />
<![endif]-->





Первый аргумент - URL-адрес. Второй - массив настроек. Помимо обычных настроек можно указать следующие:


	condition для оборачивания тэга <link с помощью условных комментариев с определённым условием. Надеемся, что вам
никогда не понадобятся условные комментарии ;)

	noscript может быть установлен в значение true, чтобы обернуть тэг <link с помощью тэга <noscript>, таким
образом скрипт будет подключён только в том случае, если у пользователя в браузере нет поддержки JavaScript или же
пользователь сам отключил его.



Для подключения JavaScript-файла используйте код:

<?= Html::jsFile('@web/js/main.js') ?>





Как и в случае с CSS, первый аргумент указывает ссылку на файл, который должен быть подключен. Настройки задаются во
втором аргументе. Можно указать настройку condition таким же образом, каким она указывается для метода cssFile.




Ссылки 

Существует удобный метод формирования ссылок:

<?= Html::a('Профиль', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>





Первый аргумент - это текст ссылки. Он не экранируется, поэтому при использовании данных, полученных от конечных
пользователей, необходимо экранировать его с помощью Html::encode(). Второй аргумент - это содержимое атрибута href
тэга <a. Смотрите Url::to() для получения подробностей относительно значений, которые могут быть
переданы в качестве второго аргумента. Третий аргумент - массив атрибутов для тэга.

Если нужно сформировать ссылку mailto, можно использовать следующий подход:

<?= Html::mailto('Обратная связь', 'admin@example.com') ?>








Изображения 

Для формирования тэга изображения используйте следующий код:

<?= Html::img('@web/images/logo.png', ['alt' => 'Наш логотип']) ?>

в результате получится:

<img src="http://example.com/images/logo.png" alt="Наш логотип" />





Помимо псевдонимов первый аргумент может принимать маршруты, параметры и URL-адреса таким же образом
как и метод Url::to().




Списки 

Неупорядоченные списки могут быть сформированы следующим образом:

<?= Html::ul($posts, ['item' => function($item, $index) {
    return Html::tag(
        'li',
        $this->render('post', ['item' => $item]),
        ['class' => 'post']
    );
}]) ?>





Для формирования упорядоченных списков используйте Html::ol().







          

      

      

    

  

  
    
    
    Контроллеры
    
    

    
 
  
  

    
      
          
            
  
Контроллеры

После создания классов ресурсов и настройки способа форматирования ресурсных данных следующим шагом
является создание действий контроллеров для предоставления ресурсов конечным пользователям через RESTful API.

В Yii есть два базовых класса контроллеров для упрощения вашей работы по созданию RESTful-действий:
[[yii\rest\Controller]] и [[yii\rest\ActiveController]]. Разница между этими двумя контроллерами в том,
что у последнего есть набор действий по умолчанию, который специально создан для работы с ресурсами,
представленными Active Record. Так что если вы используете Active Record
и вас устраивает предоставленный набор встроенных действий, вы можете унаследовать классы ваших контроллеров
от [[yii\rest\ActiveController]], что позволит вам создать полноценные RESTful API, написав минимум кода.

[[yii\rest\Controller]] и [[yii\rest\ActiveController]] имеют следующие возможности, некоторые из которых
будут подробно описаны в следующих разделах:


	Проверка HTTP-метода;

	Согласование содержимого и форматирование данных;

	Аутентификация;

	Ограничение частоты запросов.



[[yii\rest\ActiveController]], кроме того, предоставляет следующие возможности:


	Набор наиболее часто используемых действий: index, view, create, update, delete и options;

	Авторизация пользователя для запрашиваемых действия и ресурса.




Создание классов контроллеров 

При создании нового класса контроллера в имени класса обычно используется
название типа ресурса в единственном числе. Например, контроллер, отвечающий за предоставление информации о пользователях,
можно назвать UserController.

Создание нового действия похоже на создание действия для Web-приложения. Единственное отличие в том,
что в RESTful-действиях вместо рендера результата в представлении с помощью вызова метода render()
вы просто возвращаете данные. Выполнение преобразования исходных данных в запрошенный формат ложится на
[[yii\rest\Controller::serializer|сериализатор]] и [[yii\web\Response|объект ответа]].
Например:

public function actionView($id)
{
    return User::findOne($id);
}








Фильтры 

Большинство возможностей RESTful API, предоставляемых [[yii\rest\Controller]], реализовано на основе фильтров.
В частности, следующие фильтры будут выполняться в том порядке, в котором они перечислены:


	[[yii\filters\ContentNegotiator|contentNegotiator]]: обеспечивает согласование содержимого, более подробно описан
в разделе Форматирование ответа;

	[[yii\filters\VerbFilter|verbFilter]]: обеспечивает проверку HTTP-метода;

	[[yii\filters\auth\AuthMethod|authenticator]]: обеспечивает аутентификацию пользователя, более подробно описан
в разделе Аутентификация;

	[[yii\filters\RateLimiter|rateLimiter]]: обеспечивает ограничение частоты запросов, более подробно описан
в разделе Ограничение частоты запросов.



Эти именованные фильтры объявлены в методе [[yii\rest\Controller::behaviors()|behaviors()]].
Вы можете переопределить этот метод для настройки отдельных фильтров, отключения каких-либо из них или для добавления
ваших собственных фильтров. Например, если вы хотите использовать только базовую HTTP-аутентификацию, вы можете
написать такой код:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['authenticator'] = [
        'class' => HttpBasicAuth::className(),
    ];
    return $behaviors;
}








Наследование от ActiveController 

Если ваш класс контроллера наследуется от [[yii\rest\ActiveController]], вам следует установить
значение его свойства [[yii\rest\ActiveController::modelClass|modelClass]] равным имени класса ресурса,
который вы планируете обслуживать с помощью этого контроллера. Класс ресурса должен быть унаследован от [[yii\db\ActiveRecord]].


Настройка действий 

По умолчанию [[yii\rest\ActiveController]] предоставляет набор из следующих действий:


	[[yii\rest\IndexAction|index]]: постраничный список ресурсов;

	[[yii\rest\ViewAction|view]]: возвращает подробную информацию об указанном ресурсе;

	[[yii\rest\CreateAction|create]]: создание нового ресурса;

	[[yii\rest\UpdateAction|update]]: обновление существующего ресурса;

	[[yii\rest\DeleteAction|delete]]: удаление указанного ресурса;

	[[yii\rest\OptionsAction|options]]: возвращает поддерживаемые HTTP-методы.



Все эти действия объявляются в методе [[yii\rest\ActiveController::actions()|actions()]].
Вы можете настроить эти действия или отключить какие-то из них, переопределив метод actions(), как показано ниже:

public function actions()
{
    $actions = parent::actions();

    // отключить действия "delete" и "create"
    unset($actions['delete'], $actions['create']);

    // настроить подготовку провайдера данных с помощью метода "prepareDataProvider()"
    $actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'];

    return $actions;
}

public function prepareDataProvider()
{
    // подготовить и вернуть провайдер данных для действия "index"
}





Чтобы узнать, какие опции доступны для настройки классов отдельных действий, обратитесь к соответствующим разделам справочника классов.




Выполнение контроля доступа 

При предоставлении ресурсов через RESTful API часто бывает нужно проверять, имеет ли текущий пользователь разрешение
на доступ к запрошенному ресурсу (или ресурсам) и манипуляцию им (или ими). Для [[yii\rest\ActiveController]] эта задача
может быть решена переопределением метода [[yii\rest\ActiveController::checkAccess()|checkAccess()]] следующим образом:

/**
 * Проверяет права текущего пользователя.
 *
 * Этот метод должен быть переопределен, чтобы проверить, имеет ли текущий пользователь
 * право выполнения указанного действия над указанной моделью данных.
 * Если у пользователя нет доступа, следует выбросить исключение [[ForbiddenHttpException]].
 *
 * @param string $action ID действия, которое надо выполнить
 * @param \yii\base\Model $model модель, к которой нужно получить доступ. Если `null`, это означает, что модель, к которой нужно получить доступ, отсутствует.
 * @param array $params дополнительные параметры
 * @throws ForbiddenHttpException если у пользователя нет доступа
 */
public function checkAccess($action, $model = null, $params = [])
{
    // проверить, имеет ли пользователь доступ к $action и $model
    // выбросить ForbiddenHttpException, если доступ следует запретить
    if ($action === 'update' || $action === 'delete') {
        if ($model->author_id !== \Yii::$app->user->id)
            throw new \yii\web\ForbiddenHttpException(sprintf('You can only %s articles that you\'ve created.', $action));
    }
}





Метод checkAccess() будет вызван действиями по умолчанию контроллера [[yii\rest\ActiveController]]. Если вы создаёте
новые действия и хотите в них выполнять контроль доступа, вы должны вызвать этот метод явно в своих новых действиях.


Tip: вы можете реализовать метод checkAccess() с помощью “Контроля доступа на основе ролей” (RBAC).










          

      

      

    

  

  
    
    
    Кэширование данных
    
    

    
 
  
  

    
      
          
            
  
Кэширование данных

Кэширование данных заключается в сохранении некоторой переменной PHP в кэше и её последующем извлечении. Оно является основой для расширенных возможностей, таких как кэширование запросов
и кэширование страниц.

Приведённый ниже код является типичным случаем кэширования данных, где $cache указывает на компонент кэширования:

// Пробуем извлечь $data из кэша.
$data = $cache->get($key);

if ($data === false) {
    // $data нет в кэше, вычисляем заново
    $data = $this->calculateSomething();

    // Сохраняем значение $data в кэше. Данные можно получить в следующий раз.
    $cache->set($key, $data);
}

// Значение $data доступно здесь.





Начиная с версии 2.0.11, компонент кэширования предоставляет метод
[[yii\caching\Cache::getOrSet()|getOrSet()]], который упрощает код при получении, вычислении и сохранении данных.
Приведённый ниже код делает в точности то же самое, что и код в предыдущем примере:

$data = $cache->getOrSet($key, function () {
    return $this->calculateSomething();
});





Если в кэше есть данные по ключу $key, они будут сразу возвращены.
Иначе, будет вызвана переданная анонимная функция, вычисляющаяя значение, которое будет сохранено в кэш и возвращено
из метода.

В случае, когда анонимной функции требуются данные из внешней области видимости, можно передать их с помощью
оператора use. Например:

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
    return $this->calculateSomething($user_id);
});






Note: В [[yii\caching\Cache::getOrSet()|getOrSet()]] можно передать срока действия и зависимости кэша.
Прочтите Срок действия кэша и Зависимости кеша чтобы узнать больше.



Компоненты кэширования 

Кэширование данных опирается на компоненты кэширования, которые представляют различные хранилища, такие как память, файлы и базы данных.

Кэш-компоненты, как правило, зарегистрированы в качестве компонентов приложения, так что их можно настраивать и обращаться к ним глобально. Следующий код показывает, как настроить компонент приложения cache для использования Memcached [http://memcached.org/] с двумя серверами:

'components' => [
    'cache' => [
        'class' => 'yii\caching\MemCache',
        'servers' => [
            [
                'host' => 'server1',
                'port' => 11211,
                'weight' => 100,
            ],
            [
                'host' => 'server2',
                'port' => 11211,
                'weight' => 50,
            ],
        ],
    ],
],





Вы можете получить доступ к компоненту кэша, используя выражение Yii::$app->cache.

Поскольку все компоненты кэша поддерживают единый API-интерфейс - вы можете менять основной компонент кэша на другой через конфигурацию приложения. Код, использующий кэш, при этом не меняется. Например, можно изменить конфигурацию выше для использования [[yii\caching\ApcCache|APC cache]] следующим образом:

'components' => [
    'cache' => [
        'class' => 'yii\caching\ApcCache',
    ],
],






Tip: Вы можете зарегистрировать несколько кэш-компонентов приложения. Компонент с именем cache используется по умолчанию многими классами (например, [[yii\web\UrlManager]]).



Поддерживаемые хранилища 

Yii поддерживает множество хранилищ кэша:


	[[yii\caching\ApcCache]]: использует расширение PHP APC [http://php.net/manual/en/book.apc.php]. Эта опция считается самой быстрой при работе с кэшем в «толстом» централизованном приложении (т.е. один сервер, без выделенного балансировщика нагрузки и т.д.);

	[[yii\caching\DbCache]]: использует таблицу базы данных для хранения кэшированных данных. Чтобы использовать этот кэш, вы должны создать таблицу так, как это описано в [[yii\caching\DbCache::cacheTable]];

	[[yii\caching\DummyCache]]: является кэшем-пустышкой, не реализующим реального кэширования. Смысл этого компонента в упрощении кода, проверяющего наличие кэша. Вы можете использовать данный тип кэша и переключиться на реальное кэширование позже. Примеры: использование при разработке; если сервер не поддерживает кэш. Для извлечения данных в этом случае используется один и тот же код Yii::$app->cache->get($key). При этом можно не беспокоиться, что Yii::$app->cache может быть null;

	[[yii\caching\FileCache]]: использует обычные файлы для хранения кэшированных данных. Замечательно подходит для кэширования больших кусков данных, таких как содержимое страницы;

	[[yii\caching\MemCache]]: использует расширения PHP memcache [http://php.net/manual/en/book.memcache.php] и memcached [http://php.net/manual/en/book.memcached.php]. Этот вариант может рассматриваться как самый быстрый при работе в распределенных приложениях (например, с несколькими серверами, балансировкой нагрузки и так далее);

	[[yii\redis\Cache]]: реализует компонент кэша на основе Redis [http://redis.io/], хранилища ключ-значение (требуется Redis версии 2.6.12 или выше);

	[[yii\caching\WinCache]]: использует расширение PHP WinCache [http://iis.net/downloads/microsoft/wincache-extension] (смотрите также [http://php.net/manual/en/book.wincache.php]);

	[[yii\caching\XCache]]: использует расширение PHP XCache [http://xcache.lighttpd.net/];

	[[yii\caching\ZendDataCache]]: использует Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm].




Tip: Вы можете использовать разные способы хранения кэша в одном приложении. Общая стратегия заключается в использовании памяти под хранение небольших часто используемых данных (например, статистические данные). Для больших и реже используемых данных (например, содержимое страницы) лучше использовать файлы или базу данных.







Кэш API, [bookmark: cache-apis] 

У всех компонентов кэша один базовый класс [[yii\caching\Cache]] со следующими методами:


	[[yii\caching\Cache::get()|get()]]: возвращает данные по указанному ключу. Если данные не найдены или устарели, то
значение false будет возвращено;

	[[yii\caching\Cache::set()|set()]]: сохраняет данные по ключу;

	[[yii\caching\Cache::add()|add()]]: сохраняет данные по ключу если такого ключа ещё нет;

	[[yii\caching\Cache::getOrSet()|getOrSet()]]: возвращает данные по указанному ключу или выполняет переданную
анонимную функцию для вычисления значения, а полученные данные сохраняет в кэш и возвращает;

	[[yii\caching\Cache::multiGet()|multiGet()]]: извлекает сразу несколько элементов данных из кэша по заданным ключам;

	[[yii\caching\Cache::multiSet()|multiSet()]]: сохраняет несколько элементов данных. Каждый элемент идентифицируется ключом;

	[[yii\caching\Cache::multiAdd()|multiAdd()]]: сохраняет несколько элементов данных. Каждый элемент идентифицируется ключом.
Если ключ уже существует, то сохранения не происходит;

	[[yii\caching\Cache::exists()|exists()]]: есть ли указанный ключ в кэше;

	[[yii\caching\Cache::delete()|delete()]]: удаляет указанный ключ;

	[[yii\caching\Cache::flush()|flush()]]: удаляет все данные.




Note: Не кэшируйте непосредственно значение false, потому что [[yii\caching\Cache::get()|get()]] использует
false для случая, когда данные не найдены в кэше. Вы можете обернуть false в массив и закэшировать его, чтобы
избежать данной проблемы.


Некоторые кэш-хранилища, например, MemCache или APC, поддерживают получение нескольких значений в пакетном режиме, что
может сократить накладные расходы на получение данных. Данную возможность возможно использовать при помощи
[[yii\caching\Cache::multiGet()|multiGet()]] и [[yii\caching\Cache::multiAdd()|multiAdd()]]. В случае, если хранилище
не поддерживает эту функцию, она будет имитироваться.

Так как [[yii\caching\Cache]] реализует ArrayAccess - следовательно компонент кэша можно использовать как массив:

$cache['var1'] = $value1;  // эквивалентно: $cache->set('var1', $value1);
$value2 = $cache['var2'];  // эквивалентно: $value2 = $cache->get('var2');






Ключи кэша 

Каждый элемент данных, хранящийся в кэше, идентифицируется ключом. Когда вы сохраняете элемент данных в кэше, необходимо указать для него ключ. Позже, когда вы извлекаете элемент данных из кэша, вы также должны предоставить соответствующий ключ.

Вы можете использовать строку или произвольное значение в качестве ключа кэша. Если ключ не строка, то он будет автоматически сериализован в строку.

Обычно ключ задаётся массивом всех значимых частей. Например, для хранения информации о таблице в [[yii\db\Schema]] используются следующие части для ключа:

[
    __CLASS__,              // Название класса схемы.
    $this->db->dsn,         // Данные для соединения с базой.
    $this->db->username,    // Логин для соединения с базой.
    $name,                  // Название таблицы.
];





Как вы можете видеть, ключ строится так, чтобы однозначно идентифицировать данные таблицы.

Если одно хранилище кэша используется несколькими приложениями, стоит указать префикс ключа во избежание конфликтов. Сделать это можно путём настройки [[yii\caching\Cache::keyPrefix]]:

'components' => [
    'cache' => [
        'class' => 'yii\caching\ApcCache',
        'keyPrefix' => 'myapp', // уникальный префикс ключей кэша
    ],
],





Для обеспечения совместимости должны быть использованы только алфавитно-цифровые символы.




Срок действия кэша 

Элементы данных, хранимые в кэше, остаются там навсегда и могут быть удалены только из-за особенностей функционирования хранилища (например, место для кэширования заполнено и старые данные удаляются). Чтобы изменить этот режим, вы можете передать истечение срока действия ключа при вызове метода [[yii\caching\Cache::set()|set()]]. Параметр указывает на то,  сколько секунд элемент кэша может считаться актуальным. Если срок годности ключа истёк, [[yii\caching\Cache::get()|get()]] вернёт false:

// Хранить данные в кэше не более 45 секунд
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
    // срок действия истек или ключ не найден в кэше
}





Начиная с версии 2.0.11 вы можете изменить значение по умолчанию (бесконечность) для длительности кэширования задав
[[yii\caching\Cache::$defaultDuration|defaultDuration]] в конфигурации компонента кэша. Таким образом, можно будет
не передавать значение duration в [[yii\caching\Cache::set()|set()]] каждый раз.




Зависимости кэша 

В добавок к изменению срока действия ключа элемент может быть признан недействительным из-за изменения зависимостей. К примеру, [[yii\caching\FileDependency]] представляет собой зависимость от времени изменения файла. Когда это время изменяется, любые устаревшие данные, найденные в кэше, должны быть признаны недействительным, а [[yii\caching\Cache::get()|get()]] в этом случае должен вернуть false.

Зависимости кэша представлены в виде объектов потомков класса [[yii\caching\Dependency]]. Когда вы вызываете [[yii\caching\Cache::set()|set()]] метод, чтобы сохранить элемент данных в кэше, вы можете передать туда зависимость.

Например:

// Создать зависимость от времени модификации файла example.txt.
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// Данные устаревают через 30 секунд.
// Данные могут устареть и раньше, если example.txt будет изменён.
$cache->set($key, $data, 30, $dependency);

// Кэш будет проверен, если данные устарели.
// Он также будет проверен, если указанная зависимость была изменена.
// Вернется `false`, если какое-либо из этих условий выполнено.
$data = $cache->get($key);





Ниже приведен список доступных зависимостей кэша:


	[[yii\caching\ChainedDependency]]: зависимость меняется, если любая зависимость в цепочке изменяется;

	[[yii\caching\DbDependency]]: зависимость меняется, если результат некоторого определенного SQL запроса изменён;

	[[yii\caching\ExpressionDependency]]: зависимость меняется, если результат определенного PHP выражения изменён;

	[[yii\caching\FileDependency]]: зависимость меняется, если изменилось время последней модификации файла;

	[[yii\caching\TagDependency]]: Связывает кэшированные данные элемента с одним или несколькими тегами. Вы можете аннулировать кэширование данных элементов с заданным тегом(тегами) по вызову. [[yii\caching\TagDependency::invalidate()]];








Кэширование запросов 

Кэширование запросов - это специальная функция, построенная на основе кэширования данных.
Она предназначена для кэширования результатов запросов к базе данных.

Кэширование запросов требует [[yii\db\Connection|DB connection]] действительный cache компонента приложения. Предпологая, что $db это [[yii\db\Connection]] экземпляр, простое использование запросов кэширования происходит следующим образом:

$result = $db->cache(function ($db) {

    // Результат SQL запроса будет возвращен из кэша если
    // кэширование запросов включено и результат запроса присутствует в кэше
    return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});





Кэширование запросов может быть использовано как для DAO, так и для ActiveRecord:

$result = Customer::getDb()->cache(function ($db) {
    return Customer::find()->where(['id' => 1])->one();
});






Info: Некоторые СУБД (например, MySQL [http://dev.mysql.com/doc/refman/5.1/en/query-cache.html]) поддерживают кэширование запросов любого механизма на стороне сервера БД. КЗ описано разделом выше. Оно имеет безусловное преимущество, поскольку, благодаря ему, можно указать гибкие зависимости кэша и это более эффективно.



Очистка кэша 
  
    
    
    Модули
    
    

    
 
  
  

    
      
          
            
  
Модули

Модули - это законченные программные блоки, состоящие из моделей, представлений, контроллеров и других вспомогательных компонентов. При установке модулей в приложение, конечный пользователь получает доступ к их контроллерам. По этой причине модули часто рассматриваются как миниатюрные приложения. В отличии от приложений, модули нельзя развертывать отдельно. Модули должны находиться внутри приложений.


Создание модулей 

Модуль помещается в директорию, которая называется [[yii\base\Module::basePath|базовым путем]] модуля. Так же как и в
директории приложения, в этой директории существуют поддиректории controllers, models, views и другие, в которых
размещаются контроллеры, модели, представления и другие элементы. В следующем примере показано примерное содержимое модуля:

forum/
    Module.php                   файл класса модуля
    controllers/                 содержит файлы классов контроллеров
        DefaultController.php    файл класса контроллера по умолчанию
    models/                      содержит файлы классов моделей
    views/                       содержит файлы представлений контроллеров и шаблонов
        layouts/                 содержит файлы представлений шаблонов
        default/                 содержит файлы представления контроллера DefaultController
            index.php            файл основного представления






Классы модулей 

Каждый модуль объявляется с помощью уникального класса, который наследуется от [[yii\base\Module]]. Этот класс должен
быть помещен в корне [[yii\base\Module::basePath|базового пути]] модуля и поддерживать автозагрузку.
Во время доступа к модулю будет создан один экземпляр соответствующего класса модуля. Как и
экземпляры приложения, экземпляры модулей нужны, чтобы код модулей мог получить общий
доступ к данным и компонентам.

Приведем пример того, как может выглядеть класс модуля:

namespace app\modules\forum;

class Module extends \yii\base\Module
{
    public function init()
    {
        parent::init();

        $this->params['foo'] = 'bar';
        // ... остальной инициализирующий код ...
    }
}





Если метод init() стал слишком громоздким из-за кода, который задает свойства модуля, эти свойства можно сохранить
в виде конфигурации, а затем загрузить в методе init() следующим образом:

public function init()
{
    parent::init();
    // инициализация модуля с помощью конфигурации, загруженной из config.php
    \Yii::configure($this, require(__DIR__ . '/config.php'));
}





При этом в конфигурационном файле config.php может быть код следующего вида, аналогичный
конфигурации приложения:

<?php
return [
    'components' => [
        // список конфигураций компонентов
    ],
    'params' => [
        // список параметров
    ],
];








Контроллеры в модулях 

При создании контроллеров модуля принято помещать классы контроллеров в подпространство controllers пространства
имён класса модуля. Это также подразумевает, что файлы классов контроллеров должны располагаться в директории controllers
[[yii\base\Module::basePath|базового пути]] модуля. Например, чтобы описать контроллер post в модуле forum из
предыдущего примера, класс контроллера объявляется следующим образом:

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    // ...
}





Изменить пространство имен классов контроллеров можно задав свойство [[yii\base\Module::controllerNamespace]]. Если
какие-либо контроллеры выпадают из этого пространства имен, доступ к ним можно осуществить, настроив свойство
[[yii\base\Module::controllerMap]], аналогично тому, как это делается в приложении.




Представления в модулях 

Представления модуля также следует поместить в поддиректорию views [[yii\base\Module::basePath|базового пути]]
модуля. Виды, которые рендерит контроллер модуля, должны располагаться в директории views/ControllerID, где ControllerID
соответствует идентификатору контроллера. Например, если контроллер реализуется
классом PostController, представления следует разместить в поддиректории views/post
[[yii\base\Module::basePath|базового пути]] модуля.

В модуле можно задать шаблон, который будет использоваться для рендеринга всех представлений
контроллерами модуля. По умолчанию шаблон помещается в директорию views/layouts, а свойство [[yii\base\Module::layout]]
должно указывать на имя этого шаблона. Если не задать свойство layout, модуль будет использовать шаблон, заданный
в приложении.




Консольные команды в модулях 

Ваш модуль также может объявлять команды, которые будут доступны через консоль.

Для того, чтобы команда стала доступна, надо изменить свойство [[yii\base\Module::controllerNamespace]] для консольного
режима так, чтобы оно содержало пространство имён ваших команд.

Этого можно добиться проверяя класс экземпляра приложения Yii в методе init модуля:

public function init()
{
    parent::init();
    if (Yii::$app instanceof \yii\console\Application) {
        $this->controllerNamespace = 'app\modules\forum\commands';
    }
}





Ваши команды будут доступны из командной строки как:

yii <module_id>/<command>/<sub_command>










Использование модулей 

Чтобы задействовать модуль в приложении, достаточно включить его в свойство [[yii\base\Application::modules|modules]]
в конфигурации приложения. Следующий код в конфигурации приложения
задействует модуль forum:

[
    'modules' => [
        'forum' => [
            'class' => 'app\modules\forum\Module',
            // ... другие настройки модуля ...
        ],
    ],
]





Свойству [[yii\base\Application::modules|modules]] присваивается массив, содержащий конфигурацию модуля. Каждый ключ массива
представляет собой идентификатор модуля, который однозначно определяет модуль среди других модулей приложения,
а соответствующий массив - это конфигурация для создания модуля.


Маршруты 

Как маршруты приложения используются для обращения к контроллерам приложения, маршруты
модуля используются, чтобы обращаться к контроллерам этого модуля. Маршрут контроллера в модуле должен начинаться с
идентификатора модуля, за которым следуют идентификатор контроллера и
идентификатор действия. Например, если в приложении задействован модуль forum,
то маршрут forum/post/index соответствует действию index контроллера post этого модуля. Если маршрут состоит только
из идентификатора модуля, то контроллер и действие определяются исходя из свойства [[yii\base\Module::defaultRoute]],
которое по умолчанию равно default. Таким образом, маршрут forum соответствует контроллеру default модуля forum.




Получение доступа к модулям 

Зачастую внутри модуля может потребоваться доступ к экземпляру класса модуля, через который получаются
идентификатор модуля, его параметры, компоненты, и т. п. Это можно сделать с помощью следующей конструкции:

$module = MyModuleClass::getInstance();





где MyModuleClass соответствует имени класса модуля, доступ к которому нужно получить. Метод getInstance() возвращает
запрошенный в данный момент экземпляр класса модуля. Если модуль не запрошен, метод вернет null. Учтите, что обычно
экземпляры класса модуля вручную не создаются, так как созданный вручную экземпляр будет отличаться от экземпляра,
созданного Yii в качестве ответа на запрос.


Info: При разработке модуля нельзя исходить из предположения, что модулю будет назначен конкретный идентификатор.
Это связано с тем, что идентификатор, назначаемый модулю при использовании в приложении или в другом модуле, может быть
выбран совершенно произвольно. Чтобы получить идентификатор модуля, нужно вначале выбрать экземпляр модуля, как это
описано выше, а затем получить доступ к идентификатору через свойство $module->id.


Доступ к экземпляру модуля можно получить следующими способами:

// получение дочернего модуля с идентификатором "forum"
$module = \Yii::$app->getModule('forum');

// получение модуля, к которому принадлежит запрошенный в настоящее время контроллер
$module = \Yii::$app->controller->module;





Первый подход годится только если известен идентификатор модуля, а второй подход наиболее полезен, если известно,
какой контроллер запрошен.

Имея экземпляр модуля можно получить доступ к параметрам и компонентам, зарегистрированным в модуле. Например,

$maxPostCount = $module->params['maxPostCount'];








Предзагрузка модулей 

Может потребоваться запускать некоторые модули при каждом запросе. Модуль [[yii\debug\Module|debug]] - один из таких
модулей. Для этого список идентификаторов таких модулей необходимо указать в свойстве
[[yii\base\Application::bootstrap|bootstrap]] приложения.

Например, следующая конфигурация приложения обеспечивает загрузку модуля debug при каждом запросе:

[
    'bootstrap' => [
        'debug',
    ],

    'modules' => [
        'debug' => 'yii\debug\Module',
    ],
]










Вложенные модули 

Модули могут вкладываться друг в друга без ограничений по глубине. Иными словами, в модуле содержится модуль, в который
входит еще один модуль, и т. д. Первый модуль называется родительским, остальные - дочерними. Дочерние модули
объявляются в свойстве [[yii\base\Module::modules|modules]] родительских модулей. Например,

namespace app\modules\forum;

class Module extends \yii\base\Module
{
    public function init()
    {
        parent::init();

        $this->modules = [
            'admin' => [
                // здесь имеет смысл использовать более лаконичное пространство имен
                'class' => 'app\modules\forum\modules\admin\Module',
            ],
        ];
    }
}





Маршрут к контроллеру вложенного модуля должен содержать идентификаторы всех его предков. Например, маршрут
forum/admin/dashboard/index соответствует действию index контроллера dashboard модуля admin, который в свою
очередь является дочерним модулем модуля forum.


Info: Метод [[yii\base\Module::getModule()|getModule()]] возвращает только те дочерние модули, которые
принадлежат родительскому модулю непосредственно. В свойстве [[yii\base\Application::loadedModules]] содержится
список загруженных модулей, в том числе прямых и косвенных потомков, с индексированием по имени класса.





Лучшие практики

Модули лучше всего подходят для крупных приложений, функционал которых можно разделить на несколько групп, в каждой из
которых функции тесно связаны между собой. Каждая группа функций может разрабатываться в виде модуля, над которым работает
один разработчик или одна команда.

Модули - это хороший способ повторно использовать код на уровне групп функций. В виде модулей можно реализовать такую
функциональность, как управление пользователями или управление комментариями, а затем использовать эти модули в будущих
разработках.







          

      

      

    

  

  
    
    
    ArrayHelper
    
    

    
 
  
  

    
      
          
            
  
ArrayHelper

В добавок к богатому набору функций [http://php.net/manual/en/book.array.php]  для работы с массивами, которые есть в самом PHP, Yii Array helper предоставляет свои статические функции, которые могут быть вам полезны.


Получение значений 

Извлечение значений из массива, объекта или структуры состоящей из них обоих с помощью стандартных средств PHP является довольно скучным занятием. Сперва вам нужно проверить есть ли соответствующий ключ с помощью isset, и если есть – получить, если нет – подставить значение по умолчанию.

class User
{
    public $name = 'Alex';
}

$array = [
    'foo' => [
        'bar' => new User(),
    ]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;





Yii предлагает очень удобный метод для таких случаев:

$value = ArrayHelper::getValue($array, 'foo.bar.name');





Первый аргумент – массив или объект из которого мы извлекаем значение. Второй аргумент определяет как будут извлекаться данные и может выглядеть как один из таких вариантов:


	Имя ключа массива или свойства объекта, значение которого нужно вернуть

	Путь к нужному значению, разделенный точками, как в примере выше

	Callback-функция возвращающая значение



Callback-функция должна выглядеть примерно так:

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
    return $user->firstName . ' ' . $user->lastName;
});





Третий, необязательный, аргумент определяет значение по-умолчанию. Если не установлен – равен null. Используется так:

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');





В случае если вы хотите получить значение и тут же удалить его из массива, вы можете использовать метод  remove

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');





После выполнения этого кода переменная $array будет содержать ['options' => [1, 2]], а в переменной $type будет значение А. В отличие от метода getValue, метод remove поддерживает только простое имя ключа.




Проверка наличия ключей 

ArrayHelper::keyExists работает так же как и стандартный array_key_exists [http://php.net/manual/en/function.array-key-exists.php],
но также может проверять ключи без учёта регистра:

$data1 = [
    'userName' => 'Alex',
];

$data2 = [
    'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
    echo "Please provide username.";
}








Извлечение столбцов 

Часто нужно извлечь столбец значений из многомерного массива или объекта. Например, список ID.

$array = [
    ['id' => '123', 'data' => 'abc'],
    ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');





Результатом будет ['123', '345'].

Если нужны какие-то дополнительные трансформации или способ получения значения специфический, вторым аргументом может быть анонимная функция:

$result = ArrayHelper::getColumn($array, function ($element) {
    return $element['id'];
});








Переиндексация массивов 

Чтобы проиндексировать массив в соответствии с определенным ключом, используется метод index . Входящий массив должен
быть многомерным или массивом объектов. Ключом может быть имя ключа вложенного массива, имя свойства объекта или
анонимная функция, которая будет возвращать значение ключа по переданному массиву.

Если значение ключа равно null, то соответствующий элемент массива будет опущен и не попадет в результат.

$array = [
    ['id' => '123', 'data' => 'abc'],
    ['id' => '345', 'data' => 'def'],
];
$result = ArrayHelper::index($array, 'id');
// the result is:
// [
//     '123' => ['id' => '123', 'data' => 'abc'],
//     '345' => ['id' => '345', 'data' => 'def'],
// ]

// using anonymous function
$result = ArrayHelper::index($array, function ($element) {
    return $element['id'];
});








Получение пар ключ-значение 

Для получения пар ключ-значение из многомерного массива или из массива объектов вы можете использовать метод map.

Параметры $from и $to определяют имена ключей или свойств, которые будут использованы в map. Так же, третьим необязательным параметром вы можете задать правила группировки.

$array = [
    ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
    ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
    ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
);

$result = ArrayHelper::map($array, 'id', 'name');
// the result is:
// [
//     '123' => 'aaa',
//     '124' => 'bbb',
//     '345' => 'ccc',
// ]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// the result is:
// [
//     'x' => [
//         '123' => 'aaa',
//         '124' => 'bbb',
//     ],
//     'y' => [
//         '345' => 'ccc',
//     ],
// ]








Многомерная сортировка 

Метод multisort помогает сортировать массивы объектов или вложенные массивы по одному или нескольким ключам. Например:

$data = [
    ['age' => 30, 'name' => 'Alexander'],
    ['age' => 30, 'name' => 'Brian'],
    ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);





После сортировки мы получим:

[
    ['age' => 19, 'name' => 'Barney'],
    ['age' => 30, 'name' => 'Brian'],
    ['age' => 30, 'name' => 'Alexander'],
];





Второй аргумент, определяющий ключи для сортировки может быть строкой, если это один ключ, массивом, если используются несколько ключей или анонимной функцией, как в примере ниже:

ArrayHelper::multisort($data, function($item) {
    return isset($item['age']) ? ['age', 'name'] : 'name';
});





Третий аргумент определяет способ сортировки – от большего к меньшему или от меньшего к большему. В случае, если мы сортируем по одному ключу, передаем  SORT_ASC  или  SORT_DESC. Если сортировка осуществляется по нескольким ключам, вы можете назначить направление сортировки для каждого из них с помощью массива.

Последний аргумент – это флаг, который используется в стандартной функции PHP sort(). Посмотреть его возможные значения можно тут [http://php.net/manual/en/function.sort.php].




Определение типа массива 

Удобный способ для определения, является массив индексным или ассоциативным. Вот пример:

// no keys specified
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// all keys are strings
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);








HTML-кодирование и HTML-декодирование значений 

Для того, чтобы закодировать или раскодировать специальные символы в массиве строк в HTML-сущности, вы можете пользоваться методами ниже:

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);





По умолчанию кодируются только значения. Если установить второй параметр в false, то ключи массива будут так же кодированы. Кодирование использует кодировку приложения, которая может быть изменена с помощью третьего аргумента.




Слияние массивов 

Слияние двух или больше массивов в один рекурсивно.
Если каждый массив имеет одинаковый ключ, последний будет перезаписывать предыдущий (в отличие от функции array_merge_recursive).
Рекурсивное слияние проводится когда все массивы имеют элемент одного и того же типа с одним и тем же ключом. Для элементов, ключом которого является значение типа integer, элементы из последнего будут добавлены к предыдущим массивам. Вы можете добавлять дополнительные массивы для слияния третьим, четвертым, пятым (и так далее) параметром.

ArrayHelper::merge($a, $b);








Получение массива из объекта 

Часто нужно конвертировать объект в массив. Наиболее распространенный случай – конвертация модели Active Record в массив.

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
    'app\models\Post' => [
        'id',
        'title',
        // the key name in array result => property name
        'createTime' => 'created_at',
        // the key name in array result => anonymous function
        'length' => function ($post) {
            return strlen($post->content);
        },
    ],
]);





Первый аргумент содержит данные, которые вы хотите конвертировать. В нашем случае это Active Record модель Post.

Второй аргумент служит для управления процессом конвертации и может быть трех видов:


	просто имя поля

	пара ключ-значение, где ключ определяет ключ в результирующем массиве, а значение – название поля в модели, откуда берется значение.

	пара ключ-значение, где в качестве значения передается callback-функция, которая возвращает значение.



Результат конвертации будет таким:

[
    'id' => 123,
    'title' => 'test',
    'createTime' => '2013-01-01 12:00AM',
    'length' => 301,
]





Вы можете определить способ конвертации из объекта в массив по-умолчанию реализовав интерфейс
[[yii\base\Arrayable|Arrayable]] в этом классе




Проверка на присутствие в массиве 

Часто необходимо проверить, содержится ли элемент в массиве, или является ли массив подмножеством другого массива.
К сожалению, PHP функция in_array() не поддерживает подмножества объектов, реализующих интерфейс \Traversable.

Для таких случаев [[yii\helpers\ArrayHelper]] предоставляет [[yii\helpers\ArrayHelper::isIn()|isIn()]] и
[[yii\helpers\ArrayHelper::isSubset()|isSubset()]]. Методы принимают такие же параметры, что и
in_array() [http://php.net/manual/en/function.in-array.php].

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new(ArrayObject['a']));

// true
ArrayHelper::isSubset(new(ArrayObject['a', 'c']), new(ArrayObject['a', 'b', 'c'])











          

      

      

    

  

  
    
    
    Запросы
    
    

    
 
  
  

    
      
          
            
  
Запросы

Запросы, сделанные к приложению, представлены в терминах [[yii\web\Request]] объектов, которые предоставляют информацию о параметрах запроса, HTTP заголовках, cookies и т.д. Для получения доступа к текущему запросу вы должны обратиться к объекту request application component, который по умолчанию является экземпляром [[yii\web\Request]].


Параметры запроса 

Чтобы получить параметры запроса, вы должны вызвать методы [[yii\web\Request::get()|get()]] и [[yii\web\Request::post()|post()]] компонента request. Они возвращают значения переменных $_GET и $_POST соответственно. Например,

$request = Yii::$app->request;

$get = $request->get(); 
// эквивалентно: $get = $_GET;

$id = $request->get('id');   
// эквивалентно: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);   
// эквивалентно: $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post(); 
// эквивалентно: $post = $_POST;

$name = $request->post('name');   
// эквивалентно: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');   
// эквивалентно: $name = isset($_POST['name']) ? $_POST['name'] : '';






Info: Вместо того, чтобы обращаться напрямую к переменным $_GET и $_POST для получения параметров запроса, рекомендуется
чтобы вы обращались к ним через компонент request как было показано выше. Это упростит написание тестов, поскольку вы можете создать mock компонент запроса с не настоящими данными запроса.


При реализации RESTful API, зачастую вам требуется получить параметры, которые были отправлены через PUT, PATCH или другие методы запроса. Вы можете получить эти параметры, вызвав метод [[yii\web\Request::getBodyParam()]]. Например,

$request = Yii::$app->request;

// возвращает все параметры
$params = $request->bodyParams;

// возвращает параметр "id"
$param = $request->getBodyParam('id');






Info: В отличии от GET параметров, параметры, которые были переданы через POST, PUT, PATCH и д.р. отправляются в теле запроса.
Компонент request будет обрабатывать эти параметры, когда вы попробуете к ним обратиться через методы, описанные выше.
Вы можете настроить способ обработки этих параметров через настройку свойства [[yii\web\Request::parsers]].





Методы запроса 

Вы можете получить названия HTTP метода, используемого в текущем запросе, обратившись к выражению  Yii::$app->request->method.
Также имеется целый набор логических свойств для проверки соответствует ли текущий метод определённому типу запроса.
Например,

$request = Yii::$app->request;

if ($request->isAjax) { /* текущий запрос является AJAX запросом */ }
if ($request->isGet)  { /* текущий запрос является GET запросом */ }
if ($request->isPost) { /* текущий запрос является POST запросом */ }
if ($request->isPut)  { /* текущий запрос является PUT запросом */ }








URL запроса 

Компонент request предоставляет множество способов изучения текущего запрашиваемого URL.

Если предположить, что URL запроса будет http://example.com/admin/index.php/product?id=100, то вы можете получить различные части этого адреса так как это показано ниже:


	[[yii\web\Request::url|url]]: вернёт адрес /admin/index.php/product?id=100, который содержит URL без информации об имени хоста.

	[[yii\web\Request::absoluteUrl|absoluteUrl]]: вернёт адрес http://example.com/admin/index.php/product?id=100,
который содержит полный URL, включая имя хоста.

	[[yii\web\Request::hostInfo|hostInfo]]: вернёт адрес http://example.com, который содержит только имя хоста.

	[[yii\web\Request::pathInfo|pathInfo]]: вернёт адрес /product, который содержит часть между адресом начального скрипта и параметрами запроса, которые идут после знака вопроса.

	[[yii\web\Request::queryString|queryString]]: вернёт адрес id=100, который содержит часть URL после знака вопроса.

	[[yii\web\Request::baseUrl|baseUrl]]: вернёт адрес /admin, который является частью URL после информации о хосте и перед именем входного скрипта.

	[[yii\web\Request::scriptUrl|scriptUrl]]: вернёт адрес /admin/index.php, который содержит URL без информации о хосте и параметрах запроса.

	[[yii\web\Request::serverName|serverName]]: вернёт адрес example.com, который содержит имя хоста в URL.

	[[yii\web\Request::serverPort|serverPort]]: вернёт 80, что является адресом порта, который использует веб-сервер.






HTTP заголовки 

Вы можете получить информацию о HTTP заголовках через [[yii\web\HeaderCollection|header collection]], возвращаемыми свойством [[yii\web\Request::headers]]. Например,

// переменная $headers является объектом yii\web\HeaderCollection 
$headers = Yii::$app->request->headers;

// возвращает значения заголовка Accept
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* в запросе есть заголовок User-Agent */ }





Компонент request также предоставляет доступ к некоторым часто используемым заголовкам, включая


	[[yii\web\Request::userAgent|userAgent]]: возвращает значение заголовка User-Agent.

	[[yii\web\Request::contentType|contentType]]: возвращает значение заголовка Content-Type, который указывает на MIME тип данных в теле запроса.

	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: возвращает список MIME типов данных, которые принимаются пользователем.
Возвращаемый список типов будет отсортирован по показателю качества. Типы с более высокими показателями будут первыми в списке.

	[[yii\web\Request::acceptableLanguages|acceptableLanguages]]: возвращает языки, которые поддерживает пользователь.
Список языков будет отсортирован по уровню предпочтения. Наиболее предпочитаемый язык будет первым в списке.



Если ваше приложение поддерживает множество языков и вы хотите показать страницу на языке, который предпочитает пользователь,
то вы можете воспользоваться языковым методом согласования (negotiation) [[yii\web\Request::getPreferredLanguage()]].
Этот метод принимает список поддерживаемых языков в вашем приложении, сравнивает их с [[yii\web\Request::acceptableLanguages|acceptableLanguages]]
и возвращает наиболее подходящий язык.


Tip: Вы также можете использовать фильтр [[yii\filters\ContentNegotiator|ContentNegotiator]] для динамического определения
какой тип содержимого и язык должен использоваться в ответе. Фильтр реализует согласование содержимого на основе свойств и методов, описанных выше.





Информация о клиенте 

Вы можете получить имя хоста и IP адрес пользователя через свойства [[yii\web\Request::userHost|userHost]]
и [[yii\web\Request::userIP|userIP]] соответственно. Например,

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;











          

      

      

    

  

  
    
    
    Табличный ввод
    
    

    
 
  
  

    
      
          
            
  
Табличный ввод

Иногда возникает необходимость обработки нескольких моделей одного вида в одной форме. Например, несколько параметров, каждый из которых сохраняется как пара имя-значение и представляется моделью Setting active record.
Такой тип форм часто называют “табличным вводом”.
Обработка данных нескольких моделей разных видов в одной форме описана в разделе Работа с несколькими моделями.

Дальше будет рассмотрен вариант реализации табличного ввода при помощи Yii.

Выделим три сценария, которые потребуют немного разных подходов:


	Изменение фиксированного набора записей из базы данных;

	Создание произвольного набора записей;

	Изменение, создание и удаление записей на одной странице.



В отличие от форм с одной моделью, рассмотренных ранее, теперь будем иметь дело с массивом моделей. Этот массив передается в представление и для каждой модели отображаются поля ввода в табличном виде. Для загрузки и валидации нескольких моделей сразу будем использовать вспомогательные методы класса [[yii\base\Model]]:


	[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] загружает данные post в массив моделей;

	[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] валидирует массив моделей.




Изменение фиксированного набора записей

Начнем с действия контроллера:

<?php

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use app\models\Setting;

class SettingsController extends Controller
{
    // ...

    public function actionUpdate()
    {
        $settings = Setting::find()->indexBy('id')->all();

        if (Model::loadMultiple($settings, Yii::$app->request->post()) && Model::validateMultiple($settings)) {
            foreach ($settings as $setting) {
                $setting->save(false);
            }
            return $this->redirect('index');
        }

        return $this->render('update', ['settings' => $settings]);
    }
}





В коде выше, для получения из базы данных массива моделей, индексированного по главному ключу, использован метод [[yii\db\ActiveQuery::indexBy()|indexBy()]]. В дальнейшем будем использовать это для идентификации полей формы. Метод [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] загружает данные запроса POST в массив моделей, а метод [[yii\base\Model::validateMultiple()|Model::validateMultiple()]] проводит валидацию всех моделей. Так, как модели уже прошли валидацию, мы передаем методу [[yii\db\ActiveRecord::save()|save()]] параметр false для отключения повторной валидации.

Теперь займемся формой в представлении update:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {
    echo $form->field($setting, "[$index]value")->label($setting->name);
}

ActiveForm::end();





Для каждого элемента массива $settings генерируется имя и поле ввода значения. Важно указать правильный индекс в имени поля ввода значения, так как [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] определяет модель по этому индексу.




Создание произвольного набора записей

Процесс создания новых записей похож на их изменение, за исключением части, где создаются новые модели:

public function actionCreate()
{
    $count = count(Yii::$app->request->post('Setting', []));
    $settings = [new Setting()];
    for($i = 1; $i < $count; $i++) {
        $settings[] = new Setting();
    }

    // ...
}





Сначала создается массив $settings, содержащий один экземпляр модели, так что, по умолчанию в представлении всегда будет отображено хотя бы одно поле. Дополнительно, добавляются модели для каждой полученной строки ввода.

В представлении возможно использовать javascript для добавления новых полей динамически.




Изменение, создание и удаление записей на одной странице


Note: Раздел находится в разработке


TBD







          

      

      

    

  

  
    
    
    Предзагрузка
    
    

    
 
  
  

    
      
          
            
  
Предзагрузка

Предзагрузка это процесс настройки рабочей среды до того, как будет запущено приложение и обработан входящий запрос.
Предзагрузка осуществляется в двух местах: во входном скрипте и в приложении.

Во входном скрипте, регистрируются автозагрузчики классов различных библиотек. Этот процесс
включает в себя автозагрузчик классов Composer через autoload.php файл и автозагрузчик классов Yii через его Yii файл.
Затем входной скрипт загружает конфигурацию приложения и создает объект приложения.

В конструкторе приложения происходит следующий процесс предзагрузки:


	Вызывается метод [[yii\base\Application::preInit()|preInit()]], которые конфигурирует свойства приложения, имеющие
наивысший приоритет, такие как [[yii\base\Application::basePath|basePath]];

	Регистрируется [[yii\base\Application::errorHandler|обработчик ошибок]];

	Происходит инициализация свойств приложения согласно заданной конфигурации;

	Вызывается метод [[yii\base\Application::init()|init()]], который в свою очередь вызывает метод [[yii\base\Application::bootstrap()|bootstrap()]] для
запуска компонентов предзагрузки.
	Подключается файл манифеста vendor/yiisoft/extensions.php;

	Создаются и запускаются компоненты предзагрузки объявленные в расширениях;

	Создаются и запускаются компоненты приложения и/или модули, объявленные
в свойстве предзагрузка приложения.







Поскольку предзагрузка осуществляется прежде чем будет обработан каждый запрос, то очень важно, чтобы этот процесс был легким и максимально оптимизированным.

Старайтесь не регистрировать слишком много компонентов в предзагрузке. Компонент предзагрузки нужен только тогда, когда он должен
участвовать в полном жизненном цикле процесса обработки запроса. Например, если модуль должен зарегистрировать дополнительные правила парсинга URL,
то он должен быть указан в свойстве предзагрузка, чтобы новые правила URL были учтены при обработке запроса.

В производственном режиме включите байткод кэшеры, такие как PHP OPcache [http://php.net/manual/ru/intro.opcache.php] или APC [http://php.net/manual/ru/book.apc.php], для минимизации времени
подключения и парсинг php файлов.

Некоторые большие приложения могут иметь сложную конфигурацию, которая разделена на несколько мелких файлов.
Если это тот самый случай, возможно вам стоит кэшировать весь конфигурационный файл и загружать его прямо из кэша до создания объекта
приложения во входном скрипте.





          

      

      

    

  

  
    
    
    Постраничное разделение данных
    
    

    
 
  
  

    
      
          
            
  
Постраничное разделение данных

В случае когда требуется отобразить слишком много данных на одной странице, эта страница зачастую
разделяется на несколько частей, каждая из которых содержит и отображает только часть данных за один раз.
Такие части называются страницами, а сам процесс называется постраничным разделением данных.

Если вы используете провайдер данных с одним из виджетов данных,
то в этом случае будет автоматически использовано постраничное разделение данных. В противном случае вам требуется создать объект [[\yii\data\Pagination]],
заполнить его такими данными как [[\yii\data\Pagination::$totalCount|общее количество элементов]],
[[\yii\data\Pagination::$pageSize|количество элементов на одной странице]] и [[\yii\data\Pagination::$page|текущая страница]], затем применить
его к запросу и передать в [[\yii\widgets\LinkPager|элемент нумерации страниц]].

Первым делом в действии контроллера мы создаем объект постраничного разделения данных и заполняем его данными:

function actionIndex()
{
    $query = Article::find()->where(['status' => 1]);
    $countQuery = clone $query;
    $pages = new Pagination(['totalCount' => $countQuery->count()]);
    $models = $query->offset($pages->offset)
        ->limit($pages->limit)
        ->all();

    return $this->render('index', [
         'models' => $models,
         'pages' => $pages,
    ]);
}





Затем в представлении мы выводим модели для текущей страницы и передаем объект постраничного разделение данных в элемент нумерации страниц:

foreach ($models as $model) {
    // отображаем здесь $model
}

// отображаем ссылки на страницы
echo LinkPager::widget([
    'pagination' => $pages,
]);









          

      

      

    

  

  
    
    
    Темизация
    
    

    
 
  
  

    
      
          
            
  
Темизация

Темизация — это способ заменить один набор представлений другим без переписывания кода, что
замечательно подходит для изменения внешнего вида приложения.

Для того, чтобы начать использовать темизацию, настройте свойство [[yii\base\View::theme|theme]] компонента
приложения view. Конфигурация настраивает объект [[yii\base\Theme]], который отвечает за то, как именно
заменяются файлы отображений. Главным образом, стоит настроить следующие свойства [[yii\base\Theme]]:


	[[yii\base\Theme::basePath]]: базовая директория, в которой размещены темизированные ресурсы (CSS, JS, изображения,
и так далее).

	[[yii\base\Theme::baseUrl]]: базовый URL для доступа к темизированным ресурсам.

	[[yii\base\Theme::pathMap]]: правила замены файлов представлений. Подробно описаны далее.



Например, если вы вызываете $this->render('about') в SiteController, то будет использоваться файл отображения
@app/views/site/about.php. Тем не менее, если вы включите темизацию как показано ниже, то вместо него будет
использоваться @app/themes/basic/site/about.php.

return [
    'components' => [
        'view' => [
            'theme' => [
                'basePath' => '@app/themes/basic',
                'baseUrl' => '@web/themes/basic',
                'pathMap' => [
                    '@app/views' => '@app/themes/basic',
                ],
            ],
        ],
    ],
];






Info: При настройке тем поддерживаются псевдонимы пути. При замене отображений они преобразуются в реальные
пути в файловой системе или URL.


Вы можете обратиться к объекту [[yii\base\Theme]] через свойство [[yii\base\View::theme]]. Например,
в файле отображения, это будет выглядеть следующим образом (объект view доступен как $this):

$theme = $this->theme;

// returns: $theme->baseUrl . '/img/logo.gif'
$url = $theme->getUrl('img/logo.gif');

// returns: $theme->basePath . '/img/logo.gif'
$file = $theme->getPath('img/logo.gif');





Свойство [[yii\base\Theme::pathMap]] определяет то, как заменяются файлы представлений. Свойство принимает массив пар
ключ-значение где ключи являются путями к оригинальным файлам, которые мы хотим заменить, а значения — соответствующими
путями к файлам из темы. Замена основана на частичном совпадении: если путь к представлению начинается с любого из ключей
массива [[yii\base\Theme::pathMap|pathMap]], то соответствующая ему часть будет заменена значением из того же массива.
Для приведённой выше конфигурации @app/views/site/about.php частично совпадает с ключом @app/views и будет
заменён на @app/themes/basic/site/about.php.


Темизация модулей 

Для того, чтобы темизировать модули, свойство [[yii\base\Theme::pathMap]] может быть настроено следующим образом:

'pathMap' => [
    '@app/views' => '@app/themes/basic',
    '@app/modules' => '@app/themes/basic/modules', // <-- !!!
],





Это позволит вам темизировать @app/modules/blog/views/comment/index.php в @app/themes/basic/modules/blog/views/comment/index.php.




Темизация виджетов 

Для того, чтобы темизировать виджеты вы можете настроить свойство [[yii\base\Theme::pathMap]] следующим образом:

'pathMap' => [
    '@app/views' => '@app/themes/basic',
    '@app/widgets' => '@app/themes/basic/widgets', // <-- !!!
],





Это позволит вам темизировать @app/widgets/currency/views/index.php в @app/themes/basic/widgets/currency/index.php.




Наследование тем 

Иногда требуется создать базовую тему, задающую общий вид приложения и далее изменять этот вид в зависимости, например,
от сегодняшнего праздника. Добиться этого можно при помощи наследования тем. При этом один путь к файлу ставится в
соответствие нескольким путям из темы:

'pathMap' => [
    '@app/views' => [
        '@app/themes/christmas',
        '@app/themes/basic',
    ],
]





В этом случае представление @app/views/site/index.php темизируется либо в @app/themes/christmas/site/index.php,
либо в @app/themes/basic/site/index.php в зависимости от того, в какой из тем есть нужный файл. Если файлы присутствуют
и там и там, используется первый из них. На практике большинство темизированных файлов будут расположены
в @app/themes/basic, а их версии для праздников в @app/themes/christmas.







          

      

      

    

  

  
    
    
    Виды
    
    

    
 
  
  

    
      
          
            
  
Виды

Виды - это часть MVC [https://ru.wikipedia.org/wiki/Model-View-Controller] архитектуры, это код, который отвечает за представление данных
конечным пользователям. В веб приложениях виды создаются обычно в виде видов - шаблонов, которые суть PHP скрипты, в основном содержащие HTML код
и код PHP, отвечающий за представление и внешний вид. Виды управляются компонентом приложения [[yii\web\View|view]], который содержит часто используемые
методы для упорядочивания видов и их рендеринга. Для упрощения, мы будем называть виды - шаблоны просто видами.


Создание видов 

Как мы упоминали ранее, вид - это просто PHP скрипт, состоящий из  PHP и HTML кодa. В примере ниже - вид, который представляет форму авторизации.
Как видите, PHP код здесь генерирует динамический контент, как, например, заголовок страницы и саму форму, тогда как HTML организует полученные данные в готовую html страницу.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'Вход';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>Пожалуйста, заполните следующие поля для входа на сайт:</p>

<?php $form = ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <?= Html::submitButton('Login') ?>
<?php ActiveForm::end(); ?>





Внутри вида, вы можете использовать $this, которое представляет собой [[yii\web\View|компонент вид]], управляющий этим шаблоном и обеспечивающий
его рендеринг.

Кроме $this, в виде могут быть доступны другие переменные, такие как $form и $model из примера выше. Эти переменные представляют собой данные, которые передаются в вид контроллерами или другими объектами, которые вызывают рендеринг вида.


Совет: Переданные переменные могут быть перечислены в блоке комментария в начале скрипта, чтобы их смогли распознать IDE. К тому же, это хороший способ добавления документации в вид.



Безопасность 

При создании видов, которые генерируют HTML страницы, важно кодировать и/или фильтровать данные, которые приходят от пользователей перед тем как их показывать. В противном случае ваше приложение может стать жертвой атаки типа межсайтовый скриптинг [https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B6%D1%81%D0%B0%D0%B9%D1%82%D0%BE%D0%B2%D1%8B%D0%B9_%D1%81%D0%BA%D1%80%D0%B8%D0%BF%D1%82%D0%B8%D0%BD%D0%B3]

Чтобы показать обычный текст, сначала кодируйте его с помощью [[yii\helpers\Html::encode()]]. В примере ниже имя пользователя кодируется перед выводом:

<?php
use yii\helpers\Html;
?>

<div class="username">
    <?= Html::encode($user->name) ?>
</div>





Чтобы показать HTML содержимое, используйте [[yii\helpers\HtmlPurifier]] для того, чтобы отфильтровать потенциально опасное содержимое. В примере ниже содержимое поста фильтруется перед показом:

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
    <?= HtmlPurifier::process($post->text) ?>
</div>






Tip: Несмотря на то, что HTMLPurifier отлично справляется с тем, чтобы сделать вывод безопасным, работает он довольно медленно. Если от приложения требуется высокая производительность, рассмотрите возможность кэширования отфильтрованного результата





Организация видов 

Как и для контроллеров, и моделей, для видов тоже есть определенные соглашения в их организации.


	Виды, которые рендерятся из контроллера, по умолчанию должны располагаться в папке @app/views/ControllerID, где ControllerID это ID контроллера . Например, если класс контроллера - PostController, то папка будет @app/views/post; если контроллер - PostCommentController, то папка будет @app/views/post-comment. В случае, если контроллер принадлежит модулю, папка будет views/ControllerID в [[yii\base\Module::basePath|подпапке модуля]].

	Виды, которые рендерятся из виджетов, должны располагаться в ПутьВиджета/views, где ПутьВиджета - это папка, которая содержит класс виджета.

	С видами, которые рендерятся из других объектов рекомендуется поступать по той же схеме, что и с видами виджетов.



В контроллерах и виджетах вы можете изменить папки видов по умолчанию, переопределив метод [[yii\base\ViewContextInterface::getViewPath()]].






Рендеринг видов 

Вы можете рендерить виды в контроллерах, widgets, или из любого другого места, вызывая методы рендеринга видов. Методы вызываются приблизительно так, как это показано в примере ниже,

/**
 * @param string $view название вида или путь файла, в зависимости от того, какой метод рендеринга используется 
 * @param array $params данные, которые передаются виду
 * @return string результат рендеринга
 */
methodName($view, $params = [])






Рендеринг в контроллерах 

Внутри контроллеров можно вызывать следующие методы рендеринга видов:


	[[yii\base\Controller::render()|render()]]: рендерит именованный вид и применяет шаблон
к результату рендеринга.

	[[yii\base\Controller::renderPartial()|renderPartial()]]: рендерит именованный вид без шаблона.

	[[yii\web\Controller::renderAjax()|renderAjax()]]: рендерит именованный вид без шаблона,
и добавляет все зарегистрированные JS/CSS скрипты и стили. Обычно этот метод применяется для рендеринга результата AJAX запроса.

	[[yii\base\Controller::renderFile()|renderFile()]]: рендерит вид, заданный как путь к файлу или
алиас.



Например,

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
    public function actionView($id)
    {
        $model = Post::findOne($id);
        if ($model === null) {
            throw new NotFoundHttpException;
        }

        // рендерит вид с названием `view` и применяет к нему шаблон
        return $this->render('view', [
            'model' => $model,
        ]);
    }
}








Рендеринг в виджетах 

Внутри виджетов, вы можете вызывать следующие методы для рендеринга видов.


	[[yii\base\Widget::render()|render()]]: рендерит именованный вид.

	[[yii\base\Widget::renderFile()|renderFile()]]: рендерит вид, заданный как путь файла или
алиас.



Например,

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
    public $items = [];

    public function run()
    {
        // рендерит вид с названием `list`
        return $this->render('list', [
            'items' => $this->items,
        ]);
    }
}








Рендеринг в видах 

Вы можете рендерить вид внутри другого вида используя методы, которые предоставляет [[yii\base\View|компонент вида]]:


	[[yii\base\View::render()|render()]]: рендерит именованный вид.

	[[yii\web\View::renderAjax()|renderAjax()]]: рендерит именованный вид и добавляет зарегистрированные JS/CSS скрипты и стили. Обычно используется для рендеринга результата AJAX запроса.

	[[yii\base\View::renderFile()|renderFile()]]: рендерит вид, заданный как путь к файлу или
алиас.



Например, следующий код рендерит _overview.php файл вида, который находится в той же папке что и вид, который рендерится в текущий момент. Помните, что  $this в виде - это [[yii\base\View|компонент вида]] (а не контроллер, как это было в Yii1):

<?= $this->render('_overview') ?>








Рендеринг в других местах 

Вы может получить доступ к  [[yii\base\View|виду]] как компоненту приложения вот так:
Yii::$app->view,  а затем вызвать вышеупомянутые методы, чтобы отрендерить вид. Например,

// показывает файл "@app/views/site/license.php"
echo \Yii::$app->view->renderFile('@app/views/site/license.php');








Именованные виды 

При рендеринге вида, вы можете указать нужный вид, используя как имя вида, так и путь к файлу/алиас. В большинстве случаев вы будете использовать первый вариант, т.к. он более нагляден и гибок. Мы называем виды, которые были вызваны с помощью сокращенного имени именованные виды.

Имя вида преобразуется в соответствующий ему путь файла в соответствии со следующими правилами:


	Имя вида можно указывать без расширения. В таком случае в качестве расширения будет использоваться .php. К примеру, имя вида about соответствует файлу about.php.

	Если имя вида начинается с двойного слеша //, соответствующий ему путь будет @app/views/ViewName.
Т.е. вид будет искаться в [[yii\base\Application::viewPath|папке видов приложения по умолчанию]]. Например, //site/about будет преобразован в @app/views/site/about.php.

	Если имя вида начинается с одинарного слеша /, то вид будет искаться в [[yii\base\Module::viewPath|папке видов по умолчанию]] текущего модуля . Если активного модуля на данный момент нет, будет использована папка видов приложения по умолчанию, т.е. вид будет искаться в @app/views, как в одном из примеров выше.

	Если вид рендеринтся с помощью [[yii\base\View::context|контекста]] и контекст реализует интерфейс [[yii\base\ViewContextInterface]],  путь к виду образуется путем присоединения [[yii\base\ViewContextInterface::getViewPath()|пути видов]] контекста к имени вида. В основном это применимо к видам, которые рендерятся из контроллеров и виджетов. Например,
about будет преобразован в @app/views/site/about.php если контекстом является контроллер SiteController.

	Если вид рендерится из другого вида, папка, в которой находится текущий вид будет добавлена к пути вложенного вида. Например, item будет преобразован в @app/views/post/item
если он рендерится из вида @app/views/post/index.php.



В соответствии с вышесказанным, вызов $this->render('view') в контроллере app\controllers\PostController будет рендерить файл @app/views/post/view.php, а вызов $this->render('_overview') в этом виде будет рендерить файл @app/views/post/_overview.php.




Доступ к данным из видов 

Данные можно передавать в вид явно или подгружать их динамически, обращаясь к контексту из вида.

Передавая данные через второй параметр методов рендеринга вида, вы явно передаете данные в вид.
Данные должны быть представлены как обычный массив: ключ-значение. При рендеринге вида, php вызывает встроенную функцию PHP extract() на переданном массиве, чтобы переменные из массива “распаковались” в переменные вида. Например, следующий код в контроллере передаст две переменные виду report :
$foo = 1 и $bar = 2.

echo $this->render('report', [
    'foo' => 1,
    'bar' => 2,
]);





Другой подход, подход контекстного доступа, извлекает данные из [[yii\base\View|компонента вида]] или других объектов, доступных в виде (например через глобальный контейнер Yii::$app). Внутри вида вы можете вызывать объект контроллера таким образом: $this->context (см пример снизу), и, таким образом, получить доступ к его свойствам и методам, например, как указано в примере, вы можете получить ID контроллера:

ID контроллера: <?= $this->context->id ?>





Явная передача данных в вид обычно более предпочтительна, т.к. она делает виды независимыми от контекста. Однако, у нее есть недостаток - необходимость каждый раз вручную строить массив данных, что может быть довольно утомительно и привести к ошибкам, если вид рендерится в разных местах.




Передача данных между видами 

[[yii\base\View|Компонент вида]] имеет свойство [[yii\base\View::params|params]], которое вы можете использовать для обмена данными между видами.

Например, в виде about вы можете указать текущий сегмент хлебных крошек с помощью следующего кода.

$this->params['breadcrumbs'][] = 'О нас';





Затем, в шаблоне, который также является видом, вы можете отобразить хлебные крошки используя данные, переданные через [[yii\base\View::params|params]].

<?= yii\widgets\Breadcrumbs::widget([
    'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>










Шаблоны 

Шаблоны - особый тип видов, которые представляют собой общие части разных видов. Например, у большинства страниц веб приложений одинаковые верх и низ (хедер и футер). Можно, конечно, указать их и в каждом виде, однако лучше сделать это один раз, в шаблоне, и затем, при рендеринге, включать уже отрендеренный вид в заданное место шаблона.


Создание шаблонов 

Поскольку шаблоны это виды, их можно создавать точно так же, как и обычные виды. По умолчанию шаблоны хранятся в папке @app/views/layouts. Шаблоны, которые используются в конкретном модуле, хранятся в подпапке views/layouts [[yii\base\Module::basePath|папки модуля]]. Вы можете изменить папку шаблонов по умолчанию, используя свойство [[yii\base\Module::layoutPath]] приложения или модулей.

Пример ниже показывает как выглядит шаблон. Для лучшего понимания мы сильно упростили код шаблона. На практике, однако, в нем часто содержится больше кода, например, тэги <head>, главное меню и т.д.

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8"/>
    <?= Html::csrfMetaTags() ?>
    <title><?= Html::encode($this->title) ?></title>
    <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
    <header>Моя компания</header>
    <?= $content ?>
    <footer>Моя компания &copy; 2014</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>





Как видите, шаблон генерирует HTML тэги, которые присутствуют на всех страницах. Внутри секции <body>, шаблон выводит переменную $content, которая  содержит  результат рендеринга видов контента, который передается в шаблон, при работе метода  [[yii\base\Controller::render()]].

Большинство шаблонов вызывают методы, аналогично тому, как это сделано в примере выше, чтобы скрипты и тэги, зарегистрированные в других местах приложения могли быть правильно отображены в местах вызова (например, в шаблоне).


	[[yii\base\View::beginPage()|beginPage()]]: Этот метод нужно вызывать в самом начале шаблона.
Он вызывает событие [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]], которое происходит при начале обработки страницы.

	[[yii\base\View::endPage()|endPage()]]: Этот метод нужно вызывать в конце страницы.
Он вызывает событие [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]] . Оно указывает на обработку конца страницы.

	[[yii\web\View::head()|head()]]: Этот метод нужно вызывать в <head> секции страницы html.
Он генерирует метку, которая будет заменена зарегистрированным ранее кодом HTML (тэги link, мета тэги), когда рендеринг страницы будет завершен.

	[[yii\web\View::beginBody()|beginBody()]]: Этот метод нужно вызывать в начале секции <body>.
Он вызывает событие [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] и генерирует метку, которая будет заменена зарегистрированным HTML кодом (например, Javascript’ом), который нужно разместить в начале <body> страницы.

	[[yii\web\View::endBody()|endBody()]]: Этот метод нужно вызывать в конце секции <body>.
Он вызывает событие [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]] и генерирует метку, которая будет заменена зарегистрированным HTML кодом (например, Javascript’ом), который нужно разместить в конце <body> страницы.






Доступ к данным в шаблонах 

Внутри шаблона, у вас есть доступ к двум предопределенным переменным: $this и $content. Первая представляет собой
[[yii\base\View|вид]] компонент, как и в обычных видах, тогда как последняя содержит результат рендеринга вида, который рендерится при вызове метода [[yii\base\Controller::render()|render()]] в контроллерах.

Если вы хотите получить доступ к другим данным из шаблона, используйте метод явной передачи (он описан в секции Доступ к данным в видах настоящего документа). Если вы хотите
передать данные из вида шаблону, вы можете использовать метод, описанный в передаче данных между видами.




Использование шаблонов 

Как было описано в секции Рендеринг в контроллерах, когда вы рендерите вид, вызывая метод [[yii\base\Controller::render()|render()]] из контроллера, к результату рендеринга будет применен шаблон. По умолчанию будет использован шаблон @app/views/layouts/main.php .

Вы можете использовать разные шаблоны, конфигурируя [[yii\base\Application::layout]] или [[yii\base\Controller::layout]].
Первый переопределяет шаблон, который используется по умолчанию всеми контроллерами, а второй переопределяет шаблон в отдельном контроллере.
Например, код внизу показывает, как можно сделать так, чтобы контроллер использовал шаблон @app/views/layouts/post.php при рендеринге вида. Другие контроллеры, если их свойство layout не переопределено, все еще будут использовать @app/views/layouts/main.php как шаблон.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    public $layout = 'post';
    
    // ...
}





Для контроллеров, принадлежащих модулю, вы также можете переопределять свойство модуля [[yii\base\Module::layout|layout]], чтобы
использовать особый шаблон для этих контроллеров.

Поскольку свойство layout может быть сконфигурировано на разных уровнях приложения (контроллеры, модули, само приложение),
Yii определяет какой шаблон использовать для контроллера в два этапа.

На первом этапе определяется значение шаблона и контекстный модуль.


	Если [[yii\base\Controller::layout]] свойство контроллера отлично от null, используется оно, и [[yii\base\Controller::module|модуль]]
контроллера как контекстный модуль.

	Если [[yii\base\Controller::layout|layout]] равно null (не задано), происходит поиск среди родительских модулей контроллера, включая само приложение (которое по умолчанию является родительским модулем для контроллеров, не принадлежащих модулям) и
находится первый модуль, свойство [[yii\base\Module::layout|layout]] которого не равно null . Тогда используется найденное значение layout этого модуля
и сам модуль в качестве контекста. Если такой модуль не найден, значит шаблон применен не будет.



На втором этапе определяется сам файл шаблона для рендеринга на основании значения layout и контекстного модуля.
Значением layout может быть:


	Алиас пути (например, @app/views/layouts/main).

	Абсолютный путь (например /main): значение layout начинается со слеша. Будет искаться шаблон из [[yii\base\Application::layoutPath|папки шаблонов]] приложения, по умолчанию это @app/views/layouts.

	Относительный путь (например main): Будет искаться шаблон из [[yii\base\Module::layoutPath|папки шаблонов контекстного модуля]], по умолчанию это views/layouts в [[yii\base\Module::basePath|папке модуля]].

	Булево значение false: шаблон не будет применен.



Если у значения layout нет расширения, будет использовано расширение по умолчанию - .php.




Вложенные шаблоны 

Иногда нужно вложить один шаблон в другой. Например, в разных разделах сайта используются разные шаблоны, но у всех
этих шаблонов есть основная разметка, которая определяет HTML5 структуру страницы. Вы можете использовать вложенные шаблоны,
вызывая [[yii\base\View::beginContent()|beginContent()]] и [[yii\base\View::endContent()|endContent()]] в дочерних
шаблонах таким образом:

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...код дочернего шаблона...

<?php $this->endContent(); ?>





В коде выше дочерний шаблон заключается в [[yii\base\View::beginContent()|beginContent()]] и [[yii\base\View::endContent()|endContent()]].
Параметр, передаваемый в метод [[yii\base\View::beginContent()|beginContent()]] определяет родительский шаблон. Это может быть как
путь к файлу, так и алиас.

Используя подход выше, вы можете вкладывать шаблоны друг в друга в несколько уровней.




Использование блоков 

Блоки позволяют “записывать” контент в одном месте, а показывать в другом. Они часто используются совместно с шаблонами.
Например, вы определяете (записываете) блок в виде и отображаете его в шаблоне.

Для определения блока вызываются методы [[yii\base\View::beginBlock()|beginBlock()]] и [[yii\base\View::endBlock()|endBlock()]].
После определения, блок доступен через $view->blocks[$blockID], где $blockID - это уникальный ID, который вы присваиваете блоку
в начале определения.

В примере ниже показано, как можно использовать блоки, определенные в виде, чтобы динамически изменять фрагменты шаблона.

Сначала, в виде, вы записываете один или несколько блоков:

...

<?php $this->beginBlock('block1'); ?>

...содержимое блока 1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...содержимое блока 3...

<?php $this->endBlock(); ?>





Затем, в шаблоне, рендерите блоки если они есть, или показываете контент по умолчанию, если блок не определен.

...
<?php if (isset($this->blocks['block1'])): ?>
    <?= $this->blocks['block1'] ?>
<?php else: ?>
    ... контент по умолчанию для блока 1 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
    <?= $this->blocks['block2'] ?>
<?php else: ?>
    ... контент по умолчанию для блока 2 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
    <?= $this->blocks['block3'] ?>
<?php else: ?>
    ... контент по умолчанию для блока 3 ...
<?php endif; ?>
...










Использование компонентов вида 

[[yii\base\View|Компоненты вида]] дают много возможностей. Несмотря на то, что существует возможность создавать индивидуальные экземпляры [[yii\base\View]] или дочерних классов, в большинстве случаев используется
сам компонент view приложения. Вы можете сконфигурировать компонент в конфигурации приложения таким образом:

[
    // ...
    'components' => [
        'view' => [
            'class' => 'app\components\View',
        ],
        // ...
    ],
]





Компоненты вида предоставляют широкие возможности по работе с видами, они описаны в отдельных секциях документации:


	темы: позволяет менять темы оформления для сайта.

	кэширование фрагментов: позволяет кэшировать фрагменты веб-страниц.

	работа с клиентскими скриптами: Поддерживает регистрацию и рендеринг CSS и Javascript.

	управление связками: позволяет регистрацию и управление связками клиентского кода.

	альтернативные движки шаблонов: позволяет использовать другие шаблонные движки, такие как
Twig [http://twig.sensiolabs.org/], Smarty [http://www.smarty.net/].



Также удобно пользоваться мелкими, но удобными фичами при разработке веб страниц, которые приведены ниже.


Установка заголовков страниц 

У каждой страницы должен быть заголовок. Обычно заголовок выводится в шаблоне. Однако на практике
заголовок часто определяется в видах, а не в шаблонах. Чтобы передать заголовок из вида в шаблон, используется свойство [[yii\web\View::title|title]].

В виде можно задать заголовок таким образом:

<?php
$this->title = 'Мой заголовок страницы';
?>





В шаблоне заголовок выводится следующим образом, (убедитесь, что в <head> у вас соответствующий код):

<title><?= Html::encode($this->title) ?></title>








Регистрация мета-тэгов 

На веб страницах обычно есть мета-тэги, которые часто используются различными сервисами. Как и заголовки страниц,
мета-тэги выводятся в <head> и обычно генерируются в шаблонах.

Если вы хотите указать, какие мета-тэги генерировать в видах, вы можете вызвать метод [[yii\web\View::registerMetaTag()]] в виде так,
как в примере ниже:

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>





Этот код зарегистрирует мета тэг “keywords” в виде. Зарегистрированные мета тэги рендерятся после того, как закончен
рендеринг шаблона. Они вставляются в то место, где в шаблоне вызван метод [[yii\web\View::head()]]. Результатом рендеринга
мета тэгов является следующий код:

<meta name="keywords" content="yii, framework, php">





Обратите внимание, что при вызове метода [[yii\web\View::registerMetaTag()]] несколько раз мета тэги будут регистрироваться
каждый раз без проверки на уникальность.

Чтобы убедиться, что зарегистрирован только один экземпляр одного типа мета тэгов, вы можете указать ключ мета тэга в качестве второго
параметра при вызове метода.
К примеру, следующий код регистрирует два мета тэга “description”, однако отрендерен будет только второй.

$this->registerMetaTag(['name' => 'description', 'content' => 'Мой сайт сделан с помощью Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'Это сайт о забавных енотах.'], 'description');








Регистрация тэгов link 

Как и мета тэги, link тэги полезны во многих случаях, как, например, задание уникальной favicon, указание на RSS фид или указание OpenID сервера для авторизации. С link тэгами можно работать аналогично работе с мета тэгами, вызывая метод [[yii\web\View::registerLinkTag()]]. Например,
вы можете зарегистрировать link тэг в виде таким образом:

$this->registerLinkTag([
    'title' => 'Сводка новостей по Yii',
    'rel' => 'alternate',
    'type' => 'application/rss+xml',
    'href' => 'http://www.yiiframework.com/rss.xml/',
]);





Этот код выведет

<link title="Сводка новостей по Yii" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">





Как и в случае с [[yii\web\View::registerMetaTag()|registerMetaTag()]], вы можете указать ключ вторым параметром при вызове
[[yii\web\View::registerLinkTag()|registerLinkTag()]] чтобы избежать дублирования link тэгов одного типа.






События в видах 

[[yii\base\View|Компонент вида]] вызывает несколько событий во время рендеринга.
Вы можете задавать обработчики для этих событий чтобы добавлять контент
в вид или делать пост-обработку результатов рендеринга до того, как они будут отправлены конечным пользователям.


	[[yii\base\View::EVENT_BEFORE_RENDER|EVENT_BEFORE_RENDER]]: вызывается в начале рендеринга файла в контроллере.
Обработчики этого события могут придать атрибуту [[yii\base\ViewEvent::isValid]] значение false, чтобы отменить процесс рендеринга.

	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: событие инициируется после рендеринга файла вызовом [[yii\base\View::afterRender()]].
Обработчики события могут получать результат рендеринга через [[yii\base\ViewEvent::output]] и могут изменять это свойство для изменения
результата рендеринга.

	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: инициируется вызовом [[yii\base\View::beginPage()]] в шаблонах.

	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: инициируется вызовом [[yii\base\View::endPage()]] в шаблонах.

	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: инициируется вызовом [[yii\web\View::beginBody()]] в шаблонах.

	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: инициируется вызовом [[yii\web\View::endBody()]] в шаблонах.



Например, следующий код вставляет дату в конец body страницы:

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
    echo date('Y-m-d');
});








Рендеринг статических страниц 

Статическими страницами мы считаем страницы, которые содержат в основном статические данные и для формирования
которых не нужно строить динамические данные в контроллерах.

Вы можете выводить статические страницы, сохраняя их в видах, а затем используя подобный код в контроллере:

public function actionAbout()
{
    return $this->render('about');
}





Если сайт содержит много статических страниц, описанный выше подход не вполне подходит - его использование
приведет к многократному повторению похожего кода. Вместо этого вы можете использовать отдельное действие  [[yii\web\ViewAction]] в контроллере. Например,

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public function actions()
    {
        return [
            'page' => [
                'class' => 'yii\web\ViewAction',
            ],
        ];
    }
}





Теперь, если вы создадите вид about в папке @app/views/site/pages, он будет отображаться по такому адресу:

http://localhost/index.php?r=site%2Fpage&view=about





GET параметр view сообщает [[yii\web\ViewAction]] какой вид затребован. Действие будет искать этот вид в папке @app/views/site/pages.
Вы можете сконфирурировать параметр [[yii\web\ViewAction::viewPrefix]] чтобы изменить папку в которой ищется вид.




Полезные советы 

Виды отвечают за представление данных моделей в формате, понятным конечным пользователям. В целом, виды


	должны в основном содержать код, отвечающий за представление, такой как HTML и простой PHP для обхода, форматирования и рендеринга данных.

	не должны содержать кода, который производит запросы к БД. Такими запросами должны заниматься модели.

	должны избегать прямого обращения к данным запроса, таким как $_GET, $_POST. Разбором запроса должны заниматься контроллеры. Если
данные запросов нужны для построения вида, они должны явно передаваться в вид контроллерами.

	могут читать свойства моделей, но не должны их изменять.



Чтобы сделать виды более управляемыми, избегайте создания видов, которые содержат слишком сложную логику или большое количество кода.
Используйте следующие подходы для их упрощения:


	используйте шаблоны для отображения основных секций разметки сайта (верхняя часть (хедер), нижняя часть (футер) и т.п.)

	разбивайте сложный вид на несколько видов попроще. Меньшие виды можно рендерить и объединять в больший используя методы рендеринга, описанный в
настоящем документе.

	создавайте и используйте виджеты как строительный материал для видов.

	создавайте и используйте классы-хелперы для изменения и форматирования данных в видах.









          

      

      

    

  

  
    
    
    Контроллеры
    
    

    
 
  
  

    
      
          
            
  
Контроллеры

Контроллеры являются частью MVC [https://ru.wikipedia.org/wiki/Model-View-Controller] архитектуры. Это объекты классов, унаследованных
от [[yii\base\Controller]], отвечающие за обработку запроса и генерирование ответа. В сущности, после обработки запроса приложениями,
контроллеры проанализируют входные данные, передадут их в модели, вставят результаты модели в представления,
и в конечном итоге сгенерируют исходящие ответы.


Действия 

Контроллеры состоят из действий, которые являются основными блоками, к которым может обращаться конечный пользователь и запрашивать исполнение того или иного
функционала. В контроллере может быть одно или несколько действий.

Следующий пример показывает post контроллер с двумя действиями: view и create:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
    public function actionView($id)
    {
        $model = Post::findOne($id);
        if ($model === null) {
            throw new NotFoundHttpException;
        }

        return $this->render('view', [
            'model' => $model,
        ]);
    }

    public function actionCreate()
    {
        $model = new Post;

        if ($model->load(Yii::$app->request->post()) && $model->save()) {
            return $this->redirect(['view', 'id' => $model->id]);
        } else {
            return $this->render('create', [
                'model' => $model,
            ]);
        }
    }
}





В действии view (определенном методом actionView()), код сначала загружает модель
согласно запрошенному ID модели; Если модель успешно загружена, то код отобразит ее с помощью представления
под названием view. В противном случае будет брошено исключение.

В действии create (определенном методом actionCreate()), код аналогичен. Он сначала пытается загрузить модель
с помощью данных из запроса и сохранить модель. Если все прошло успешно, то код перенаправляет браузер на действие view с ID только
что созданной модели. В противном случае он отобразит представление create, через которое пользователь может заполнить нужные данные.




Маршруты 

Конечные пользователи обращаются к действиям через так называемые маршруты. Маршрут это строка, состоящая из следующих частей:


	ID модуля: он существует, только если контроллер принадлежит не приложению, а модулю;

	ID контроллера: строка, которая уникально идентифицирует контроллер среди всех других контроллеров одного и того же приложения
(или одного и того же модуля, если контроллер принадлежит модулю);

	ID действия: строка, которая уникально идентифицирует действие среди всех других действия одного и того же контроллера.



Маршруты могут иметь следующий формат:

ControllerID/ActionID





или следующий формат, если контроллер принадлежит модулю:

ModuleID/ControllerID/ActionID





Таким образом, если пользователь запрашивает URL http://hostname/index.php?r=site/index, то index действие в site контроллере будет вызвано.
Секция Маршрутизация содержит более подробную информацию о том как маршруты сопоставляются с действиями.




Создание контроллеров 

В [[yii\web\Application|Веб приложениях]], контроллеры должны быть унаследованы от [[yii\web\Controller]] или его потомков.
Аналогично для [[yii\console\Application|консольных приложений]], контроллеры должны быть унаследованы от [[yii\console\Controller]] или
его потомков. Следующий код определяет site контроллер:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}






ID контроллеров 

Обычно контроллер сделан таким образом, что он должен обрабатывать запросы, связанные с определенным ресурсом.
Именно по этим причинам, ID контроллеров обычно являются существительные, ссылающиеся на ресурс, который они обрабатывают.
Например, вы можете использовать article в качестве ID контроллера, которые отвечает за обработку данных статей.

По-умолчанию, ID контроллеров должны содержать только следующие символы: Английские буквы в нижнем регистре, цифры, подчеркивания,
тире и слэш. Например, оба article и post-comment являются допустимыми ID контроллеров, в то время как article?, PostComment,
admin\post не являются таковыми.

ID контроллеров также могут содержать префикс подпапки. Например, в admin/article часть article является контроллером в
подпапке admin в [[yii\base\Application::controllerNamespace|пространстве имен контроллеров]].
Допустимыми символами для префиксов подпапок являются: Английские буквы в нижнем  и верхнем регистре, символы подчеркивания и
слэш, где слэш используется в качестве разграничителя для многовложенных подпапок (например panels/admin).




Правила наименования классов контроллеров 

Названия классов контроллеров могут быть получены из ID контроллеров следующими способами:


	Привести в верхний регистр первый символ в каждом слове, разделенном дефисами. Обратите внимание что, если ID контроллера
содержит слэш, то данное правило распространяется только на часть после последнего слэша в ID контроллера;

	Убрать дефисы и заменить любой прямой слэш на обратный;

	Добавить суффикс Controller;

	Добавить в начало [[yii\base\Application::controllerNamespace|пространство имен контроллеров]].



Ниже приведены несколько примеров, с учетом того, что [[yii\base\Application::controllerNamespace|пространство имен контроллеров]]
имеет значение по умолчанию равное app\controllers:


	article соответствует app\controllers\ArticleController;

	post-comment соответствует app\controllers\PostCommentController;

	admin/post-comment соответствует app\controllers\admin\PostCommentController;

	adminPanels/post-comment соответствует app\controllers\adminPanels\PostCommentController.



Классы контроллеров должны быть автозагружаемыми. Именно по этой причине, в вышеприведенном примере,
контроллер article должен быть сохранен в файл, псевдоним которого @app/controllers/ArticleController.php;
в то время как контроллер admin/post-comment должен находиться в файле @app/controllers/admin/PostCommentController.php.


Info: Последний пример admin/post-comment показывает каким образом вы можете расположить контроллер в подпапке
[[yii\base\Application::controllerNamespace|пространства имен контроллеров]]. Это очень удобно, когда вы хотите организовать свои контроллеры
в несколько категорий и не хотите использовать модули.





Карта контроллеров 

Вы можете сконфигурировать [[yii\base\Application::controllerMap|карту контроллеров]] для того, чтобы преодолеть
описанные выше ограничения именования ID контроллеров и названий классов. В основном это очень удобно, когда вы используете
сторонние контроллеры, именование которых вы не можете контролировать.

Вы можете сконфигурировать [[yii\base\Application::controllerMap|карту контроллеров]] в настройках приложения
следующим образом:

[
    'controllerMap' => [
        // объявляет "account" контроллер, используя название класса
        'account' => 'app\controllers\UserController',

        // объявляет "article" контроллер, используя массив конфигурации
        'article' => [
            'class' => 'app\controllers\PostController',
            'enableCsrfValidation' => false,
        ],
    ],
]








Контроллер по умолчанию 

Каждое приложение имеет контроллер по умолчанию, указанный через свойство [[yii\base\Application::defaultRoute]].
Когда в запросе не указан маршрут, тогда будет использован маршрут указанный в данном свойстве.
Для [[yii\web\Application|Веб приложений]], это значение 'site', в то время как для [[yii\console\Application|консольных приложений]],
это 'help'. Таким образом, если задан URL http://hostname/index.php, это означает, что контроллер site выполнит обработку запроса.

Вы можете изменить контроллер по умолчанию следующим образом в настройках приложения:

[
    'defaultRoute' => 'main',
]










Создание действий 

Создание действий не представляет сложностей также как и объявление так называемых методов действий в классе контроллера. Метод действия
это public метод, имя которого начинается со слова action. Возвращаемое значение метода действия представляет собой ответные данные,
которые будут высланы конечному пользователю. Приведенный ниже код определяет два действия index и hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public function actionIndex()
    {
        return $this->render('index');
    }

    public function actionHelloWorld()
    {
        return 'Hello World';
    }
}






ID действий 

В основном действие разрабатывается для какой-либо конкретной обработки ресурса. По этой причине, ID действий в основном
являются глаголами, такими как view, update, и т. д.

По-умолчанию, ID действия должен содержать только следующие символы: Английские буквы в нижнем регистре, цифры,
подчеркивания и дефисы. Дефисы в ID действий используются для разделения слов. Например, view, update2, comment-post являются
допустимыми ID действий, в то время как view?, Update не являются таковыми.

Вы можете создавать действия двумя способами: встроенные действия и отдельные действия. Встроенное действие является методом, определенным
в классе контроллера, в то время как отдельное действие является экземпляром класса, унаследованного от [[yii\base\Action]] или его потомков.
Встроенные действия требуют меньше усилий для создания и в основном используются если у вас нет надобности в повторном использовании действий.
Отдельные действия, с другой стороны, в основном создаются для использования в различных контроллерах или при использовании в расширениях.




Встроенные действия 

Встроенные действия это те действия, которые определены в рамках методов контроллера, как мы это уже обсудили.

Названия методов действий могут быть получены из ID действий следующим образом:


	Привести первый символ каждого слова в ID действия в верхний регистр;

	Убрать дефисы;

	Добавить префикс action.



Например, index соответствует actionIndex, а hello-world соответствует actionHelloWorld.


Note: Названия имен действий являются регистрозависимыми. Если у вас есть метод ActionIndex, он не будет
учтен как метод действия, таким образом, запрос к действию index приведет к выбросу исключению. Также следует учесть, что методы действий
должны иметь область видимости public. Методы имеющие область видимости private или protected НЕ определяют методы встроенных действий.


Встроенные действия в основном используются, потому что для их создания не нужного много усилий. Тем не менее, если вы планируете повторно
использовать некоторые действия в различных местах, или если вы хотите перераспределить действия, вы должны определить его как отдельное действие.




Отдельные действия 

Отдельные действия определяются в качестве классов, унаследованных от [[yii\base\Action]] или его потомков.
Например, в Yii релизах, присутствуют [[yii\web\ViewAction]] и [[yii\web\ErrorAction]], оба из которых являются
отдельными действиями.

Для использования отдельного действия, вы должны указать его в карте действий, с помощью переопределения метода
[[yii\base\Controller::actions()]] в вашем классе контроллера, следующим образом:

public function actions()
{
    return [
        // объявляет "error" действие с помощью названия класса
        'error' => 'yii\web\ErrorAction',

        // объявляет "view" действие с помощью конфигурационного массива
        'view' => [
            'class' => 'yii\web\ViewAction',
            'viewPrefix' => '',
        ],
    ];
}





Как вы можете видеть, метод actions() должен вернуть массив, ключами которого являются ID действий, а значениями - соответствующие
названия класса действия или конфигурация. В отличие от встроенных действий, ID отдельных действий могут
содержать произвольные символы, до тех пор пока они определены в методе actions().

Для создания отдельного действия, вы должны наследоваться от класса [[yii\base\Action]] или его потомков, и реализовать
метод run() с областью видимости public. Роль метода run() аналогична другим методам действий. Например,

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
    public function run()
    {
        return "Hello World";
    }
}








Результаты действий 

Возвращаемое значение методов действий или метода run() отдельного действия очень важно. Оно является результатом
выполнения соответствующего действия.

Возвращаемое значение может быть объектом response, который будет отослан конечному пользователю
в качестве ответа.


	Для [[yii\web\Application|Веб приложений]], возвращаемое значение также может быть произвольными данными, которые будут
присвоены [[yii\web\Response::data]], а затем сконвертированы в строку, представляющую тело ответа.

	Для [[yii\console\Application|Консольных приложений]], возвращаемое значение также может быть числом, представляющим
[[yii\console\Response::exitStatus|статус выхода]] исполнения команды.



В вышеприведенных примерах, все результаты действий являются строками, которые будут использованы в качестве тела ответа,
высланного пользователю. Следующий пример, показывает действие может перенаправить браузер пользователя на новый URL, с помощью
возврата response объекта (т. к. [[yii\web\Controller::redirect()|redirect()]] метод возвращает response объект):

public function actionForward()
{
    // перенаправляем браузер пользователя на http://example.com
    return $this->redirect('http://example.com');
}








Параметры действий 

Методы действий для встроенных действий и методы run() для отдельных действий могут принимать параметры,
называемые параметры действий. Их значения берутся из запросов. Для [[yii\web\Application|Веб приложений]],
значение каждого из параметров действия берется из $_GET, используя название параметра в качестве ключа;
для [[yii\console\Application|консольных приложений]], они соответствуют аргументам командной строки.

В приведенном ниже примере, действие view (встроенное действие) определяет два параметра: $id и $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    public function actionView($id, $version = null)
    {
        // ...
    }
}





Для разных запросов параметры действий будут определены следующим образом:


	http://hostname/index.php?r=post/view&id=123: параметр $id будет присвоено значение '123', в то время
как $version будет иметь значение null, т. к. строка запроса не содержит параметра version;

	http://hostname/index.php?r=post/view&id=123&version=2: параметрам $id и $version будут присвоены
значения '123' и '2' соответственно;

	http://hostname/index.php?r=post/view: будет брошено исключение [[yii\web\BadRequestHttpException]], т. к.
обязательный параметр $id не был указан в запросе;

	http://hostname/index.php?r=post/view&id[]=123: будет брошено исключение [[yii\web\BadRequestHttpException]], т. к.
параметр $id получил неверное значение ['123'].



Если вы хотите, чтобы параметр действия принимал массив значений, вы должны использовать type-hint значение array, как показано ниже:

public function actionView(array $id, $version = null)
{
    // ...
}





Теперь, если запрос будет содержать URL http://hostname/index.php?r=post/view&id[]=123, то параметр $id примет значение
['123']. Если запрос будет содержать URL http://hostname/index.php?r=post/view&id=123, то параметр $id все равно будет
содержать массив, т. к. скалярное значение '123' будет автоматически сконвертировано в массив.

Вышеприведенные примеры в основном показывают как параметры действий работают для Веб приложений. Больше информации
о параметрах консольных приложений представлено в секции Консольные команды.




Действие по умолчанию 

Каждый контроллер имеет действие, указанное через свойство [[yii\base\Controller::defaultAction]].
Когда маршрут содержит только ID контроллера, то подразумевается, что действие контроллера по умолчанию
было запрошено.

По-умолчанию, это действие имеет значение index. Если вы хотите изменить это значение, просто переопределите данное
свойство в классе контроллера следующим образом:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public $defaultAction = 'home';

    public function actionHome()
    {
        return $this->render('home');
    }
}










Жизненный цикл контроллера 

При обработке запроса, приложение создаст контроллер, основываясь на
запрошенном маршруте. Для выполнения запроса, контроллер пройдет через следующие этапы
жизненного цикла:


	Метод [[yii\base\Controller::init()]] будет вызван после того как контроллер будет создан и сконфигурирован;

	Контроллер создает объект действия, основываясь на запрошенном ID действия:
	Если ID действия не указан, то будет использовано [[yii\base\Controller::defaultAction|ID действия по умолчанию]];

	Если ID действия найдено в [[yii\base\Controller::actions()|карте действий]], то отдельное действие будет создано;

	Если ID действия соответствует методу действия, то встроенное действие будет создано;

	В противном случае, будет выброшено исключение [[yii\base\InvalidRouteException]].





	Контроллер последовательно вызывает метод beforeAction() приложения, модуля (если контроллер принадлежит модулю) и
самого контроллера.
	Если один из методов вернул false, то остальные, не вызванные методы beforeAction будут пропущены, а выполнение
действия будет отменено;

	По-умолчанию, каждый вызов метода beforeAction() вызовет событие beforeAction, на которое вы можете назначить обработчики.





	Контроллер запускает действие:
	Параметры действия будут проанализированы и заполнены из данных запроса.





	Контроллер последовательно вызывает методы afterAction контроллера, модуля (если контроллер принадлежит модулю) и приложения.
	По-умолчанию, каждый вызов метода afterAction() вызовет событие afterAction, на которое вы можете назначить обработчики.





	Приложение, получив результат выполнения действия, присвоит его объекту response.






Лучшие практики 

В хорошо организованных приложениях контроллеры обычно очень тонкие и содержат лишь несколько строк кода.
Если ваш контроллер слишком сложный, то обычно это означает, что вам надо провести его рефакторинг и перенести часть кода
в другие места.

В целом, контроллеры


	могут иметь доступ к данным запроса;

	могут вызывать методы моделей и других компонентов системы с данными запроса;

	могут использовать представления для формирования ответа;

	не должны заниматься обработкой данных, это должно происходить в слое моделей;

	должны избегать использования HTML или другой разметки, лучше это делать в представлениях.









          

      

      

    

  

  
    
    
    Версионирование
    
    

    
 
  
  

    
      
          
            
  
Версионирование

Хороший API должен быть версионирован: изменения и новые возможности реализуются в новых версиях API, а не в одной и
той же версии. В отличие от Web-приложений, где у вас есть полный контроль и над серверным, и над клиентским кодом,
API используются клиентами, код которых вы не контролируете. Поэтому, обратная совместимость (BC) должна по возможности
сохраняться. Если ломающее её изменение необходимо, делать его нужно в новой версии API. Существующие клиенты могут
продолжать использовать старую, совместимую с ними версию API. Новые или обновлённые клиенты могут использовать новую
версию.


Tip: Чтобы узнать больше о выборе версий обратитесь к Semantic Versioning [http://semver.org/].


Общей практикой при реализации версионирования API является включение номера версии в URL-адрес вызова API-метода.
Например, http://example.com/v1/users означает вызов API /users версии 1. Другой способ версионирования API,
получивший недавно широкое распространение, состоит в добавлении номера версии в HTTP-заголовки запроса,
обычно в заголовок Accept:

// как параметр
Accept: application/json; version=v1
// как тип содержимого, определенный поставщиком API
Accept: application/vnd.company.myapp-v1+json





Оба способа имеют достоинства и недостатки, и вокруг них много споров. Ниже мы опишем реально работающую стратегию
версионирования API, которая является некоторой смесью этих двух способов:


	Помещать каждую мажорную версию реализации API в отдельный модуль, чей ID является номером мажорной версии (например, v1, v2).
Естественно, URL-адреса API будут содержать в себе номера мажорных версий.

	В пределах каждой мажорной версии (т.е. внутри соответствующего модуля) использовать HTTP-заголовок Accept
для определения номера минорной версии и писать условный код для соответствующих минорных версий.



В каждый модуль, обслуживающий мажорную версию, следует включать классы ресурсов и контроллеров,
обслуживающих эту конкретную версию. Для лучшего разделения ответственности кода вы можете составить общий набор
базовых классов ресурсов и контроллеров, и субклассировать их в каждом отдельно взятом модуле версии. Внутри дочерних классов
реализуйте конкретный код вроде метода Model::fields().

Ваш код может быть организован примерно следующим образом:

api/
    common/
        controllers/
            UserController.php
            PostController.php
        models/
            User.php
            Post.php
    modules/
        v1/
            controllers/
                UserController.php
                PostController.php
            models/
                User.php
                Post.php
            Module.php
        v2/
            controllers/
                UserController.php
                PostController.php
            models/
                User.php
                Post.php
            Module.php





Конфигурация вашего приложения могла бы выглядеть так:

return [
    'modules' => [
        'v1' => [
            'class' => 'app\modules\v1\Module',
        ],
        'v2' => [
            'class' => 'app\modules\v2\Module',
        ],
    ],
    'components' => [
        'urlManager' => [
            'enablePrettyUrl' => true,
            'enableStrictParsing' => true,
            'showScriptName' => false,
            'rules' => [
                ['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user', 'v1/post']],
                ['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user', 'v2/post']],
            ],
        ],
    ],
];





В результате http://example.com/v1/users возвратит список пользователей API версии 1, в то время как
http://example.com/v2/users вернет список пользователей версии 2.

Благодаря использованию модулей код API различных мажорных версий может быть хорошо изолирован. И по-прежнему возможно
повторное использование кода между модулями через общие базовые классы и другие разделяемые классы.

Для работы с минорными номерами версий вы можете использовать преимущества согласования содержимого,
предоставляемого поведением [[yii\filters\ContentNegotiator|contentNegotiator]].
Определив тип поддерживаемого содержимого, поведение contentNegotiator установит значение
свойства [[yii\web\Response::acceptParams]].

Например, если запрос посылается с HTTP-заголовком Accept: application/json; version=v1, то после согласования содержимого
свойство [[yii\web\Response::acceptParams]] будет содержать значение ['version' => 'v1'].

На основе информации о версии из acceptParams вы можете выбирать поведение в действиях, классах ресурсов,
сериализаторах и т.д.

Так как минорные версии требуют поддержания обратной совместимости, будем надеяться, что в вашем коде не так уж много
проверок на номер версии. В противном случае велики шансы, что вам нужна новая мажорная версия.





          

      

      

    

  

  
    
    
    Кэширование фрагментов
    
    

    
 
  
  

    
      
          
            
  
Кэширование фрагментов

Кэширование фрагментов относится к кэшированию фрагментов страницы. Например, если страница отображает в таблице суммарные годовые продажи, мы можем сохранить эту таблицу в кэше с целью экономии времени, требуемого для создания таблицы при каждом запросе. Кэширование фрагментов основано на кэшировании данных.

Для кэширования фрагментов используйте следующий код в представлении:

if ($this->beginCache($id)) {

    // ... здесь создаём содержимое ...

    $this->endCache();
}





Таким образом заключите то, что вы хотите закэшировать между вызовом [[yii\base\View::beginCache()|beginCache()]] и
[[yii\base\View::endCache()|endCache()]]. Если содержимое будет найдено в кэше, [[yii\base\View::beginCache()|beginCache()]]
отобразит закэшированное содержимое и вернёт false, минуя генерацию содержимого.
В противном случае, будет выполнен код генерации контента и когда будет вызван [[yii\base\View::endCache()|endCache()]], то сгенерированное содержимое будет записано и сохранено в кэше.

Также как и кэширование данных, для кэширования фрагментов требуется уникальный идентификатор для определения кэшируемого фрагмента.


Параметры кэширования 

Вызывая метод [[yii\base\View::beginCache()|beginCache()]], мы можем передать в качестве второго аргумента массив, содержащий параметры кэширования для управления кэшированием фрагмента. Заглядывая за кулисы, можно увидеть, что этот массив будет использоваться для настройки виджета [[yii\widgets\FragmentCache]], который реализует фактическое кэширование фрагментов.


Срок хранения 

Наверное, наиболее часто используемым параметром является [[yii\widgets\FragmentCache::duration|duration]].
Он определяет какое количество секунд содержимое будет оставаться действительным (корректным). Следующий код помещает фрагмент в кэш не более, чем на час:

if ($this->beginCache($id, ['duration' => 3600])) {

    // ... здесь создаём содержимое ...

    $this->endCache();
}





Если мы не установим длительность (срок хранения), она будет равна значению по умолчанию (60 секунд). Это значит, что кэшированное содержимое станет недействительным через 60 секунд.




Зависимости 

Также как и кэширование данных, кэшируемое содержимое фрагмента тоже может иметь зависимости. Например, отображение содержимого сообщения зависит от того, изменено или нет это сообщение.

Для определения зависимости мы устанавливаем параметр [[yii\widgets\FragmentCache::dependency|dependency]], который может быть либо объектом [[yii\caching\Dependency]], либо массивом настроек, который может быть использован для создания объекта [[yii\caching\Dependency]]. Следующий код определяет содержимое фрагмента, зависящее от изменения значения столбца updated_at:

$dependency = [
    'class' => 'yii\caching\DbDependency',
    'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

    // ... здесь создаём содержимое ...

    $this->endCache();
}








Вариации 

Кэшируемое содержимое может быть изменено в соответствии с некоторыми параметрами. Например, для веб-приложений, поддерживающих несколько языков, одна и та же часть кода может создавать содержимое на нескольких языках. Поэтому у вас может возникнуть желание кэшировать содержимое в зависимости от текущего языка приложения.

Чтобы задать вариации кэша, установите параметр [[yii\widgets\FragmentCache::variations|variations]], который должен быть массивом, содержащим скалярные значения, каждое из которых представляет определенный коэффициент вариации. Например,
чтобы кэшировать содержимое в зависимости от языка приложения, вы можете использовать следующий код:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

    // ... здесь создаём содержимое ...

    $this->endCache();
}








Переключение кэширования 

Иногда может потребоваться включать кэширование фрагментов только для определённых условий. Например, страницу с формой мы хотим кэшировать только тогда, когда обращение к ней произошло впервые (посредством GET запроса). Любое последующее отображение формы (посредством POST запроса) не должно быть кэшировано, потому что может содержать данные, введённые пользователем. Для этого мы задаём параметр [[yii\widgets\FragmentCache::enabled|enabled]]:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

    // ... здесь создаём содержимое ...

    $this->endCache();
}










Вложенное кэширование 

Кэширование фрагментов может быть вложенным. Это значит, что кэшируемый фрагмент окружён более крупным фрагментом (содержится в нём), который также кэшируется. Например, комментарии кэшируются во внутреннем фрагменте кэша, и они же кэшируются вместе с содержимым сообщения во внешнем фрагменте кэша. Следующий код демонстрирует как два фрагмента кэша могут быть вложенными:

if ($this->beginCache($id1)) {

    // ...логика создания контента...

    if ($this->beginCache($id2, $options2)) {

        // ...логика создания контента...

        $this->endCache();
    }

    // ...логика создания контента...

    $this->endCache();
}





Параметры кэширования могут быть различными для вложенных кэшей. Например, внутренний и внешний кэши в вышеприведённом примере могут иметь разные сроки хранения. Даже когда данные внешнего кэша уже не являются актуальными, внутренний кэш может содержать актуальный фрагмент. Тем не менее, обратное не верно. Если внешний кэш актуален, данные будут отдаваться из него даже если внутренний кэш содержит устаревшие данные. Следует проявлять осторожность при выставлении срока хранения и задания зависимостей для вложенных кэшей. В противном случае вы можете получить устаревшие данные.




Динамическое содержимое 

Когда используется кэширование фрагментов, вы можете столкнуться с ситуацией когда большой фрагмент содержимого статичен за исключением одного или нескольких мест. Например, заголовок страницы может отображаться в главном меню вместе с
именем текущего пользователя. Еще одна проблема в том, что содержимое, которое было закэшировано, может содержать PHP код, который должен выполняться для каждого запроса (например код для регистрации в asset bundle). Обе проблемы могут быть решены с помощью, так называемой функции динамического содержимого.

Динамическое содержимое значит, что часть вывода не будет закэширована даже если она заключена в кэширование фрагментов. Чтобы сделать содержимое динамическим постоянно, оно должно быть создано, используя специальный PHP код.

Вы можете вызвать [[yii\base\View::renderDynamic()]] в пределах кэширования фрагмента для вставки динамического содержимого
в нужное место, как в примере ниже:

if ($this->beginCache($id1)) {

    // ...логика создания контента...

    echo $this->renderDynamic('return Yii::$app->user->identity->name;');

    // ...логика создания контента...

    $this->endCache();
}





Метод [[yii\base\View::renderDynamic()|renderDynamic()]] принимает некоторую часть PHP кода как параметр.
Возвращаемое значение этого кода будет вставлено в динамическое содержимое. Этот PHP код будет выполняться для каждого запроса, независимо от того находится ли он внутри кэширования фрагмента или нет.







          

      

      

    

  

  
    
    
    Авторизация
    
    

    
 
  
  

    
      
          
            
  
Авторизация


Note: этот раздел находится на стадии разработки.


Авторизация — это процесс проверки того, что пользователь имеет достаточно прав, чтобы выполнить какие-то действия. Yii предоставляет два метода авторизации: фильтры контроля доступа (ACF) и контроль доступа на основе ролей (RBAC).


Фильтры контроля доступа

Фильтры контроля доступа (ACF) являются простым методом, который лучше всего использовать в приложениях с простым
контролем доступа. Как видно из их названия, ACF — это фильтры, которые могут присоединяться к контроллеру
или модулю как поведение. ACF проверяет набор [[yii\filters\AccessControl::rules|правил доступа]], чтобы убедиться,
что пользователь имеет доступ к запрошенному действию.

Код ниже показывает, как использовать ACF фильтр, реализованный в [[yii\filters\AccessControl]]:

use yii\filters\AccessControl;

class SiteController extends Controller
{
    public function behaviors()
    {
        return [
            'access' => [
                'class' => AccessControl::className(),
                'only' => ['login', 'logout', 'signup'],
                'rules' => [
                    [
                        'allow' => true,
                        'actions' => ['login', 'signup'],
                        'roles' => ['?'],
                    ],
                    [
                        'allow' => true,
                        'actions' => ['logout'],
                        'roles' => ['@'],
                    ],
                ],
            ],
        ];
    }
    // ...
}





Код выше показывает ACF фильтр, связанный с контроллером site через поведение. Это типичный способ использования фильтров действий.
Параметр only указывает, что фильтр ACF нужно применять только к действиям login, logout и signup.
Параметр rules задаёт [[yii\filters\AccessRule|правила доступа]], которые означают следующее:


	Разрешить всем гостям (ещё не прошедшим авторизацию) доступ к действиям login и signup.
Опция roles содержит знак вопроса ?, это специальный токен обозначающий “гостя”.

	Разрешить аутентифицированным пользователям доступ к действию logout. Символ @ — это другой специальный токен,
обозначающий аутентифицированного пользователя.



Когда фильтр ACF проводит проверку авторизации, он проверяет правила по одному сверху вниз, пока не найдёт совпадение.
Значение опции allow выбранного правила указывает, авторизовывать пользователя или нет. Если ни одно из правил
не совпало, то пользователь считается НЕавторизованным, и фильтр ACF останавливает дальнейшее выполнение действия.

По умолчанию, когда у пользователя отсутствует доступ к текущему действию, ACF делает следующее:


	Если пользователь гость, вызывается [[yii\web\User::loginRequired()]], который перенаправляет браузер на страницу входа.

	Если пользователь авторизован, генерируется исключение [[yii\web\ForbiddenHttpException]].



Вы можете переопределить это поведение, настроив свойство [[yii\filters\AccessControl::denyCallback]]:

[
    'class' => AccessControl::className(),
    'denyCallback' => function ($rule, $action) {
        throw new \Exception('У вас нет доступа к этой странице');
    }
]





[[yii\filters\AccessRule|Правила доступа]] поддерживают набор свойств. Ниже дано краткое описание поддерживаемых опций.
Вы также можете расширить [[yii\filters\AccessRule]], чтобы создать свой собственный класс правил доступа.


	[[yii\filters\AccessRule::allow|allow]]: задаёт какое это правило, “allow” или “deny”.



	[[yii\filters\AccessRule::actions|actions]]: задаёт действия, соответствующие этому правилу.
Значение должно быть массивом идентификаторов действий. Сравнение — регистрозависимо. Если свойство пустое или не задано,
то правило применяется ко всем действиям.



	[[yii\filters\AccessRule::controllers|controllers]]: задаёт контроллеры, которым соответствует правило.
Значение должно быть массивом с идентификаторами контроллеров. Сравнение регистрозависимо. Если свойство
пустое или не задано, то правило применяется ко всем контроллерам.



	[[yii\filters\AccessRule::roles|roles]]: задаёт роли пользователей, соответствующих этому правилу.
Распознаются две специальные роли, которые проверяются с помощью [[yii\web\User::isGuest]]:


	?: соответствует гостевому пользователю (не аутентифицирован),

	@: соответствует аутентифицированному пользователю.



Использование других имён ролей будет приводить к вызову метода [[yii\web\User::can()]], который требует включения
RBAC (будет описано дальше). Если свойство пустое или не задано, то правило применяется ко всем ролям.



	[[yii\filters\AccessRule::ips|ips]]: задаёт [[yii\web\Request::userIP|IP адреса пользователей]], для которых применяется это правило. IP адрес может содержать * в конце, так чтобы он соответствовал IP адресу с таким же префиксом.
Для примера, ‘192.168.*‘ соответствует всем IP адресам в сегменте ‘192.168.’. Если свойство пустое или не задано,
то правило применяется ко всем IP адресам.



	[[yii\filters\AccessRule::verbs|verbs]]: задаёт http метод (например, GET, POST), соответствующий правилу.
Сравнение — регистронезависимо.



	[[yii\filters\AccessRule::matchCallback|matchCallback]]: задаёт PHP колбек, который вызывается для определения,
что правило должно быть применено.



	[[yii\filters\AccessRule::denyCallback|denyCallback]]: задаёт PHP колбек, который будет вызван, если доступ будет
запрещён при вызове этого правила.





Ниже показан пример, показывающий использование опции matchCallback, которая позволяет писать произвольную
логику проверки доступа:

use yii\filters\AccessControl;

class SiteController extends Controller
{
    public function behaviors()
    {
        return [
            'access' => [
                'class' => AccessControl::className(),
                'only' => ['special-callback'],
                'rules' => [
                    [
                        'actions' => ['special-callback'],
                        'allow' => true,
                        'matchCallback' => function ($rule, $action) {
                            return date('d-m') === '31-10';
                        }
                    ],
                ],
            ],
        ];
    }

    // Колбек сработал! Эта страница может быть отображена только 31-ого октября
    public function actionSpecialCallback()
    {
        return $this->render('happy-halloween');
    }
}








Контроль доступа на основе ролей (RBAC)

Управление доступом на основе ролей (RBAC) обеспечивает простой, но мощный централизованный контроль доступа.
Пожалуйста, обратитесь к Wikipedia [https://ru.wikipedia.org/wiki/%D0%A3%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B4%D0%BE%D1%81%D1%82%D1%83%D0%BF%D0%BE%D0%BC_%D0%BD%D0%B0_%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B5_%D1%80%D0%BE%D0%BB%D0%B5%D0%B9]
для получения информации о сравнении RBAC с другими, более традиционными, системами контроля доступа.

Yii реализует общую иерархическую RBAC, следуя NIST RBAC model [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf].
Обеспечивается функциональность RBAC через компонент приложения [[yii\rbac\ManagerInterface|authManager]].

Использование RBAC состоит из двух частей. Первая часть — это создание RBAC данных авторизации, и вторая часть — это
использование данных авторизации для проверки доступа в том месте, где это нужно.

Для облегчения последующего описания, мы сначала введём некоторые основные понятия RBAC.


Основные концепции

Роль представляет собой набор разрешений (permissions) (например, создание сообщения, обновление сообщения).
Роль может быть назначена на одного или многих пользователей. Чтобы проверить, имеет ли пользователь указанные
разрешения, мы должны проверить, назначена ли пользователю роль, которая содержит данное разрешение.

С каждой ролью или разрешением может быть связано правило (rule). Правило представляет собой кусок кода, который будет
выполняться в ходе проверки доступа для определения может ли быть применена соответствующая роль или разрешение
к текущему пользователю. Например, разрешение “обновление поста” может иметь правило, которое проверяет является ли
текущий пользователь автором поста. Во время проверки доступа, если пользователь не является автором поста, он/она будет
считаться не имеющими разрешения “обновление поста”.

И роли, и разрешения могут быть организованы в иерархию. В частности, роль может содержать другие роли или разрешения; и
разрешения могут содержать другие разрешения. Yii реализует частично упорядоченную иерархию, которая включает в себя
специальные деревья иерархии. Роль может содержать разрешение, но обратное не верно.




Настройка RBAC Manager

Перед определением авторизационных данных и проверкой прав доступа, мы должны настроить компонент приложения
[[yii\base\Application::authManager|authManager]]. Yii предоставляет два типа менеджеров авторизации:
[[yii\rbac\PhpManager]] и [[yii\rbac\DbManager]]. Первый использует файл с PHP скриптом для хранения данных авторизации,
второй сохраняет данные в базе данных. Вы можете использовать первый, если ваше приложение не требует слишком динамичного
управления ролями и разрешениями.


Настройка authManager с помощью PhpManager

Следующий код показывает как настроить в конфигурации приложения authManager с использованием класса [[yii\rbac\PhpManager]]:

return [
    // ...
    'components' => [
        'authManager' => [
            'class' => 'yii\rbac\PhpManager',
        ],
        // ...
    ],
];





Теперь authManager может быть доступен через \Yii::$app->authManager.


Замечание: По умолчанию, [[yii\rbac\PhpManager]] сохраняет данные RBAC в файлах в директории @app/rbac/. Убедитесь
что данная директория и файлы в них доступны для записи Web серверу, если иерархия разрешений должна меняться онлайн.





Настройка authManager с помощью DbManager

Следующий код показывает как настроить в конфигурации приложения authManager с использованием класса [[yii\rbac\DbManager]]:

return [
    // ...
    'components' => [
        'authManager' => [
            'class' => 'yii\rbac\DbManager',
        ],
        // ...
    ],
];





DbManager использует четыре таблицы для хранения данных:


	[[yii\rbac\DbManager::$itemTable|itemTable]]: таблица для хранения авторизационных элементов. По умолчанию “auth_item”.

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: таблица для хранения иерархии элементов. По умолчанию “auth_item_child”.

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: таблица для хранения назначений элементов авторизации. По умолчанию “auth_assignment”.

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: таблица для хранения правил. По умолчанию “auth_rule”.



Прежде чем вы начнёте использовать этот менеджер, вам нужно создать таблицы в базе данных. Чтобы сделать это,
вы можете использовать миграцию хранящуюся в файле @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

Теперь authManager может быть доступен через \Yii::$app->authManager.






Создание данных авторизации

Для создания данных авторизации нужно выполнить следующие задачи:


	определение ролей и разрешений;

	установка отношений между ролями и правами доступа;

	определение правил;

	связывание правил с ролями и разрешениями;

	назначение ролей пользователям.



В зависимости от требований к гибкости авторизации перечисленные задачи могут быть выполнены разными путями.

Если иерархия прав не меняется, и количество пользователей зафиксировано, вы можете создать
консольную команду, которая будет единожды инициализировать данные
через APIs, предоставляемое authManager:

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
    public function actionInit()
    {
        $auth = Yii::$app->authManager;

        // добавляем разрешение "createPost"
        $createPost = $auth->createPermission('createPost');
        $createPost->description = 'Create a post';
        $auth->add($createPost);

        // добавляем разрешение "updatePost"
        $updatePost = $auth->createPermission('updatePost');
        $updatePost->description = 'Update post';
        $auth->add($updatePost);

        // добавляем роль "author" и даём роли разрешение "createPost"
        $author = $auth->createRole('author');
        $auth->add($author);
        $auth->addChild($author, $createPost);

        // добавляем роль "admin" и даём роли разрешение "updatePost"
        // а также все разрешения роли "author"
        $admin = $auth->createRole('admin');
        $auth->add($admin);
        $auth->addChild($admin, $updatePost);
        $auth->addChild($admin, $author);

        // Назначение ролей пользователям. 1 и 2 это IDs возвращаемые IdentityInterface::getId()
        // обычно реализуемый в модели User.
        $auth->assign($author, 2);
        $auth->assign($admin, 1);
    }
}






Note: Если вы используете шаблон проекта advanced, RbacController необходимо создать в директории console/controllers
и сменить пространство имён на console\controllers.


После выполнения команды yii rbac/init мы получим следующую иерархию:

[image: Простая иерархия RBAC]

Автор может создавать пост, администратор может обновлять пост и делать всё, что может делать автор.

Если ваше приложение позволяет регистрировать пользователей, то вам необходимо сразу назначать роли этим новым пользователям.
Например, для того, чтобы все вошедшие пользователи могли стать авторами в расширенном шаблоне проекта, вы должны изменить
frontend\models\SignupForm::signup() как показано ниже:

public function signup()
{
    if ($this->validate()) {
        $user = new User();
        $user->username = $this->username;
        $user->email = $this->email;
        $user->setPassword($this->password);
        $user->generateAuthKey();
        $user->save(false);

        // нужно добавить следующие три строки:
        $auth = Yii::$app->authManager;
        $authorRole = $auth->getRole('author');
        $auth->assign($authorRole, $user->getId());

        return $user;
    }

    return null;
}





Для приложений, требующих комплексного контроля доступа с динамически обновляемыми данными авторизации, существуют
специальные пользовательские интерфейсы (так называемые админ-панели), которые могут быть разработаны с
использованием API, предлагаемого authManager.




Использование правил

Как упомянуто выше, правила добавляют дополнительные ограничения на роли и разрешения. Правила — это классы, расширяющие
[[yii\rbac\Rule]]. Они должны реализовывать метод [[yii\rbac\Rule::execute()|execute()]]. В иерархии, созданной нами ранее,
автор не может редактировать свой пост. Давайте исправим это. Сначала мы должны создать правило, проверяющее
что пользователь является автором поста:

namespace app\rbac;

use yii\rbac\Rule;

/**
 * Проверяем authorID на соответствие с пользователем, переданным через параметры
 */
class AuthorRule extends Rule
{
    public $name = 'isAuthor';

    /**
     * @param string|int $user the user ID.
     * @param Item $item the role or permission that this rule is associated width.
     * @param array $params parameters passed to ManagerInterface::checkAccess().
     * @return bool a value indicating whether the rule permits the role or permission it is associated with.
     */
    public function execute($user, $item, $params)
    {
        return isset($params['post']) ? $params['post']->createdBy == $user : false;
    }
}





Правило выше проверяет, что post был создан $user. Мы создадим специальное разрешение updateOwnPost в команде,
которую мы использовали ранее:

$auth = Yii::$app->authManager;

// add the rule
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// добавляем разрешение "updateOwnPost" и привязываем к нему правило.
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = 'Update own post';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" будет использоваться из "updatePost"
$auth->addChild($updateOwnPost, $updatePost);

// разрешаем "автору" обновлять его посты
$auth->addChild($author, $updateOwnPost);





Теперь мы имеем следующую иерархию:

[image: Иерархия RBAC с правилом]




Проверка доступа

С готовыми авторизационными данными проверка доступа — это просто вызов метода [[yii\rbac\ManagerInterface::checkAccess()]].
Так как большинство проверок доступа относятся к текущему пользователю, для удобства Yii предоставляет сокращённый метод
[[yii\web\User::can()]], который можно использовать как показано ниже:

if (\Yii::$app->user->can('createPost')) {
    // create post
}





Если текущий пользователь Jane с ID=1, мы начнём с createPost и попробуем добраться до Jane:

[image: Проверка доступа]

Для того чтобы проверить, может ли пользователь обновить пост, нам надо передать дополнительный параметр,
необходимый для правила AuthorRule, описанного ранее:

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
    // update post
}





Вот что происходит если текущим пользователем является John:

[image: Проверка доступа]

Мы начинаем с updatePost и переходим к updateOwnPost. Для того чтобы это произошло, правило AuthorRule должно вернуть
true при вызове метода execute. Метод получает $params, переданный при вызове метода can, значение которого равно
['post' => $post]. Если всё правильно, мы увидим, что author привязан к John.

В случае Jane это немного проще, потому что она admin:

[image: Проверка доступа]

Есть несколько способов реализовать авторизацию в контроллере. Если вам необходимы отдельные права на
добавление и удаление, то проверку стоит делать в каждом действии. Вы можете либо использовать условие выше в каждом
методе действия, либо использовать [[yii\filters\AccessControl]]:

public function behaviors()
{
    return [
        'access' => [
            'class' => AccessControl::className(),
            'rules' => [
                [
                    'allow' => true,
                    'actions' => ['index'],
                    'roles' => ['managePost'],
                ],
                [
                    'allow' => true,
                    'actions' => ['view'],
                    'roles' => ['viewPost'],
                ],
                [
                    'allow' => true,
                    'actions' => ['create'],
                    'roles' => ['createPost'],
                ],
                [
                    'allow' => true,
                    'actions' => ['update'],
                    'roles' => ['updatePost'],
                ],
                [
                    'allow' => true,
                    'actions' => ['delete'],
                    'roles' => ['deletePost'],
                ],
            ],
        ],
    ];
}





Если права на все CRUD операции выдаются вместе, то лучшее решение в этом случае — завести одно разрешение
вроде managePost и проверять его в [[yii\web\Controller::beforeAction()]].




Использование роли по умолчанию

Роль по умолчанию — это роль, которая неявно присваивается всем пользователям. Вызов метода
[[yii\rbac\ManagerInterface::assign()]] не требуется, и авторизационные данные не содержат информации о назначении.

Роль по умолчанию обычно связывают с правилом, определяющим к какой роли принадлежит каждый пользователь.

Роли по умолчанию обычно используются в приложениях, которые уже имеют какое-то описание ролей. Для примера, приложение
может иметь столбец “group” в таблице пользователей, и каждый пользователь принадлежит к какой-то группе. Если каждая
группа может быть сопоставлена роли в модели RBAC, вы можете использовать роль по умолчанию для автоматического назначения
каждому пользователю роли RBAC. Давайте используем пример, чтобы понять как это можно сделать.

Предположим что в таблице пользователей у вас есть столбец group, в котором значение 1 представляет группу “администратор”,
а 2 — группу “автор”. Вы планируете иметь две RBAC роли: admin и author, представляющие разрешения для двух
соответствующих групп. Вы можете настроить данные роли как показано ниже.

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * Checks if user group matches
 */
class UserGroupRule extends Rule
{
    public $name = 'userGroup';

    public function execute($user, $item, $params)
    {
        if (!Yii::$app->user->isGuest) {
            $group = Yii::$app->user->identity->group;
            if ($item->name === 'admin') {
                return $group == 1;
            } elseif ($item->name === 'author') {
                return $group == 1 || $group == 2;
            }
        }
        return false;
    }
}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... add permissions as children of $author ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... add permissions as children of $admin ...





Обратите внимание, так как “author” добавлен как дочерняя роль к “admin”, следовательно в реализации метода execute()
класса правила вы должны учитывать эту иерархию. Именно поэтому для роли “author” метод execute() вернёт истину,
если пользователь принадлежит к группам 1 или 2 (это означает, что пользователь находится в группе
администраторов или авторов)

Далее настроим authManager с помощью перечисления ролей в свойстве [[yii\rbac\BaseManager::$defaultRoles]]:

return [
    // ...
    'components' => [
        'authManager' => [
            'class' => 'yii\rbac\PhpManager',
            'defaultRoles' => ['admin', 'author'],
        ],
        // ...
    ],
];





Теперь, если вы выполните проверку доступа, для обоих ролей admin и author будет выполнена проверка правила,
асоциированного с ними. Если правило вернёт истину, это будет означать, что роль применяется к текущему пользователю.
На основании правила, реализованного выше: если пользователь входит в группу 1, пользователю будет назначена роль admin;
и если значение group равно 2, будет применена роль author.









          

      

      

    

  

  
    
    
    Кэширование страниц
    
    

    
 
  
  

    
      
          
            
  
Кэширование страниц

Кэширование страниц — это кэширование всего содержимого страницы на стороне сервера. Позже, когда эта страница
будет снова запрошена, сервер вернет её из кэша вместо того чтобы генерировать её заново.

Кэширование страниц осуществляется при помощи фильтра действия [[yii\filters\PageCache]] и
может быть использовано в классе контроллера следующим образом:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\PageCache',
            'only' => ['index'],
            'duration' => 60,
            'variations' => [
                \Yii::$app->language,
            ],
            'dependency' => [
                'class' => 'yii\caching\DbDependency',
                'sql' => 'SELECT COUNT(*) FROM post',
            ],
        ],
    ];
}





Приведённый код задействует кэширование только для действия index. Содержимое страницы кэшируется максимум на 60 секунд
и варьируется в зависимости от текущего языка приложения. Кэшированная страница должна быть признана просроченной, если
общее количество постов изменилось.

Кэширование страниц очень похоже на кэширование фрагментов. В обоих случаях поддерживаются параметры
duration (продолжительность), dependencies (зависимости), variations (вариации), и enabled (включен). Главное
отличие заключается в том, что кэширование страницы реализовано в виде фильтра действия,
а кэширование фрагмента в виде виджета.

Вы можете использовать вместе кэширование фрагмента,
динамическое содержимое и кэширование страницы.





          

      

      

    

  

  
    
    
    Поведения
    
    

    
 
  
  

    
      
          
            
  
Поведения

Поведения (behaviors) — это экземпляры класса [[yii\base\Behavior]] или класса, унаследованного от него. Поведения,
также известные как примеси [http://ru.wikipedia.org/wiki/Примесь_(программирование)], позволяют расширять
функциональность существующих [[yii\base\Component|компонентов]] без необходимости изменения дерева наследования.
После прикрепления поведения к компоненту, его методы и свойства “внедряются” в компонент, и становятся доступными
так же, как если бы они были объявлены в самом классе компонента. Кроме того, поведение может реагировать на
события, создаваемые компонентом, что позволяет тонко настраивать или модифицировать
обычное выполнение кода компонента.


Создание поведений 

Поведения создаются путем расширения базового класса [[yii\base\Behavior]] или его наследников. Например,

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
    public $prop1;

    private $_prop2;

    public function getProp2()
    {
        return $this->_prop2;
    }

    public function setProp2($value)
    {
        $this->_prop2 = $value;
    }

    public function foo()
    {
        // ...
    }
}





В приведенном выше примере, объявлен класс поведения app\components\MyBehavior содержащий 2 свойства
prop1 и prop2, и один метод foo(). Обратите внимание, свойство prop2 объявлено с использованием геттера
getProp2() и сеттера setProp2(). Это возможно, так как [[yii\base\Behavior]] является дочерним классом для
[[yii\base\Object]], который предоставляет возможность определения свойств через геттеры и сеттеры.

Так как этот класс является поведением, когда он прикреплён к компоненту, компоненту будут также доступны свойства prop1
и prop2, а также метод foo().


Tip: Внутри поведения возможно обращаться к компоненту, к которому оно прикреплено, используя свойство
[[yii\base\Behavior::owner]].



Note: При переопределении метода поведения [[yii\base\Behavior::__get()]] и/или [[yii\base\Behavior::__set()]] необходимо
также переопределить [[yii\base\Behavior::canGetProperty()]] и/или [[yii\base\Behavior::canSetProperty()]].





Обработка событий компонента

Если поведению требуется реагировать на события компонента, к которому оно прикреплено, то необходимо переопределить
метод [[yii\base\Behavior::events()]]. Например,

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
    // ...

    public function events()
    {
        return [
            ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
        ];
    }

    public function beforeValidate($event)
    {
        // ...
    }
}





Метод [[yii\base\Behavior::events()|events()]] должен возвращать список событий и соответствующих им обработчиков.
В приведенном выше примере, объявлено событие [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]]
и его обработчик beforeValidate(). Указать обработчик события, можно одним из следующих способов:


	строка с именем метода текущего поведения, как в примере выше;

	массив, содержащий объект или имя класса, и имя метода, например, [$object, 'methodName'];

	анонимная функция.



Функция обработчика события должна выглядеть как показано ниже, где $event содержит параметр
события. Более детальная информация приведена в разделе События.

function ($event) {
}








Прикрепление поведений 

Прикрепить поведение к [[yii\base\Component|компоненту]] можно как статически, так и динамически. На практике
чаще используется статическое прикрепление.

Для того чтобы прикрепить поведение статически, необходимо переопределить метод [[yii\base\Component::behaviors()|behaviors()]]
компонента, к которому его планируется прикрепить. Метод [[yii\base\Component::behaviors()|behaviors()]] должен возвращать
список конфигураций поведений.  Конфигурация поведения представляет собой имя класса поведения,
либо массив его настроек:

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
    public function behaviors()
    {
        return [
            // анонимное поведение, прикрепленное по имени класса
            MyBehavior::className(),

            // именованное поведение, прикрепленное по имени класса
            'myBehavior2' => MyBehavior::className(),

            // анонимное поведение, сконфигурированное с использованием массива
            [
                'class' => MyBehavior::className(),
                'prop1' => 'value1',
                'prop2' => 'value2',
            ],

            // именованное поведение, сконфигурированное с использованием массива
            'myBehavior4' => [
                'class' => MyBehavior::className(),
                'prop1' => 'value1',
                'prop2' => 'value2',
            ]
        ];
    }
}





Вы можете связать имя с поведением, указав его в качестве ключа элемента массива, соответствующего конфигурации
поведения. В таком случае, поведение называется именованным. В примере выше,
два именованных поведения: myBehavior2 и myBehavior4. Если с поведением не связано имя, такое поведение называется
анонимным.

Для того, чтобы прикрепить поведение динамически, необходимо вызвать метод [[yii\base\Component::attachBehavior()]]
требуемого компонента:

use app\components\MyBehavior;

// прикрепляем объект поведения
$component->attachBehavior('myBehavior1', new MyBehavior);

// прикрепляем по имени класса поведения
$component->attachBehavior('myBehavior2', MyBehavior::className());

// прикрепляем используя массив конфигураций
$component->attachBehavior('myBehavior3', [
    'class' => MyBehavior::className(),
    'prop1' => 'value1',
    'prop2' => 'value2',
]);





Использование метода [[yii\base\Component::attachBehaviors()]] позволяет прикрепить несколько поведение за раз.
Например,

$component->attachBehaviors([
    'myBehavior1' => new MyBehavior,  // именованное поведение
    MyBehavior::className(),          // анонимное поведение
]);





Так же, прикрепить поведение к компоненту можно через конфигурацию, как показано ниже:

[
    'as myBehavior2' => MyBehavior::className(),

    'as myBehavior3' => [
        'class' => MyBehavior::className(),
        'prop1' => 'value1',
        'prop2' => 'value2',
    ],
]





Более детальная информация приведена в разделе Конфигурации.




Использование поведений 

Для использования поведения, его необходимо прикрепить к [[yii\base\Component|компоненту]] как описано выше. После того,
как поведение прикреплено к компоненту, его использование не вызывает сложностей.

Вы можете обращаться к публичным переменным или свойствам, объявленным с использованием
геттеров и сеттеров в поведении, через компонент, к которому оно прикреплено:

// публичное свойство "prop1" объявленное в классе поведения
echo $component->prop1;
$component->prop1 = $value;





Аналогично, вы можете вызывать публичные методы поведения,

// публичный метод foo() объявленный в классе поведения
$component->foo();





Обратите внимание, хотя $component не имеет свойства prop1 и метода foo(), они могут быть использованы,
как будто являются членами этого класса.

В случае, когда два поведения, имеющие свойства или методы с одинаковыми именами, прикреплены к одному компоненту,
преимущество будет у поведения, прикрепленного раньше.

Если при прикреплении поведения к компоненту указано имя, можно обращаться к поведению по этому имени, как показано ниже:

$behavior = $component->getBehavior('myBehavior');





Также можно получить все поведения, прикрепленные к компоненту:

$behaviors = $component->getBehaviors();








Отвязывание поведений

Чтобы отвязать поведение от компонента, необходимо вызвать метод [[yii\base\Component::detachBehavior()]], указав имя,
связанное с поведением:

$component->detachBehavior('myBehavior1');





Так же, возможно отвязать все поведения:

$component->detachBehaviors();








Использование поведения TimestampBehavior 

В заключении, давайте посмотрим на [[yii\behaviors\TimestampBehavior]] — поведение, которое позволяет автоматически
обновлять атрибуты с метками времени при сохранении [[yii\db\ActiveRecord|Active Record]] моделей через insert(),
update() или save().

Для начала, необходимо прикрепить поведение к классу [[yii\db\ActiveRecord|Active Record]], в котором это необходимо:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
    // ...

    public function behaviors()
    {
        return [
            [
                'class' => TimestampBehavior::className(),
                'attributes' => [
                    ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
                    ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
                ],
                // если вместо метки времени UNIX используется datetime:
                // 'value' => new Expression('NOW()'),
            ],
        ];
    }
}





Конфигурация выше описывает следующее:


	при вставке новой записи поведение должно присвоить текущую метку времени UNIX атрибутам  created_at и updated_at;

	при обновлении существующей записи поведение должно присвоить текущую метку времени UNIX атрибуту updated_at.




Note: Для того, чтобы приведённая выше конфигурация работала с MySQL, тип created_at и updated_at должен быть
int(11). В нём будет храниться UNIX timestamp.


Теперь, если сохранить объект User, то в его атрибуты created_at и updated_at будут автоматически установлены
значения метки времени UNIX на момент сохранения записи:

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at;  // выведет метку времени на момент сохранения записи





Поведение [[yii\behaviors\TimestampBehavior|TimestampBehavior]] так же содержит полезный метод
[[yii\behaviors\TimestampBehavior::touch()|touch()]], который устанавливает текущую метку времени указанному атрибуту
и сохраняет его в базу данных:

$user->touch('login_time');








Другие поведения

Кроме затронутых выше, есть и другие уже реализованные поведения. Как встроенные, так и
сторонние:


	[[yii\behaviors\BlameableBehavior]] - автоматически заполняет указанные атрибуты ID текущего пользователя.

	[[yii\behaviors\SluggableBehavior]] - автоматически заполняет указанные атрибут пригодным для URL текстом, получаемым
из другого атрибута.

	[[yii\behaviors\AttributeBehavior]] - автоматически задаёт указанное значение одному или нескольким атрибутам
ActiveRecord при срабатывании определённых событий.

	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] - предоставляет методы для
«мягкого» удаления и воосстановления ActiveRecord. То есть выставляет статус или флаг, который показывает, что
запись удалена.

	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] - позволяет упралять порядком
записей через специальные методы. Информация сохраняется в целочисленном поле.






Сравнение с трейтами 

Несмотря на то, что поведения схожи с трейтами [http://ru2.php.net/manual/ru/language.oop5.traits.php] тем, что
“внедряют” свои свойства и методы в основной класс, они имеют множество отличий. Они оба имеют свои плюсы и минусы,
и, скорее, дополняют друг друга, а не заменяют.


Плюсы поведений 

Поведения, как и любые другие классы, поддерживают наследование. Трейты же можно рассматривать как копипейст
на уровне языка. Они наследование не поддерживают.

Поведения могут быть прикреплены и отвязаны от компонента динамически, без необходимости модифицирования класса
компонента. Для использования трейтов необходимо модифицировать класс.

Поведения, в отличие от трейтов, можно настраивать.

Поведения можно настраивать таким образом, чтобы они реагировали на события компонента.

Конфликты имен свойств и методов поведений, прикрепленных к компоненту, разрешаются на основе порядка их подключения.
Конфликты имен, вызванные различными трейтами, требуют ручного переименования конфликтующих свойств или методов.




Плюсы трейтов 

Трейты являются гораздо более производительными, чем поведения, которые, являясь объектами, требуют
дополнительного времени и памяти.

Многие IDE поддерживают работу с трейтами, так как они являются стандартными конструкциями языка.









          

      

      

    

  

  
    
    
    Создание своей структуры приложения
    
    

    
 
  
  

    
      
          
            
  
Создание своей структуры приложения


Note: Этот раздел находится на стадии разработки.


Пока шаблоны проектов basic [https://github.com/yiisoft/yii2-app-basic] и advanced [https://github.com/yiisoft/yii2-app-advanced] великолепно справляются с большинством ваших потребностей, но вы можете захотеть создать свой собственный шаблон проекта, с которого будете начинать делать ваши проекты.

Шаблоны проектов в Yii - это просто репозитарии, содержащие composer.json файл, и зарегистрированные как Composer пакет.
Любые репозитарии, которые могут быть определены как Composer пакеты, становятся установочными через Composer команду create-project.

Чтобы построить весь свой шаблон с нуля, нужно затратить много энергии, поэтому лучше использовать один из встроенных шаблонов, как базовый.


Клонирование базового шаблона

Первый шаг для клонирования базового Yii шаблона из Git репозитария:

git clone git@github.com:yiisoft/yii2-app-basic.git





Затем необходимо подождать, чтобы репозитарии загрузился на ваш компьютер. С внесенными изменениями шаблон должен быть “запушен”(push) обратно, затем вы можете удалить .git директорию и весь загруженный контент на вашем компьютере.




Измените файлы

Следующее, вам надо изменить composer.json в соответствии с вашим шаблоном. Измените значения name(имя), description(описание), keywords(ключевые слова), homepage(адрес домашней страницы), license(лицензия), и support(поддержка)
для описания вашего нового шаблона. Также установите require(зависимости фреимворка), require-dev(зависимости от расширений), suggest, и другие опции, которые необходимы для вашего шаблона.


Note: В файле composer.json используйте writable параметр внутри extra, чтобы указать
права доступа к файлам, которые будут установлены, после создания приложения на основе данного шаблона.


Следующее, измените структуру и содержание приложения, по вашему вкусу. В заключении обновите README файл, чтобы он соответствовал конечному варианту вашего шаблона.




Создание пакета

Создайте Git репозитарий из созданного шаблона, и запушьте(push) его. Если вы собираетесь сделать ваш шаблон с открытым исходным кодом, Github [http://github.com] - это лучшее место, чтобы разместить его. Если вы собираетесь сохранить ваш шаблон для личных целей, используйте любой Git, предназначенный для этих целей.

Затем, вам необходимо зарегистрировать ваш пакет в Composer. Пакет с публичным шаблоном должен быть зарегистрирован на Packagist [https://packagist.org/].
Для приватных шаблонов, зарегистрировать шаблона немного сложнее. Для получения инструкции загляните в Composer documentation [https://getcomposer.org/doc/05-repositories.md#hosting-your-own].




Использование шаблона

Это все, что требуется для создания нового шаблона проекта в Yii. Сейчас вы можете создавать проекты, использующие ваш шаблон:

composer global require "fxp/composer-asset-plugin:^1.3.1"
composer create-project --prefer-dist --stability=dev mysoft/yii2-app-coolone new-project











          

      

      

    

  

  
    
    
    Полное руководство по Yii 2.0
    
    

    
 
  
  

    
      
          
            
  
Полное руководство по Yii 2.0

Данное руководство выпущено в соответствии с положениями о документации Yii [http://www.yiiframework.com/doc/terms/].

All Rights Reserved.

2014 © Yii Software LLC.


Введение


	О Yii

	Обновление с версии 1.1






Первое знакомство


	Установка Yii

	Запуск приложения

	Говорим «привет»

	Работа с формами

	Работа с базами данных

	Генерация кода при помощи Gii

	Что дальше?






Структура приложения


	Обзор

	Входные скрипты

	Приложения

	Компоненты приложения

	Контроллеры

	Модели

	Представления

	Модули

	Фильтры

	Виджеты

	Ресурсы

	Расширения






Обработка запросов


	Обзор

	Bootstrapping

	Разбор и генерация URL

	Запросы

	Ответы

	Сессии и куки

	Обработка ошибок

	Логирование






Основные понятия


	Компоненты

	Свойства

	События

	Поведения

	Конфигурации

	Псевдонимы

	Автозагрузка классов

	Service Locator

	Dependency Injection Container






Работа с базами данных


	Объекты доступа к данным (DAO) - Соединение с базой данных, простые запросы, транзакции и работа со схемой.

	Построитель запросов - Запросы к базе данных через простой слой абстракции.

	Active Record - Получение объектов AR, работа с ними и определение связей.

	Миграции - Контроль версий схемы данных при работе в команде.

	Sphinx [https://github.com/yiisoft/yii2-sphinx/blob/master/docs/guide/README.md]

	Redis [https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md]

	MongoDB [https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide-ru/README.md]

	ElasticSearch [https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md]






Получение данных от пользователя


	Создание форм

	Валидация

	Загрузка файлов

	Табличный ввод

	Работа с несколькими моделями






Отображение данных


	Форматирование данных

	Постраничная разбивка

	Сортировка

	Провайдеры данных

	Виджеты для данных

	Работа с клиентскими скриптами

	Темизация






Безопасность


	Обзор

	Аутентификация

	Авторизация

	Работа с паролями

	Криптография

	Клиенты авторизации [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide-ru/README.md]

	Лучшие практики






Кеширование


	Обзор

	Кэширование данных

	Кэширование фрагментов

	Кэширование страниц

	HTTP кэширование






Веб-сервисы REST


	Быстрый старт

	Ресурсы

	Контроллеры

	Роутинг

	Форматирование ответа

	Аутентификация

	Ограничение частоты запросов

	Версионирование

	Обработка ошибок






Инструменты разработчика


	Отладочная панель и отладчик [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Генерация кода с Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md]

	Генератор документации API [https://github.com/yiisoft/yii2-apidoc]






Тестирование


	Обзор

	Настройка тестового окружения

	Модульные тесты

	Функциональные тесты

	Приёмочные тесты

	Фикстуры






Специальные темы


	Шаблон приложения advanced [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md]

	Создание приложения с нуля

	Консольные команды

	Встроенные валидаторы

	Интернационализация

	Отправка почты

	Оптимизация производительности

	Окружение виртуального хостинга

	Шаблонизаторы

	Работа со сторонним кодом






Виджеты


	GridView [http://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [http://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [http://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [http://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [http://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [http://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [http://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Виджеты Bootstrap [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide-ru/README.md]

	Виджеты Jquery UI [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/README.md]






Хелперы


	Обзор

	ArrayHelper

	Html

	Url хелпер









          

      

      

    

  

  
    
    
    Создание форм
    
    

    
 
  
  

    
      
          
            
  
Создание форм

Основным способом использования форм в Yii является использование [[yii\widgets\ActiveForm]]. Этот подход должен быть
применён, когда форма основана на модели. Кроме того, имеются дополнительные методы в [[yii\helpers\Html]], которые
используются для добавления кнопок и текстовых подсказок к любой форме.

Форма, которая отображается на стороне клиента, в большинстве случаев, соответствует модели.
Модель, в свою очередь, проверяет данные из элементов формы на сервере (смотрите раздел Валидация
для более подробных сведений). Когда создаётся форма, основанная на модели, необходимо определить, что же является моделью.
Модель может основываться на классе Active Record, который описывает некоторые данные из базы данных,
или же на базовом классе Model (происходит от [[yii\base\Model]]), который позволяет использовать
произвольный набор элементов формы (например, форма входа).

В следующем примере показано, как создать модель формы, основанной на базовом классе Model:

<?php

class LoginForm extends \yii\base\Model
{
    public $username;
    public $password;

    public function rules()
    {
        return [
            // тут определяются правила валидации
        ];
    }
}





В контроллере будем передавать экземпляр этой модели в представление для виджета [[yii\widgets\ActiveForm|ActiveForm]], который генерирует форму.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'login-form',
    'options' => ['class' => 'form-horizontal'],
]) ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>

    <div class="form-group">
        <div class="col-lg-offset-1 col-lg-11">
            <?= Html::submitButton('Вход', ['class' => 'btn btn-primary']) ?>
        </div>
    </div>
<?php ActiveForm::end() ?>





В вышеизложенном коде, [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] не только создаёт экземпляр формы, но
также и знаменует её начало. Весь контент, расположенный между [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]]
и [[yii\widgets\ActiveForm::end()|ActiveForm::end()]], будет завёрнут в HTML-тег <form>. Вы можете изменить некоторые
настройки виджета через передачу массива в его begin метод, также как и в любом другом виджете. В этом случае, дополнительный CSS класс и идентификатор ID будет прикреплён к открывающемуся тегу <form>. Для просмотра всех доступных настроек,пожалуйста, обратитесь к API документации [[yii\widgets\ActiveForm]].

Для создания в форме элемента с меткой и любой применимой Javascript валидацией, вызывается [[yii\widgets\ActiveForm::field()|ActiveForm::field()]],который возвращает экземпляр [[yii\widgets\ActiveField]]. Когда этот метод вызывается непосредственно, то результатом будет текстовый элемент (input type="text"). Для того, чтобы настроить элемент, можно вызвать один за одним дополнительные методы [[yii\widgets\ActiveField|ActiveField]]:

// элемент формы password
echo $form->field($model, 'password')->passwordInput();
// добавлена подсказка hint и настроена метка label
echo $form->field($model, 'username')->textInput()->hint('Пожалуйста, введите имя')->label('Имя');
// создание HTML5 email элемента
echo $form->field($model, 'email')->input('email');





Впоследствии будут созданы <label>, <input> и другие теги в соответствии с [[yii\widgets\ActiveField::$template|template]], который определён в элементе. Имя элемента формы определяется автоматически из моделей [[yii\base\Model::formName()|form name]]
и их атрибутов. Например, имя элемента для атрибута username в коде, приведённом выше, будет LoginForm[username].
Это правило именования будет учитываться на стороне сервера при получении массива результатов $_POST['LoginForm']
для всех элементов формы входа (Login Form).


Tip: Если в форме только одна модель, и вы хотите упростить имена полей ввода, то можете сделать это, переопределив метод [[yii\base\Model::formName()|formName()]] модели так, чтобы он возвращал пустую строку. Это может пригодиться для получения более красивых URL при фильтрации моделей в GridView.


Специфический атрибут модели может быть задан более сложным способом. Например, при загрузке файлов или выборе
нескольких значений из списка, в качестве значений атрибуту модели нужно передать массив, для этого к имени можно добавить
[]:

// поддерживает загрузку нескольких файлов:
echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple']);

// поддерживает выбор нескольких значений:
echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' => 'Item B', 'c' => 'Item C']);





Имена элементов форм следует выбирать, учитывая, что могут возникнуть конфликты. Подробнее об этом в документации jQuery [https://api.jquery.com/submit/]:


Имена и идентификаторы форм и их элементов не должны совпадать с элементами форм, такими как submit, length, или method. Конфликты имен могут вызывать трудно диагностируемые ошибки. Подробнее о способах избегания подобных проблем смотрите DOMLint [http://kangax.github.io/domlint/].


Дополнительные HTML элементы можно добавить к форме, используя обычный HTML или методы из класса помощника [[yii\helpers\Html|Html]], как это было сделано с помощью [[yii\helpers\Html::submitButton()|Html::submitButton()]] в примере, приведённом выше.


Tip: Если вы использует Twitter Bootstrap CSS в своём приложении, то воспользуйтесь [[yii\bootstrap\ActiveForm]] вместо [[yii\widgets\ActiveForm]]. Он добавит к ActiveForm дополнительные стили, которые сработают в рамках bootstrap CSS.



Tip: для добавления “звёздочки” к обязательным элементам формы воспользуйтесь следующим CSS:

div.required label.control-label:after {
    content: " *";
    color: red;
}









Создание выпадающего списка 

Для создания выпадающего списка можно использовать метод ActiveForm [[yii\widgets\ActiveField::dropDownList()|dropDownList()]]:

use app\models\ProductCategory;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\Product */

echo $form->field($model, 'product_category')->dropdownList(
    ProductCategory::find()->select(['category_name', 'id'])->indexBy('id')->column(),
    ['prompt'=>'Select Category']
);





Текущее значение поля модели будет автоматически выбрано в списке.




Работа с Pjax 

Виджет [[yii\widgets\Pjax|Pjax]] позволяет обновлять определённую область страницы вместо
перезагрузки всей страницы. Вы можете использовать его для обновления формы после её отсылки.

Для того, чтобы задать, какая из форм будет работать через PJAX, можно воспользоваться
опцией [[yii\widgets\Pjax::$formSelector|$formSelector]]. Если значение не задано, все формы
с атрибутом data-pjax внутри PJAX-контента будут работать через PJAX.

use yii\widgets\Pjax;
use yii\widgets\ActiveForm;

Pjax::begin([
    // Pjax options
]);
    $form = ActiveForm::begin([
        'options' => ['data' => ['pjax' => true]],
        // остальные опции ActiveForm
    ]);

        // Содержимое ActiveForm

    ActiveForm::end();
Pjax::end();






Tip: Будьте осторожны с ссылками внутри виджета [[yii\widgets\Pjax|Pjax]] так как ответ будет
также отображаться внутри виджета. Чтобы ссылка работала без PJAX, добавьте к ней HTML-атрибут
data-pjax="0".



Значения кнопок submit и загрузка файлов

В jQuery.serializeArray() имеются определённые проблемы
при работе с файлами [https://github.com/jquery/jquery/issues/2321] и
значениями кнопом типа submit [https://github.com/jquery/jquery/issues/2321].
Они не будут исправлены и признаны устаревшими в пользу классаFormData из HTML5.

Это означет, что поддержка файлов и значений submit-кнопок через AJAX или виджет
[[yii\widgets\Pjax|Pjax]] зависит от
поддержки в браузере [https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility]
класса FormData.






Еще по теме 

Следующая глава Валидация описывает валидацию отправленной формы как на стороне сервера,
так и на стороне клиента.

Если вы хотите более подробно изучить информацию по использованию форм, то обратитесь к главам:


	Табличный ввод - получение данных нескольких моделей одного вида.

	Работа с несколькими моделями - обработка нескольких разных моделей в рамках одной формы.

	Загрузка файлов - использование форм для загрузки файлов.









          

      

      

    

  

  
    
    
    Интернационализация
    
    

    
 
  
  

    
      
          
            
  
Интернационализация


Note: Этот раздел находится в разработке


Интернационализация (I18N) является частью процесса разработки приложения, которое может быть адаптировано для
нескольких языков без изменения программной логики. Это особенно важно для веб-приложений, так как потенциальные
пользователи могут приходить из разных стран.

Yii располагает несколькими средствами, призванными помочь с интернационализацией веб-приложения: [переводом
сообщений][], [форматированием чисел и дат][].


Локализация и языки

В Yii приложении определены два языка: [[yii\base\Application::$sourceLanguage|исходный язык]] и [[yii\baseApplication::$language|язык перевода]].

На “исходном языке” написаны сообщения в коде приложения. Если мы определяем исходным языком английский, то
в коде можно использовать конструкцию:

echo \Yii::t('app', 'I am a message!');





Язык перевода определяет, в каком виде будет отображаться текущая страница, т.е. на какой язык будут переведены
оригинальные сообщения. Этот параметр определяется в конфигурации приложения:

return [
    'id' => 'applicationID',
    'basePath' => dirname(__DIR__),
    // ...
    'language' => 'ru-RU', // <- здесь!
    // ...
]






Tip: значение по умолчанию для [[yii\base\Application::$sourceLanguage|исходного языка]] - английский.


Вы можете установить значение текущего языка в самом приложении в соответствии с языком, который выбрал пользователь.
Это необходимо сделать до того, как будет сгенерирован какой-либо вывод, чтобы не возникло проблем с его
корректностью. Используйте простое переопределение свойства на нужное значение:

\Yii::$app->language = 'ru-RU';





Формат для установки языка/локали: ll-CC, где ll - это двух или трёхбуквенный код языка в нижнем регистре в
соответствии со стандартом ISO-639 [http://www.loc.gov/standards/iso639-2/], а CC - это код страны в соответствии
со стандартом ISO-3166 [http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html].


Note: больше информации о синтаксисе и концепции локалей можно получить в документации проекта ICU [http://userguide.icu-project.org/locale#TOC-The-Locale-Concept].





Перевод сообщений

Перевод используется для локализации сообщений, которые будут выведены в приложении в соответствии с языком,
который выбрал пользователь.

По сути, Yii просто находит в файле с сообщениями на выбранном языке строку, соответствующую сообщению на исходном
языке приложения. Для перевода сообщений, необходимо в самом приложении заключать их в метод [[Yii::t()]]. Первый
аргумент метода - это категория, которая позволяет группировать сообщения по определённому признаку, а второй - само
сообщение.

echo \Yii::t('app', 'This is a string to translate!');





Yii попытается загрузить файл перевода сообщений, соответствующий  текущему [[yii\base\Application::$language|языку приложения]]
из одного из источников, определённых в i18n компонентах приложения. Сообщения - это набор
файлов или база данных, которая содержит переведённые строки. Следующая конфигурация определяет, что сообщения
должны браться из PHP-файлов:

'components' => [
    // ...
    'i18n' => [
        'translations' => [
            'app*' => [
                'class' => 'yii\i18n\PhpMessageSource',
                //'basePath' => '@app/messages',
                //'sourceLanguage' => 'en-US',
                'fileMap' => [
                    'app'       => 'app.php',
                    'app/error' => 'error.php',
                ],
            ],
        ],
    ],
],





В приведённой конфигурации, app* - это шаблон, который определяет, какие категории обрабатываются источником. В нашем
случае, мы обрабатываем все, что начинается с app. Файлы с сообщениями находятся в @app/messages (папке messages
в вашем приложении). Массив [[yii\i18n\PhpMessageSource::fileMap|fileMap]] определяет, какой файл будет подключаться для
определённой категории. Если вы не хотите конфигурировать fileMap, можно положиться на соглашение, что название
категории является именем файла. Например, категория app/error относится к файлу app/error.php в рамках [[yii\i18n\PhpMessageSource::basePath|basePath]].

Переводя сообщение \Yii::t('app', 'This is a string to translate!') при установленном языке приложения ru-RU, Yii
сначала будет искать файл @app/messages/ru-RU/app.php, чтобы получить список доступных переводов. Если есть файл
ru-RU, Yii также попробует поискать ru перед тем, как примет решение, что попытка перевода не удалась.

Кроме хранения в PHP-файлах (используя [[yii\i18n\PhpMessageSource|PhpMessageSource]]), Yii предоставляет ещё два
класса:


	[[yii\i18n\GettextMessageSource]], использующий GNU Gettext для MO или PO файлов.

	[[yii\i18n\DbMessageSource]], использующий базу данных.




Именованные указатели

Вы можете добавлять параметры в строку для перевода, которые в выводе будут заменены соответствующими значениями,
заключая параметр в фигурные скобки:

$username = 'Alexander';
echo \Yii::t('app', 'Hello, {username}!', [
    'username' => $username,
]);





Обратите внимание, что в операции присваивания фигурные скобки не используются.




Позиционные указатели

$sum = 42;
echo \Yii::t('app', 'Balance: {0}', $sum);






Tip: старайтесь сохранять читаемость сообщений и избегать избыточного использования позиционных
параметров. Помните, что переводчик, скорее всего, будет располагать только файлом со строками и для него
должно быть очевидно, на что будет заменён тот или иной указатель.





Указатели с расширенным форматированием

Чтобы использовать расширенные возможности, вам необходимо установить и включить PHP-расширение intl [http://www.php.net/manual/en/intro.intl.php].
После этого вам станет доступен расширенный синтаксис указателей, а также сокращённая запись {placeholderName, argumentType},
эквивалентная форме {placeholderName, argumentType, argumentStyle}, позволяющая определять стиль форматирования.

Полная документация доступна на сайте ICU [http://icu-project.org/apiref/icu4c/classMessageFormat.html], но далее в
документации будут приведены примеры использования расширенных возможностей интернационализации.


Числа

$sum = 42;
echo \Yii::t('app', 'Balance: {0, number}', $sum);





Вы можете использовать один из встроенных форматов (integer, currency, percent):

$sum = 42;
echo \Yii::t('app', 'Balance: {0, number, currency}', $sum);





Или определить свой формат:

$sum = 42;
echo \Yii::t('app', 'Balance: {0, number, ,000,000000}', $sum);





Описание форматирования [http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html].




Даты

echo \Yii::t('app', 'Today is {0, date}', time());





Встроенные форматы - это short, medium, long, and full:

echo \Yii::t('app', 'Today is {0, date, short}', time());





Используя свой формат:

echo \Yii::t('app', 'Today is {0, date,yyyy-MM-dd}', time());





Описание форматирования [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].




Время

echo \Yii::t('app', 'It is {0, time}', time());





Встроенные форматы - это short, medium, long, and full:

echo \Yii::t('app', 'It is {0, time, short}', time());





Используя свой формат:

echo \Yii::t('app', 'It is {0, date,HH:mm}', time());





Описание форматирования [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html].




Числа прописью

echo \Yii::t('app', 'Число {n,number} прописью: {n, spellout}', ['n' => 42]);








Порядковые числительные

echo \Yii::t('app', 'Вы - {n, ordinal} посетитель!', ['n' => 42]);





Выведет сообщение “Вы - 42-й посетитель!”.




Продолжительность

echo \Yii::t('app', 'Вы находитесь здесь уже {n, duration}', ['n' => 47]);





Выведет сообщение “Вы находитесь здесь уже 47 сек.”.




Множественное число

В каждом языке используется свой способ склонения порядковых числительных. Некоторые правила весьма сложны,
так что очень удобно, что использование функционала i18n не требует определения правил склонения. Требуется
только указать формы склоняемого слова в различных ситуациях:

echo \Yii::t(
    'app',
    'На диване {n, plural, =0{нет кошек} =1{лежит одна кошка} one{лежит # кошка} few{лежит # кошки} many{лежит # кошек} other{лежит # кошки}}!', 
    ['n' => 0]
);





Выведет сообщение “На диване нет кошек!”.

В данном правиле


	=0 означает ноль;

	=1 соответствует ровно 1;

	one - 21, 31, 41 и так далее;

	few - от 2 до 4, от 22 до 24 и так далее;

	many - 0, от 5 до 20, от 25 до 30 и так далее;

	other - для всех прочих чисел (например, дробных).

	Решётка # заменяется на значение аргумента n.



Для некоторых языков правила могут быть более простыми. Например, для английского будет достаточно указать:

echo \Yii::t('app', 'There {n, plural, =0{are no cats} =1{is one cat} other{are # cats}}!', ['n' => 0]);





Следует помнить, что если вы используете указатель дважды и в первый раз он используется, как plural,
второй раз он должен быть использован, как number, иначе вы получите ошибку “Inconsistent types declared
for an argument: U_ARGUMENT_TYPE_MISMATCH”:

В корзине: {count, number} {count, plural, one{товар} few{товара} other{товаров}}.





Подробная документация о формах склонений для различных языков доступна на сайте
unicode.org [http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html].




Вариации

Вы можете указывать критерии форматирования сообщений в зависимости от ключевых слов. Приведённый пример
демонстрирует возможность подстановки корректного рода в зависимости от параметра:

echo \Yii::t('app', '{name} - {gender} и {gender, select, женщина{ей} мужчина{ему} other{ему}} нравится Yii!', [
    'name'   => 'Василий',
    'gender' => 'мужчина',
]);





Выведет сообщение “Василий - мужчина и ему нравится Yii!”.

Вы приведённом выражении, мужчина и женщина - это возможные варианты пола. На всякий случай, other
обработает случай, если значение не совпадает с первыми двумя вариантами. Строки в скобках являются вторичными
выражениями и могут быть просто строкой или строкой, содержащей дополнительные указатели.






Определение перевода по умолчанию

Вы можете определить переводы, которые будут использованы, как переводы по умолчанию для категорий, которые
не попадают в другие переводы. Этот перевод должен быть помечен звёздочкой * и указан в конфигурации
приложения, как:

// конфигурация i18n компонента

'i18n' => [
    'translations' => [
        '*' => [
            'class' => 'yii\i18n\PhpMessageSource'
        ],
    ],
],





Теперь можно использовать категории без необходимости конфигурировать каждую из них, что похоже на
способ, которым была реализована поддержка интернационализации в Yii 1.1. Сообщения для категории будут
загружаться из файла с переводом по умолчанию из basePath, т.е. @app/messages:

echo Yii::t('not_specified_category', 'message from unspecified category');





Сообщение будет загружено из файла @app/messages/<LanguageCode>/not_specified_category.php




Перевод сообщений модулей

Если вы хотите перевести сообщения в модуле и при этом не сгружать их все в один файл, можете прибегнуть
к следующему приёму:

<?php

namespace app\modules\users;

use Yii;

class Module extends \yii\base\Module
{
    public $controllerNamespace = 'app\modules\users\controllers';

    public function init()
    {
        parent::init();
        $this->registerTranslations();
    }

    public function registerTranslations()
    {
        Yii::$app->i18n->translations['modules/users/*'] = [
            'class'          => 'yii\i18n\PhpMessageSource',
            'sourceLanguage' => 'en-US',
            'basePath'       => '@app/modules/users/messages',
            'fileMap'        => [
                'modules/users/validation' => 'validation.php',
                'modules/users/form'       => 'form.php',
                ...
            ],
        ];
    }

    public static function t($category, $message, $params = [], $language = null)
    {
        return Yii::t('modules/users/' . $category, $message, $params, $language);
    }

}





В приведённом примере мы использовали маску для поиска совпадений, и последующую фильтрацию по
категориям для искомого файла. Вместо использования fileMap, вы можете прибегнуть к соглашению,
что имя категории совпадает с именем файла и писать Module::t('validation', 'your custom validation message') или
Module::t('form', 'some form label') напрямую.




Перевод сообщений виджетов

Для виджетов применимо такое же правило, как и для модулей:

<?php

namespace app\widgets\menu;

use yii\base\Widget;
use Yii;

class Menu extends Widget
{

    public function init()
    {
        parent::init();
        $this->registerTranslations();
    }

    public function registerTranslations()
    {
        $i18n = Yii::$app->i18n;
        $i18n->translations['widgets/menu/*'] = [
            'class'          => 'yii\i18n\PhpMessageSource',
            'sourceLanguage' => 'en-US',
            'basePath'       => '@app/widgets/menu/messages',
            'fileMap'        => [
                'widgets/menu/messages' => 'messages.php',
            ],
        ];
    }

    public function run()
    {
        echo $this->render('index');
    }

    public static function t($category, $message, $params = [], $language = null)
    {
        return Yii::t('widgets/menu/' . $category, $message, $params, $language);
    }

}





Вместо использования fileMap, вы можете прибегнуть к соглашению, что имя категории совпадает с
именем файла и писать Menu::t('messages', 'new messages {messages}', ['{messages}' => 10]) напрямую.


Note: для виджетов вы можете использовать i18n представления. На них распространяются
те же правила, что и на контроллеры.





Перевод сообщений фреймворка

Yii поставляется с набором сообщений по умолчанию для ошибок валидации и некоторых других строк. Эти
сообщения принадлежат категории yii. Если возникает необходимость изменить сообщения по умолчанию,
переопределите i18n компонент приложения:

'i18n' => [
    'translations' => [
        'yii' => [
            'class' => 'yii\i18n\PhpMessageSource',
            'sourceLanguage' => 'en-US',
            'basePath' => '@app/messages'
        ],
    ],
],





После этого разместите изменённые строки в файле @app/messages/<language>/yii.php.




Обработка недостающих переводов

Если в источнике перевода отсутствует необходимое сообщение, Yii отобразит исходное содержимое сообщения.
Данное поведение тем оправданнее, чем вы более стремитесь писать в исходном коде понятный текст сообщений.
Тем не  менее, иногда этого недостаточно, и может потребоваться произвольная обработка возникшей ситуации,
когда источник не содержит искомой строки. Для этого следует использовать обработку события
[[yii\i18n\MessageSource::EVENT_MISSING_TRANSLATION|missingTranslation]] компонента [[yii\i18n\MessageSource]].

Например, чтобы отметить все не переведённые строки, чтобы их было легче находить на странице, необходимо
создать обработчик события. Изменим конфигурацию приложения:

'components' => [
    // ...
    'i18n' => [
        'translations' => [
            'app*' => [
                'class' => 'yii\i18n\PhpMessageSource',
                'fileMap' => [
                    'app' => 'app.php',
                    'app/error' => 'error.php',
                ],
                'on missingTranslation' => ['app\components\TranslationEventHandler', 'handleMissingTranslation']
            ],
        ],
    ],
],





Создадим обработчик события:

<?php

namespace app\components;

use yii\i18n\MissingTranslationEvent;

class TranslationEventHandler
{
    public static function handleMissingTranslation(MissingTranslationEvent $event) {
        $event->translatedMessage = "@MISSING: {$event->category}.{$event->message} FOR LANGUAGE {$event->language} @";
    }
}





Если [[yii\i18n\MissingTranslationEvent::translatedMessage]] установлен, как обработчик события, на странице будет
выведен соответствующий результат перевода.


Warning: каждый источник обрабатывает недостающие переводы самостоятельно. Если вы используете несколько разных
источников сообщений и хотите обрабатывать недостающие переводы одинаково для всех, назначьте соответствующий
обработчик события для каждого источника.







Представления

Вместо того, чтобы переводить сообщения так, как указано в предыдущем разделе, вы можете использовать i18n в ваших
представлениях, чтобы обеспечить поддержку нескольких языков. Например, если существует представление views/site/index.php
и для перевода его на русский язык необходимо отдельное представление, создайте папку ru-RU в папке с представлением
текущего контроллера или виджета и создайте файл для русского языка: views/site/ru-RU/index.php. Yii загрузит файл
для текущего языка, если он существует, или использует исходный views/site/index.php, если не сможет найти локализацию.


Note: если язык был определён, как en-US и соответствующих представлений не было найдено, Yii попробует
найти представления в папке en перед тем, как использовать исходные.





Форматирование чисел и дат

См. описание форматирования дат.




Настройка PHP-окружения 

Для работы с большей частью функций интернационализации, Yii использует PHP-расширение intl [http://php.net/manual/en/book.intl.php].
Например, это расширение используют классы, отвечающие за форматирование чисел и дат [[yii\i18n\Formatter]] и за форматирование
строк [[yii\i18n\MessageFormatter]]. Оба класса поддерживают базовый функционал даже в том случае, если расширение intl не
установлено. Однако, этот запасной вариант более-менее будет работать только для сайтов на английском языке, хотя, даже для
них, большая часть широких возможностей расширения intl не будет доступна, поэтому его установка настоятельно рекомендуется.

PHP-расширение intl [http://php.net/manual/en/book.intl.php] основано на библиотеке ICU [http://site.icu-project.org/], которая
описывает правила форматирования для различных локалей. Поэтому следует помнить, что форматирование чисел и дат вместе с
синтаксисом форматирования может отличаться в зависимости от версии библиотеки ICU, которая была скомпилирована в вашем
дистрибутиве PHP.

Чтобы сайт работал одинаково во всех окружениях, рекомендуется устанавливать одинаковую версию расширения intl, при этом
удостоверяясь, что везде используется одинаковая версия библиотеки ICU.

Чтобы узнать, какая версия ICU используется текущим PHP интерпретатором, используйте следующий скрипт:

<?php
echo "PHP: " . PHP_VERSION . "\n";
echo "ICU: " . INTL_ICU_VERSION . "\n";





Чтобы иметь доступ ко всем возможностям, описанным в документации, мы рекомендуем использовать ICU версии 49 или новее.
В более ранних версиях отсутствует указатель # в правилах склонений. На сайте http://site.icu-project.org/download
вы можете ознакомиться со списком доступных версий ICU. Обратите внимание, что схема нумерации версий изменилась после
версии 4.8 и последовательность версий выглядит так: ICU 4.8, ICU 49, ICU 50, ICU 51 и так далее.




Известные проблемы 


	В ICU версии 52.1 было испорчено форматирование множественных чисел (plural) в русском языке. Проблема решается обновлением ICU до версии 53.1 или старше.









          

      

      

    

  

  
    
    
    Расширения
    
    

    
 
  
  

    
      
          
            
  
Расширения

Расширения - это распространяемые программные пакеты, специально разработанные для использования в приложениях Yii и
содержащие готовые функции. Например, расширение yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug] добавляет удобную отладочную
панель в нижнюю часть каждой страницы вашего приложения, чтобы помочь вам разобраться в том, как генерируются
страницы. Вы можете использовать расширения для ускорения процесса разработки. Вы также можете оформить ваш код как
расширение, чтобы поделиться с другими людьми результатами вашей работы.


Info: Мы используем термин “расширение” для специфичных для Yii программных пакетов. Программные пакеты
общего назначения, которые могут быть использованы без Yii, мы будем называть “пакет” или “библиотека”.



Использование расширений 

Чтобы использовать расширение, вам необходимо установить его. Большинство расширений распространяются как пакеты
Composer [https://getcomposer.org/], которые могут быть установлены посредством следующих двух шагов:


	Отредактируйте файл вашего приложения composer.json, указав, какие расширения (пакеты Composer) вы хотите
установить.

	Выполните команду php composer.phar install, чтобы установить указанные расширения.



Обратите внимание, что вам может потребоваться установить Composer [https://getcomposer.org/], если у вас его нет.

По умолчанию, Composer устанавливает пакеты, зарегистрированные на Packagist [https://packagist.org/] - крупнейшем
репозитории для пакетов Composer с открытым исходным кодом. Вы также можете
создать свой репозиторий [https://getcomposer.org/doc/05-repositories.md#repository] и настроить Composer для его
использования. Это полезно, если вы разрабатываете закрытые расширения и хотите использовать их в нескольких своих
проектах.

Расширения, установленные Composer’ом, хранятся в директории BasePath/vendor, где BasePath -
базовая директория приложения. Composer - это менеджер зависимостей, и поэтому
после установки пакета он также установит все зависимые пакеты.

Например, для установки расширения yiisoft/yii2-imagine нужно отредактировать ваш composer.json как показано далее:

{
    // ...

    "require": {
        // ... другие зависимости

        "yiisoft/yii2-imagine": "~2.0.0"
    }
}





После установки вы можете увидеть директорию yiisoft/yii2-imagine, находящуюся по пути BasePath/vendor. Также вы
можете увидеть директорию imagine/imagine, которая содержит зависимый пакет.


Info: yiisoft/yii2-imagine является базовым расширением, которое разрабатывает и поддерживает команда
разработчиков Yii. Все базовые расширения размещены на Packagist [https://packagist.org/] и называются
yiisoft/yii2-xyz, где xyz является названием расширения.


Теперь вы можете использовать установленное расширение как часть вашего приложения. Следующий пример показывает, как вы
можете использовать класс yii\imagine\Image, который содержится в расширении yiisoft/yii2-imagine.

use Yii;
use yii\imagine\Image;

// генерация миниатюры изображения
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
    ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);






Info: Классы расширений автоматически загружаются автозагрузчиком классов Yii.



Ручная установка расширений 

В некоторых редких случаях вы можете захотеть установить некоторые расширения вручную, а не полагаться на Composer.
Чтобы сделать это, вы должны


	загрузить архив с файлами расширения и распаковать его в директорию vendor.

	установить автозагрузчики классов, предоставляемые расширениями, если таковые имеются.

	загрузить и установить все зависимые расширения в соответствии с инструкциями.



Если расширение не имеет автозагрузчика классов, но следует стандарту PSR-4 [http://www.php-fig.org/psr/psr-4/], то вы
можете использовать автозагрузчик классов, предоставленный Yii для загрузки классов расширений. Всё, что вам нужно
сделать, это объявить псевдоним для корневого каталога расширения. Например,
если вы установили расширение в директорию vendor/mycompany/myext и классы расширения находятся в пространстве имён
myext, то вы можете включить следующий код в конфигурацию вашего приложения:

[
    'aliases' => [
        '@myext' => '@vendor/mycompany/myext',
    ],
]










Создание расширений 

Вы можете захотеть создать расширение, когда чувствуете необходимость поделиться своим хорошим кодом с другими людьми.
Расширение может содержать любой код, который вам нравится, например, класс-помощник, виджет, модуль и т.д.

Рекомендуется создавать расширение как пакет Composer [https://getcomposer.org/], для того, чтобы его можно было
легко установить и использовать, как описано в предыдущей главе.

Ниже приведены основные шаги, которым нужно следовать, чтобы создать пакет Composer.


	Создайте проект для вашего расширения и разместите его в VCS репозитории, таком как github.com [https://github.com].
Разработка и поддержка расширения должна выполняться в этом репозитории.

	В корневой директории проекта создайте файл под названием composer.json, в соответствии с требованиями Composer.
Вы можете обратиться к следующему разделу за более подробной информацией.

	Зарегистрируйте ваше расширение в репозитории Composer, таком как Packagist [https://packagist.org/], чтобы другие
пользователи могли найти и установить ваше расширение, используя Composer.




composer.json 

Каждый пакет Composer должен иметь файл composer.json в своей корневой директории. Этот файл содержит метаданные о
пакете. Вы можете найти полную спецификацию по этому файлу в
Руководстве Composer [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup]. Следующий пример
демонстрирует файл composer.json для расширения yiisoft/yii2-imagine:

{
    // название пакета
    "name": "yiisoft/yii2-imagine",

    // тип пакета
    "type": "yii2-extension",

    "description": "The Imagine integration for the Yii framework",
    "keywords": ["yii2", "imagine", "image", "helper"],
    "license": "BSD-3-Clause",
    "support": {
        "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
        "forum": "http://www.yiiframework.com/forum/",
        "wiki": "http://www.yiiframework.com/wiki/",
        "irc": "irc://irc.freenode.net/yii",
        "source": "https://github.com/yiisoft/yii2"
    },
    "authors": [
        {
            "name": "Antonio Ramirez",
            "email": "amigo.cobos@gmail.com"
        }
    ],

    // зависимости пакета
    "require": {
        "yiisoft/yii2": "~2.0.0",
        "imagine/imagine": "v0.5.0"
    },

    // указание автозагрузчика классов
    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}






Название пакета 

Каждый пакет Composer должен иметь название, которое однозначно идентифицирует пакет среди остальных. Название пакета
имеет формат имяРазработчика/названиеПроекта. Например, в пакете yiisoft/yii2-imagine, yiisoft является именем
разработчика, а yii2-imagine - названием пакета.

НЕ используйте yiisoft в качестве имени разработчика, так как оно зарезервировано для использования в коде ядра Yii.

Мы рекомендуем использовать префикс yii2- в названии проекта для пакетов, являющихся расширениями Yii 2, например,
моёИмя/yii2-mywidget. Это позволит пользователям легче определить, что пакет является расширением Yii 2.




Тип пакета 

Важно указать тип пакета вашего расширения как yii2-extension, чтобы пакет можно было распознать как расширение Yii во
время установки.

Когда пользователь запускает команду php composer.phar install для установки расширения, файл
vendor/yiisoft/extensions.php будет автоматически обновлён, чтобы включить информацию о новом расширении. Из этого
файла приложение Yii может узнать, какие расширения установлены (информацию можно получить с помощью
[[yii\base\Application::extensions]]).




Зависимости 

Ваше расширение зависит от Yii (естественно). Вы можете посмотреть список зависимостей в секции require, входящей в
файл composer.json. Если ваше расширение зависит от других расширений или сторонних библиотек, то вы также должны их
перечислить. Убедитесь, что в ограничениях вы указали соответствующую версию (например, 1.*, @stable) для каждой
зависимости. Используйте стабильные версии зависимостей, когда будет выпущена стабильная версия вашего расширения.




Автозагрузка классов 

Для того, чтобы ваши классы были загружены автозагрузчиком классов Yii или автозагрузчиком классов Composer, вы должны
внести секцию autoload в файл composer.json, как показано ниже:

{
    // ....

    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}





Вы можете перечислить один или несколько корневых пространств имён и соответствующие им пути.

Когда расширение установлено в приложение, Yii для каждого указанного корневого пространства имён создаст
псевдоним, который указывает на директорию, соответствующую пространству имён.
Например, указанная в секции autoload запись будет соответствовать псевдониму @yii/imagine.






Рекомендованные практики 

Поскольку расширения предназначены для использования другими людьми, вам придётся приложить дополнительные усилия в
процессе разработки. Ниже приведены некоторые общие и рекомендованные практики для создания высококачественных
расширений.


Пространства имён 

Во избежание конфликтов имён, а также для того, чтобы ваши классы были автозагружаемыми, вы должны следовать
стандарту PSR-4 [http://www.php-fig.org/psr/psr-4/] или стандарту PSR-0 [http://www.php-fig.org/psr/psr-0/] в
использовании пространств имён и названии классов вашего расширения.

Пространства имён в ваших классах должны начинаться с имяРазработчика\названиеРасширения, где названиеРасширения
совпадает с названием проекта в названии пакета, за исключением того, что оно не должно содержать префикса yii2-.
Например, для расширения yiisoft/yii2-imagine мы используем yii\imagine в качестве пространства имён.

Не используйте yii, yii2 или yiisoft в качестве имени разработчика. Эти имена являются зарезервированными для
использования в коде ядра Yii.




Классы начальной загрузки 

Иногда вы можете захотеть выполнить некоторый код своего расширения в стадии
начальной загрузки приложения. Например, ваше расширение может ответить на событие
приложения beginRequest, чтобы установить некоторые настройки окружения. Вы можете в инструкции по установке вашего
приложения написать, что необходимо назначить обработчик события beginRequest, но лучшим способом будет сделать это
автоматически.

Для достижения этой цели вы можете создать так называемый класс начальной загрузки, реализовав интерфейс
[[yii\base\BootstrapInterface]]. Например,

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
    public function bootstrap($app)
    {
        $app->on(Application::EVENT_BEFORE_REQUEST, function () {
             // остальной код
        });
    }
}





Затем нужно добавить этот класс в файл composer.json вашего расширения, как показано далее,

{
    // ...

    "extra": {
        "bootstrap": "myname\\mywidget\\MyBootstrapClass"
    }
}





Когда расширение будет установлено в приложение, Yii автоматически инициирует экземпляр класса начальной загрузки и
вызовет его метод [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]]  в процессе начальной загрузки каждого
запроса.




Работа с базами данных 

Ваше расширение может иметь доступ к базам данных. Не думайте, что приложения, которые используют ваше расширение,
всегда используют Yii::$db в качестве соединения с БД. Вместо этого вам следует объявить свойство db в классах,
которым необходим доступ в БД. Это свойство позволит пользователям вашего расширения настроить соединение с БД,
которое они будут использовать в вашем расширении. В качестве примера вы можете обратиться к классу
[[yii\caching\DbCache]] и посмотреть, как он объявляет и использует свойство db.

Если в вашем приложении необходимо создать определённые таблицы БД или сделать изменения в схеме БД, вы должны


	создать файлы миграций для изменения схемы БД вместо простых SQL-файлов;

	попытаться сделать миграции, применимые к различным СУБД;

	избегать использования Active Record в миграциях.






Использование ресурсов 

Если ваше расширение является виджетом или модулем, то есть вероятность, что оно потребует некоторых
ресурсов для работы. Например, модуль может отображать некоторые страницы, которые содержат
изображения, JavaScript и CSS. Так как все файлы расширения находятся в директории, недоступной из интернета, у вас
есть два варианта сделать директорию ресурсов непосредственно доступной из интернета:


	попросить пользователей расширения вручную скопировать файлы ресурсов в определённую, доступную из интернета папку;

	объявить связку ресурсов и полагаться на механизм публикации ресурсов, который автоматически
копирует файлы, описанные в связке ресурсов в папку, доступную из интернета.



Мы рекомендуем вам использовать второй подход, чтобы ваше расширение было более простым в использовании для других
людей.






Интернационализация и локализация 

Ваше расширение может быть использовано в приложениях, поддерживающих разные языки! Поэтому, если ваше расширение
отображает содержимое конечному пользователю, вы должны попробовать
интернационализовать и локализовать его. В частности,


	Если расширение отображает сообщения, предназначенные для конечных пользователей, сообщения должны быть обернуты в
метод Yii::t() так, чтобы они могли быть переведены. Сообщения, предназначенные для разработчиков (например,
внутренние сообщения исключений), не нужно переводить.

	Если расширение отображает числа, даты и т.п., они должны быть отформатированы, используя [[yii\base\Formatter]] с
соответствующими правилами форматирования.



Для более подробной информации вы можете обратиться к разделу Интернационализация


Тестирование 

Вы хотите, чтобы ваше расширение было стабильным и не приносило проблем другим людям. Для достижения этой цели вы
должны протестировать ваше расширение перед его публикацией.

Рекомендуется создавать различные тесты для покрытия кода вашего расширения, а не вручную тестировать его. Каждый раз
перед тем, как выпустить новую версию расширения, вы можете просто запустить эти тесты чтобы убедиться, что всё
работает правильно. Yii имеет поддержку тестирования, которая может помочь вам легче писать модульные, приёмочные и
функциональные тесты. Для более подробной информации вы можете обратиться в раздел Тестирование.




Версионирование 

Вы можете давать каждому выпуску вашего расширения номер версии (например, 1.0.1). Мы рекомендуем вам придерживаться
практик семантического версионирования [http://semver.org] при определении, какой номер версии должен использоваться.




Публикация 

Чтобы позволить другим людям узнать о вашем расширении, необходимо опубликовать его.

Если это первый выпуск вашего расширения, вы должны зарегистрировать его в репозитории Composer, таком, как
Packagist [https://packagist.org/]. После этого вам остаётся только создать тег выпуска (например, v1.0.1) в VCS
репозитории вашего расширения и уведомить репозиторий Composer о новом выпуске. Люди смогут найти новую версию и
установить или обновить расширение через репозиторий Composer.

В выпусках вашего расширения помимо файлов с кодом вы также должны рассмотреть вопрос о включении следующих файлов,
которые помогут людям изучить и использовать ваше расширение:


	Файл readme в корневой директории пакета: он описывает, что ваше расширение делает, а также как его установить и
использовать. Мы рекомендуем вам написать его в формате Markdown [http://daringfireball.net/projects/markdown/] и
дать ему название readme.md.

	Файл changelog в корневой директории пакета: он описывает, какие изменения произошли в каждом выпуске. Этот файл
может быть написан в формате Markdown и назван changelog.md.

	Файл upgrade в корневой директории пакета: он даёт инструкции о том, как обновить старые версии расширения. Этот
файл может быть написан в формате Markdown и назван upgrade.md.

	Руководства пользователя, демо-версии, скриншоты и т.д.: они необходимы, если ваше расширение предоставляет много
возможностей, которые невозможно полностью описать в файле readme.

	Документация API: ваш код должен быть документирован, чтобы позволить другим людям легко читать и понимать его. Вы
можете обратиться к файлу класса Object [https://github.com/yiisoft/yii2/blob/master/framework/base/Object.php],
чтобы узнать, как нужно документировать код.




Info: Ваши комментарии к коду могут быть написаны в формате Markdown. Расширение yiisoft/yii2-apidoc
предоставляет инструмент для генерации документации API на основе ваших комментариев.



Info: Пока это не обязательно, но мы всё-таки рекомендуем вам придерживаться определённого стиля кодирования.
Вы можете обратиться к стилю кодирования фреймворка [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style].









Базовые расширения 

Yii предоставляет следующие базовые расширения, которые разрабатывает и поддерживает команда разработчиков Yii. Они все
зарегистрированы на Packagist [https://packagist.org/] и могут быть легко установлены, как описано в подразделе
Использование расширений.


	yiisoft/yii2-apidoc [https://github.com/yiisoft/yii2-apidoc]:
предоставляет расширяемый и высокопроизводительный генератор документации API. Оно также используется для генерации
документации API фреймворка.

	yiisoft/yii2-authclient [https://github.com/yiisoft/yii2-authclient]:
предоставляет набор наиболее часто используемых клиентов авторизации, таких, как Facebook OAuth2 клиент и GitHub
OAuth2 клиент.

	yiisoft/yii2-bootstrap [https://github.com/yiisoft/yii2-bootstrap]:
предоставляет набор виджетов, которые являются компонентами и плагинами Bootstrap [http://getbootstrap.com/].

	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception]:
предоставляет поддержку тестирования, основанного на Codeception [http://codeception.com/].

	yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug]:
предоставляет поддержку отладки в приложениях Yii. Когда это расширение используется, отладочная панель появится в
нижней части каждой страницы. Это расширение также предоставляет набор отдельных страниц для отображения более
подробной отладочной информации.

	yiisoft/yii2-elasticsearch [https://github.com/yiisoft/yii2-elasticsearch]:
предоставляет поддержку использования Elasticsearch [http://www.elasticsearch.org/]. Оно включает в себя поддержку
основных поисковых запросов, а также реализует шаблон проектирования Active Record, который
позволяет хранить записи Active Record в Elasticsearch.

	yiisoft/yii2-faker [https://github.com/yiisoft/yii2-faker]:
предоставляет поддержку использования Faker [https://github.com/fzaninotto/Faker] для генерации фиктивных данных.

	yiisoft/yii2-gii [https://github.com/yiisoft/yii2-gii]:
предоставляет веб-интерфейс для генерации кода, который является весьма расширяемым и может быть использован для
быстрой генерации моделей, форм, модулей, CRUD и т.д.

	yiisoft/yii2-httpclient [https://github.com/yiisoft/yii2-httpclient]:
предоставляет HTTP клиент.

	yiisoft/yii2-imagine [https://github.com/yiisoft/yii2-imagine]:
предоставляет часто используемые функции для работы с изображениями, основанные на библиотеке
Imagine [http://imagine.readthedocs.org/].

	yiisoft/yii2-jui [https://github.com/yiisoft/yii2-jui]:
предоставляет набор виджетов, основанный на взаимодействиях и виджетах JQuery UI [http://jqueryui.com/].

	yiisoft/yii2-mongodb [https://github.com/yiisoft/yii2-mongodb]:
предоставляет поддержку использования MongoDB [http://www.mongodb.org/]. Оно включает такие возможности, как
базовые запросы, Active Record, миграции, кэширование, генерация кода и т.д.

	yiisoft/yii2-redis [https://github.com/yiisoft/yii2-redis]:
предоставляет поддержку использования redis [http://redis.io/]. Оно включает такие возможности, как базовые запросы,
Active Record, кэширование и т.д.

	yiisoft/yii2-smarty [https://github.com/yiisoft/yii2-smarty]:
предоставляет шаблонизатор, основанный на Smarty [http://www.smarty.net/].

	yiisoft/yii2-sphinx [https://github.com/yiisoft/yii2-sphinx]:
предоставляет поддержку использования Sphinx [http://sphinxsearch.com]. Оно включает такие возможности, как базовые
запросы, Active Record, генерация кода и т.д.

	yiisoft/yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer]:
предоставляет возможности отправки email, основанные на swiftmailer [http://swiftmailer.org/].

	yiisoft/yii2-twig [https://github.com/yiisoft/yii2-twig]:
предоставляет шаблонизатор, основанный на Twig [http://twig.sensiolabs.org/].









          

      

      

    

  

  
    
    
    Объекты доступа к данным (DAO)
    
    

    
 
  
  

    
      
          
            
  
Объекты доступа к данным (DAO)

Построенные поверх PDO [http://php.net/manual/ru/book.pdo.php], Yii DAO (объекты доступа к данным) обеспечивают
объектно-ориентированный API для доступа к реляционным базам данных. Это основа для других, более продвинутых, методов
доступа к базам данных, включая построитель запросов и active record.

При использовании Yii DAO вы в основном будете использовать чистый SQL и массивы PHP. Как результат, это самый
эффективный способ доступа к базам данных. Тем не менее, так как синтаксис SQL может отличаться для разных баз данных,
используя Yii DAO вам нужно будет приложить дополнительные усилия, чтобы сделать приложение не зависящим от конкретной
базы данных.

Yii DAO из коробки поддерживает следующие базы данных:


	MySQL [http://www.mysql.com/]

	MariaDB [https://mariadb.com/]

	SQLite [http://sqlite.org/]

	PostgreSQL [http://www.postgresql.org/]: версии 8.4 или выше.

	CUBRID [http://www.cubrid.org/]: версии 9.3 или выше.

	Oracle [http://www.oracle.com/us/products/database/overview/index.html]

	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: версии 2008 или выше.




Note: Новая версия pdo_oci для PHP 7 на данный момент существует только в форме исходного кода. Используйте
инструкции сообщества по компиляции [https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268].



Создание подключения к базе данных 

Для доступа к базе данных, вы сначала должны подключится к ней, создав экземпляр класса [[yii\db\Connection]]:

$db = new yii\db\Connection([
    'dsn' => 'mysql:host=localhost;dbname=example',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);





Так как подключение к БД часто нужно в нескольких местах, распространённой практикой является его настройка как
компонента приложения:

return [
    // ...
    'components' => [
        // ...
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=example',
            'username' => 'root',
            'password' => '',
            'charset' => 'utf8',
        ],
    ],
    // ...
];





Теперь вы можете получить доступ к подключению к БД с помощью выражения Yii::$app->db.


Tip: Вы можете настроить несколько компонентов подключения, если в вашем приложении используется несколько баз данных.


При настройке подключения, вы должны обязательно указывать Имя Источника Данных (DSN) через параметр [[yii\db\Connection::dsn|dsn]].
Формат DSN отличается для разных баз данных. Дополнительное описание смотрите в справочнике PHP [http://php.net/manual/ru/pdo.construct.php].
Ниже представлены несколько примеров:


	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase

	SQLite: sqlite:/path/to/database/file

	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase

	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000

	MS SQL Server (via sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase

	MS SQL Server (via dblib driver): dblib:host=localhost;dbname=mydatabase

	MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase

	Oracle: oci:dbname=//localhost:1521/mydatabase



Заметьте, что если вы подключаетесь к базе данных через ODBC, вам необходимо указать свойство [[yii\db\Connection::driverName]],
чтобы Yii знал какой тип базы данных используется. Например,

'db' => [
    'class' => 'yii\db\Connection',
    'driverName' => 'mysql',
    'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
    'username' => 'root',
    'password' => '',
],





Кроме свойства [[yii\db\Connection::dsn|dsn]], вам необходимо указать [[yii\db\Connection::username|username]]
и [[yii\db\Connection::password|password]]. Смотрите [[yii\db\Connection]] для того, чтоб посмотреть полный список свойств.


Info: При создании экземпляра соединения к БД, фактическое соединение с базой данных будет установлено только
при выполнении первого SQL запроса или при явном вызове метода [[yii\db\Connection::open()|open()]].



Tip: Иногда может потребоваться выполнить некоторые запросы сразу после соединения с базой данных, для инициализации
переменных окружения. Например, чтобы задать часовой пояс или кодировку. Сделать это можно зарегистрировав обработчик
для события [[yii\db\Connection::EVENT_AFTER_OPEN|afterOpen]] в конфигурации приложения:

'db' => [
    // ...
    'on afterOpen' => function($event) {
        // $event->sender содержит соединение с базой данных
        $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
    }
]











Выполнение SQL запросов 

После создания экземпляра соединения, вы можете выполнить SQL запрос, выполнив следующие шаги:


	Создать [[yii\db\Command]] из запроса SQL;

	Привязать параметры (не обязательно);

	Вызвать один из методов выполнения SQL из [[yii\db\Command]].



Следующий пример показывает различные способы получения данных из базы дынных:

// возвращает набор строк. каждая строка - это ассоциативный массив с именами столбцов и значений.
// если выборка ничего не вернёт, то будет получен пустой массив.
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
            ->queryAll();

// вернёт одну строку (первую строку)
// false, если ничего не будет выбрано
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
           ->queryOne();

// вернёт один столбец (первый столбец)
// пустой массив, при отсутствии результата
$titles = Yii::$app->db->createCommand('SELECT title FROM post')
             ->queryColumn();

// вернёт скалярное значение
// или false, при отсутствии результата
$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
             ->queryScalar();






Note: Чтобы сохранить точность, данные извлекаются как строки, даже если тип поля в базе данных является числовым.



Привязка параметров 

При создании команды из SQL запроса с параметрами, вы почти всегда должны использовать привязку параметров для
предотвращения атак через SQL инъекции. Например,

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValue(':id', $_GET['id'])
           ->bindValue(':status', 1)
           ->queryOne();





В SQL запрос, вы можете встраивать один или несколько маркеров (например :id в примере выше). Маркеры должны быть
строкой, начинающейся с двоеточия. Далее вам нужно вызвать один из следующих методов для привязки значений к параметрам:


	[[yii\db\Command::bindValue()|bindValue()]]: привязка одного параметра по значению

	[[yii\db\Command::bindValues()|bindValues()]]: привязка нескольких параметров в одном вызове

	[[yii\db\Command::bindParam()|bindParam()]]: похоже на [[yii\db\Command::bindValue()|bindValue()]], но привязка
происходит по ссылке.



Следующий пример показывает альтернативный путь привязки параметров:

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValues($params)
           ->queryOne();
           
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
           ->queryOne();





Привязка переменных реализована через подготавливаемые запросы [http://php.net/manual/ru/mysqli.quickstart.prepared-statements.php].
Помимо предотвращения атак путём SQL инъекций, это увеличивает производительность, так как запрос подготавливается
один раз, а потом выполняется много раз с разными параметрами. Например,

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
// ...





Так как [[yii\db\Command::bindParam()|bindParam()]] поддерживает привязку параметров по ссылке, следующий код может
быть написан следующим образом:

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
              ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();
// ...





Обратите внимание что вы связываете маркер $id с переменной перед выполнением запроса, и затем меняете это значение
перед каждым последующим выполнением (часто это делается в цикле). Выполнении запросов таким образом может быть значительно
более эффективным, чем выполнение запроса для каждого значения параметра.




Выполнение Не-SELECT запросов 

В методах queryXyz(), описанных в предыдущих разделах, вызываются SELECT запросы для извлечения данных из базы.
Для запросов не возвращающих данные, вы должны использовать метод [[yii\db\Command::execute()]]. Например,

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')
   ->execute();





Метод [[yii\db\Command::execute()]] возвращает количество строк обработанных SQL запросом.

Для запросов INSERT, UPDATE и DELETE, вместо написания чистого SQL, вы можете вызвать методы [[yii\db\Command::insert()|insert()]],
[[yii\db\Command::update()|update()]], [[yii\db\Command::delete()|delete()]], соответственно, для создания указанных
SQL конструкций. Например,

// INSERT (table name, column values)
Yii::$app->db->createCommand()->insert('user', [
    'name' => 'Sam',
    'age' => 30,
])->execute();

// UPDATE (table name, column values, condition)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (table name, condition)
Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();





Вы можете также вызвать [[yii\db\Command::batchInsert()|batchInsert()]] для вставки множества строк за один вызов.
Это более эффективно чем вставлять записи по одной за раз:

// table name, column names, column values
Yii::$app->db->createCommand()->batchInsert('user', ['name', 'age'], [
    ['Tom', 30],
    ['Jane', 20],
    ['Linda', 25],
])->execute();





Обратите внимание, что перечисленные методы лишь создают запрос. Чтобы его выполнить нужно вызывать
[[yii\db\Command::execute()|execute()]].






Экранирование имён таблиц и столбцов 

При написании независимого от базы данных кода, правильно экранировать имена таблиц и столбцов довольно трудно, так как
в разных базах данных правила экранирования разные. Чтоб преодолеть данную проблему вы можете использовать следующий
синтаксис экранирования используемый в Yii:


	[[column name]]: заключайте имя столбца в двойные квадратные скобки;

	{{table name}}: заключайте имя таблицы в двойные фигурные скобки.



Yii DAO будет автоматически преобразовывать подобные конструкции в SQL в правильно экранированные имена таблиц и столбцов.
Например,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
            ->queryScalar();






Использование префиксов таблиц 

Если большинство ваших таблиц использует общий префикс в имени, вы можете использовать свойство Yii DAO для указания префикса.

Сначала, укажите префикс таблиц через свойство [[yii\db\Connection::tablePrefix]]:

return [
    // ...
    'components' => [
        // ...
        'db' => [
            // ...
            'tablePrefix' => 'tbl_',
        ],
    ],
];





Затем в коде, когда вам нужно ссылаться на таблицу, имя которой содержит такой префикс, используйте синтаксис {{%table name}}.
Символ процента будет автоматически заменён на префикс таблицы, который вы указали во время конфигурации соединения с
базой данных. Например,

// для MySQL будет выполнен следующий SQL: SELECT COUNT(`id`) FROM `tbl_employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
            ->queryScalar();










Исполнение транзакций 

Когда вы выполняете несколько зависимых запросов последовательно, вам может потребоваться обернуть их в транзакцию
для обеспечения целостности вашей базы данных. Если в любом из запросов произойдёт ошибка, база данных откатится на
состояние, которое было до выполнения запросов.

Следующий код показывает типичное использование транзакций:

Yii::$app->db->transaction(function($db) {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... executing other SQL statements ...
});





Код выше эквивалентен приведённому ниже. Разница в том, что в данном случае мы получаем больше контроля над обработкой
ошибок:

$db = Yii::$app->db;
$transaction = $db->beginTransaction();

try {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... executing other SQL statements ...
    
    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
}






Note: в коде выше ради совместимости с PHP 5.x и PHP 7.x использованы два блока catch.
\Exception реализует интерфейс \Throwable interface [http://php.net/manual/ru/class.throwable.php]
начиная с PHP 7.0. Если вы используете только PHP 7 и новее, можете пропустить блок с \Exception.


При вызове метода [[yii\db\Connection::beginTransaction()|beginTransaction()]], будет запущена новая транзакция.
Транзакция представлена объектом [[yii\db\Transaction]] сохранённым в переменной $transaction. Потом, запросы будут
выполняться в блоке try...catch.... Если запросы будут выполнены удачно, будет выполнен метод [[yii\db\Transaction::commit()|commit()]].
Иначе, будет вызвано исключение, и будет вызван метод [[yii\db\Transaction::rollBack()|rollBack()]] для отката
изменений сделанных до неудачно выполненного запроса внутри транзакции.


Указание уровня изоляции 

Yii поддерживает настройку [уровня изоляции] для ваших транзакций. По умолчанию, при старте транзакции, будет использован
уровень изоляции настроенный в вашей базе данных. Вы можете переопределить уровень изоляции по умолчанию, как
указано ниже:

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {
    ....
}, $isolationLevel);
 
// или

$transaction = Yii::$app->db->beginTransaction($isolationLevel);





Yii предоставляет четыре константы для наиболее распространённых уровней изоляции:


	[[\yii\db\Transaction::READ_UNCOMMITTED]] - низший уровень, «Грязное» чтение, не повторяющееся чтение и фантомное чтение.

	[[\yii\db\Transaction::READ_COMMITTED]] - предотвращает «Грязное» чтение.

	[[\yii\db\Transaction::REPEATABLE_READ]] - предотвращает «Грязное» чтение и не повторяющееся чтение.

	[[\yii\db\Transaction::SERIALIZABLE]] - высший уровень, предотвращает все вышеуказанные проблемы.



Помимо использования приведённых выше констант для задания уровня изоляции, вы можете, также, использовать строки
поддерживаемые вашей СУБД. Например, в PostgreSQL, вы можете использовать SERIALIZABLE READ ONLY DEFERRABLE.

Заметьте что некоторые СУБД допускают настраивать уровень изоляции только для всего соединения. Следующие транзакции
будут получать тот же уровень изоляции, даже если вы его не укажете. При использовании этой функции может потребоваться
установить уровень изоляции для всех транзакций, чтоб избежать явно конфликтующих настроек.
На момент написания этой статьи страдали от этого ограничения только MSSQL и SQLite.


Note: SQLite поддерживает только два уровня изоляции, таким образом вы можете использовать только
READ UNCOMMITTED и SERIALIZABLE. Использование других уровней изоляции приведёт к генерации исключения.



Note: PostgreSQL не допускает установки уровня изоляции до старта транзакции, так что вы не сможете установить
уровень изоляции прямо при старте транзакции. Вы можете использовать [[yii\db\Transaction::setIsolationLevel()]] в
таком случае после старта транзакции.





Вложенные транзакции 

Если ваша СУБД поддерживает Savepoint, вы можете вкладывать транзакции как показано ниже:

Yii::$app->db->transaction(function ($db) {
    // внешняя транзакция
    
    $db->transaction(function ($db) {
        // внутренняя транзакция
    });
});





Или так,

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {
    $db->createCommand($sql1)->execute();

    $innerTransaction = $db->beginTransaction();
    try {
        $db->createCommand($sql2)->execute();
        $innerTransaction->commit();
    } catch (\Exception $e) {
        $innerTransaction->rollBack();
    } catch (\Throwable $e) {
        $innerTransaction->rollBack();
        throw $e;
    }

    $outerTransaction->commit();
} catch (\Exception $e) {
    $outerTransaction->rollBack();
} catch (\Throwable $e) {
    $innerTransaction->rollBack();
    throw $e;
}










Репликация и разделение запросов на чтение и запись 

Многие СУБД поддерживают репликацию баз данных [http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication]
для лучшей доступности базы данных и уменьшения времени ответа сервера. С репликацией базы данных, данные копируются
из master servers на slave servers. Все вставки и обновления должны происходить на основном сервере, хотя чтение
может производится и с подчинённых серверов.

Чтоб воспользоваться преимуществами репликации и достичь разделения чтения и записи, вам необходимо настроить компонент
[[yii\db\Connection]] как указано ниже:

[
    'class' => 'yii\db\Connection',

    // настройки для мастера
    'dsn' => 'dsn for master server',
    'username' => 'master',
    'password' => '',

    // общие настройки для подчинённых
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // используем небольшой таймаут для соединения
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // список настроек для подчинённых серверов
    'slaves' => [
        ['dsn' => 'dsn for slave server 1'],
        ['dsn' => 'dsn for slave server 2'],
        ['dsn' => 'dsn for slave server 3'],
        ['dsn' => 'dsn for slave server 4'],
    ],
]





Вышеуказанная конфигурация определяет систему с одним мастером и несколькими подчинёнными. Один из подчинённых
будет подключен и использован для чтения, в то время как мастер будет использоваться для запросов записи.
Такое разделение чтения и записи будет осуществлено автоматически с указанной конфигурацией. Например,

// создание экземпляра соединения, использующего вышеуказанную конфигурацию
Yii::$app->db = Yii::createObject($config);

// запрос к одному из подчинённых
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// запрос к мастеру
Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();






Info: Запросы выполненные через [[yii\db\Command::execute()]] определяются как запросы на запись, а все
остальные запросы через один из “query” методов [[yii\db\Command]] воспринимаются как запросы на чтение.
Вы можете получить текущий статус соединения к подчинённому серверу через $db->slave.


Компонент Connection поддерживает балансировку нагрузки и переключение при сбое для подчинённых серверов.
При выполнении первого запроса на чтение, компонент Connection будет случайным образом выбирать подчинённый сервер
и попытается подключиться к нему. Если сервер окажется “мёртвым”, он попробует подключиться к другому. Если ни один
из подчинённых серверов не будет доступен, он подключится к мастеру. Если настроить
[[yii\db\Connection::serverStatusCache|кеш статуса серверов]], то недоступность серверов может быть запомнена, чтоб не
использоваться в течении [[yii\db\Connection::serverRetryInterval|заданного промежутка времени]].


Info: В конфигурации выше, таймаут соединения к подчинённому серверу настроен на 10 секунд.
Это означает, что если сервер не ответит за 10 секунд, он будет считаться “мёртвым”. Вы можете отрегулировать
этот параметр исходя из настроек вашей среды.


Вы также можете настроить несколько основных и несколько подчинённых серверов. Например,

[
    'class' => 'yii\db\Connection',

    // общая конфигурация для основных серверов
    'masterConfig' => [
        'username' => 'master',
        'password' => '',
        'attributes' => [
            // используем небольшой таймаут для соединения
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // список настроек для основных серверов
    'masters' => [
        ['dsn' => 'dsn for master server 1'],
        ['dsn' => 'dsn for master server 2'],
    ],

    // общие настройки для подчинённых
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // используем небольшой таймаут для соединения
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // список настроек для подчинённых серверов
    'slaves' => [
        ['dsn' => 'dsn for slave server 1'],
        ['dsn' => 'dsn for slave server 2'],
        ['dsn' => 'dsn for slave server 3'],
        ['dsn' => 'dsn for slave server 4'],
    ],
]





Конфигурация выше, определяет два основных и четыре подчинённых серверов. Компонент Connection поддерживает
балансировку нагрузки и переключение при сбое между основными серверами, также как и между подчинёнными. Различие
заключается в том, что когда ни к одному из основных серверов не удастся подключиться будет выброшено исключение.


Note: Когда вы используете свойство [[yii\db\Connection::masters|masters]] для настройки одного или нескольких
основных серверов, все остальные свойства для настройки соединения с базой данных (такие как dsn, username, password)
будут проигнорированы компонентом Connection.


По умолчанию, транзакции используют соединение с основным сервером. И в рамках транзакции, все операции с БД будут
использовать соединение с основным сервером. Например,

$db = Yii::$app->db;
// Транзакция запускается на основном сервере
$transaction = $db->beginTransaction();

try {
    // оба запроса выполняются на основном сервере
    $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
    $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch (\Throwable $e) {
    $innerTransaction->rollBack();
    throw $e;
}





Если вы хотите запустить транзакцию на подчинённом сервере, вы должны указать это явно, как показано ниже:

$transaction = Yii::$app->db->slave->beginTransaction();





Иногда может потребоваться выполнить запрос на чтение через подключение к основному серверу. Это может быть достигнуто
с использованием метода useMaster():

$rows = Yii::$app->db->useMaster(function ($db) {
    return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});





Вы также можете явно установить $db->enableSlaves в ложь, чтоб направлять все запросы к соединению с мастером.




Работа со схемой базы данных 

Yii DAO предоставляет целый набор методов для управления схемой базы данных, таких как создание новых таблиц, удаление
столбцов из таблицы, и т.д.. Эти методы описаны ниже:


	[[yii\db\Command::createTable()|createTable()]]: создание таблицы

	[[yii\db\Command::renameTable()|renameTable()]]: переименование таблицы

	[[yii\db\Command::dropTable()|dropTable()]]: удаление таблицы

	[[yii\db\Command::truncateTable()|truncateTable()]]: удаление всех записей в таблице

	[[yii\db\Command::addColumn()|addColumn()]]: добавление столбца

	[[yii\db\Command::renameColumn()|renameColumn()]]: переименование столбца

	[[yii\db\Command::dropColumn()|dropColumn()]]: удаление столбца

	[[yii\db\Command::alterColumn()|alterColumn()]]: преобразование столбца

	[[yii\db\Command::addPrimaryKey()|addPrimaryKey()]]: добавление первичного ключа

	[[yii\db\Command::dropPrimaryKey()|dropPrimaryKey()]]: удаление первичного ключа

	[[yii\db\Command::addForeignKey()|addForeignKey()]]: добавление внешнего ключа

	[[yii\db\Command::dropForeignKey()|dropForeignKey()]]: удаление внешнего ключа

	[[yii\db\Command::createIndex()|createIndex()]]: создания индекса

	[[yii\db\Command::dropIndex()|dropIndex()]]: удаление индекса



Эти методы могут быть использованы, как указано ниже:

// CREATE TABLE
Yii::$app->db->createCommand()->createTable('post', [
    'id' => 'pk',
    'title' => 'string',
    'text' => 'text',
]);





Вы также сможете получить описание схемы таблицы через вызов метода [[yii\db\Connection::getTableSchema()|getTableSchema()]].
Например,

$table = Yii::$app->db->getTableSchema('post');





Метод вернёт объект [[yii\db\TableSchema]], который содержит информацию о столбцах таблицы, первичных ключах, внешних
ключах, и т.д.. Вся эта информация используется главным образом для построителя запросов и
active record, чтоб помочь вам писать независимый от базы данных код.







          

      

      

    

  

  
    
    
    Фильтры
    
    

    
 
  
  

    
      
          
            
  
Фильтры

Фильтры — это объекты, которые могут запускаться как перед так и после действий контроллера.
Например, фильтр управления доступом может запускаться перед действиями удостовериться, что запросившему их пользователю
разрешен доступ; фильтр сжатия содержимого может запускаться после действий для сжатия содержимого ответа перед отправкой
его конечному пользователю.

Фильтр может состоять из пре-фильтра (фильтрующая логика применяется перед действиями) и/или
пост-фильтра (логика, применяемая после действий).


Использование фильтров 

Фильтры являются особым видом поведений. Их использование ничем не отличается от
использования поведений. Вы можете объявлять фильтры в классе контроллера
путём перекрытия метода [[yii\base\Controller::behaviors()|behaviors()]]:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index', 'view'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





По умолчанию фильтры, объявленные в классе контроллера, будут применяться ко всем его действиям. Тем не менее, вы можете
явно указать и конкретные действия задав свойство [[yii\base\ActionFilter::only|only]]. В примере выше фильтр HttpCache
применяется только к действиям index и view. Вы можете настроить свойство [[yii\base\ActionFilter::except|except]]
чтобы указать действия, к которым фильтр применяться не должен.

Кроме контроллеров, можно объявлять фильтры в модуле или в приложении.
В этом случае они применяются ко всем действиям контроллеров, находящихся в этом модуле или приложении если не заданы
свойства [[yii\base\ActionFilter::only|only]] и [[yii\base\ActionFilter::except|except]] как было описано выше.


Note: При объявлении фильтров в модулях или приложениях, следует использовать маршруты
вместо идентификаторов действий в свойствах [[yii\base\ActionFilter::only|only]] и [[yii\base\ActionFilter::except|except]]
так как сами по себе, идентификаторы действий не могут полностью идентифицировать действие в контексте модуля или приложения.


Когда несколько фильтров указываются для одного действия, они применяются согласно следующим правилам:


	Пре-фильтрация
	Применяются фильтры, объявленные в приложении в том порядке, в котором они перечислены в behaviors().

	Применяются фильтры, объявленные в модуле в том порядке, в котором они перечислены в behaviors().

	Применяются фильтры, объявленные в контроллере в том порядке, в котором они перечислены в behaviors().

	Если, какой-либо из фильтров отменяет выполнение действия, оставшиеся фильтры (как пре-фильтры, так и пост-фильтры) не будут применены.





	Выполняется действие, если оно прошло пре-фильтрацию.

	Пост-фильтрация
	Применяются фильтры объявленные в контроллере, в порядке обратном, перечисленному в behaviors().

	Применяются фильтры объявленные в модуле, в порядке обратном, перечисленному в behaviors().

	Применяются фильтры объявленные в приложении, в порядке обратном, перечисленному в behaviors().










Создание фильтров 

При создании нового фильтра действия, необходимо наследоваться от [[yii\base\ActionFilter]] и переопределить методы
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] и/или [[yii\base\ActionFilter::afterAction()|afterAction()]].
Первый из них будет вызван перед выполнением действия, а второй после. Возвращаемое
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] значение определяет, будет ли действие выполняться или нет.
Если вернётся false, то оставшиеся фильтры не будут применены и действие выполнено не будет.

Пример ниже показывает фильтр, который выводит время выполнения действия:

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
    private $_startTime;

    public function beforeAction($action)
    {
        $this->_startTime = microtime(true);
        return parent::beforeAction($action);
    }

    public function afterAction($action, $result)
    {
        $time = microtime(true) - $this->_startTime;
        Yii::trace("Action '{$action->uniqueId}' spent $time second.");
        return parent::afterAction($action, $result);
    }
}








Стандартные фильтры 

Yii предоставляет набор часто используемых фильтров, которые находятся, в основном, в пространстве имен yii\filters.
Далее вы будете кратко ознакомлены с ними.


[[yii\filters\AccessControl|AccessControl]] 

Фильтр AccessControl обеспечивает простое управление доступом, основанное на наборе правил [[yii\filters\AccessControl::rules|rules]].
В частности, перед тем как действие начинает выполнение, фильтр AccessControl проверяет список указанных правил, пока не
найдёт соответствующее текущему контексту переменных (таких как IP адрес пользователя, статус аутентификации и так далее).
Найденное правило указывает, разрешить или запретить выполнение запрошенного действия. Если ни одно из правил не подходит,
то доступ будет запрещён.

В следующем примере авторизованным пользователям разрешен доступ к действиям create и update, в то время как всем
другим пользователям доступ запрещён.

use yii\filters\AccessControl;

public function behaviors()
{
    return [
        'access' => [
            'class' => AccessControl::className(),
            'only' => ['create', 'update'],
            'rules' => [
                // разрешаем аутентифицированным пользователям
                [
                    'allow' => true,
                    'roles' => ['@'],
                ],
                // всё остальное по умолчанию запрещено
            ],
        ],
    ];
}





Более подробно об управлении доступом вы можете прочитать в разделе Авторизация.




Фильтр метода аутентификации

Фильтр метода аутентификации используется для аутентификации пользователя различными способами, такими как
HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication], OAuth 2 [http://oauth.net/2/].
Классы данных фильтров находятся в пространстве имён yii\filters\auth.

Следующий пример показывает, как использовать [[yii\filters\auth\HttpBasicAuth]] для аутентификации пользователя с помощью
токена доступа, основанного на методе basic HTTP auth. Обратите внимание, что для того чтобы это работало, ваш класс
[[yii\web\User::identityClass|user identity class]] должен реализовывать метод
[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]].

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    return [
        'basicAuth' => [
            'class' => HttpBasicAuth::className(),
        ],
    ];
}





Фильтры метода аутентификации часто используются при реализации RESTful API. Более подробную информацию о технологии
RESTful, смотрите в разделе Authentication.




[[yii\filters\ContentNegotiator|ContentNegotiator]] 

ContentNegotiator поддерживает согласование формата ответа и языка приложения. Он пытается определить формат ответа
и/или язык, путём проверки GET параметров и HTTP заголовка Accept.

В примере ниже, ContentNegotiator сконфигурирован чтобы поддерживать форматы ответа JSON и XML, а также Английский (США)
и Немецкий языки.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
    return [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ];
}





Часто требуется, чтобы форматы ответа и языки приложения были определены как можно раньше в его
жизненном цикле. По этой причине, ContentNegotiator разработан так, что
помимо фильтра может использоваться как компонент предварительной загрузки. Например,
вы можете настроить его в конфигурации приложения:

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
    'bootstrap' => [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ],
];






Info: В случае, если предпочтительный тип содержимого и язык не могут быть определены из запроса, будут
использованы первый формат и язык, описанные в [[formats]] и [[languages]].





[[yii\filters\HttpCache|HttpCache]] 

Фильтр HttpCache реализовывает кэширование на стороне клиента, используя HTTP заголовки Last-Modified и Etag:

use yii\filters\HttpCache;

public function behaviors()
{
    return [
        [
            'class' => HttpCache::className(),
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





Подробнее об использовании HttpCache можно прочитать в разделе HTTP Кэширование.




[[yii\filters\PageCache|PageCache]] 

Фильтр PageCache реализует кэширование целых страниц на стороне сервера. В следующем примере PageCache применяется только
в действии index для кэширования всей страницы в течение не более чем 60 секунд или пока количество записей в таблице post
не изменится. Он также хранит различные версии страницы в зависимости от выбранного языка приложения.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
    return [
        'pageCache' => [
            'class' => PageCache::className(),
            'only' => ['index'],
            'duration' => 60,
            'dependency' => [
                'class' => DbDependency::className(),
                'sql' => 'SELECT COUNT(*) FROM post',
            ],
            'variations' => [
                \Yii::$app->language,
            ]
        ],
    ];
}





Подробнее об использовании PageCache читайте в разделе Кэширование страниц.




[[yii\filters\RateLimiter|RateLimiter]] 

Ограничитель количества запросов в единицу времени (RateLimiter) реализует алгоритм ограничения запросов, основанный на
алгоритме leaky bucket [http://en.wikipedia.org/wiki/Leaky_bucket]. В основном, он используется при создании RESTful API.
Подробнее об использовании данного фильтра можно прочитать в разделе Ограничение запросов.




[[yii\filters\VerbFilter|VerbFilter]] 

Фильтр по типу запроса (VerbFilter) проверяет, разрешено ли запросам HTTP выполнять затребованные ими действия.
Если нет, то будет выброшено исключение HTTP с кодом 405. В следующем примере в фильтре по типу запроса указан обычный
набор разрешённых методов запроса при выполнения CRUD операций.

use yii\filters\VerbFilter;

public function behaviors()
{
    return [
        'verbs' => [
            'class' => VerbFilter::className(),
            'actions' => [
                'index'  => ['get'],
                'view'   => ['get'],
                'create' => ['get', 'post'],
                'update' => ['get', 'put', 'post'],
                'delete' => ['post', 'delete'],
            ],
        ],
    ];
}








[[yii\filters\Cors|Cors]] 

Совместное использование разными источниками CORS [https://developer.mozilla.org/ru/docs/Web/HTTP/Access_control_CORS]


	это механизм, который позволяет использовать различные ресурсы (шрифты, скрипты, и т.д.) с отличных от основного сайта
доменов. В частности, AJAX вызовы JavaScript могут использовать механизм XMLHttpRequest. В противном случае, такие
“междоменные” запросы были бы запрещены из-за политики безопасности same origin. CORS задаёт способ взаимодействия
сервера и браузера, определяющий возможность делать междоменные запросы.



Фильтр [[yii\filters\Cors|Cors filter]] следует определять перед фильтрами Аутентификации / Авторизации, для того чтобы
быть уверенными, что заголовки CORS будут всегда посланы.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
        ],
    ], parent::behaviors());
}





Если вам необходимо добавить CORS-фильтрацию к [[yii\rest\ActiveController]] в вашем API, обратитесь к разделу
Контроллеры.

Фильтрация Cors может быть настроена с помощью свойства [[yii\filters\Cors::$cors|$cors]].


	cors['Origin']: массив, используемый для определения источников. Может принимать значение ['*'] (все) или
['http://www.myserver.net', 'http://www.myotherserver.com']. По умолчанию значение равно ['*'].

	cors['Access-Control-Request-Method']: массив разрешенных типов запроса, таких как ['GET', 'OPTIONS', 'HEAD'].
Значение по умолчанию ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'].

	cors['Access-Control-Request-Headers']: массив разрешенных заголовков. Может быть ['*'] то есть все заголовки или
один из указанных ['X-Request-With']. Значение по умолчанию ['*'].

	cors['Access-Control-Allow-Credentials']: определяет, может ли текущий запрос быть сделан с использованием авторизации.
Может принимать значения true, false или null (не установлено). Значение по умолчанию null.

	cors['Access-Control-Max-Age']: определяет срок жизни запроса, перед его началом. По умолчанию 86400.



Например, разрешим CORS для источника : http://www.myserver.net с методами GET, HEAD и OPTIONS :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
        ],
    ], parent::behaviors());
}





Вы можете настроить заголовки CORS переопределения параметров по умолчанию для каждого из действий.

Например, добавление Access-Control-Allow-Credentials для действия  login может быть сделано так :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
            'actions' => [
                'login' => [
                    'Access-Control-Allow-Credentials' => true,
                ]
            ]
        ],
    ], parent::behaviors());
}













          

      

      

    

  

  
    
    
    Аутентификация
    
    

    
 
  
  

    
      
          
            
  
Аутентификация

В отличие от Web-приложений, RESTful API обычно не сохраняют информацию о состоянии, а это означает, что сессии и куки
использовать не следует. Следовательно, раз состояние аутентификации пользователя не может быть сохранено в сессиях или куках,
каждый запрос должен приходить вместе с определенным видом параметров аутентификации. Общепринятая практика состоит в том,
что для аутентификации пользователя с каждым запросом отправляется секретный токен доступа. Так как токен доступа
может использоваться для уникальной идентификации и аутентификации пользователя, запросы к API всегда должны отсылаться
через протокол HTTPS, чтобы предотвратить атаки «человек посередине» (англ. “man-in-the-middle”, MitM).

Есть различные способы отправки токена доступа:


	HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication]: токен доступа
отправляется как имя пользователя. Такой подход следует использовать только в том случае, когда токен доступа может быть безопасно сохранен
на стороне абонента API. Например, если API используется программой, запущенной на сервере.

	Параметр запроса: токен доступа отправляется как параметр запроса в URL-адресе API, т.е. примерно таким образом:
https://example.com/users?access-token=xxxxxxxx. Так как большинство Web-серверов сохраняют параметры запроса в своих логах,
такой подход следует применять только при работе с JSONP-запросами, которые не могут отправлять токены доступа
в HTTP-заголовках.

	OAuth 2 [http://oauth.net/2/]: токен доступа выдается абоненту API сервером авторизации
и отправляется API-серверу через HTTP Bearer Tokens [http://tools.ietf.org/html/rfc6750],
в соответствии с протоколом OAuth2.



Yii поддерживает все выше перечисленные методы аутентификации. Вы также можете легко создавать новые методы аутентификации.

Чтобы включить аутентификацию для ваших API, выполните следующие шаги:


	У компонента приложения user установите свойство
[[yii\web\User::enableSession|enableSession]] равным false.

	Укажите, какие методы аутентификации вы планируете использовать, настроив поведение authenticator
в ваших классах REST-контроллеров.

	Реализуйте метод [[yii\web\IdentityInterface::findIdentityByAccessToken()]] в вашем [[yii\web\User::identityClass|классе UserIdentity]].



Шаг 1 не обязателен, но рекомендуется его всё-таки выполнить, так как RESTful API не должен сохранять информацию о
состоянии клиента. Когда свойство [[yii\web\User::enableSession|enableSession]] установлено в false, состояние
аутентификации пользователя НЕ БУДЕТ сохраняться между запросами с использованием сессий. Вместо этого аутентификация
будет выполняться для каждого запроса, что достигается шагами 2 и 3.


Tip: если вы разрабатываете RESTful API в пределах приложения, вы можете настроить свойство
[[yii\web\User::enableSession|enableSession]] компонента приложения user в конфигурации приложения. Если вы
разрабатываете RESTful API как модуль, можете добавить следующую строчку в метод init() модуля:

public function init()
{
    parent::init();
    \Yii::$app->user->enableSession = false;
}








Например, для использования HTTP Basic Auth, вы можете настроить свойство authenticator следующим образом:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['authenticator'] = [
        'class' => HttpBasicAuth::className(),
    ];
    return $behaviors;
}





Если вы хотите включить поддержку всех трёх описанных выше методов аутентификации, можете использовать CompositeAuth:

use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\HttpBearerAuth;
use yii\filters\auth\QueryParamAuth;

public function behaviors()
{
    $behaviors = parent::behaviors();
    $behaviors['authenticator'] = [
        'class' => CompositeAuth::className(),
        'authMethods' => [
            HttpBasicAuth::className(),
            HttpBearerAuth::className(),
            QueryParamAuth::className(),
        ],
    ];
    return $behaviors;
}





Каждый элемент в массиве authMethods должен быть названием класса метода аутентификации или массивом настроек.

Реализация метода findIdentityByAccessToken() определяется особенностями приложения. Например, в простом варианте,
когда у каждого пользователя есть только один токен доступа, вы можете хранить этот токен в поле access_token
таблицы пользователей. В этом случае метод findIdentityByAccessToken() может быть легко реализован в классе User следующим образом:

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
    public static function findIdentityByAccessToken($token, $type = null)
    {
        return static::findOne(['access_token' => $token]);
    }
}





После включения аутентификации описанным выше способом при каждом запросе к API запрашиваемый контроллер
будет пытаться аутентифицировать пользователя в своем методе beforeAction().

Если аутентификация прошла успешно, контроллер выполнит другие проверки (ограничение частоты запросов, авторизация)
и затем выполнит действие. Информация об аутентифицированном пользователе может быть получена из объекта Yii::$app->user->identity.

Если аутентификация прошла неудачно, будет возвращен ответ с HTTP-кодом состояния 401 вместе с другими необходимыми заголовками
(такими, как заголовок WWW-Authenticate для HTTP Basic Auth).


Авторизация 

После аутентификации пользователя вы, вероятно, захотите проверить, есть ли у него или у неё разрешение на выполнение запрошенного
действия с запрошенным ресурсом. Этот процесс называется авторизацией и подробно описан
в разделе «Авторизация».

Если ваши контроллеры унаследованы от [[yii\rest\ActiveController]], вы можете переопределить
метод [[yii\rest\Controller::checkAccess()|checkAccess()]] для выполнения авторизации. Этот метод будет вызываться
встроенными действиями, предоставляемыми контроллером [[yii\rest\ActiveController]].







          

      

      

    

  

  
    
    
    Обзор
    
    

    
 
  
  

    
      
          
            
  
Обзор

Все запросы, обрабатываемые Yii приложением, проходят подобный путь.


	Пользователь создает запрос ко входному скрипту web/index.php.

	Входной скрипт загружает конфигурацию и создает экземпляр приложения для обработки запроса.

	Приложение определяет запрошенный маршрут при помощи компонента request.

	Приложение создает экземпляр контроллера для обработки запроса.

	Контроллер создает экземпляр действия и выполняет фильтры для этого действия.

	При неудачном выполнении любого фильтра, действие не выполняется.

	При успешном выполнении всех фильтров, выполняется действие.

	Действие загружает модель данных, возможно, из базы данных.

	Действие рендерит представление и передает ему модель данных.

	Результат рендеринга передается в компонент приложения response.

	Компонент response посылает готовые данные пользователю.



Ниже представлена диаграмма обработки запроса приложением.

[image: Request Lifecycle]

В данном разделе описаны подробности некоторых этапов обработки запроса.





          

      

      

    

  

  
    
    
    Ресурсы
    
    

    
 
  
  

    
      
          
            
  
Ресурсы

Ресурс в Yii это файл который может быть задан в Web странице. Это может быть CSS файл, JavaScript файл, изображение или видео файл и т.д. Ресурсы располагаются в Web доступных директориях и обслуживаются непосредственно Web серверами.

Желательно, управлять ресурсами программно. Например, при использовании виджета [[yii\jui\DatePicker]] в странице, автоматически включаются необходимые CSS и JavaScript файлы, вместо того чтобы просить Вас в ручную найти эти файлы и включить их. И когда Вы обновляете виджет до новой версии, будут автоматически использованы новые версии файлов-ресурсов. В этом руководстве будет описана мощная возможность управления ресурсами представленная в Yii.


Комплекты ресурсов 

Yii управляет ресурсами как единицей комплекта ресурсов. Комплект ресурсов - это простой набор ресурсов расположенных в директории. Когда Вы регистрируете комплект ресурсов в представлении, в отображаемой Web странице включается набор CSS и JavaScript файлов.




Задание Комплекта Ресурсов

Комплект ресурсов определяется как PHP класс расширяющийся от [[yii\web\AssetBundle]]. Имя комплекта соответствует полному имени PHP класса (без ведущей обратной косой черты - backslash ““). Класс комплекта ресурсов должен быть в состоянии возможности автозагрузки. При задании комплекта ресурсов обычно указывается где ресурсы находятся, какие CSS и JavaScript файлы содержит комплект, и как комплект зависит от других комплектов.

Следующий код задаёт основной комплект ресурсов используемый в шаблоне базового приложения:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.css',
    ];
    public $js = [
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





В коде выше класс AppAsset указывает, что файлы ресурса находятся в директории @webroot, которой соответствует URL @web; комплект содержит единственный CSS файл css/site.css и не содержит JavaScript файлов; комплект зависит от двух других комплектов: [[yii\web\YiiAsset]] и [[yii\bootstrap\BootstrapAsset]]. Более детальное объяснение о свойствах [[yii\web\AssetBundle]] может быть найдено ниже:


	[[yii\web\AssetBundle::sourcePath|sourcePath]]: задаёт корневую директорию содержащую файлы ресурса в этом комплекте. Это свойство должно быть установлено если корневая директория не доступна из Web. В противном случае, Вы должны установить [[yii\web\AssetBundle::basePath|basePath]] свойство и [[yii\web\AssetBundle::baseUrl|baseUrl]] свойство вместо текущего. Здесь могут быть использованы псевдонимы путей.

	[[yii\web\AssetBundle::basePath|basePath]]: задаёт Web доступную директорию, которая содержит файлы ресурсов текущего комплекта. Когда Вы задаёте свойство [[yii\web\AssetBundle::sourcePath|sourcePath]] Менеджер ресурсов опубликует ресурсы текущего комплекта в Web доступную директорию и перезапишет соответственно данное свойство. Вы должны задать данное свойство если Ваши файлы ресурсов уже в Web доступной директории и не нужно опубликовывать ресурсы. Здесь могут быть использованы псевдонимы путей.

	[[yii\web\AssetBundle::baseUrl|baseUrl]]: задаёт URL соответствующий директории [[yii\web\AssetBundle::basePath|basePath]]. Также как и для [[yii\web\AssetBundle::basePath|basePath]], если Вы задаёте свойство [[yii\web\AssetBundle::sourcePath|sourcePath]] Менеджер ресурсов опубликует ресурсы и перезапишет это свойство соответственно. Здесь могут быть использованы псевдонимы путей.

	[[yii\web\AssetBundle::js|js]]: массив, перечисляющий JavaScript файлы, содержащиеся в данном комплекте. Заметьте, что только прямая косая черта (forward slash - “/”) может быть использована, как разделитель директорий. Каждый JavaScript файл может быть задан в одном из следующих форматов:
	относительный путь, представленный локальным JavaScript файлом (например js/main.js). Актуальный путь файла может быть определён путём добавления [[yii\web\AssetManager::basePath]] к относительному пути, и актуальный URL файла может быть определён путём добавления [[yii\web\AssetManager::baseUrl]] к относительному пути.

	абсолютный URL, представленный внешним JavaScript файлом. Например,
http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js или
//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.





	[[yii\web\AssetBundle::css|css]]: массив, перечисляющий CSS файлы, содержащиеся в данном комплекте. Формат этого массива такой же, как и у [[yii\web\AssetBundle::js|js]].

	[[yii\web\AssetBundle::depends|depends]]: массив, перечисляющий имена комплектов ресурсов, от которых зависит данный комплект.

	[[yii\web\AssetBundle::jsOptions|jsOptions]]: задаёт параметры, которые будут относится к методу [[yii\web\View::registerJsFile()]], когда он вызывается для регистрации каждого JavaScript файла данного комплекта.

	[[yii\web\AssetBundle::cssOptions|cssOptions]]: задаёт параметры, которые будут приняты методом [[yii\web\View::registerCssFile()]], когда он вызывается для регистрации каждого CSS файла данного комплекта.

	[[yii\web\AssetBundle::publishOptions|publishOptions]]: задаёт параметры, которые будут приняты методом [[yii\web\AssetManager::publish()]], когда метод будет вызван, опубликуются исходные файлы ресурсов в Web директории. Этот параметр используется только в том случае, если задаётся свойство [[yii\web\AssetBundle::sourcePath|sourcePath]].




Расположение ресурсов

Ресурсы, в зависимости от их расположения, могут быть классифицированы как:


	исходные ресурсы: файлы ресурсов, расположенные вместе с исходным кодом PHP, которые не могут быть непосредственно доступны через Web. Для того, чтобы использовать исходные ресурсы на странице, они должны быть скопированы в Web директорию и превратиться в так называемые опубликованные ресурсы. Этот процесс называется публикацией ресурсов, который более подробно описан ниже

	опубликованные ресурсы: файлы ресурсов, расположенные в Web директории и, таким образом, могут быть напрямую доступны через Web.

	внешние ресурсы: файлы ресурсов, расположенные на другом Web сервере, отличного от веб-хостинга вашего приложения.



При определении класса комплекта ресурсов, если Вы задаёте свойство [[yii\web\AssetBundle::sourcePath|sourcePath]], это означает, что любые перечисленные ресурсы, используя относительные пути, будут рассматриваться как исходные ресурсы. Если Вы не задаёте данное свойство, это означает, что эти ресурсы - это опубликованные ресурсы (в этом случае Вам следует указать [[yii\web\AssetBundle::basePath|basePath]] и [[yii\web\AssetBundle::baseUrl|baseUrl]], чтобы дать знать Yii где ресурсы располагаются).

Рекомендуется размещать ресурсы, принадлежащие приложению, в Web директорию, для того, чтобы избежать не нужного процесса публикации ресурсов. Вот почему AppAsset в предыдущем примере задаёт [[yii\web\AssetBundle::basePath|basePath]] вместо [[yii\web\AssetBundle::sourcePath|sourcePath]].

Для расширений, в связи с тем, что их ресурсы располагаются вместе с их исходным кодом в директориях, которые не являются веб-доступными, необходимо указать свойство [[yii\web\AssetBundle::sourcePath|sourcePath]] при задании класса комплекта ресурсов для них.


Note: Не используйте @webroot/assets как [[yii\web\AssetBundle::sourcePath|source path]]. Эта директория по умолчанию используется менеджером ресурсов [[yii\web\AssetManager|asset manager]] для сохранения файлов ресурсов, опубликованных из их исходного месторасположения. Любое содержимое этой директории расценивается как временное и может быть удалено.





Зависимости ресурсов 

Когда Вы включаете несколько CSS или JavaScript файлов в Web страницу, они должны следовать в определенном порядке,  чтобы избежать переопределения при выдаче. Например, если Вы используете виджет jQuery UI в Web странице, вы должны убедиться, что jQuery JavaScript файл был включен до jQuery UI JavaScript файла. Мы называем такой порядок зависимостью между ресурсами.

Зависимости ресурсов в основном указываются через свойство [[yii\web\AssetBundle::depends]]. Например в AppAsset, комплект ресурсов зависит от двух других комплектов ресурсов: [[yii\web\YiiAsset]] и [[yii\bootstrap\BootstrapAsset]], что обозначает, что CSS и JavaScript файлы AppAsset будут включены после файлов этих двух комплектов зависимостей.

Зависимости ресурсов являются также зависимыми. Это значит, что если комплект А зависит от В, который зависит от С, то А тоже зависит от С.




Параметры ресурсов 

Вы можете задать свойства [[yii\web\AssetBundle::cssOptions|cssOptions]] и [[yii\web\AssetBundle::jsOptions|jsOptions]], чтобы настроить путь для включения CSS и JavaScript файлов в страницу. Значения этих свойств будут приняты методами [[yii\web\View::registerCssFile()]] и [[yii\web\View::registerJsFile()]] соответственно, когда они (методы) вызываются представлением происходит включение CSS и JavaScript файлов.


Note: Параметры, заданные в комплекте класса применяются для каждого CSS/JavaScript-файла в комплекте. Если Вы хотите использовать различные параметры для разных файлов, Вы должны создать раздельные комплекты ресурсов, и использовать одну установку параметров для каждого комплекта.


Например, условно включим CSS файл для браузера IE9 или ниже. Для этого Вы можете использовать следующий параметр:

public $cssOptions = ['condition' => 'lte IE9'];





Это вызовет CSS файл из комплекта, который будет включен в страницу, используя следующие HTML теги:

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->





Для того чтобы обернуть созданную CSS ссылку в тег <noscript>, Вы можете настроить cssOptions следующим образом:

public $cssOptions = ['noscript' => true];





Для включения JavaScript файла в head раздел страницы (по умолчанию, JavaScript файлы включаются в конец раздела body) используйте следующий параметр:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];





По умолчанию, когда комплект ресурсов публикуется, всё содержимое в заданной директории [[yii\web\AssetBundle::sourcePath]] будет опубликовано. Вы можете настроить это поведение, сконфигурировав свойство [[yii\web\AssetBundle::publishOptions|publishOptions]]. Например, опубликовать одну или несколько поддиректорий [[yii\web\AssetBundle::sourcePath]] в классе комплекта ресурсов Вы можете в следующим образом:

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle 
{
    public $sourcePath = '@bower/font-awesome'; 
    public $css = [ 
        'css/font-awesome.min.css', 
    ]; 
    
    public function init()
    {
        parent::init();
        $this->publishOptions['beforeCopy'] = function ($from, $to) {
            $dirname = basename(dirname($from));
            return $dirname === 'fonts' || $dirname === 'css';
        };
    }
}  





В выше указанном примере определён комплект ресурсов для пакета “fontawesome” [http://fontawesome.io/]. Задан параметр публикации beforeCopy, здесь только fonts и css поддиректории будут опубликованы.




Bower и NPM Ресурсы

Большинство JavaScript/CSS пакетов управляются Bower [http://bower.io/] и/или NPM [https://www.npmjs.org/].
Если Вашим приложением или расширением используется такой пакет, то рекомендуется следовать следующим этапам для управления ресурсами библиотеки:


	Исправить файл composer.json Вашего приложения или расширения и включить пакет в список в раздел require. Следует использовать bower-asset/PackageName (для Bower пакетов) или npm-asset/PackageName (для NPM пакетов) для обращения к соответствующей библиотеке.

	Создать класс комплекта ресурсов и перечислить JavaScript/CSS файлы, которые Вы планируете использовать в Вашем приложении или расширении. Вы должны задать свойство [[yii\web\AssetBundle::sourcePath|sourcePath]] как @bower/PackageName или @npm/PackageName.



Это происходит потому, что Composer устанавливает Bower или NPM пакет в директорию, соответствующую этим псевдонимам.


Note: В некоторых пакетах файлы дистрибутива могут находиться в поддиректории. В этом случае, Вы должны задать поддиректорию как значение [[yii\web\AssetBundle::sourcePath|sourcePath]]. Например, [[yii\web\JqueryAsset]] использует @bower/jquery/dist вместо @bower/jquery.







Использование Комплекта Ресурсов

Для использования комплекта ресурсов, зарегистрируйте его в представлении вызвав метод [[yii\web\AssetBundle::register()]]. Например, комплект ресурсов в представлении может быть зарегистрирован следующим образом:

use app\assets\AppAsset;
AppAsset::register($this);  // $this - представляет собой объект представления






Info: Метод [[yii\web\AssetBundle::register()]] возвращает объект комплекта ресурсов, содержащий информацию о публикуемых ресурсах, таких как [[yii\web\AssetBundle::basePath|basePath]] или [[yii\web\AssetBundle::baseUrl|baseUrl]].


Если Вы регистрируете комплект ресурсов в других местах (т.е. не в представлении), Вы должны обеспечить необходимый объект представления. Например, при регистрации комплекта ресурсов в классе widget, Вы можете взять за объект представления $this->view.

Когда комплект ресурсов регистрируется в представлении, Yii регистрирует все зависимые от него комплекты ресурсов. И, если комплект ресурсов расположен в директории не доступной из Web, то он будет опубликован в Web директории. Затем, когда представление отображает страницу, сгенерируются теги <link> и <script> для CSS и JavaScript файлов, перечисленных в регистрируемых комплектах. Порядок этих тегов определён зависимостью среди регистрируемых комплектов, и последовательность ресурсов перечислена в [[yii\web\AssetBundle::css]] и [[yii\web\AssetBundle::js]] свойствах.


Динамические Комплекты Ресурсов 

Поскольку комплект ресурсов это обычный PHP класс, он может содержать дополнительную логику, связанную с ним, и может
корректировать свои внутренние параметры динамически. Например, вы можете использовать сложную JavaScript библиотеку,
которая предоставляет интернационализацию через отдельные исходные файлы: по одному на каждый поддерживаемый язык.
Таким образом, вам нужно добавить определенный ‘.js’ файл на вашу страницу, чтобы применить перевод для библиотеки.
Этого можно достичь, переопределив метод [[yii\web\AssetBundle::init()]]:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle
{
    public $sourcePath = '/path/to/sophisticated/src';
    public $js = [
        'sophisticated.js' // file, which is always used
    ];

    public function init()
    {
        parent::init();
        $this->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added
    }
}





Конкретный комплект ресурсов может быть также изменен через его экземпляр, возвращенный методом [[yii\web\AssetBundle::register()]].
Например:

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added






Замечание: несмотря на то что динамическая корректрировка комплекта ресурсов поддерживается, ее использование - это
плохая практика, которая может привести к неожиданным побочных эффектам, и которой следует избегать.





Настройка Комплектов Ресурсов 

Yii управляет комплектами ресурсов через компонент приложения называемый assetManager, который реализован в [[yii\web\AssetManager]]. Путём настройки свойства [[yii\web\AssetManager::bundles]], возможно настроить поведение комплекта ресурсов. Например, комплект ресурсов [[yii\web\JqueryAsset]] по умолчанию использует jquery.js файл из установленного jquery Bower пакета. Для повышения доступности и производительности, можно использовать версию jquery на Google хостинге.
Это может быть достигнуто, настроив assetManager в конфигурации приложения следующим образом:

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => [
                    'sourcePath' => null,   // не опубликовывать комплект
                    'js' => [
                        '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
                    ]
                ],
            ],
        ],
    ],
];





Можно сконфигурировать несколько комплектов ресурсов аналогично через [[yii\web\AssetManager::bundles]]. Ключи массива должны быть именами класса (без впереди стоящей обратной косой черты) комплектов ресурсов, а значения массивов должны соответствовать конфигурации массивов.


Совет: Можно условно выбрать, какой из ресурсов будет использован в комплекте ресурсов. Следующий пример показывает, как можно использовать в разработке окружения jquery.js или jquery.min.js в противном случае:



'yii\web\JqueryAsset' => [
    'js' => [
        YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
    ]
],








Можно запретить один или несколько комплектов ресурсов, связав false с именами комплектов ресурсов, которые Вы хотите сделать недоступными. Когда Вы регистрируете недоступный комплект ресурсов в представлении, обратите внимание, что зависимость комплектов будет зарегистрирована, и представление также не включит ни один из ресурсов комплекта в отображаемую страницу. Например, для запрета [[yii\web\JqueryAsset]] можно использовать следующую конфигурацию:

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => false,
            ],
        ],
    ],
];





Можно также запретить все комплекты ресурсов, установив [[yii\web\AssetManager::bundles]] как false.

Имейте в виду, что настройки, установленный через [[yii\web\AssetManager::bundles]], применяются в момент создания комплекта
ресурсов, т.е. в момент срабатывания конструктора. Таким образом, любые изменения, которые произведены над экземпляром
комплекта ресурсов после этого, перекроют настройки, установленные на уровне [[yii\web\AssetManager::bundles]].
В частности, изменения, произведенные внутри метода [[yii\web\AssetBundle::init()]] или после регистрации комплекта ресурсов,
имеют приоритет над настройками AssetManager.
Ниже приведены примеры, в которых значения, установленные через [[yii\web\AssetManager::bundles]] не возымеют никакого эффекта:

// Program source code:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class LanguageAssetBundle extends AssetBundle
{
    // ...

    public function init()
    {
        parent::init();
        $this->baseUrl = '@web/i18n/' . Yii::$app->language; // can NOT be handled by `AssetManager`!
    }
}
// ...

$bundle = \app\assets\LargeFileAssetBundle::register(Yii::$app->view);
$bundle->baseUrl = YII_DEBUG ? '@web/large-files': '@web/large-files/minified'; // can NOT be handled by `AssetManager`!


// Application config :

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'app\assets\LanguageAssetBundle' => [
                    'baseUrl' => 'http://some.cdn.com/files/i18n/en' // makes NO effect!
                ],
                'app\assets\LargeFileAssetBundle' => [
                    'baseUrl' => 'http://some.cdn.com/files/large-files' // makes NO effect!
                ],
            ],
        ],
    ],
];








Привязка ресурсов

Иногда необходимо исправить пути до файлов ресурсов, в нескольких комплектах ресурсов. Например, комплект А использует jquery.min.js версии 1.11.1, а комплект В использует jquery.js версии 2.1.1. Раньше Вы могли решить данную проблему, настраивая каждый комплект ресурсов по отдельности, но более простой способ - использовать asset map возможность, чтобы найти неверные ресурсы и исправить их. Сделать это можно, сконфигурировав свойство [[yii\web\AssetManager::assetMap]] следующим образом:

return [
    // ...
    'components' => [
        'assetManager' => [
            'assetMap' => [
                'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
            ],
        ],
    ],
];





Ключи [[yii\web\AssetManager::assetMap|assetMap]] - это имена ресурсов, которые Вы хотите исправить, а значения - это требуемые пути для ресурсов. Когда регистрируется комплект ресурсов в представлении, каждый соответствующий файл ресурса в [[yii\web\AssetBundle::css|css]] или [[yii\web\AssetBundle::js|js]] массивах будет рассмотрен в соответствии с этой привязкой. И, если какой-либо из ключей найден, как последняя часть пути до файла ресурса (путь на который начинается с [[yii\web\AssetBundle::sourcePath]] по возможности), то соответствующее значение заменит ресурс и будет зарегистрировано в представлении. Например, путь до файла ресурса my/path/to/jquery.js - это соответствует ключу jquery.js.


Note: Ресурсы заданные только с использованием относительного пути могут использоваться в привязке ресурсов. Пути ресурсов должны быть абсолютные URLs или путь относительно [[yii\web\AssetManager::basePath]].





Публикация Ресурсов

Как уже было сказано выше, если комплект ресурсов располагается в директории которая не доступна из Web, эти ресурсы будут скопированы в Web директорию, когда комплект будет зарегистрирован в представлении. Этот процесс называется публикацией ресурсов, его автоматически выполняет [[yii\web\AssetManager|asset manager]].

По умолчанию, ресурсы публикуются в директорию @webroot/assets которая соответствует URL @web/assets. Можно настроить это местоположение сконфигурировав свойства [[yii\web\AssetManager::basePath|basePath]] и [[yii\web\AssetManager::baseUrl|baseUrl]].

Вместо публикации ресурсов путём копирования файлов, можно рассмотреть использование символических ссылок, если Ваша операционная система или Web сервер это разрешают. Эта функция может быть включена путем установки [[yii\web\AssetManager::linkAssets|linkAssets]] в true.

return [
    // ...
    'components' => [
        'assetManager' => [
            'linkAssets' => true,
        ],
    ],
];





С конфигурацией, установленной выше, менеджер ресурсов будет создавать символические ссылки на исходные пути комплекта ресурсов когда он будет публиковаться. Это быстрее, чем копирование файлов, а также может гарантировать, что опубликованные ресурсы всегда up-to-date(обновлённые/свежие).




Перебор Кэша

Для Web приложения запущенного в режиме продакшена, считается нормальной практикой разрешить HTTP кэширование для ресурсов и других статичных источников. Недостаток такой практики в том, что всякий раз, когда изменяется ресурс и разворачивается продакшен, пользователь может по-прежнему использовать старую версию ресурса вследствие HTTP кэширования. Чтобы избежать этого, можно использовать возможность перебора кэша, которая была добавлена в версии 2.0.3, для этого можно настроить [[yii\web\AssetManager]] следующим образом:

return [
    // ...
    'components' => [
        'assetManager' => [
            'appendTimestamp' => true,
        ],
    ],
];





Делая таким образом, к URL каждого опубликованного ресурса будет добавляться временная метка его последней модификации. Например, URL для yii.js может выглядеть как /assets/5515a87c/yii.js?v=1423448645", где параметр v представляет собой временную метку последней модификации файла yii.js. Теперь если изменить ресурс, его URL тоже будет изменен, это означает что клиент получит последнюю версию ресурса.






Обычное Использование Комплекта Ресурсов

Код ядра Yii содержит большое количество комплектов ресурсов. Среди них, следующие комплекты широко используются и могут упоминаться в Вашем приложении или коде расширения:


	[[yii\web\YiiAsset]]: Включает основной yii.js файл который реализует механизм организации JavaScript кода в модулях. Также обеспечивает специальную поддержку для data-method и data-confirm атрибутов и содержит другие полезные функции.

	[[yii\web\JqueryAsset]]: Включает jquery.js файл из jQuery Bower пакета.

	[[yii\bootstrap\BootstrapAsset]]: Включает CSS файл из Twitter Bootstrap фреймворка.

	[[yii\bootstrap\BootstrapPluginAsset]]: Включает JavaScript файл из Twitter Bootstrap фреймворка для поддержки Bootstrap JavaScript плагинов.

	[[yii\jui\JuiAsset]]: Включает CSS и JavaScript файлы из jQuery UI библиотеки.



Если Ваш код зависит от jQuery, jQuery UI или Bootstrap, Вам необходимо использовать эти предопределенные комплекты ресурсов, а не создавать свои собственные варианты. Если параметры по умолчанию этих комплектов не удовлетворяют Вашим нуждам, Вы можете настроить их как описано в подразделе Настройка Комплектов Ресурсов.




Преобразование Ресурсов

Вместо того, чтобы напрямую писать CSS и/или JavaScript код, разработчики часто пишут его в некотором расширенном синтаксисе и используют специальные инструменты конвертации в CSS/JavaScript. Например, для CSS кода можно использовать LESS [http://lesscss.org/] или SCSS [http://sass-lang.com/]; а для JavaScript можно использовать TypeScript [http://www.typescriptlang.org/].

Можно перечислить файлы ресурсов в расширенном синтаксисе в [[yii\web\AssetBundle::css|css]] и [[yii\web\AssetBundle::js|js]] свойствах из комплекта ресурсов. Например,

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.less',
    ];
    public $js = [
        'js/site.ts',
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





Когда Вы регистрируете такой комплект ресурсов в представлении, [[yii\web\AssetManager|asset manager]] автоматически запустит нужные инструменты препроцессора и конвертирует ресурсы в CSS/JavaScript, если их расширенный синтаксис распознан. Когда представление окончательно отобразит страницу, в неё будут включены файлы CSS/JavaScript, вместо оригинальных ресурсов в расширенном синтаксисе.

Yii использует имена расширений файлов для идентификации расширенного синтаксиса внутри ресурса. По умолчанию признаны следующие синтаксисы и имена расширений файлов:


	LESS [http://lesscss.org/]: .less

	SCSS [http://sass-lang.com/]: .scss

	Stylus [http://learnboost.github.io/stylus/]: .styl

	CoffeeScript [http://coffeescript.org/]: .coffee

	TypeScript [http://www.typescriptlang.org/]: .ts



Yii ориентируется на установленные инструменты конвертации ресурсов препроцессора. Например, используя LESS [http://lesscss.org/], Вы должны установить команду lessc препроцессора.

Вы можете настроить команды препроцессора и поддерживать расширенный синтаксис сконфигурировав [[yii\web\AssetManager::converter]] следующим образом:

return [
    'components' => [
        'assetManager' => [
            'converter' => [
                'class' => 'yii\web\AssetConverter',
                'commands' => [
                    'less' => ['css', 'lessc {from} {to} --no-color'],
                    'ts' => ['js', 'tsc --out {to} {from}'],
                ],
            ],
        ],
    ],
];





В примере выше, Вы задали поддержку расширенного синтаксиса через [[yii\web\AssetConverter::commands]] свойство.
Ключи массива - это имена расширений файлов (без ведущей точки), а значения массива - это образующийся файл ресурса имён расширений и команд для выполнения конвертации ресурса. Маркеры {from} и {to} в командах будут заменены соответственно исходным путём файла ресурсов и путём назначения файла ресурсов.


Note: Существуют другие способы работы с ресурсами расширенного синтаксиса, кроме того, который указан выше.
Например, Вы можете использовать инструменты построения, такие как grunt [http://gruntjs.com/] для отслеживания и автоматической конвертации ресурсов расширенного синтаксиса. В этом случае, Вы должны перечислить конечные CSS/JavaScript файлы в комплекте ресурсов вместо исходных файлов.





Объединение и Сжатие Ресурсов

Web страница может включать много CSS и/или JavaScript файлов. Чтобы сократить количество HTTP запросов и общий размер загрузки этих файлов, общепринятой практикой является объединение и сжатие нескольких CSS/JavaScript файлов в один или в более меньшее количество, а затем включение этих сжатых файлов вместо исходных в Web страницы.


Note: Комбинирование и сжатие ресурсов обычно необходимо, когда приложение находится в режиме продакшена.
В режиме разработки, использование исходных CSS/JavaScript файлов часто более удобно для отладочных целей.


Далее, мы представим подход комбинирования и сжатия файлов ресурсов без необходимости изменения Вашего существующего кода приложения.


	Найдите все комплекты ресурсов в Вашем приложении, которые Вы планируете скомбинировать и сжать.

	Распределите эти комплекты в одну или несколько групп. Обратите внимание, что каждый комплект может принадлежать только одной группе.

	Скомбинируйте/сожмите CSS файлы каждой группы в один файл. Сделайте то же самое для JavaScript файлов.

	Определите новый комплект ресурсов для каждой группы:




	Или установите [[yii\web\AssetBundle::css|css]] и [[yii\web\AssetBundle::js|js]] свойства. Соответствующие CSS и JavaScript файлы будут объединены.

	Или настройте комплекты ресурсов каждой группы, установив их [[yii\web\AssetBundle::css|css]] и [[yii\web\AssetBundle::js|js]] свойства как пустые, и установите их [[yii\web\AssetBundle::depends|depends]] свойство как новый комплект ресурсов, созданный для группы.



Используя этот подход, при регистрации комплекта ресурсов в представлении, автоматически регистрируется новый комплект ресурсов для группы, к которому исходный комплект принадлежит. В результате скомбинированные/сжатые файлы ресурсов включаются в страницу вместо исходных.


Пример 

Давайте рассмотрим пример, чтобы объяснить вышеуказанный подход.

Предположим, ваше приложение имеет две страницы, X и Y. Страница X использует комплект ресурсов A, B и C, в то время, как страница Y использует комплект ресурсов, B, C и D.

У Вас есть два пути, чтобы разделить эти комплекты ресурсов. Первый - использовать одну группу, включающую в себя все комплекты ресурсов. Другой путь - положить комплект А в группу Х, D в группу Y, а (B, C) в группу S. Какой из этих вариантов лучше? Первый способ имеет преимущество в том, что в обоих страницах одинаково скомбинированы файлы CSS и JavaScript, что делает HTTP кэширование более эффективным. С другой стороны, поскольку одна группа содержит все комплекты, размер скомбинированных CSS и JavaScript файлов будет больше, и таким образом увеличится время отдачи файла (загрузки страницы). Для простоты в этом примере, мы будем использовать первый способ, то есть использовать единую группу, содержащую все пакеты.


Note: Разделение комплекта ресурсов на группы это не тривиальная задача. Это, как правило, требует анализа реальных данных о трафике различных ресурсов на разных страницах. В начале вы можете начать с одной группы, для простоты.


Используйте существующие инструменты (например Closure Compiler [https://developers.google.com/closure/compiler/],
YUI Compressor [https://github.com/yui/yuicompressor/]) для объединения и сжатия CSS и JavaScript файлов во всех комплектах. Обратите внимание, что файлы должны быть объединены в том порядке, который удовлетворяет зависимости между комплектами. Например, если комплект A зависит от В, который зависит от С и D, то Вы должны перечислить файлы ресурсов начиная с С и D, затем B, и только после этого А.

После объединения и сжатия, Вы получите один CSS файл и один JavaScript файл. Предположим, они названы как all-xyz.css и all-xyz.js, где xyz это временная метка или хэш, который используется, чтобы создать уникальное имя файла, чтобы избежать проблем с HTTP кэшированием.

Сейчас мы находимся на последнем шаге. Настройте [[yii\web\AssetManager|asset manager]] в конфигурации вашего приложения, как показано ниже:

return [
    'components' => [
        'assetManager' => [
            'bundles' => [
                'all' => [
                    'class' => 'yii\web\AssetBundle',
                    'basePath' => '@webroot/assets',
                    'baseUrl' => '@web/assets',
                    'css' => ['all-xyz.css'],
                    'js' => ['all-xyz.js'],
                ],
                'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
            ],
        ],
    ],
];





Как объяснено в подразделе Настройка Комплектов Ресурсов, приведенная выше конфигурация
изменяет поведение по умолчанию каждого комплекта. В частности, комплекты A, B, C и D не имеют больше никаких файлов ресурсов. Теперь они все зависят от all комплекта, который содержит скомбинированные all-xyz.css и all-xyz.js файлы. Следовательно, для страницы X, вместо включения исходных файлов ресурсов из комплектов A, B и C, только два этих объединённых файла будут включены, то же самое произойдёт и со страницей Y.

Есть еще один трюк, чтобы сделать работу вышеуказанного подхода более отлаженной. Вместо изменения конфигурационного файла приложения напрямую, можно поставить комплект массива настроек в отдельный файл, и условно включить этот файл в конфигурацию приложения. Например,

return [
    'components' => [
        'assetManager' => [
            'bundles' => require(__DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php')),  
        ],
    ],
];





То есть, массив конфигурации комплекта ресурсов сохраняется в assets-prod.php для режима продакшена, и в assets-dev.php для режима не продакшена (разработки).


Замечание: этот механизм объединения комплектов ресурсов основан на способности [[yii\web\AssetManager::bundles]] перекрывать
поля регистрируемых комплектов ресурсов. Однако, как уже было сказано выше, эта возможность не распространяется на
изменения, внесенные в комплекты ресурсов на уровне метода [[yii\web\AssetBundle::init()]] ил после регистрации. Вам
следует избегать использования динамических комплектов ресурсов в процессе объединения.





Использование команды asset

Yii предоставляет консольную команду с именем asset для автоматизации подхода, который мы только что описали.

Чтобы использовать эту команду, Вы должны сначала создать файл конфигурации для описания того, как комплекты ресурсов должны быть скомбинированы, и как они должны быть сгруппированы. Затем Вы можете использовать подкомманду asset/template, чтобы сгенерировать первый шаблон и затем отредактировать его под свои нужды.

yii asset/template assets.php





Данная команда сгенерирует файл с именем assets.php в текущей директории. Содержание этого файла можно увидеть ниже:

<?php
/**
 * Файл конфигурации команды консоли "yii asset".
 * Обратите внимание, что в консольной среде, некоторые псевдонимы путей, такие как "@webroot' и '@web ",
 * не могут быть использованы.
 * Пожалуйста, определите отсутствующие псевдонимы путей.
 */
return [
    // Настроить команду/обратный вызов для сжатия файлов JavaScript:
    'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
    // Настроить команду/обратный вызов для сжатия файлов CSS:
    'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
    // Whether to delete asset source after compression:
    'deleteSource' => false,
    // Список комплектов ресурсов для сжатия:
    'bundles' => [
        // 'yii\web\YiiAsset',
        // 'yii\web\JqueryAsset',
    ],
    // Комплект ресурса после сжатия:
    'targets' => [
        'all' => [
            'class' => 'yii\web\AssetBundle',
            'basePath' => '@webroot/assets',
            'baseUrl' => '@web/assets',
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
        ],
    ],
    // Настройка менеджера ресурсов:
    'assetManager' => [
    ],
];





Вы должны изменить этот файл и указать в bundles параметре, какие комплекты Вы планируете объединить. В параметре targets вы должны указать, как комплекты должны быть поделены в группы. Вы можете указать одну или несколько групп, как уже было сказано выше.


Note: Так как псевдонимы путей @webroot и @web не могут быть использованы в консольном приложении, Вы должны явно задать их в файле конфигурации.


JavaScript файлы объединены, сжаты и записаны в js/all-{hash}.js, где {hash} перенесён из хэша результирующего файла.

Параметры jsCompressor и cssCompressor указывают на консольные команды или обратный вызов PHP, выполняющие JavaScript и CSS объединение/сжатие. По умолчанию Yii использует Closure Compiler [https://developers.google.com/closure/compiler/] для объединения JavaScript файлов и YUI Compressor [https://github.com/yui/yuicompressor/] для объединения CSS файлов. Вы должны установить эти инструменты вручную или настроить данные параметры, чтобы использовать ваши любимые инструменты.

Вы можете запустить команду asset с файлом конфигурации для объединения и сжатия файлов ресурсов, а затем создать новый файл конфигурации комплекта ресурса assets-prod.php:

yii asset assets.php config/assets-prod.php





Сгенерированный файл конфигурации может быть включен в конфигурацию приложения, как описано в последнем подразделе.


Примечание: в случае если вы перенастраиваете комплекты ресурсов через [[yii\web\AssetManager::bundles]] или
[[yii\web\AssetManager::assetMap]], и хотите, чтобы эти настройки применились для исходных файлов для сжатия,
вы должны занести эти опции в раздел assetManager файла кофигурации для команды asset.



Замечание: составляя набор исходных комплектов ресурсов для сжатия, следует избегать использования таких, чьи параметры
могут изменяться динамически (т.е. на уровне метода init() или после регистрации), поскольку они могут функционировать
неправильно после сжатия.



Для справки: Команда asset является не единственной опцией для автоматического процесса объединения и сжатия ресурсов.
Вы можете также использовать такой замечательный инструмент запуска приложений как grunt [http://gruntjs.com/] для достижения той же цели.





Группировка Комплектов Ресурсов 

В последнем подразделе, мы пояснили, как объединять все комплекты ресурсов в единый в целях минимизации HTTP запросов для файлов ресурсов, упоминавшихся в приложении. Это не всегда желательно на практике. Например, представьте себе, что Ваше приложение содержит “front end”, а также и “back end”, каждый из которых использует свой набор JavaScript и CSS файлов. В этом случае, объединение всех комплектов ресурсов с обеих сторон в один не имеет смысла потому, что комплекты ресурсов для “front end” не используются в “back end”, и это будет бесполезной тратой трафика - отправлять “back end” ресурсы, когда страница из “front end” будет запрошена.

Для решения вышеуказанной проблемы, вы можете разделить комплекты по группам и объединить комплекты ресурсов для каждой группы. Следующая конфигурация показывает, как Вы можете объединять комплекты ресурсов:

return [
    ...
    // Укажите выходной комплект для групп:
    'targets' => [
        'allShared' => [
            'js' => 'js/all-shared-{hash}.js',
            'css' => 'css/all-shared-{hash}.css',
            'depends' => [
                // Включаем все ресурсы поделённые между 'backend' и 'frontend'
                'yii\web\YiiAsset',
                'app\assets\SharedAsset',
            ],
        ],
        'allBackEnd' => [
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
            'depends' => [
                // Включаем только 'backend' ресурсы:
                'app\assets\AdminAsset'
            ],
        ],
        'allFrontEnd' => [
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
            'depends' => [], // Включаем все оставшиеся ресурсы
        ],
    ],
    ...
];





Как вы можете видеть, комплекты ресурсов поделены на три группы: allShared, allBackEnd и allFrontEnd. Каждая из которых зависит от соответствующего набора комплектов ресурсов. Например, allBackEnd зависит от app\assets\AdminAsset. При запуске команды asset с данной конфигурацией будут объединены комплекты ресурсов согласно приведенной выше спецификации.


Для справки: Вы можете оставить depends конфигурацию пустой для одного из намеченных комплектов. Поступая таким образом, данный комплект ресурсов будет зависеть от всех остальных комплектов ресурсов, от которых другие целевые комплекты не зависят.










          

      

      

    

  

  
    
    
    Виджеты для данных
    
    

    
 
  
  

    
      
          
            
  
Виджеты для данных

Yii предоставляет набор виджетов, которые могут быть использованы для отображения данных.
В то время как виджет DetailView может быть использован для отображения данных по одной записи, то
виджеты ListView и GridView могут быть использованы для показа данных в виде списка или
таблицы с возможностью сортировки, фильтрации и разбивки данных постранично.


DetailView [bookmark: detail-view]

Виджет [[yii\widgets\DetailView|DetailView]] отображает детали по данным для одной [[yii\widgets\DetailView::$model|model]].

Этот виджет лучше использовать для отображения данных модели в обычном формате(т.е. каждый атрибут модели будет представлен
в виде строки в таблице). Модель может быть либо объектом класса [[\yii\base\Model]] или его наследником, таких как
active record , либо ассоциативным массивом.

DetailView использует свойство [[yii\widgets\DetailView::$attributes|$attributes]] для определений, какие атрибуты модели
должны быть показаны и в каком формате. Обратитесь к разделу Форматирование данных за возможными
настройками форматирования.

Обычное использование DetailView сводится к следующему коду:

echo DetailView::widget([
    'model' => $model,
    'attributes' => [
        'title',                                           // title свойство (обычный текст)
        'description:html',                                // description свойство, как HTML
        [                                                  // name свойство зависимой модели owner
            'label' => 'Owner',
            'value' => $model->owner->name,            
            'contentOptions' => ['class' => 'bg-red'],     // настройка HTML атрибутов для тега, соответсвующего value
            'captionOptions' => ['tooltip' => 'Tooltip'],  // настройка HTML атрибутов для тега, соответсвующего label
        ],
        'created_at:datetime',                             // дата создания в формате datetime
    ],
]);








ListView [bookmark: list-view]

Виджет [[yii\widgets\ListView|ListView]] использует для отображения информации провайдера данных.
Каждая модель отображается, используя определённый [[yii\widgets\ListView::$itemView|вид]]. Поскольку провайдер включает
в себя разбивку на страницы, сортировку и фильтрацию, то его использование удобно для отображения информации конечному
пользователю и создания интерфейса управления данными.

Обычное использование сводится к следующему коду:

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
]);





_post файл вид, который может содержать следующее:

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="post">
    <h2><?= Html::encode($model->title) ?></h2>

    <?= HtmlPurifier::process($model->text) ?>
</div>





В вышеописанном коде текущая модель доступна как $model. Кроме этого доступны дополнительные переменные:


	$key: mixed, значение ключа в соответствии с данными.

	$index: integer, индекс элемента данных в массиве элементов, возвращенных поставщику данных, который начинается с 0.

	$widget: ListView, это экземпляр виджета.



Если необходимо послать дополнительные данные в каждый вид, то можно использовать свойство [[yii\widgets\ListView::$viewParams|$viewParams]]
как ключ-значение, например:

echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
    'viewParams' => [
        'fullView' => true,
        'context' => 'main-page',
        // ...
    ],
]);





Они также станут доступны в виде в качестве переменных.




GridView [bookmark: grid-view]

Таблица данных или GridView - это один из сверхмощных Yii виджетов. Он может быть полезен, если необходимо быстро создать
административный раздел системы. GridView использует данные, как провайдер данных и отображает
каждую строку используя [[yii\grid\GridView::columns|columns]] для предоставления данных в таблице.

Каждая строка из таблицы представлена данными из одиночной записи и колонка, как правило, представляет собой атрибут
записи (некоторые столбцы могут соответствовать сложным выражениям атрибутов или статическому тексту).

Минимальный код, который необходим для использования GridView:

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo GridView::widget([
    'dataProvider' => $dataProvider,
]);





В вышеприведённом коде сначала создаётся провайдер данных и затем используется GridView для отображения атрибутов для
каждого элемента из провайдера данных. Отображенная таблица оснащена функционалом сортировки и разбивки на страницы из
коробки.


Колонки таблицы

Колонки таблицы настраиваются с помощью определённых [[yii\grid\Column]] классов, которые настраиваются в свойстве
[[yii\grid\GridView::columns|columns]] виджета GridView. В зависимости от типа колонки и их настроек, данные отображаются
по разному. По умолчанию это класс [[yii\grid\DataColumn]], который представляет атрибут модели с возможностью сортировки
и фильтрации по нему.

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'],
        // Обычные поля определенные данными содержащимися в $dataProvider.
        // Будут использованы данные из полей модели.
        'id',
        'username',
        // Более сложный пример.
        [
            'class' => 'yii\grid\DataColumn', // может быть опущено, поскольку является значением по умолчанию
            'value' => function ($data) {
                return $data->name; // $data['name'] для массивов, например, при использовании SqlDataProvider.
            },
        ],
    ],
]);





Учтите, что если [[yii\grid\GridView::columns|columns]] не сконфигурирована, то Yii попытается отобразить все возможные
колонки из провайдера данных.




Классы колонок

Колонки таблицы могут быть настроены, используя различные классы колонок:

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\SerialColumn', // <-- тут
            // тут можно настроить дополнительные свойства
        ],





В дополнение к классам колонок от Yii, вы можете самостоятельно создать свой собственный класс.

Каждый класс колонки наследуется от [[yii\grid\Column]], так что есть некоторые общие параметры, которые можно установить
при настройке колонок.


	[[yii\grid\Column::header|header]] позволяет установить содержание для строки заголовка.



	[[yii\grid\Column::footer|footer]] позволяет установить содержание для “подвала”.



	[[yii\grid\Column::visible|visible]] определяет, должен ли столбец быть видимым.



	[[yii\grid\Column::content|content]] позволяет передавать действительный обратный вызов, который будет возвращать данные для строки.Формат следующий:

function ($model, $key, $index, $column) {
    return 'a string';
}









Вы можете задать различные параметры контейнера HTML через массивы:


	[[yii\grid\Column::headerOptions|headerOptions]]

	[[yii\grid\Column::footerOptions|footerOptions]]

	[[yii\grid\Column::filterOptions|filterOptions]]

	[[yii\grid\Column::contentOptions|contentOptions]]




DataColumn 

[[yii\grid\DataColumn|Data column]] используется для отображения и сортировки данных. По умолчанию этот тип
используется для всех колонок.

Основная настройка этой колонки - это свойство [[yii\grid\DataColumn::format|format]]. Значение этого свойства посылается
в методы formatter компонента, который по умолчанию [[\yii\i18n\Formatter|Formatter]]

echo GridView::widget([
    'columns' => [
        [
            'attribute' => 'name',
            'format' => 'text'
        ],
        [
            'attribute' => 'birthday',
            'format' => ['date', 'php:Y-m-d']
        ],
    ],
]);





В вышеприведённом коде  text соответствует [[\yii\i18n\Formatter::asText()]]. В качестве первого аргумента для этого
метода будет передаваться значение колонки. Во второй колонки описано  date, которая соответствует [[\yii\i18n\Formatter::asDate()]].
В качестве первого аргумента, опять же, будет передаваться значение колонки, в то время как второй аргумент будет
‘php:Y-m-d’.

Доступный список форматов смотрите в разделе Форматирование данных.

Для конфигурации колонок данных также доступен короткий вид записи, который описан в API документации для [[yii\grid\GridView::columns|колонок]].




ActionColumn

[[yii\grid\ActionColumn|ActionColumn]] отображает кнопки действия, такие как изменение или удаление для каждой строки.

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\ActionColumn',
            // вы можете настроить дополнительные свойства здесь.
        ],





Доступные свойства для конфигурации:


	[[yii\grid\ActionColumn::controller|controller]] это идентификатор контроллера, который должен обрабатывать действия.
Если не установлен, то будет использоваться текущий активный контроллер.



	[[yii\grid\ActionColumn::template|template]] определяет шаблон для каждой ячейки в колонке действия. Маркеры заключённые
в фигурные скобки являются ID действием контроллера (также называются именами кнопок в контексте колонки действия).
Они могут быть заменены, через свойство [[yii\grid\ActionColumn::$buttons|buttons]]. Например, маркер {view} будет
заменён результатом из функции, определённой в buttons['view']. Если такая функция не может быть найдена, то маркер
заменяется на пустую строку. По умолчанию шаблон имеет вид {view} {update} {delete}.



	[[yii\grid\ActionColumn::buttons|buttons]] массив из функций для отображения кнопок. Ключи массива представлены как
имена кнопок (как описывалось выше), а значения представлены в качестве анонимных функций, которые выводят кнопки. Замыкания
должны использоваться в следующем виде:

function ($url, $model, $key) {
    // возвращаем HTML код для кнопки
}





где, $url - это URL, который будет повешен как ссылка на кнопку, $model - это объект модели для текущей строки и
$key - это ключ для модели из провайдера данных.



	[[yii\grid\ActionColumn::urlCreator|urlCreator]] замыкание, которое создаёт URL используя информацию из модели. Вид
замыкания должен быть таким же как и в [[yii\grid\ActionColumn::createUrl()]]. Если свойство не задано, то URL для кнопки
будет создана используя метод [[yii\grid\ActionColumn::createUrl()]].



	[[yii\grid\ActionColumn::visibleButtons|visibleButtons]] это массив условий видимости каждой из кнопок.
Ключи массива представлены как имена кнопок (как описывалось выше), а значения представлены как булево значение или
анонимная функция. Если имя кнопки не описано в массиве, она будет отображена по умолчанию.
Замыкания должны использоваться в следующем виде:





function ($model, $key, $index) {
  return $model->status === 'editable'; // отображать ли кнопку
}





Или вы можете передать булево значение:

[
    'update' => \Yii::$app->user->can('update')
]








CheckboxColumn

[[yii\grid\CheckboxColumn|Checkbox column]] отображает колонку как флаг (сheckbox).

Для добавления CheckboxColumn в виджет GridView, необходимо добавить его в  [[yii\grid\GridView::$columns|columns]]:

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        // ...
        [
            'class' => 'yii\grid\CheckboxColumn',
            // вы можете настроить дополнительные свойства здесь.
        ],
    ],





Пользователи могут нажимать на флаги для выделения строк в таблице. Отмеченные строки могут быть обработаны с помощью
JavaScript кода:

var keys = $('#grid').yiiGridView('getSelectedRows');
// массив ключей для отмеченных строк








SerialColumn

[[yii\grid\SerialColumn|Serial column]] выводит в строках номера начиная с 1 и увеличивая их по мере вывода строк.

Использование очень простое :

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'], // <-- тут
        // ...










Сортировка данных


Note: Эта секция под разработкой


	https://github.com/yiisoft/yii2/issues/1576









Фильтрация данных

Для фильтрации данных в GridView необходима модель, которая описывает форму для фильтрации, внося
условия в запрос поиска для провайдера данных.
Общепринятой практикой считается использование active records и создание для неё класса модели для
поиска, которая содержит необходимую функциональность(может быть сгенерирована через Gii). Класс модели
для поиска должен описывать правила валидации и реализовать метод search(), который будет возвращать провайдер данных.

Для поиска возможных Post моделей, можно создать PostSearch наподобие следующего примера:

<?php

namespace app\models;

use Yii;
use yii\base\Model;
use yii\data\ActiveDataProvider;

class PostSearch extends Post
{
    public function rules()
    {
        // только поля определенные в rules() будут доступны для поиска
        return [
            [['id'], 'integer'],
            [['title', 'creation_date'], 'safe'],
        ];
    }

    public function scenarios()
    {
        // bypass scenarios() implementation in the parent class
        return Model::scenarios();
    }

    public function search($params)
    {
        $query = Post::find();

        $dataProvider = new ActiveDataProvider([
            'query' => $query,
        ]);

        // загружаем данные формы поиска и производим валидацию
        if (!($this->load($params) && $this->validate())) {
            return $dataProvider;
        }

        // изменяем запрос добавляя в его фильтрацию
        $query->andFilterWhere(['id' => $this->id]);
        $query->andFilterWhere(['like', 'title', $this->title])
              ->andFilterWhere(['like', 'creation_date', $this->creation_date]);

        return $dataProvider;
    }
}





Теперь можно использовать этот метод в контроллере, чтобы получить провайдер данных для GridView:

$searchModel = new PostSearch();
$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [
    'dataProvider' => $dataProvider,
    'searchModel' => $searchModel,
]);





и в виде присвоить их  $dataProvider и $searchModel в виджете GridView:

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'filterModel' => $searchModel,
    'columns' => [
        // ...
    ],
]);








Отдельная форма фильтрации

Фильтров в шапке GridView достаточно для большинства задач, но добавление отдельной формы фильтрации не представляет
особой сложности. Она бывает полезна в случае необходимости фильтрации по полям, которые не отображаются в GridView
или особых условий фильтрации, например по диапазону дат.

Создайте частичное представление _search.php со следующим содержимым:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\PostSearch */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="post-search">
    <?php $form = ActiveForm::begin([
        'action' => ['index'],
        'method' => 'get',
    ]); ?>

    <?= $form->field($model, 'title') ?>

    <?= $form->field($model, 'creation_date') ?>

    <div class="form-group">
        <?= Html::submitButton('Искать', ['class' => 'btn btn-primary']) ?>
        <?= Html::resetButton('Сбросить', ['class' => 'btn btn-default']) ?>
    </div>

    <?php ActiveForm::end(); ?>
</div>





и добавьте его отображение в index.php таким образом:

<?= $this->render('_search', ['model' => $searchModel]) ?>






Note: если вы используете Gii для генерации CRUD кода, отдельная форма фильтрации (_search.php)
генерируется по умолчанию, но закомментирована в представлении index.php. Вам остается только раскомментировать
эту строку и форма готова к использованию!


Для фильтра по диапазону дат мы можем добавить дополнительные атрибуты createdFrom и createdTo в поисковую модель
(их нет в соответствующей таблице модели):

class PostSearch extends Post
{
    /**
     * @var string
     */
    public $createdFrom;

    /**
     * @var string
     */
    public $createdTo;
}





Расширим условия запроса в методе search():

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])
      ->andFilterWhere(['<=', 'creation_date', $this->createdTo]);





И добавим соответствующие поля в форму фильтрации:

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>








Отображение зависимых моделей

Бывают случаи, когда необходимо в GridView вывести в колонке значения из зависимой модели для active records, например
имя автора новости, вместо его id. Для этого необходимо задать [[yii\grid\GridView::$columns]] как author.name, если
же модель Post содержит зависимость с именем author и имя автора хранится в атрибуте name. GridView отобразит
имя автора, но вот сортировка и фильтрации по этому полю будет не доступна. Необходимо дополнить некоторый функционал в
PostSearch модель, которая была упомянута в предыдущем разделе.

Для включения сортировки по зависимой колонки необходимо присоединить зависимую таблицу и добавить правило в компонент
Sort для провайдера данных.:

$query = Post::find();
$dataProvider = new ActiveDataProvider([
    'query' => $query,
]);

// присоединяем зависимость `author` которая является связью с таблицей `users`
// и устанавливаем алиас таблицы в значение `author`
$query->joinWith(['author' => function($query) { $query->from(['author' => 'users']); }]);
// добавляем сортировку по колонке из зависимости
$dataProvider->sort->attributes['author.name'] = [
    'asc' => ['author.name' => SORT_ASC],
    'desc' => ['author.name' => SORT_DESC],
];

// ...





Фильтрации также необходим вызов joinWith, как описано выше. Также необходимо определить для поиска столбец в атрибутах
и правилах:

public function attributes()
{
    // делаем поле зависимости доступным для поиска
    return array_merge(parent::attributes(), ['author.name']);
}

public function rules()
{
    return [
        [['id'], 'integer'],
        [['title', 'creation_date', 'author.name'], 'safe'],
    ];
}





В search() просто добавляется другое условие фильтрации:

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.name')]);






Info: В коде, что выше, используется такая же строка, как и имя зависимости и псевдонима таблицы.
Однако, когда ваш псевдоним и имя связи различаются, вы должны обратить внимание, где вы используете псевдоним,
а где имя связи. Простым правилом для этого является использование псевдонима в каждом месте, которое используется
для построения запроса к базе данных, и имя связи во всех других определениях, таких как attributes(), rules() и т.д.

Например, если вы используете псевдоним au для связи с таблицей автора, то joinWith будет выглядеть так:

$query->joinWith(['author' => function($query) { $query->from(['au' => 'users']); }]);





Это также возможно вызвать как $query->joinWith(['author']);, когда псевдоним определен в определении отношения.

Псевдоним должен быть использован в состоянии фильтра, но имя атрибута остается неизменным:

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('author.name')]);





То же самое верно и для определения сортировки:

$dataProvider->sort->attributes['author.name'] = [
     'asc' => ['au.name' => SORT_ASC],
     'desc' => ['au.name' => SORT_DESC],
];





Кроме того, при определении [[yii\data\Sort::defaultOrder|defaultOrder]] для сортировки необходимо использовать имя
зависимости вместо псевдонима:

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];









Info: Для подробной информации по joinWith и запросам, выполняемым в фоновом режиме, обратитесь к
active record документации.



Использование SQL видов для вывода данных, их сортировки и фильтрации.

Существует и другой подход, который быстре и более удобен - SQL виды. Например, если необходимо показать таблицу из
пользователей и их профилей, то можно выбрать такой путь:

CREATE OR REPLACE VIEW vw_user_info AS
    SELECT user.*, user_profile.lastname, user_profile.firstname
    FROM user, user_profile
    WHERE user.id = user_profile.user_id





Теперь вам необходимо создать ActiveRecord, через который будут доступны данные из вида выше:

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord
{

    /**
     * @inheritdoc
     */
    public static function tableName()
    {
        return 'vw_user_info';
    }

    public static function primaryKey()
    {
        return ['id'];
    }

    /**
     * @inheritdoc
     */
    public function rules()
    {
        return [
            // здесь определяйте ваши правила
        ];
    }

    /**
     * @inheritdoc
     */
    public static function attributeLabels()
    {
        return [
            // здесь определяйте ваши метки атрибутов
        ];
    }
}





После этого вы можете использовать UserView в модели поиска, без каких-либо дополнительных условий по сортировке и фильтрации.
Все атрибуты будут работать из коробки. Но такая реализация имеет свои плюсы и минусы:


	вам не надо определять условия сортировок и фильтраций. Всё работает из коробки;

	это намного быстрее данных, так как некоторые запросы уже выполнены (т.е. для каждой зависимости не нужно выполнять дополнительные запросы)

	поскольку это простое отображение данных из sql вида, то в модели будет отсутствовать некоторая доменная логика, например
такие методы как isActive, isDeleted, необходимо продублировать в классе, который описывает вид.








Несколько GridViews на одной странице

Вы можете использовать больше одной GridView на одной странице. Для этого нужно внести некоторые дополнительные настройки
для того, чтобы они друг другу не мешали.
При использовании нескольких экземпляров GridView вы должны настроить различные имена параметров для сортировки и ссылки
для разбиения на страницы так, чтобы каждый GridView имел свою индивидуальную сортировку и разбиение на страницы.
Сделать это возможно через настройку [[yii\data\Sort::sortParam|sortParam]] и [[yii\data\Pagination::pageParam|pageParam]]
свойств провайдеров данных [[yii\data\BaseDataProvider::$sort|sort]] и [[yii\data\BaseDataProvider::$pagination|pagination]]

Допустим мы хотим список моделей Post и User, для которых мы уже подготовили провайдеры данных $userProvider и
$postProvider, тогда код будет выглядеть следующим образом:

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';
$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';
$postProvider->sort->sortParam = 'post-sort';

echo '<h1>Users</h1>';
echo GridView::widget([
    'dataProvider' => $userProvider,
]);

echo '<h1>Posts</h1>';
echo GridView::widget([
    'dataProvider' => $postProvider,
]);








Использование GridView с Pjax


Note: Секция находится в стадии разработки


TBD









          

      

      

    

  

  
    
    
    Виджеты
    
    

    
 
  
  

    
      
          
            
  
Виджеты

Виджеты представляют собой многоразовые строительные блоки, используемые в представлениях
для создания сложных и настраиваемых элементов пользовательского интерфейса в рамках объектно-ориентированного
подхода. Например, виджет выбора даты (date picker) позволяет генерировать интерактивный интерфейс для выбора дат,
предоставляя пользователям приложения удобный способ для ввода данных такого типа. Все, что нужно для
подключения виджета - это добавить следующий код в представление:

<?php
use yii\bootstrap\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>





В комплект Yii входит большое количество виджетов, например: [[yii\widgets\ActiveForm|active form]],
[[yii\widgets\Menu|menu]], виджеты jQuery UI [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/README.md], виджеты Twitter Bootstrap [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/usage-widgets.md].
Далее будут представлены базовые сведения о виджетах. Для получения сведений относительно использования
конкретного виджета, следует обратиться к документации соответствующего класса.


Использование Виджетов 

Главным образом, виджеты применяют в представлениях. Для того, чтобы использовать виджет
в представлении, достаточно вызвать метод [[yii\base\Widget::widget()]]. Метод принимает массив настроек
для инициализации виджета и возвращает результат его рендеринга. Например, следующий
код добавляет виджет для выбора даты, сконфигурированный для использования русского в качестве языка интерфейса
виджета и хранения вводимых данных в атрибуте from_date модели $model.

<?php
use yii\bootstrap\DatePicker;
?>
<?= DatePicker::widget([
    'model' => $model,
    'attribute' => 'from_date',
    'language' => 'ru',
    'clientOptions' => [
        'dateFormat' => 'yy-mm-dd',
    ],
]) ?>





Некоторые виджеты могут иметь внутреннее содержимое, которое следует располагать между вызовами методов
[[yii\base\Widget::begin()]] и [[yii\base\Widget::end()]]. Например, для генерации формы входа, в следующем
фрагменте кода используется виджет [[yii\widgets\ActiveForm]]. Этот виджет сгенерирует открывающий и закрывающий
тэги <form> в местах вызова методов begin() и end() соответственно. При этом, содержимое, расположенное
между вызовами указанных методов будет выведено без каких-либо изменений.

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

    <?= $form->field($model, 'username') ?>

    <?= $form->field($model, 'password')->passwordInput() ?>

    <div class="form-group">
        <?= Html::submitButton('Login') ?>
    </div>

<?php ActiveForm::end(); ?>





Обратите внимание на то, что в отличие от метода [[yii\base\Widget::widget()]], который возвращает результат
рендеринга, метод [[yii\base\Widget::begin()]] возвращает экземпляр виджета, который может быть
использован в дальнейшем для формирования его внутреннего содержимого.


Задание глобальных умолчаний

Глобальные умолчания для определённого типа виджета могут быть заданы через DI контейнер:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);





Подробнее это описано в подразделе «Практическое использование» раздела «Контейнер внедрения зависимостей».






Создание Виджетов 

Для того, чтобы создать виджет, следует унаследовать класс [[yii\base\Widget]] и переопределить методы
[[yii\base\Widget::init()]] и/или [[yii\base\Widget::run()]]. Как правило, метод init() должен содержать
код, выполняющий нормализацию свойств виджета, а метод run() - код, возвращающий результат рендеринга виджета.
Результат рендеринга может быть выведен непосредственно с помощью конструкции “echo” или же возвращен
в строке методом run().

В следующем примере, виджет HelloWidget HTML-кодирует и отображает содержимое, присвоенное свойству message.
В случае, если указанное свойство не установлено, виджет, в качестве значения по умолчанию отобразит строку “Hello World”.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public $message;

    public function init()
    {
        parent::init();
        if ($this->message === null) {
            $this->message = 'Hello World';
        }
    }

    public function run()
    {
        return Html::encode($this->message);
    }
}





Для того, чтобы использовать этот виджет, достаточно добавить в представление следующий код:

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'Good morning']) ?>





Ниже представлен вариант виджета HelloWidget, который принимает содержимое, обрамленное вызовами методов
begin() и end(), HTML-кодирует его и выводит.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public function init()
    {
        parent::init();
        ob_start();
    }

    public function run()
    {
        $content = ob_get_clean();
        return Html::encode($content);
    }
}





Как Вы можете видеть, в методе init() происходит включение буферизации вывода PHP таким образом, что весь вывод
между вызовами init() и run() может быть перехвачен, обработан и возвращен в run().


Info: При вызове метода [[yii\base\Widget::begin()]] будет создан новый экземпляр виджета, при этом
вызов метода init() произойдет сразу после выполнения остального кода в конструкторе виджета.
При вызове метода [[yii\base\Widget::end()]], будет вызван метод run(), а возвращенное им значение будет выведено
методом end().


Следующий фрагмент кода содержит пример использования модифицированного варианта HelloWidget:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

    content that may contain <tag>'s

<?php HelloWidget::end(); ?>





В некоторых случаях, виджету может потребоваться вывести крупный блок содержимого. И хотя это содержимое может
быть встроено непосредственно в метод run(), целесообразней поместить его в представление
и вызвать метод [[yii\base\Widget::render()]] для его рендеринга. Например,

public function run()
{
    return $this->render('hello');
}





По умолчанию, файлы представлений виджетов должны находиться в директории WidgetPath/views, где WidgetPath -
директория, содержащая файл класса виджета. Таким образом, в приведенном выше примере, для виджета будет
использован файл представления @app/components/views/hello.php, при этом файл с классом виджета расположен в
@app/components. Для того, чтобы изменить директорию, в которой содержатся файлы-представления для виджета,
следует переопределить метод [[yii\base\Widget::getViewPath()]].




Лучшие Практики 

Виджеты представляют собой объектно-ориентированный подход к повторному использованию кода пользовательского
интерфейса.

При создании виджетов, следует придерживаться основных принципов концепции MVC. В общем случае, основную логику
следует располагать в классе виджета, разделяя при этом код, отвечающий за разметку в представления.

Разрабатываемые виджеты должны быть самодостаточными. Это означает, что для их использования должно быть
достаточно всего лишь добавить виджет в представление. Добиться этого бывает затруднительно в том случае,
когда для его функционирования требуются внешние ресурсы, такие как CSS, JavaScript, изображения и т.д.
К счастью, Yii предоставляет поддержку механизма для работы с ресурсами asset bundles,
который может быть успешно использован для решения данной проблемы.

В случае, когда виджет не содержит логики, а содержит только код, отвечающий за вывод разметки, он мало
отличается от представления. В действительности, единственное его отличие состоит в том, что
виджет представляет собой отдельный и удобный для распространения класс, в то время как представление - это
обычный PHP скрипт, подходящий для использования только лишь в конкретном приложении.







          

      

      

    

  

  
    
    
    Работа с несколькими моделями
    
    

    
 
  
  

    
      
          
            
  
Работа с несколькими моделями

Когда имеешь дело со сложными данными, иногда может потребоваться использовать несколько разных моделей для обработки данных, введенных
пользователем. Для примера, предположим, что информация пользователя для входа хранится в таблице user, а данные профиля
хранятся в таблице profile, и вы можете захотеть обрабатывать входные данные о пользователе через модели User и Profile.
Учитывая поддержку Yii моделей и форм, вы можете решить данную задачу способом, не сильно отличающимся от обработки одинарной модели.

Далее мы покажем, как можно создать форму, которая позволила бы вам собирать данные для обеих моделей User и Profile.

Действие контроллера для обработки данных пользователя и данных профиля может быть написано следующим образом,

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
    public function actionUpdate($id)
    {
        $user = User::findOne($id);
        $profile = Profile::findOne($id);
        
        if (!isset($user, $profile)) {
            throw new NotFoundHttpException("The user was not found.");
        }
        
        $user->scenario = 'update';
        $profile->scenario = 'update';
        
        if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
            $isValid = $user->validate();
            $isValid = $profile->validate() && $isValid;
            if ($isValid) {
                $user->save(false);
                $profile->save(false);
                return $this->redirect(['user/view', 'id' => $id]);
            }
        }
        
        return $this->render('update', [
            'user' => $user,
            'profile' => $profile,
        ]);
    }
}





В действии update, мы сначала загружаем из базы модели $user и $profile. Затем мы вызываем метод [[yii\base\Model::load()]]
для заполнения этих двух моделей данными, введенными пользователем. В случае успеха мы проверяем модели и сохраняем их. В противном случае
мы рендерим представление update, которое содержит следующий контент:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'user-update-form',
    'options' => ['class' => 'form-horizontal'],
]) ?>
    <?= $form->field($user, 'username') ?>

    ...other input fields...
    
    <?= $form->field($profile, 'website') ?>

    <?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>





Как вы можете видеть, в представлении update рендерятся поля ввода для двух моделей $user и $profile.





          

      

      

    

  

  
    
    
    Быстрый старт
    
    

    
 
  
  

    
      
          
            
  
Быстрый старт

Yii включает полноценный набор средств для упрощённой реализации RESTful API [https://ru.wikipedia.org/wiki/REST].
В частности это следующие возможности:


	Быстрое создание прототипов с поддержкой распространенных API к Active Record;

	Настройка формата ответа (JSON и XML реализованы по умолчанию);

	Получение сериализованных объектов с нужной вам выборкой полей;

	Надлежащее форматирование данных и ошибок при их валидации;

	Поддержка HATEOAS [http://en.wikipedia.org/wiki/HATEOAS];

	Эффективная маршрутизация с надлежащей проверкой HTTP методов;

	Встроенная поддержка методов OPTIONS и HEAD;

	Аутентификация и авторизация;

	HTTP кэширование и кэширование данных;

	Настройка ограничения для частоты запросов (Rate limiting);



Рассмотрим пример, как можно настроить Yii под RESTful API, приложив при этом минимум усилий.

Предположим, вы захотели RESTful API для данных по пользователям. Эти данные хранятся в базе данных и для работы с ними
вами была ранее создана модель [[yii\db\ActiveRecord|ActiveRecord]]  (класс app\models\User).


Создание контроллера 

Во-первых, создадим класс контроллера app\controllers\UserController:

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
    public $modelClass = 'app\models\User';
}





Класс контроллера наследуется от [[yii\rest\ActiveController]]. Мы задали [[yii\rest\ActiveController::modelClass|modelClass]]
как app\models\User, тем самым указав контроллеру, к какой модели ему необходимо обращаться для редактирования или
выборки данных.




Настройка правил URL 

Далее изменим настройки компонента urlManager в конфигурации приложения:

'urlManager' => [
    'enablePrettyUrl' => true,
    'enableStrictParsing' => true,
    'showScriptName' => false,
    'rules' => [
        ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
    ],
]





Настройки выше добавляют правило для контроллера user, которое предоставляет доступ к данным пользователя через красивые
URL и логичные глаголы HTTP.




Включение JSON на прием данных

Для того чтобы API мог принимать данные в формате JSON, сконфигурируйте [[yii\web\Request::$parsers|parsers]] свойство у компонента request application component на использование [[yii\web\JsonParser]] JSON данных на входе:

'request' => [
    'parsers' => [
        'application/json' => 'yii\web\JsonParser',
    ]
]






Note: Конфигурация, приведенная выше необязательна. Без приведенной выше конфигурации, API сможет определить только
application/x-www-form-urlencoded и multipart/form-data форматы.





Пробуем 

Вот так просто мы и создали RESTful API для доступа к данным пользователя. API нашего сервиса сейчас включает в себя:


	GET /users: получение постранично списка всех пользователей;

	HEAD /users: получение метаданных листинга пользователей;

	POST /users: создание нового пользователя;

	GET /users/123: получение информации по конкретному пользователю с id равным 123;

	HEAD /users/123: получение метаданных по конкретному пользователю с id равным 123;

	PATCH /users/123 и PUT /users/123: изменение информации по пользователю с id равным 123;

	DELETE /users/123: удаление пользователя с id равным 123;

	OPTIONS /users: получение поддерживаемых методов, по которым можно обратится к /users;

	OPTIONS /users/123: получение поддерживаемых методов, по которым можно обратится к /users/123.




Info: Yii автоматически использует множественное число от имени контроллера в URL.


Пробуем получить ответы по API используя curl:

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self, 
      <http://localhost/users?page=2>; rel=next, 
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
    {
        "id": 1,
        ...
    },
    {
        "id": 2,
        ...
    },
    ...
]





Попробуйте изменить заголовок допустимого формата ресурса на application/xml
и в ответ вы получите результат в формате XML:

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self, 
      <http://localhost/users?page=2>; rel=next, 
      <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>
    <item>
        <id>1</id>
        ...
    </item>
    <item>
        <id>2</id>
        ...
    </item>
    ...
</response>






Tip: Вы можете получить доступ к API через веб-браузер, введя адрес http://localhost/users. Но в этом случае
для передачи определённых заголовков вам, скорее всего, потребуются дополнительные плагины для браузера.


Если внимательно посмотреть результат ответа, то можно обнаружить, что в заголовках есть информация об общем числе записей,
количестве страниц и т. д. Тут так же можно обнаружить ссылки на другие страницы, как, например,
http://localhost/users?page=2. Перейдя по ней можно получить вторую страницу данных пользователей.

Используя параметры fields и expand в URL, можно указать, какие поля должны быть включены в результат. Например,
по адресу http://localhost/users?fields=id,email мы получим информацию по пользователям, которая будет содержать
только id и email.


Info: Вы наверное заметили, что при обращении к http://localhost/users мы получаем информацию с полями,
которые нежелательно показывать, такими как password_hash и auth_key. Вы можете и должны отфильтровать их как
описано в разделе «Ресурсы».





Резюме 

Используя Yii в качестве RESTful API фреймворка, мы реализуем точки входа API как действия контроллеров.
Контроллер используется для организации действий, которые относятся к определённому типу ресурса.

Ресурсы представлены в виде моделей данных, которые наследуются от класса [[yii\base\Model]].
Если необходима работа с базами данных (как с реляционными, так и с NoSQL), рекомендуется использовать для представления
ресурсов [[yii\db\ActiveRecord|ActiveRecord]].

Вы можете использовать [[yii\rest\UrlRule]] для упрощения маршрутизации точек входа API.

Хоть это не обязательно, рекомендуется отделять RESTful APIs приложение от основного веб-приложения. Такое разделение
легче обслуживается.







          

      

      

    

  

  
    
    
    Аутентификация
    
    

    
 
  
  

    
      
          
            
  
Аутентификация

Аутентификация — это процесс проверки подлинности пользователя. Обычно используется идентификатор
(например, username или адрес электронной почты) и секретный токен (например, пароль или ключ доступа), чтобы судить о
том, что пользователь именно тот, за кого себя выдаёт. Аутентификация является основной функцией формы входа.

Yii предоставляет фреймворк авторизации с различными компонентами, обеспечивающими процесс входа.
Для использования этого фреймворка вам нужно проделать следующее:


	Настроить компонент приложения [[yii\web\User|user]];

	Создать класс, реализующий интерфейс [[yii\web\IdentityInterface]].




Настройка [[yii\web\User]] 

Компонент [[yii\web\User|user]] управляет статусом аутентификации пользователя.
Он требует, чтобы вы указали [[yii\web\User::identityClass|identity class]], который будет содержать
текущую логику аутентификации. В следующей конфигурации приложения, [[yii\web\User::identityClass|identity class]] для
[[yii\web\User|user]] задан как app\models\User, реализация которого будет объяснена в следующем разделе:

return [
    'components' => [
        'user' => [
            'identityClass' => 'app\models\User',
        ],
    ],
];








Реализация [[yii\web\IdentityInterface]] 

[[yii\web\User::identityClass|identity class]] должен реализовывать [[yii\web\IdentityInterface]],
который содержит следующие методы:


	[[yii\web\IdentityInterface::findIdentity()|findIdentity()]]: Этот метод находит экземпляр identity class,
используя ID пользователя. Этот метод используется, когда необходимо поддерживать состояние аутентификации через сессии.

	[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]: Этот метод находит экземпляр identity class,
используя токен доступа. Метод используется, когда требуется аутентифицировать пользователя
только по секретному токену (например в RESTful приложениях, не сохраняющих состояние между запросами).

	[[yii\web\IdentityInterface::getId()|getId()]]: Этот метод возвращает ID пользователя, представленного данным экземпляром identity.

	[[yii\web\IdentityInterface::getAuthKey()|getAuthKey()]]: Этот метод возвращает ключ, используемый для основанной на cookie аутентификации.
Ключ сохраняется в аутентификационной cookie и позже сравнивается с версией, находящейся на сервере,
чтобы удостоверится, что аутентификационная cookie верная.

	[[yii\web\IdentityInterface::validateAuthKey()|validateAuthKey()]]: Этот метод реализует логику проверки ключа
для основанной на cookie аутентификации.



Если какой-то из методов не требуется, то можно реализовать его с пустым телом. Для примера,
если у вас RESTful приложение, не сохраняющее состояние между запросами, вы можете реализовать только
[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]
и [[yii\web\IdentityInterface::getId()|getId()]], тогда как остальные методы оставить пустыми.

В следующем примере, [[yii\web\User::identityClass|identity class]] реализован
как класс Active Record, связанный с таблицей user.

<?php

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
    public static function tableName()
    {
        return 'user';
    }

    /**
     * Finds an identity by the given ID.
     *
     * @param string|int $id the ID to be looked for
     * @return IdentityInterface|null the identity object that matches the given ID.
     */
    public static function findIdentity($id)
    {
        return static::findOne($id);
    }

    /**
     * Finds an identity by the given token.
     *
     * @param string $token the token to be looked for
     * @return IdentityInterface|null the identity object that matches the given token.
     */
    public static function findIdentityByAccessToken($token, $type = null)
    {
        return static::findOne(['access_token' => $token]);
    }

    /**
     * @return int|string current user ID
     */
    public function getId()
    {
        return $this->id;
    }

    /**
     * @return string current user auth key
     */
    public function getAuthKey()
    {
        return $this->auth_key;
    }

    /**
     * @param string $authKey
     * @return bool if auth key is valid for current user
     */
    public function validateAuthKey($authKey)
    {
        return $this->getAuthKey() === $authKey;
    }
}





Как объяснялось ранее, вам нужно реализовать только getAuthKey() и validateAuthKey(), если ваше приложение использует
только аутентификацию основанную на cookie. В этом случае вы можете использовать следующий код для генерации
ключа аутентификации для каждого пользователя и хранения его в таблице user:

class User extends ActiveRecord implements IdentityInterface
{
    ......

    public function beforeSave($insert)
    {
        if (parent::beforeSave($insert)) {
            if ($this->isNewRecord) {
                $this->auth_key = \Yii::$app->security->generateRandomString();
            }
            return true;
        }
        return false;
    }
}






Note: Не путайте identity класс User с классом [[yii\web\User]]. Первый является классом, реализующим
логику аутентификации пользователя. Он часто реализуется как класс Active Record, связанный
с некоторым постоянным хранилищем, где лежит информация о пользователях. Второй — это класс компонента приложения,
отвечающий за управление состоянием аутентификации пользователя.





Использование [[yii\web\User]] 

В основном класс [[yii\web\User]] используют как компонент приложения user.

Можно получить identity текущего пользователя, используя выражение Yii::$app->user->identity. Оно вернёт экземпляр
[[yii\web\User::identityClass|identity class]], представляющий текущего аутентифицированного пользователя,
или null, если текущий пользователь не аутентифицирован (например, гость). Следующий код показывает, как получить
другую связанную с аутентификацией информацию из [[yii\web\User]]:

// `identity` текущего пользователя. `Null`, если пользователь не аутентифицирован.
$identity = Yii::$app->user->identity;

// ID текущего пользователя. `Null`, если пользователь не аутентифицирован.
$id = Yii::$app->user->id;

// проверка на то, что текущий пользователь гость (не аутентифицирован)
$isGuest = Yii::$app->user->isGuest;





Для залогинивания пользователя вы можете использовать следующий код:

// найти identity с указанным username.
// замечание: также вы можете проверить и пароль, если это нужно
$identity = User::findOne(['username' => $username]);

// логиним пользователя
Yii::$app->user->login($identity);





Метод [[yii\web\User::login()]] устанавливает identity текущего пользователя в [[yii\web\User]]. Если сессии
[[yii\web\User::enableSession|включены]], то identity будет сохраняться в сессии, так что состояние
статуса аутентификации будет поддерживаться на всём протяжении сессии. Если [[yii\web\User::enableAutoLogin|включен]] вход, основанный на cookie (так называемый “запомни меня” вход), то identity также будет сохранена
в cookie так, чтобы статус аутентификации пользователя мог быть восстановлен на протяжении всего времени жизни cookie.

Для включения входа, основанного на cookie, вам нужно установить [[yii\web\User::enableAutoLogin]] в true
в конфигурации приложения. Вы также можете настроить время жизни, передав его при вызове метода [[yii\web\User::login()]].

Для выхода пользователя, просто вызовите

Yii::$app->user->logout();





Обратите внимание: выход пользователя имеет смысл только если сессии включены. Метод сбрасывает статус аутентификации
сразу и из памяти и из сессии. И по умолчанию, будут также уничтожены все сессионные данные пользователя.
Если вы хотите сохранить сессионные данные, вы должны вместо этого вызвать Yii::$app->user->logout(false).




События аутентификации 

Класс [[yii\web\User]] вызывает несколько событий во время процессов входа и выхода.


	[[yii\web\User::EVENT_BEFORE_LOGIN|EVENT_BEFORE_LOGIN]]: вызывается перед вызовом [[yii\web\User::login()]].
Если обработчик устанавливает свойство [[yii\web\UserEvent::isValid|isValid]] объекта в false,
процесс входа будет прерван.

	[[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]]: вызывается после успешного входа.

	[[yii\web\User::EVENT_BEFORE_LOGOUT|EVENT_BEFORE_LOGOUT]]: вызывается перед вызовом [[yii\web\User::logout()]].
Если обработчик устанавливает свойство [[yii\web\UserEvent::isValid|isValid]] объекта в false,
процесс выхода будет прерван.

	[[yii\web\User::EVENT_AFTER_LOGOUT|EVENT_AFTER_LOGOUT]]: вызывается после успешного выхода.



Вы можете использовать эти события для реализации функции аудита входа, сбора статистики онлайн пользователей. Например,
в обработчике для [[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]] вы можете сделать запись о времени и IP
адресе входа в таблицу user.







          

      

      

    

  

  
    
    
    HTTP кэширование
    
    

    
 
  
  

    
      
          
            
  
HTTP кэширование

Кроме серверного кэширования, которое мы описали в предыдущих разделах, веб-приложения также могут использовать кэширование на стороне клиента, чтобы сэкономить время для формирования и передачи одного и того же содержания страницы.

Чтобы использовать кэширование на стороне клиента, вы можете настроить [[yii\filters\HttpCache]] в качестве фильтра для действия контроллера, отображающего результат, который может быть закэширован на стороне клиента. [[yii\filters\HttpCache|HttpCache]] работает только для GET и HEAD запросов. Для этих запросов он может обрабатывать три вида HTTP заголовков, относящихся к кэшированию:


	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]




Заголовок Last-Modified 

Заголовок Last-Modified использует временную метку timestamp, чтобы показать была ли страница изменена после того, как клиент закэшировал её.

Вы можете настроить свойство [[yii\filters\HttpCache::lastModified]], чтобы включить отправку заголовка Last-Modified. Свойство должно содержать PHP-функцию, возвращающую временную метку UNIX timestamp времени последнего изменения страницы. Сигнатура PHP-функции должна совпадать со следующей,

/**
 * @param Action $action объект действия, которое в настоящее время обрабатывается
 * @param array $params значение свойства "params"
 * @return int временная метка UNIX timestamp, возвращающая время последнего изменения страницы
 */
function ($action, $params)





Ниже приведён пример использования заголовка Last-Modified:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('post')->max('updated_at');
            },
        ],
    ];
}





Приведенный выше код устанавливает, что HTTP кэширование должно быть включено только для действия index. Он
генерирует Last-Modified HTTP заголовок на основе времени последнего сообщения. Когда браузер в первый раз посещает страницу index, то страница будет сгенерирована на сервере и отправлена в браузер; если браузер снова зайдёт на эту страницу и с тех пор ни один пост не обновится, то сервер не будет пересоздавать страницу и браузер будет использовать закэшированную на стороне клиента версию. В результате, будет пропущено как создание страницы на стороне сервера, так и передача содержания страницы клиенту.




Заголовок ETag 

Заголовок “Entity Tag” (или коротко ETag) используется для передачи хэша содержания страницы. Если страница была изменена, то хэш страницы тоже изменится. Сравнивая хэш на стороне клиента с хэшем, генерируемым на стороне сервера, кэш может определить, была ли станица изменена и требуется ли её передавать заново.

Вы можете настроить свойство [[yii\filters\HttpCache::etagSeed]], чтобы включить передачу заголовка ETag. Свойство должно содержать PHP-функцию, возвращающий seed для генерации ETag хэша. Сигнатура PHP-функции должна совпадать со следующей,

/**
 * @param Action $action объект действия, которое в настоящее время обрабатывается
 * @param array $params значение свойства "params"
 * @return string строка используемая как seed для генерации ETag хэша
 */
function ($action, $params)





Ниже приведён пример использования заголовка ETag:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['view'],
            'etagSeed' => function ($action, $params) {
                $post = $this->findModel(\Yii::$app->request->get('id'));
                return serialize([$post->title, $post->content]);
            },
        ],
    ];
}





Приведенный выше код устанавливает, что HTTP кэширование должно быть включено только для действия view. Он
генерирует ETag HTTP заголовок на основе заголовка и содержания последнего сообщения. Когда браузер в первый раз посещает страницу view, то страница будет сгенерирована на сервере и отправлена в браузер; если браузер снова зайдёт на эту страницу и с тех пор ни один пост не обновится, то сервер не будет пересоздавать страницу и браузер будет использовать закэшированную на стороне клиента версию. В результате, будет пропущено как создание страницы на стороне сервера, так и передача содержание страницы клиенту.

ETags позволяет применять более сложные и/или более точные стратегии кэширования, чем заголовок Last-Modified.
Например, ETag станет невалидным (некорректным), если на сайте была включена другая тема

Ресурсоёмкая генерация ETag может противоречить цели использования HttpCache и внести излишнюю нагрузку,
т.к. он должен пересоздаваться при каждом запросе. Попробуйте найти простое выражение, которое инвалидирует кэш, если содержание страницы было изменено.


Note: В соответствии с RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4],
HttpCache будет отправлять как ETag заголовок, так и Last-Modified заголовок, если они оба были настроены.
И если клиент отправляет как If-None-Match заголовок, так и If-Modified-Since заголовок, то только первый из них будет принят.





Заголовок Cache-Control 

Заголовок Cache-Control определяет общую политику кэширования страниц. Вы можете включить его отправку, настроив свойство [[yii\filters\HttpCache::cacheControlHeader]]. По-умолчанию будет отправлен следующий заголовок:

Cache-Control: public, max-age=3600








Ограничитель кэша сессий 

Когда на странице используются сессии, PHP автоматически отправляет некоторые связанные с кэшем HTTP заголовки, определённые в настройке session.cache_limiter в php.ini. Эти заголовки могут вмешиваться или отключать кэширование, которое вы ожидаете от HttpCache. Чтобы предотвратить эту проблему, по умолчанию HttpCache будет автоматически отключать отправку этих заголовков. Если вы хотите изменить это поведение, вы должны настроить свойство [[yii\filters\HttpCache::sessionCacheLimiter]]. Это свойство может принимать строковое значение, включая public, private, private_no_expire и nocache. Пожалуйста, обратитесь к руководству PHP о session_cache_limiter() [http://www.php.net/manual/en/function.session-cache-limiter.php]
для объяснения этих значений.




SEO подтекст 

Поисковые боты, как правило, с уважением относятся к заголовкам кэширования. Поскольку некоторые из поисковых систем имеют ограничение на количество страниц для одного домена, которые они обрабатывают в течение определенного промежутка времени, то предоставление заголовков кэширования может помочь индексации, поскольку будет уменьшено число обрабатываемых страниц.







          

      

      

    

  

  
    
    
    Приложения
    
    

    
 
  
  

    
      
          
            
  
Приложения

Приложения это объекты, которые управляют всей структурой и жизненным циклом прикладной системы Yii.
Каждая прикладная система Yii включает в себя один объект приложения, который создается во входном скрипте
и глобально доступен через \Yii::$app.


Info: В зависимости от контекста, когда мы говорим “приложение”, это может означать как объект приложения так и
приложение как прикладную систему в целом.


Существует два вида приложений: [[yii\web\Application|веб приложения]] и [[yii\console\Application|консольные приложения]].
Как можно догадаться по названию, первый тип в основном занимается обработкой веб запросов, в то время как последний - консольных команд.


Конфигурации приложения 

Когда входной скрипт создаёт приложение, он загрузит конфигурацию
и применит её к приложению, например:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// загрузка конфигурации приложения
$config = require(__DIR__ . '/../config/web.php');

// создание объекта приложения и его конфигурирование
(new yii\web\Application($config))->run();





Также как и обычные конфигурации, конфигурации приложения указывают как следует инициализировать
свойства объектов приложения. Из-за того, что конфигурация приложения часто является очень сложной, она разбивается на несколько
конфигурационных файлов, например, web.php - файл в приведённом выше примере.




Свойства приложений 

Существует много важных свойств приложения, которые вы настраиваете в конфигурациях приложения. Эти свойства обычно
описывают окружение, в котором работает приложение. Например, приложение должно знать каким образом загружать контроллеры,
где хранить временные файлы, и т. д. Ниже мы рассмотрим данные свойства.


Обязательные свойства 

В любом приложении, вы должны настроить минимум два свойства: [[yii\base\Application::id|id]]
и [[yii\base\Application::basePath|basePath]].


[[yii\base\Application::id|id]] 

Свойство [[yii\base\Application::id|id]] это уникальный индекс приложения, который отличает его от других приложений.
В основном это используется внутрисистемно. Хоть это и не обязательно, но для лучшей совместимости рекомендуется использовать
буквенно-цифровые символы при указании индекса приложения.




[[yii\base\Application::basePath|basePath]] 

Свойство [[yii\base\Application::basePath|basePath]] указывает на корневую директорию приложения. Эта директория содержит
весь защищенный исходный код приложения. В данной директории обычно могут находится поддиректории models, views,
controllers, содержащие код, соответствующий шаблону проектирования MVC.

Вы можете задать свойство [[yii\base\Application::basePath|basePath]] используя путь к директории или используя
псевдоним пути. В обоих случаях, указанная директория должна существовать, иначе будет выброшено
исключение. Путь будет нормализован функцией realpath().

Свойство [[yii\base\Application::basePath|basePath]] часто используется для указания других важных путей (например, путь к
директории runtime, используемой приложением). По этой причине, псевдоним пути @app предустановлен и содержит данный путь.
Производные пути могут быть получены с использованием этого псевдонима пути (например, @app/runtime указывает на
временную директорию runtime).






Важные свойства 

Свойства, указанные в этом подразделе, часто нуждаются в преднастройке т.к. они разнятся от приложения к приложению.


[[yii\base\Application::aliases|aliases]] 

Это свойство позволяет настроить вам множество псевдонимов в рамках массива.
Ключами массива являются имена псевдонимов, а значениями массива - соответствующие значения пути. Например,

[
    'aliases' => [
        '@name1' => 'path/to/path1',
        '@name2' => 'path/to/path2',
    ],
]





Это свойство доступно таким образом, чтобы вы могли указывать псевдонимы в рамках конфигурации приложения,
а не вызовов метода [[Yii::setAlias()]].




[[yii\base\Application::bootstrap|bootstrap]] 

Данное свойство является очень удобным, оно позволяет указать массив компонентов, которые должны быть загружены
в процессе  [[yii\base\Application::bootstrap()|начальной загрузки]] приложения. Например, если вы хотите, чтобы
модуль производил тонкую настройку URL правил, вы можете указать его
ID в качестве элемента данного свойства.

Каждый из элементов данного свойства, может быть указан в одном из следующих форматов:


	ID, указанный в компонентах;

	ID модуля, указанный в модулях;

	название класса;

	массив конфигурации;

	анонимная функция, которая создаёт и возвращает компонент.



Например,

[
    'bootstrap' => [
        // ID компонента приложения или модуля
        'demo',

        // название класса
        'app\components\Profiler',

        // массив конфигурации
        [
            'class' => 'app\components\Profiler',
            'level' => 3,
        ],

        // анонимная функция
        function () {
            return new app\components\Profiler();
        }
    ],
]






Info: Если ID модуля такой же, как идентификатор компонента приложения, то в процессе начальной загрузки
будет использован компонент приложения. Если Вы вместо этого хотите использовать модуль, то можете указать его при
помощи анонимной функции похожей на эту:










[
function () {
return Yii::$app->getModule(‘user’);
},
]


В процессе [начальной загрузки](runtime-bootstrapping.md), каждый компонент будет создан. Если класс компонента имеет
интерфейс [[yii\base\BootstrapInterface]], то также будет вызван метод [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]].

Еще одним практическим примером является конфигурация [базового шаблона приложения](start-installation.md), в котором
модули `debug` и `gii` указаны как `bootstrap` компоненты, когда приложение находится в отладочном режиме.

```php
if (YII_ENV_DEV) {
 // настройка конфигурации для окружения 'dev'
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Note: Указывание слишком большого количества компонентов в bootstrap приведет
к снижению производительности приложения, потому что для каждого запроса одно и то же количество компонентов должно
быть загружено. Таким образом вы должны использовать начальную загрузку разумно.

[[yii\web\Application::catchAll|catchAll]]

Данное свойство поддерживается только [[yii\web\Application|веб приложениями]]. Оно указывает
действие контроллера, которое должно обрабатывать все входящие запросы от пользователя.
В основном это используется, когда приложения находится в режиме обслуживания и должно обрабатывать все запросы через
одно действие.

Конфигурация это массив, первый элемент которого, определяет маршрут действия. Остальные элементы в формате пара
ключ-значение задают дополнительные параметры, которые должны быть переданы действию (методу контроллера actionXXX).
Например,

[
 'catchAll' => [
 'offline/notice',
 'param1' => 'value1',
 'param2' => 'value2',
],
]

[[yii\base\Application::components|components]]

Данное свойство является наиболее важным. Оно позволяет вам зарегистрировать список именованных компонентов, называемых
компоненты приложения, которые Вы можете использовать в других местах.
Например,

[
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
],
]

Каждый компонент приложения указан массивом в формате ключ-значение. Ключ представляет собой ID компонента приложения,
в то время как значение представляет собой название класса или конфигурацию.

Вы можете зарегистрировать любой компонент в приложении, позже этот компонент будет глобально доступен через
выражение \Yii::$app->componentID.

Более подробная информация приведена в разделе Компоненты приложения.

[[yii\base\Application::controllerMap|controllerMap]]

Данное свойство позволяет вам задавать соответствия(mapping) между ID контроллера и произвольным классом контроллера.
По-умолчанию, Yii задает соответствие между ID контроллера и его классом согласно данному соглашению
(таким образом, ID post будет соответствовать app\controllers\PostController). Задавая эти свойства вы можете
переопределить соответствия для необходимых контроллеров. В приведенном ниже примере, account будет соответствовать
контроллеру app\controllers\UserController, в то время как article будет соответствовать контроллеру
app\controllers\PostController.

[
 'controllerMap' => [
 'account' => 'app\controllers\UserController',
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Ключами данного свойства являются ID контроллеров, а значениями являются соответствующие названия
классов(полное название класса с пространством имен) контроллера или конфигурация.

[[yii\base\Application::controllerNamespace|controllerNamespace]]

Данное свойство указывает пространство имен, в котором по умолчанию должны находится названия классов контроллеров.
По-умолчанию значение равно app\controllers. Если ID контроллера post, то согласно соглашению, соответствующий класс
контроллера (без пространства имен) будет равен PostController, а полное название класса будет равно app\controllers\PostController.

Класс контроллера может также находиться в поддиректории директории, соответствующей этому пространству имен.
Например, ID контроллера admin/post, будет соответствовать полное имя класса контроллера app\controllers\admin\PostController.

Очень важно, чтобы полное имя класса контроллера могло быть использовано автозагрузкой и
соответствующее пространство имен вашего контроллера соответствовало данному свойству. Иначе, Вы получите ошибку
“Страница не найдена”, при доступе к приложению.

В случае, если вы хотите переопределить соответствия как описано выше, вы можете настроить свойство controllerMap.

[[yii\base\Application::language|language]]

Данное свойство указывает язык приложения, на котором содержимое страницы должно быть отображено конечному пользователю.
По-умолчанию значение данного свойства равно en, что означает “Английский”. Если ваше приложение должно поддерживать
несколько языков, вы должны настроить данное свойство.

Значение данного свойства определяется различными аспектами интернационализации, в том числе
переводом сообщений, форматированием дат, форматированием чисел, и т. д. Например, виджет [[yii\jui\DatePicker]]
использует данное свойство для определения по умолчанию языка, на котором должен быть отображен календарь и формат данных
для календаря.

Рекомендуется что вы будете указывать язык в рамках стандарта IETF [http://en.wikipedia.org/wiki/IETF_language_tag].
Например, для английского языка используется en, в то время как для английского в США - en-US.

Более детальная информация приведена в разделе Интернационализация.

[[yii\base\Application::modules|modules]]

Данное свойство указывает модули, которые содержаться в приложении.

Значениями свойства могут быть массивы имен классов модулей или конфигураций, а ключами -
ID модулей. Например,

[
 'modules' => [
 // a "booking" module specified with the module class
 'booking' => 'app\modules\booking\BookingModule',

 // a "comment" module specified with a configuration array
 'comment' => [
 'class' => 'app\modules\comment\CommentModule',
 'db' => 'db',
],
],
]

Более детальная информация приведена в разделе Модули.

[[yii\base\Application::name|name]]

Свойство указывает название приложения, которое может быть показано конечным пользователям. В отличие от
свойства [[yii\base\Application::id|id]], которое должно быть уникальным, значение данного свойства нужно в
основном для отображения и не обязательно должно быть уникальным.

Если ваш код не использует данное свойство, то вы можете не настраивать его.

[[yii\base\Application::params|params]]

Данное свойство указывает массив глобально доступных параметров приложения. Вместо того, чтобы использовать
жестко фиксированные числа и строки в вашем коде, лучше объявить их параметрами приложения в едином месте и
использовать в нужных вам местах кода. Например, вы можете определить размер превью для изображений следующим образом:

[
 'params' => [
 'thumbnail.size' => [128, 128],
],
]

Затем, когда вам нужно использовать данные значения в вашем коде, вы делаете это как представлено ниже:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];

Если позже вам понадобится изменить размер превью изображений, вам нужно только изменить это значение в настройке
приложения, не касаясь зависимого кода.

[[yii\base\Application::sourceLanguage|sourceLanguage]]

Данное свойство указывает язык на котором написан код приложения. По-умолчанию значение равно 'en-US', что означает
“Английский” (США). Вы должны настроить данное свойство соответствующим образом, если содержимое в вашем коде является не
английским языком.

Аналогично свойству language, вы должны указать данное свойство в рамках стандарта IETF [http://en.wikipedia.org/wiki/IETF_language_tag].
Например, для английского языка используется en, в то время как для английского в США - en-US.

Более детальная информация приведена в разделе Интернационализация.

[[yii\base\Application::timeZone|timeZone]]

Данное свойство предоставляет альтернативный способ установки временной зоны в процессе работы приложения.
Путем указания данного свойства, вы по существу вызываете PHP функцию
date_default_timezone_set() [http://www.php.net/manual/ru/function.date-default-timezone-set.php]. Например,

[
 // Europe/Moscow для России (прим. пер.)
 'timeZone' => 'America/Los_Angeles',
]

[[yii\base\Application::version|version]]

Данное свойство указывает версию приложения. По-умолчанию значение равно '1.0'. Вы можете не настраивать это свойство, если
ваш код не использует его.

Полезные свойства

Свойства, указанные в данном подразделе, не являются часто конфигурируемыми, т. к. их значения по умолчанию
соответствуют общепринятым соглашениям. Однако, вы можете их настроить, если вам нужно использовать другие
соглашения.

[[yii\base\Application::charset|charset]]

Свойство указывает кодировку, которую использует приложение. По-умолчанию значение равно 'UTF-8', которое должно быть
оставлено как есть для большинства приложения, только если вы не работаете с устаревшим кодом, который использует большее
количество данных не юникода.

[[yii\base\Application::defaultRoute|defaultRoute]]

Свойство указывает маршрут, который должно использовать приложение, когда он не указан
во входящем запросе. Маршрут может состоять из ID модуля, ID контроллера и/или ID действия. Например, help,
post/create, admin/post/create. Если действие не указано, то будет использовано значение по умолчанию
указанное в [[yii\base\Controller::defaultAction]].

Для [[yii\web\Application|веб приложений]], значение по умолчанию для данного свойства равно 'site', что означает
контроллер SiteController и его действие по умолчанию должно быть использовано. Таким образом, если вы попытаетесь
получить доступ к приложению не указав маршрут, оно покажет вам результат действия app\controllers\SiteController::actionIndex().

Для [[yii\console\Application|консольных приложений]], значение по умолчанию равно 'help', означающее, что встроенная
команда [[yii\console\controllers\HelpController::actionIndex()]] должна быть использована. Таким образом, если вы
выполните команду yii без аргументов, вам будет отображена справочная информация.

[[yii\base\Application::extensions|extensions]]

Данное свойство указывает список расширений, которые установлены и используются приложением.
По-умолчанию, значением данного свойства будет массив, полученный из файла @vendor/yiisoft/extensions.php. Файл extensions.php
генерируется и обрабатывается автоматически, когда вы используете Composer [https://getcomposer.org] для установки расширений.
Таким образом, в большинстве случаев вам не нужно настраивать данное свойство.

В особых случаях, когда вы хотите обрабатывать расширения в ручную, вы можете указать данное свойство следующим образом:

[
 'extensions' => [
 [
 'name' => 'extension name',
 'version' => 'version number',
 'bootstrap' => 'BootstrapClassName', // опционально, может быть также массив конфигурации
 'alias' => [// опционально
 '@alias1' => 'to/path1',
 '@alias2' => 'to/path2',
],
],

 // ... аналогично для остальных расширений ...

],
]

Свойство является массивом спецификаций расширений. Каждое расширение указано массивом, состоящим из элементов name и version.
Если расширение должно быть выполнено в процессе начальной загрузки, то следует указать bootstrap
элемент, который может являться именем класса или конфигурацией.
Расширение также может определять несколько псевдонимов.

[[yii\base\Application::layout|layout]]

Данное свойство указывает имя шаблона по умолчанию, который должен быть использовать при формировании представлений.
Значение по умолчанию равно 'main', означающее, что должен быть использован шаблон main.php в папке шаблонов.
Если оба свойства папка шаблонов и папка представлений имеют значение по умолчанию,
то файл шаблона по умолчанию может быть представлен псевдонимом пути как @app/views/layouts/main.php.

Для отключения использования шаблона, вы можете указать данное свойство как false, хотя это используется очень редко.

[[yii\base\Application::layoutPath|layoutPath]]

Свойство указывает путь, по которому следует искать шаблоны. Значение по умолчанию равно layouts, означающее подпапку
в папке представлений. Если значение папки представлений является значением по умолчанию, то
папка шаблонов по умолчанию может быть представлена псевдонимом пути как @app/views/layouts.

Вы можете настроить данное свойство как папку так и как псевдоним.

[[yii\base\Application::runtimePath|runtimePath]]

Свойство указывает путь, по которому хранятся временные файлы, такие как: лог файлы, кэш файлы.
По-умолчанию значение равно папке, которая представлена псевдонимом пути @app/runtime.

Вы можете настроить данное свойство как папку или как псевдоним пути. Обратите внимание,
что данная папка должна быть доступна для записи, процессом, который запускает приложение. Также папка должна быть
защищена от доступа конечными пользователями, хранимые в ней временные файлы могут содержать важную информацию.

Для упрощения работы с данной папкой, Yii предоставляет предопределенный псевдоним пути @runtime.

[[yii\base\Application::viewPath|viewPath]]

Данное свойство указывает базовую папку,где содержаться все файлы представлений. Значение по умолчанию представляет
собой псевдоним @app/views. Вы можете настроить данное свойство как папку так и как псевдоним.

[[yii\base\Application::vendorPath|vendorPath]]

Свойство указывает папку сторонних библиотек, которые используются и управляются Composer [https://getcomposer.org].
Она содержит все сторонние библиотеки используемые приложением, включая Yii фреймворк. Значение по умолчанию
представляет собой псевдоним @app/vendor.

Вы можете настроить данное свойство как папку так и как псевдоним. При изменении данного свойства,
убедитесь что вы также изменили соответствующим образом настройки Composer.

Для упрощения работы с данной папкой, Yii предоставляет предопределенный псевдоним пути @vendor.

[[yii\console\Application::enableCoreCommands|enableCoreCommands]]

Данное свойство поддерживается только [[yii\console\Application|консольными приложениями]]. Оно указывает
нужно ли использовать встроенные в Yii консольные команды. Значение по умолчанию равно true.

События приложения

В течение жизненного цикла приложения, возникает несколько событий. Вы можете назначать обработчики событий в
конфигурации приложения следующим образом:

[
 'on beforeRequest' => function ($event) {
 // ...
 },
]

Использование синтаксиса on eventName детально описано в разделе Конфигурации.

Также вы можете назначить обработчики событий в процессе начальной загрузки приложения, сразу после того
как приложение будет создано. Например,

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
 // ...
});

[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]]

Данное событие возникает до того как приложение начинает обрабатывать входящий запрос.
Настоящее имя события - beforeRequest.

На момент возникновения данного события, объект приложения уже создан и проинициализирован. Таким образом, это
является хорошим местом для вставки вашего кода с помощью событий, для перехвата управления обработкой запроса.
Например, обработчик события, может динамически подставлять язык приложения [[yii\base\Application::language]] в зависимости
от некоторых параметров.

[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]]

Данное событие возникает после того как приложение заканчивает обработку запроса, но до того как произойдет
отправка ответа. Настоящее имя события - afterRequest.

На момент возникновения данного события, обработка запроса завершена и вы можете воспользоваться этим для произведения постобработки
запроса, с целью настройки ответа.

Обратите внимание, что в компоненте [[yii\web\Response|response]] также возникают события в процессе отправки данных
конечному пользователю. Эти события возникают после текущего события.

[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]]

Событие возникает до того как будет выполнено действие контроллера.
Настоящее имя события - beforeAction.

Событие является объектом [[yii\base\ActionEvent]]. Обработчик события может устанавливать
свойство [[yii\base\ActionEvent::isValid]] равным false для предотвращения выполнения действия.

Например,

[
 'on beforeAction' => function ($event) {
 if (некоторое условие) {
 $event->isValid = false;
 } else {
 }
 },
]

Обратите внимание что то же самое событие beforeAction возникает в модулях и
контроллерах. Объекты приложения являются первыми, кто возбуждает данные события,
следуя за модулями (если таковые имеются) и в конце контроллерами. Если обработчик события устанавливает
свойство [[yii\base\ActionEvent::isValid]] равным false, все последующие события не возникнут.

[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]]

Событие возникает после выполнения действия контроллера.
Настоящее имя события - afterAction.

Событие является объектом [[yii\base\ActionEvent]]. Через свойство [[yii\base\ActionEvent::result]] обработчик события
может получить доступ и изменить значение выполнения действия контроллера.

Например,

[
 'on afterAction' => function ($event) {
 if (некоторое условие) {
 // modify $event->result
 } else {
 }
 },
]

Обратите внимание, что то же самое событие afterAction возникает в модулях и
контроллерах. Эти объекты возбуждают событие в обратном порядке, если сравнивать с beforeAction.
Таким образом, контроллеры являются первыми, где возникает данное событие, затем в модулях (если таковые имеются),
и наконец в приложениях.

Жизненный цикл приложения

Когда входной скрипт выполняется для обработки запроса, приложение
будет развиваться согласно следующему жизненному циклу:

	Входной скрипт загружает конфигурацию приложения в качестве массива;

	Входной скрипт создаёт новый объект приложения:

	Вызывается метод [[yii\base\Application::preInit()|preInit()]], который настраивает некоторые
жизненно важные свойства приложения, такие как [[yii\base\Application::basePath|basePath]];

	Регистрируется [[yii\base\Application::errorHandler|обработчик ошибок]];

	Настраиваются свойства приложения;

	Вызывается метод [[yii\base\Application::init()|init()]], который затем вызывает метод
[[yii\base\Application::bootstrap()|bootstrap()]] для начальной загрузки компонентов.

	Входной скрипт вызывает метод [[yii\base\Application::run()]] для запуска приложения:

	Возникает событие [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]];

	Обработка запроса: разбор информации запроса в маршрут с соответствующими параметрами;
создание объектов модуля, контроллера и действия согласно указанному маршруту; запуск действия;

	Возникает событие [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]];

	Ответ отсылается конечному пользователю.

	Входной скрипт получает значение статуса выхода от приложения и заканчивает обработку запроса.

 Ресурсы

Ресурсы

RESTful API строятся вокруг доступа к ресурсам и управления ими. Вы можете думать о ресурсах как
о моделях из MVC [http://ru.wikipedia.org/wiki/Model-View-Controller].

Хотя не существует никаких ограничений на то, как представить ресурс, в Yii ресурсы обычно представляются
как объекты [[yii\base\Model]] или дочерние классы (например [[yii\db\ActiveRecord]]), потому как:

	[[yii\base\Model]] реализует интерфейс [[yii\base\Arrayable]], который позволяет задать способ отдачи данных
ресурса через RESTful API.

	[[yii\base\Model]] поддерживает валидацию, что полезно для RESTful API реализующего ввод данных.

	[[yii\db\ActiveRecord]] даёт мощную поддержку работы с БД, что актуально если данные ресурса хранятся в ней.

В этом разделе, мы сосредоточимся на том, как при помощи класса ресурса, наследуемого от [[yii\base\Model]]
(или дочерних классов) задать какие данные будут возвращаться RESTful API. Если класс ресурса не наследуется от
[[yii\base\Model]], возвращаются всего его public свойства.

Поля

Когда ресурс включается в ответ RESTful API, необходимо сериализовать его в строку. Yii разбивает этот процесс на два этапа.
Сначала ресурс конвертируется в массив при помощи [[yii\rest\Serializer]]. На втором этапе массив сериализуется в строку
заданного формата (например, JSON или XML) при помощи [[yii\web\ResponseFormatterInterface|форматтера ответа]].
Именно на этом стоит сосредоточится при разработке класса ресурса.

Вы можете указать какие данные включать в представление ресурса в виде массива путём переопределения методов
[[yii\base\Model::fields()|fields()]] и/или [[yii\base\Model::extraFields()|extraFields()]]. Разница между ними в том,
что первый определяет набор полей, которые всегда будут включены в массив, а второй определяет дополнительные поля, которые
пользователь может запросить через параметр expand:

// вернёт все поля объявленные в fields()
http://localhost/users

// вернёт только поля id и email, если они объявлены в методе fields()
http://localhost/users?fields=id,email

// вернёт все поля объявленные в fields() и поле profile если оно указано в extraFields()
http://localhost/users?expand=profile

// вернёт только id, email и profile, если они объявлены в fields() и extraFields()
http://localhost/users?fields=id,email&expand=profile

Переопределение fields()

По умолчанию, [[yii\base\Model::fields()]] возвращает все атрибуты модели как поля, а
[[yii\db\ActiveRecord::fields()]] возвращает только те атрибуты, которые были объявлены в схеме БД.

Вы можете переопределить fields() для того, чтобы добавить, удалить, переименовать или переобъявить поля. Значение,
возвращаемое fields(), должно быть массивом. Его ключи это имена полей, и значения могут быть либо именами
свойств/атрибутов, либо анонимными функциями, которые возвращают значение соответствующих полей. Если имя атрибута такое же,
как ключ массива вы можете опустить значение:

// явное перечисление всех атрибутов лучше всего использовать когда вы хотите быть уверенным что изменение
// таблицы БД или атрибутов модели не повлияет на изменение полей, отдаваемых API (что важно для поддержки обратной
// совместимости API).
public function fields()
{
 return [
 // название поля совпадает с названием атрибута
 'id',
 // имя поля "email", атрибут "email_address"
 'email' => 'email_address',
 // имя поля "name", значение определяется callback-ом PHP
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// отбрасываем некоторые поля. Лучше всего использовать в случае наследования
public function fields()
{
 $fields = parent::fields();

 // удаляем не безопасные поля
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: По умолчанию все атрибуты модели будут включены в ответы API. Вы должны убедиться в том, что отдаются
только безопасные данные. В противном случае для исключения небезопасных полей необходимо переопределить метод
fields(). В приведённом выше примере мы исключаем auth_key, password_hash и password_reset_token.

Переопределение extraFields()

По умолчанию, [[yii\base\Model::extraFields()]] ничего не возвращает, а [[yii\db\ActiveRecord::extraFields()]]
возвращает названия заданных в БД связей.

Формат возвращаемых extraFields() данных такой же как у fields(). Как правило, extraFields()
используется для указания полей, значения которых являются объектами. Например учитывая следующее объявление полей

public function fields()
{
 return ['id', 'email'];
}

public function extraFields()
{
 return ['profile'];
}

запрос http://localhost/users?fields=id,email&expand=profile может возвращать следующие JSON данные:

[
 {
 "id": 100,
 "email": "100@example.com",
 "profile": {
 "id": 100,
 "age": 30,
 }
 },
 ...
]

Ссылки

Согласно HATEOAS [http://en.wikipedia.org/wiki/HATEOAS], расшифровывающемуся как Hypermedia as the Engine of Application State,
RESTful API должны возвращать достаточно информации для того, чтобы клиенты могли определить возможные действия над ресурсами.
Ключевой момент HATEOAS заключается в том, чтобы возвращать вместе с данными набора гиперссылок, указывающих на связанную
с ресурсом информацию.

Поддержку HATEOAS в ваши классы ресурсов можно добавить реализовав интерфейс [[yii\web\Linkable]]. Этот интерфейс
содержит единственный метод [[yii\web\Linkable::getLinks()|getLinks()]], который возвращает список [[yii\web\Link|ссылок]].
Обычно вы должны вернуть хотя бы ссылку self с URL самого ресурса:

use yii\db\ActiveRecord;
use yii\web\Link;
use yii\web\Linkable;
use yii\helpers\Url;

class User extends ActiveRecord implements Linkable
{
 public function getLinks()
 {
 return [
 Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true),
];
 }
}

При отправке ответа объект User содержит поле _links, значение которого — ссылки, связанные с объектом:

{
 "id": 100,
 "email": "user@example.com",
 // ...
 "_links" => {
 "self": {
 "href": "https://example.com/users/100"
 }
 }
}

Коллекции

Объекты ресурсов могут группироваться в коллекции. Каждая коллекция содержит список объектов ресурсов одного типа.

Несмотря на то, что коллекции можно представить в виде массива, удобнее использовать
провайдеры данных так как они поддерживают сортировку и постраничную разбивку.
Для RESTful APIs, которые работают с коллекциями, данные возможности используются довольно часто. Например, следующее
действие контроллера возвращает провайдер данных для ресурса постов:

namespace app\controllers;

use yii\rest\Controller;
use yii\data\ActiveDataProvider;
use app\models\Post;

class PostController extends Controller
{
 public function actionIndex()
 {
 return new ActiveDataProvider([
 'query' => Post::find(),
]);
 }
}

При отправке ответа RESTful API, [[yii\rest\Serializer]] сериализует массив объектов ресурсов для текущей страницы.
Кроме того, он добавит HTTP заголовки, содержащие информацию о страницах:

	X-Pagination-Total-Count: общее количество ресурсов;

	X-Pagination-Page-Count: количество страниц;

	X-Pagination-Current-Page: текущая страница (начиная с 1);

	X-Pagination-Per-Page: количество ресурсов на страницу;

	Link: набор ссылок, позволяющий клиенту пройти все страницы ресурсов.

Примеры вы можете найти в разделе «быстрый старт».

 Обзор

Обзор

Yii приложения организованы согласно шаблону проектирования модель-представление-контроллер (MVC) [http://ru.wikipedia.org/wiki/Model-View-Controller].
Модели представляют собой данные, бизнес логику и бизнес правила; представления
отвечают за отображение информации, в том числе и на основе данных, полученных из моделей; контроллеры
принимают входные данные от пользователя и преобразовывают их в понятный для моделей формат и команды, а также отвечают за отображение
нужного представления.

Кроме MVC, Yii приложения также имеют следующие сущности:

	входные скрипты: это PHP скрипты, которые доступны напрямую конечному пользователю приложения.
Они ответственны за запуск и обработку входящего запроса;

	приложения: это глобально доступные объекты, которые осуществляют корректную работу различных
компонентов приложения и их координацию для обработки запроса;

	компоненты приложения: это объекты, зарегистрированные в приложении и предоставляющие
различные возможности для обработки текущего запроса;

	модули: это самодостаточные пакеты, которые включают в себя полностью все средства для MVC.
Приложение может быть организованно с помощью нескольких модулей;

	фильтры: это код, который должен быть выполнен до и после обработки запроса контроллерами;

	виджеты: это объекты, которые могут включать в себя представления.
Они могут содержать различную логику и быть использованы в различных представлениях.

Ниже на диаграмме представлена структурная схема приложения:

[image: Static Structure of Application]

 Запуск приложения

Запуск приложения

После установки Yii базовое приложение будет доступно либо по URL http://hostname/basic/web/index.php, либо по http://hostname/index.php, в зависимости от настроек Web сервера. Данный раздел - общее введение в организацию кода, встроенный функционал и обработку обращений приложением Yii.

Info: далее в данном руководстве предполагается, что Yii установлен в директорию basic/web, которая, в свою очередь, установлена как корневой каталог в настройках Web сервера. В результате, обратившись по URL http://hostname/index.php, Вы получите доступ к приложению, расположенному в basic/web. Детальнее с процессом начальной настройки можно познакомиться в разделе Установка Yii.

Отметим, что в отличие от фреймворка как только приложение установлено, оно становится целиком вашим. Вы можете изменять
его код как угодно.

Функциональность

Установленный шаблон простого приложения состоит из четырех страниц:

	домашняя страница, отображается при переходе по URL http://hostname/index.php

	страница “About” (“О нас”)

	на странице “Contact” находится форма обратной связи, на которой пользователь может обратиться к разработчику по e-mail

	на странице “Login” отображается форма авторизации. Попытайтесь авторизоваться с логином/паролем “admin/admin”.
Обратите внимание на изменение раздела “Login” в главном меню на “Logout”.

Эти страницы используют смежный хедер (шапка сайта) и футер (подвал). В “шапке” находится главное меню, при помощи
которого пользователь перемещается по сайту. В “подвале” - копирайт и общая информация.

В самой нижней части окна Вы будете видеть системные сообщения Yii - журнал, отладочную информацию, сообщения об ошибках,
запросы к базе данных и т.п. Выводом данной информации руководит
встроенный отладчик [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md], он записывает и отображает
информацию о ходе выполнения приложения.

В дополнение к веб приложению имеется консольный скрипт с названием yii, который находится в базовой директории приложения.
Этот скрипт может быть использован для выполнения фоновых задач и обслуживания приложения. Всё это описано в разделе
Консольные команды.

Структура приложения Yii

Ниже приведен список основных директорий и файлов вашего приложения (считаем, что приложение установлено в директорию basic):

basic/ корневой каталог приложения
 composer.json используется Composer'ом, содержит описание приложения
 config/ конфигурационные файлы
 console.php конфигурация консольного приложения
 web.php конфигурация Web приложения
 commands/ содержит классы консольных команд
 controllers/ контроллеры
 models/ модели
 runtime/ файлы, которые генерирует Yii во время выполнения приложения (логи, кэш и т.п.)
 vendor/ содержит пакеты Composer'а и, собственно, сам фреймворк Yii
 views/ виды приложения
 web/ корневая директория Web приложения. Содержит файлы, доступные через Web
 assets/ скрипты, используемые приложением (js, css)
 index.php точка входа в приложение Yii. С него начинается выполнение приложения
 yii скрипт выполнения консольного приложения Yii

В целом, приложение Yii можно разделить на две категории файлов: расположенные в basic/web и расположенные в других директориях. Первая категория доступна через Web (например, браузером), вторая не доступна извне и не должна быть доступной т.к. содержит служебную информацию.

В Yii реализован архитектурный паттерн MVC [http://ru.wikipedia.org/wiki/Model-View-Controller],
которая соответствует структуре директорий приложения. В директории models находятся Модели,
в views расположены Виды, а в каталоге controllers все Контроллеры приложения.

Диаграмма ниже демонстрирует внутреннее устройство приложения.

[image: внутреннее устройство приложения]

В каждом приложении Yii есть точка входа в приложение, web/index.php это единственный PHP-скрипт доступный для выполнения из Web. Он принимает входящий запрос и создает экземпляр приложения.
Приложение обрабатывает входящие запросы при помощи компонентов и отправляет запрос контроллеру. Виджеты используются в Видах для построения динамических интерфейсов сайта.

Жизненный цикл пользовательского запроса

На диаграмме показано как приложение обрабатывает запрос.

[image: Жизненный цикл запроса]

	Пользователь обращается к точке входа web/index.php.

	Скрипт загружает конфигурацию configuration и создает экземпляр приложения для дальнейшей обработки запроса.

	Приложение определяет маршрут запроса при помощи компонента приложения запрос.

	Приложение создает экземпляр контроллера для выполнения запроса.

	Контроллер, в свою очередь, создает действие и накладывает на него фильтры.

	Если хотя бы один фильтр дает сбой, выполнение приложения останавливается.

	Если все фильтры пройдены - приложение выполняется.

	Действие загружает модель данных. Вероятнее всего из базы данных.

	Действие генерирует вид, отображая в нем данные (в т.ч. и полученные из модели).

	Сгенерированный вид приложения передается как компонент ответ.

	Компонент “ответ” отправляет готовый результат работы приложения браузеру пользователя.

 Встроенные валидаторы

Встроенные валидаторы

Yii предоставляет встроенный набор часто используемых валидаторов, расположенных, в первую очередь,
в пространстве имен yii\validators. Вместо того, чтобы использовать длинные имена классов валидаторов,
вы можете использовать псевдонимы, чтобы указать на использование этих валидаторов.
Например, вы можете использовать псевдоним required, чтобы сослаться на класс [[yii\validators\RequiredValidator]]:

public function rules()
{
 return [
 [['email', 'password'], 'required'],
];
}

Все поддерживаемые псевдонимы валидаторов можно увидеть в свойстве [[yii\validators\Validator::builtInValidators]].

Ниже мы опишем основные способы использования и свойства всех встроенных валидаторов.

[[yii\validators\BooleanValidator|boolean]]

[
 // Проверяет 'selected' на равенство 0 или 1, без учета типа данных
 ['selected', 'boolean'],

 // Проверяет, что "deleted" - это тип данных boolean и содержит true или false
 ['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, 'strict' => true],
]

Этот валидатор проверяет, что второе значение является boolean.

	trueValue: значение, соответствующее true. По умолчанию - '1'.

	falseValue: значение, соответствующее false. По умолчанию - '0'.

	strict: должна ли проверка учитывать соответствие типов данных trueValue или falseValue. По умолчанию - false.

Note: Из-за того, что как правило данные, полученные из HTML-форм, представляются в виде строки, обычно вам стоит
оставить свойство [[yii\validators\BooleanValidator::strict|strict]] равным false.

[[yii\captcha\CaptchaValidator|captcha]]

[
 ['verificationCode', 'captcha'],
]

Этот валидатор обычно используется вместе с [[yii\captcha\CaptchaAction]] и [[yii\captcha\Captcha]], чтобы
убедиться, что данные в инпуте соответствуют верификационному коду, отображенному с помощью виджета
[[yii\captcha\Captcha|CAPTCHA]].

	caseSensitive: необходимо ли учитывать чувствительность к регистру при сравнении. По умолчанию - false.

	captchaAction: маршрут, соответствующий
[[yii\captcha\CaptchaAction|CAPTCHA action]], который рендерит изображение с CAPTCHA. По умолчанию - 'site/captcha'.

	skipOnEmpty: может ли валидация быть пропущена, если input пустой. По умолчанию - false,
что означает, что input обязателен.

[[yii\validators\CompareValidator|compare]]

[
 // проверяет, является ли значение атрибута "password" таким же, как "password_repeat"
 ['password', 'compare'],

 // то же, что и выше, но атрбут для сравнения указан явно
 ['password', 'compare', 'compareAttribute' => 'password_repeat'],

 // проверяет, что возраст больше или равен 30
 ['age', 'compare', 'compareValue' => 30, 'operator' => '>=', 'type' => 'number'],
]

Этот валидатор сравнивает значение указанного атрибута с другим, чтобы удостовериться, что их отношение
соответствует описанному в свойстве operator.

	compareAttribute: имя атрибута, с которым нужно сравнить значение. Когда валидатор используется
для проверки атрибута, значением по умолчанию для этого свойства будет имя этого же атрибута
с суффиксом _repeat. Например, если проверяющийся атрибут - password,
то значение свойства по умолчанию будет password_repeat.

	compareValue: постоянное значение, с которым будут сравниваться входящие данные. Когда одновременно указаны
это свойство и compareAttribute, это свойство получит приоритет.

	operator: оператор сравнения. По умолчанию ==, что означает проверку на эквивалентность входящих данных и в
compareAttribute, и в compareValue. Поддерживаются следующие операторы:
	==: проверяет два значения на эквивалентность. Сравнение не учитывает тип данных.

	===: проверяет два значения на эквивалентность. Сравнение строгое и учитывает тип данных.

	!=: проверяет, что два значения не эквивалентны. Сравнение не учитывает тип данных.

	!==: проверяет, что два значения не эквивалентны. Сравнение строгое и учитывает тип данных.

	>: проверяет, что валидируемое значение больше, чем то, с которым происходит сравнение.

	>=: проверяет, что валидируемое значение больше или равно тому, с которым происходит сравнение.

	<: проверяет, что валидируемое значение меньше, чем то, с которым происходит сравнение.

	<=: проверяет, что валидируемое значение меньше или равно тому, с которым происходит сравнение.

	type: По умолчанию при сравнении используется тип ‘[[yii\validators\CompareValidator::TYPE_STRING|string]]‘. То есть
значения сравниваются побайтово. При сравнении чисел необходимо задать [[yii\validators\CompareValidator::$type|$type]]
как ‘[[yii\validators\CompareValidator::TYPE_NUMBER|number]]‘.

[[yii\validators\DateValidator|date]]

Валидатор [[yii\validators\DateValidator|date]] можно использовать тремя способами:

[
 [['from', 'to'], 'date'],
 [['from_datetime', 'to_datetime'], 'datetime'],
 [['some_time'], 'time'],
]

Этот валидатор проверяет соответствие входящих данных форматам date, time или datetime.
Опционально, он может конвертировать входящее значение в UNIX timestamp и сохранить в атрибуте,
описанном здесь: [[yii\validators\DateValidator::timestampAttribute|timestampAttribute]].

	format: формат даты/времени, согласно которому должна быть сделана проверка.
Значение может быть паттерном, описанным в руководстве ICU [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax]
или форматом PHP префиксированным php:. Формат должен приниматься классом Datetime. Подробнее о нём можно
прочитать в руководстве PHP по date_create_from_format() [http://www.php.net/manual/ru/datetime.createfromformat.php].
Если значение не задано, используется Yii::$app->formatter->dateFormat.
Подробнее читайте в [[yii\validators\DateValidator::$format|документации по API]].

	timestampAttribute: имя атрибута, которому данный валидатор может присваивать значение UNIX timestamp,
получаемое из входных даты и времени. Это может быть как тот же атрибут, что валидируется в данный момент. Если это так,
после валидации оригинальное значение будет перезаписано значеним timestamp.
Дополнительные примеры вы модете найти в разделе “Handling date input with the DatePicker” [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/topics-date-picker.md].

Начиная с версии 2.0.4, для атрибута могут быть заданы формат и часовой пояс через
[[yii\validators\DateValidator::$timestampAttributeFormat|$timestampAttributeFormat]] и
[[yii\validators\DateValidator::$timestampAttributeTimeZone|$timestampAttributeTimeZone]] соответственно.

При использовании timestampAttribute, входное значение будет конвертировано в unix timestamp, который по определению
содержит время в UTC. То есть будет произведено преобразование из [[yii\validators\DateValidator::timeZone|входного часового пояса]]
в UTC.

	Начиная с версии 2.0.4 также можно задать [[yii\validators\DateValidator::$min|минимальное]] и
[[yii\validators\DateValidator::$max|максимальное]] значение timestamp.

В том случае, если ввод не обязателен, вам может понадобится добавить фильтр значения по умолчанию в
дополнение к валидатору даты для того, чтобы пустой ввод сохранялся как null. В противном случае вы можете получить
даты вроде 0000-00-00 в базе данных или 1970-01-01 в полях ввода виджета date picker.

[
 [['from_date', 'to_date'], 'default', 'value' => null],
 [['from_date', 'to_date'], 'date'],
],

[[yii\validators\DefaultValueValidator|default]]

[
 // установить null для "age" в качестве значения по умолчанию
 ['age', 'default', 'value' => null],

 // установить "USA" в качестве значения по умолчанию для "country"
 ['country', 'default', 'value' => 'USA'],

 // установить в "from" и "to" дату 3 дня и 6 дней от сегодняшней, если они пустые
 [['from', 'to'], 'default', 'value' => function ($model, $attribute) {
 return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6 days'));
 }],
]

Этот валидатор не проверяет данные. Вместо этого он присваивает значения по умолчанию проходящим проверку
атрибутам, если они пусты.

	value: значение по умолчанию или функция обратного вызова, которая возвращает значение по умолчанию,
которое будет присвоено проверяемому атрибуту, если он пустой. Функция обратного вызова должна выглядеть так:

function foo($model, $attribute) {
 // ... вычисление $value ...
 return $value;
}

Info: Как определить, является значение пустым или нет, более подробно описано в отдельной статье
в секции Пустые значения.

[[yii\validators\NumberValidator|double]]

[
 // проверяет, является ли "salary" числом типа double
 ['salary', 'double'],
]

Этот валидатор проверяет, что входящее значение является корректным double числом. Он идентичен
валидатору number. (Прим. пер.: корректным float числом).

	max: верхний лимит (включительно) для значений. Если не установлен, значит, валидатор не будет проверять верхний лимит.

	min: Нижний лимит (включительно) для значений. Если не установлен, валидатор не будет проверять нижний лимит.

[[yii\validators\EmailValidator|email]]

[
 // проверяет, что "email" - это корректный email-адрес
 ['email', 'email'],
]

Валидатор проверяет, что значение входящих данных является корректным email-адресом.

	allowName: можно ли передавать в атрибут имя (пример: John Smith <john.smith@example.com>). По умолчанию - false.

	checkDNS, проверяет, существует ли доменное имя для введенного адреса (и A, и MX запись).
Учтите, что проверка может закончится неудачей, что может быть вызвано временными проблемами с DNS, даже если
email-адрес корректен. По умолчанию - false.

	enableIDN, нужно ли учитывать IDN (многоязычные доменные имена). По умолчанию - false. Учтите, что для использования
IDN-валидации вам нужно установить и включить PHP расширение intl, иначе будет выброшено исключение.

[[yii\validators\ExistValidator|exist]]

[
 // a1 должно существовать в столбце, который представляется атрибутом "a1"
 ['a1', 'exist'],

 // a1 должно существовать, но его значение будет использовать a2 для проверки существования
 ['a1', 'exist', 'targetAttribute' => 'a2'],

 // и a1, и a2 должны существовать, в противном случае оба атрибута будут возвращать ошибку
 [['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

 // и a1, и a2 должны существовать, но только атрибут a1 будет возвращать ошибку
 ['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

 // a1 требует проверки существования a2 и a3 (используя значение a1)
 ['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

 // a1 должен существовать. Если a1 - массив, то каждый его элемент должен существовать
 ['a1', 'exist', 'allowArray' => true],
]

Этот валидатор ищет входящие данные в столбце таблицы. Он работает только с атрибутами
модели Active Record. Он поддерживает проверку и одного столбца, и нескольких.

	targetClass: имя класса Active Record, который должен быть использован для проверки
входящего значения. Если не установлен, будет использован класс текущей модели.

	targetAttribute: имя атрибута в targetClass который должен быть использован для проверки существования
входящего значения. Если не установлен, будет использовано имя атрибута, который проверяется в данный момент.
Вы можете использовать массив для валидации нескольких столбцов одновременно. Значения массива являются атрибутами,
которые будут использованы для проверки существования, тогда как ключи массива будут являться атрибутами, чьи значения
будут проверены. Если ключ и значения одинаковы, вы можете указать только значение.

	filter: дополнительный фильтр, который будет добавлен к запросу в базу данных для проверки на существование значения.
Это может быть строка или массив, представляющие дополнительные условия в запросе (подробнее о формате
значений запроса: [[yii\db\Query::where()]]), или анонимная функция с сигнатурой function ($query),
где $query - это [[yii\db\Query|Query]] объект, который вы можете модифицировать в функции.

	allowArray: разрешать ли значению быть массивом. По умолчанию - false. Если свойство установлено в true
и тип входящих данных - массив, тогда каждый его элемент должен существовать в соответствующем столбце таблицы.
Помните, что это свойство не может быть установлено в true, если вы валидируете несколько столбцов, передавая
их в targetAttribute как массив.

[[yii\validators\FileValidator|file]]

[
 // проверяет, что "primaryImage" - это загруженное изображение в формате PNG, JPG или GIF
 // размер файла должен быть меньше 1MB
 ['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize' => 1024*1024],
]

Этот валидатор проверяет, что input является корректным загруженным файлом.

	extensions: список имен расширений, которые допустимы для загрузки. Это также может быть или массив, или
строка, содержащая имена файловых расширений, разделенных пробелом или запятой (пр.: “gif, jpg”).
Имя расширения не чувствительно к регистру. По умолчанию - null, что значит, что все имена файловых расширений
допустимы.

	mimeTypes: список MIME-типов, которые допустимы для загрузки. Это может быть или массив, или строка,
содержащая MIME-типы файлов, разделенные пробелом или запятой (пример: “image/jpeg, image/png”).
В именах MIME-типов допустимо использовать символ * для выбора группы mime-типов.
Например, image/* разрешит все типы, которы начинаются с image/ (пример: image/jpeg, image/png).
Имена MIME-типов не чувствительны к регистру. По умолчанию - null, что значит, что допустимы все MIME-типы.
Более детальную информацию можно найти в списке MIME-типов [https://ru.wikipedia.org/wiki/Список_MIME-типов].

	minSize: минимальный размер файла в байтах, разрешенный для загрузки. По умолчанию - null, что значит, что нет
минимального лимита.

	maxSize: максимальный размер файла в байтах, разрешенный для загрузки. По умолчанию - null, что значит, что нет
максимального лимита.

	maxFiles: максимальное количество файлов, которое может быть передано в атрибут. По умолчанию 1, что значит, что
input должен быть файлом в единственном экземпляре. Если больше, чем 1, то атрибут должен быть массивом,
состоящим из не более, чем maxFiles загруженных файлов.

	checkExtensionByMimeType: нужно ли проверять расширение файла исходя из его MIME-типа. Если они не соответствуют
друг другу, то файл будет считаться некорректным. По умолчанию - true, то есть проверка будет произведена.

FileValidator используется вместе с [[yii\web\UploadedFile]]. Пожалуйста, посмотрите раздел
Загрузка файлов для более полного понимания загрузки и проверки файлов.

[[yii\validators\FilterValidator|filter]]

[
 // обрезает пробелы вокруг "username" и "email"
 [['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' => true],

 // нормализует значение "phone"
 ['phone', 'filter', 'filter' => function ($value) {
 // нормализация значения происходит тут
 return $value;
 }],
]

Этот валидатор не проверяет данные. Вместо этого он применяет указанный фильтр к входящему значению и
присваивает результат применения фильтра атрибуту.

	filter: PHP-callback, осуществляющий фильтрацию. Это может быть глобальная php функция, анонимная функция
и т.д. Функция должна выглядеть как function ($value) { return $newValue; }. Это свойство обязательно должно
быть установлено.

	skipOnArray: нужно ли пропускать валидацию, если входящим значением является массив. По умолчанию - false.
Помните, что если фильтр не может принимать массив, вы должны установить это значение в true. Иначе могут
произойти различные ошибки PHP.

Трюк: Если вы хотите удалить пробелы вокруг значений атрибута, вы можете использовать валидатор trim.

[[yii\validators\ImageValidator|image]]

[
 // проверяет, что "primaryImage" - это валидное изображение с указанными размерами
 ['primaryImage', 'image', 'extensions' => 'png, jpg',
 'minWidth' => 100, 'maxWidth' => 1000,
 'minHeight' => 100, 'maxHeight' => 1000,
],
]

Этот валидатор проверяет, что входящие данные являются корректным файлом изображения. Он расширяет file
валидатор и наследует все его свойства. Кроме того, он поддерживает следующие дополнительные свойства, специфичные
для валидации изображений:

	minWidth: минимальная ширина изображения. По умолчанию null, что значит, что нет нижнего лимита.

	maxWidth: максимальная ширина изображения. По умолчанию null, что значит, что нет верхнего лимита.

	minHeight: минимальная высота изображения. По умолчанию null, что значит, что нет нижнего лимита.

	maxHeight: максимальная высота изображения. По умолчанию null, что значит, что нет верхнего лимита.

[[yii\validators\IpValidator|ip]]

[
 // проверяет, что "ip_address" - это валидный IPv4 или IPv6 адрес
 ['ip_address', 'ip'],

 // проверяет, что "ip_address" - это валидный IPv6 адрес или подсеть,
 // значение будет развернуто в формат полной записи IPv6 адреса
 ['ip_address', 'ip', 'ipv4' => false, 'subnet' => null, 'expandIPv6' => true],

 // проверяет, что "ip_address" - это валидный IPv4 или IPv6 адрес,
 // разрешает использования символа отрацания `!`
 ['ip_address', 'ip', 'negation' => true],
]

Этот валидатор проверяет, является ли входящее значение валидным IPv4/IPv6 адресом или подсетью.
Он также может изменять значение атрибута, если включена нормализация или развертывание IPv6 адресов.

Валидатор имеет такие свойства:

	ipv4: может ли проверяемое значение быть IPv4 адрессом. По умолчанию true.

	ipv6: может ли проверяемое значение быть IPv6 адрессом. По умолчанию true.

	subnet: может ли проверяемое значение быть IP адресом с CIDR (подсетью), например 192.168.10.0/24

	true - указание подсети обязательно;

	false - указание подсети запрещено;

	null - указание подсети возможно, но не обязательно.

По умолчанию false.

	normalize: нормализировать ли проверяемый IP адрес без CIDR к IP адресу с наименьшим CIDR
(32 для IPv4 или 128 для IPv6). Свойство действует только если subnet не установлен в false. Например:

	10.0.1.5 будет приведен к 10.0.1.5/32

	2008:db0::1 будет приведен к 2008:db0::1/128

	negation: может ли проверяемое значение иметь символ отрицания ! в начале, например !192.168.0.1.
По умолчанию false.

	expandIPv6: разворачивать ли IPv6 адрес в формат полной записи.
Например, IPv6 адрес 2008:db0::1 будет развернут в 2008:0db0:0000:0000:0000:0000:0000:0001. По умолчанию false.

	ranges: массив IPv4 или IPv6 диапазонов, которые разрешены или запрещены.

Если свойство не установлено, все IP адреса разрешены. Иначе, правила будут проверяться последовательно до первого
вхождения. IP адрес будет запрещен, если не подпадет ни под одно правило. Например:

[
 'client_ip', 'ip', 'ranges' => [
 '192.168.10.128'
 '!192.168.10.0/24',
 'any' // разрешает все остальные IP адреса
]
]

В этом примере, доступ разрешен для всех IPv4 и IPv6 адресов кроме подсети 192.168.10.0/24.
IPv4 адрес 192.168.10.128 также разрешен, так как находится перед запрещающим правилом.

	networks: массив псевдониимов, которые могут быть использованы в ranges. Формат массива:

	ключ - имя псевдонима

	значение - массив строк. Строка может быть как диапазоном адресов, так и другим псведонимом. Строка может иметь
символ отрицания ! в начале (не зависит от свойства negation).

Следующие псевдонимы определены по умолчанию:

	*: any

	any: 0.0.0.0/0, ::/0

	private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fd00::/8

	multicast: 224.0.0.0/4, ff00::/8

	linklocal: 169.254.0.0/16, fe80::/10

	localhost: 127.0.0.0/8', ::1

	documentation: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 2001:db8::/32

	system: multicast, linklocal, localhost, documentation

Info: Этот валидатор стал доступным начиная с версии 2.0.7.

[[yii\validators\RangeValidator|in]]

[
 // проверяет, что значение "level" равно 1, 2 или 3
 ['level', 'in', 'range' => [1, 2, 3]],
]

Этот валидатор проверяет, что входящее значение соответствует одному из значений, указанных в range.

	range: список значений, с которыми будет сравниваться входящее значение.

	strict: должно ли сравнение входящего значения со списком значений быть строгим (учитывать тип данных).
По умолчанию false.

	not: должен ли результат проверки быть инвертирован. По умолчанию - false. Если свойство установлено в true,
валидатор проверяет, что входящее значение НЕ соответствует ни одному из значений, указанных в range.

	allowArray: устанавливает, допустимо ли использовать массив в качестве входных данных. Если установлено в true
и входящие данные являются массивом, для каждого элемента входящего массива должно быть найдено соответствие в
range.

[[yii\validators\NumberValidator|integer]]

[
 // проверяет "age" на то, что это integer значение
 ['age', 'integer'],
]

Проверяет, что входящее значение является integer значением.

	max: верхний лимит (включительно) для числа. Если не установлено, валидатор не будет проверять верхний лимит.

	min: нижний лимит (включительно) для числа. Если не установлено, валидатор не будет проверять нижний лимит.

[[yii\validators\RegularExpressionValidator|match]]

[
 // проверяет, что "username" начинается с буквы и содержит только буквенные символы,
 // числовые символы и знак подчеркивания
 ['username', 'match', 'pattern' => '/^[a-z]\w*$/i']
]

Этот валидатор проверяет, что входящее значение совпадает с указанным регулярным выражением.

	pattern: регулярное выражение, с которым должно совпадать входящее значение. Это свойство должно быть установлено,
иначе будет выброшено исключение.

	not: инвертирует регулярное выражение. По умолчанию false, что значит, что валидация будет успешна,
только если входящее значение совпадают с шаблоном. Если установлено в true, валидация будет успешна,
только если входящее значение НЕ совпадает с шаблоном.

[[yii\validators\NumberValidator|number]]

[
 // проверяет, является ли "salary" числом
 ['salary', 'number'],
]

Этот валидатор проверяет, являются ли входящие значения числовыми. Он эквивалентен валидатору double.

	max: верхний лимит (включительно) для числа. Если не установлено, валидатор не будет проверять верхний лимит.

	min: нижний лимит (включительно) для числа. Если не установлено, валидатор не будет проверять нижний лимит.

[[yii\validators\RequiredValidator|required]]

[
 // проверяет, являются ли "username" и "password" не пустыми
 [['username', 'password'], 'required'],
]

Этот валидатор проверяет, являются ли входящие значения не пустыми.

	requiredValue: желаемое значение, которому должны соответствовать проверяемые данные. Если не установлено,
это значит, что данные должны быть не пусты.

	strict: учитывать или нет соответствие типу данных при валидации (строгое сравнение).
Если requiredValue не установлено, а это свойство установлено в true, валидатор проверит, что входящее значение
строго не соответствует null; если свойство установлено в false, валидатор будет проверять значение на пустоту с
приведением типов.
Если requiredValue установлено, сравнение между входящими данными и requiredValue будет также учитывать тип
данных, если это свойство установлено в true.

Info: как определить, является ли значение пустым или нет, подробнее рассказывается
в секции Пустые значения.

[[yii\validators\SafeValidator|safe]]

[
 // обозначает "description" как safe атрибут
 ['description', 'safe'],
]

Этот валидатор не проверяет данные. Вместо этого он указывает, что атрибут является
безопасным атрибутом.

[[yii\validators\StringValidator|string]]

[
 // проверяет, что "username" это строка с длиной от 4 до 24 символов
 ['username', 'string', 'length' => [4, 24]],
]

Этот валидатор проверяет, что входящее значение - это корректная строка с указанной длиной.

	length: описывает длину для строки, проходящей валидацию. Может быть определен следующими
способами:
	числом: точная длина, которой должна соответствовать строка;

	массив с одним элементом: минимальная длина входящей строки (напр.: [8]). Это перезапишет min.

	массив с двумя элементами: минимальная и максимальная длина входящей строки (напр.: [8, 128]).
Это перезапишет и min, и max.

	min: минимальная длина входящей строки. Если не установлено, то не будет ограничения на минимальную длину.

	max: максимальная длина входящей строки. Если не установлено, то не будет ограничения на максимальную длину.

	encoding: кодировка входящей строки. Если не установлено, будет использовано значение из
[[yii\base\Application::charset|charset]], которое по умолчанию установлено в UTF-8.

[[yii\validators\FilterValidator|trim]]

[
 // обрезает пробелы вокруг "username" и "email"
 [['username', 'email'], 'trim'],
]

Этот валидатор не производит проверки данных. Вместо этого он будет обрезать пробелы вокруг входящих данных.
Помните, что если входящие данные являются массивом, то они будут проигнорированы этим валидатором.

[[yii\validators\UniqueValidator|unique]]

[
 // a1 должен быть уникальным в столбце, который представляет "a1" атрибут
 ['a1', 'unique'],

 // a1 должен быть уникальным, но для проверки на уникальность
 // будет использован столбец a2
 ['a1', 'unique', 'targetAttribute' => 'a2'],

 // a1 и a2 вместе должны быть уникальны, и каждый из них
 // будет получать сообщения об ошибке
 [['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 и a2 вместе должны быть уникальны, но только a1 будет получать сообщение об ошибке
 ['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 должен быть уникальным, что устанавливается проверкой уникальности a2 и a3
 // (используя значение a1)
 ['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],
]

Этот валидатор проверяет входящие данные на уникальность в столбце таблицы. Он работает только с
атрибутами модели Active Record. Он поддерживает проверку либо одного столбца,
либо нескольких.

	targetClass: имя класса Active Record, который должен быть использован
для проверки значения во входящих данных. Если не установлен, будет использован класс модели, которая
в данный момент проходит проверку.

	targetAttribute: имя атрибута в targetClass, который должен быть использован для проверки на
уникальность входящего значения. Если не установлено, будет использован атрибут, проверяемый
в данный момент.
Вы можете использовать массив для проверки нескольких столбцов таблицы на уникальность. Значения массива -
это атрибуты, которые будут использованы для валидации, а ключи массива - это атрибуты, которые предоставляют
данные для валидации. Если ключ и значение одинаковые, вы можете указать только значение.

	filter: дополнительный фильтр, который можно присоединить к запросу в БД, чтобы использовать его при
проверке значения на уникальность. Это может быть строка или массив, представляющие дополнительные условия для запроса
(см. [[yii\db\Query::where()]] о формате условий в запросе), или анонимная функция вида function ($query),
где $query это объект [[yii\db\Query|Query]], который вы можете изменить в функции.

[[yii\validators\UrlValidator|url]]

[
 // Проверяет, что "website" является корректным URL. Добавляет http:// к атрибуту "website".
 // если у него нет URI схемы
 ['website', 'url', 'defaultScheme' => 'http'],
]

Этот валидатор проверяет, что входящее значение является корректным URL.

	validSchemes: массив с указанием на URI-схему, которая должна считаться корректной. По умолчанию
['http', 'https'], что означает, что и http, и https URI будут считаться корректными.

	defaultScheme: схема URI, которая будет присоединена к входящим данным, если в них отсутствует URI-схема.
По умолчанию null, что значит, что входящие данные не будут изменены.

	enableIDN: должна ли валидация учитывать IDN (интернационализованные доменные имена).
По умолчанию - false. Учтите, что для того, чтобы IDN валидация работала корректно, вы должны установить intl
PHP расширение, иначе будет выброшено исключение.

Note: Валидатор проверяет, что протокол и хост в URL являются корректными. Валидатор НЕ проверяет другие части URL
и НЕ предназначен для защиты от XSS или любых других видов атак. Обратитесь к секции
Лучшие практики безопасности чтобы узнать больше о том, как предтвращать известные угрозы
при разработке приложений.

 Разбор и генерация URL

Разбор и генерация URL

При обработке запрошенного URL, Yii приложение первым делом разбирает URL в маршрут. Полученный маршрут используется при создании
соответствующего экземпляра действия контроллера для обработки запроса. Этот процесс называется роутинг.

Обратный роутингу процесс называется Создание URL, он отвечает за создание URL из заданного маршрута и соответствующих параметров запроса. При необходимости, созданный URL всегда может быть преобразован в
первоначальные маршрут и параметры запроса.

В основе роутинга и создания URL лежит использование [[yii\web\UrlManager|URL manager]],
зарегистрированного в качестве компонента приложения urlManager.
[[yii\web\UrlManager|URL manager]] содержит метод [[yii\web\UrlManager::parseRequest()|parseRequest()]]
для разбора входящего запроса на маршрут и параметры запроса, и метод [[yii\web\UrlManager::createUrl()|createUrl()]]
для создания URL из заданного маршрута и параметров запроса.

Настройка компонента urlManager в конфигурации приложения, позволяет приложению распознавать различные
форматы URL без внесения изменений в существующий код приложения. Например, для
создания URL для действия post/view, можно использовать следующий код:

use yii\helpers\Url;

// Url::to() вызывает UrlManager::createUrl() для создания URL
$url = Url::to(['post/view', 'id' => 100]);

В зависимости от настройки urlManager, URL может быть создан в одном из следующих форматов (или любом другом формате). При последующем запросе URL в таком формате, он будет разобран на исходные маршрут и параметры запроса.

/index.php?r=post/view&id=100
/index.php/post/100
/post/100

Форматы URL

[[yii\web\UrlManager|URL manager]] поддерживает два формата URL:

	Обычный.

	Человекопонятные URL.

Обычный формат URL использует параметр r для передачи маршрута и любые другие параметры для передачи остальных параметров запроса. Например, URL /index.php?r=post/view&id=100 задает маршрут post/view и параметр id, равный 100. Данный формат не требует специальной конфигурации [[yii\web\UrlManager|URL manager]] и работает с любыми настройками Веб сервера.

Человекопонятный формат URL представляет собой дополнительный путь, следующий за именем входного скрипта, описывающий маршрут и остальные параметров запроса. Например, дополнительный путь в URL /index.php/post/100 - это /post/100, который может представлять маршрут post/view и параметр id со значением равным 100, при наличии соответствующего [[yii\web\UrlManager::rules|правила]]. Для использования ЧПУ, необходимо создать набор правил, соответствующих требованиям к URL.

Переключение между двумя форматами URL осуществляется при помощи свойства [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] компонента [[yii\web\UrlManager|URL manager]] без внесения изменений в код приложения.

Роутинг

Роутинг осуществляется в два этапа:

	Входящий запрос разбирается в маршрут и параметры запроса.

	Для обработки запроса создается действие контроллера, соответствующее полученному
маршруту.

При использовании простого формата URL, получение маршрута из запроса заключается в получении параметра r из массива GET.

При использовании ЧПУ, компонент [[yii\web\UrlManager|URL manager]] ищет среди зарегистрированных [[yii\web\UrlManager::rules|правил]] подходящее для разрешения запроса в маршрут.
Если такое правило не найдено, вызывается исключение [[yii\web\NotFoundHttpException]].

После того, как из запроса получен маршрут, самое время создать действие контроллера, соответствующее этому маршруту.
Маршрут разделяется на несколько частей, метками деления служат прямые слеши. Например, маршрут site/index будет разделен на site и index. Каждая из частей представляет собой идентификатор, который может ссылаться на модуль, контроллер или действие. Начиная с первой части маршрута, приложение следует следующему алгоритму для создания модуля (если есть), контроллера и действия:

	Текущим модулем считаем приложение.

	Проверяем, содержит ли [[yii\base\Module::controllerMap|карта контроллеров]] текущего модуля текущий идентификатор.
Если содержит, в соответствии с конфигурацией контроллера, найденной в карте, создаем объект контроллера и переходим в п. 5 для обработки оставшейся части маршрута.

	Проверяем, есть ли модуль, соответствующий идентификатору в списке модулей (свойство [[yii\base\Module::modules|modules]]) текущего модуля. Если есть, в соответствии с конфигурацией модуля, найденной в списке модулей, создаем модуль и переходим в п. 2, считая только что созданный модуль текущим.

	Рассматриваем идентификатор как идентификатор контроллера и создаем объект контроллера. Для оставшейся части маршрута выполняем п. 5.

	Контроллер ищет текущий идентификатор в его [[yii\base\Controller::actions()|карте действий]]. В случае нахождения, контроллер создает действие, в соответствии с конфигурацией, найденной в карте. Иначе, контроллер пытается создать встроенное действие, описанное методом, соответствующим текущему идентификатору действия.

При возникновении ошибок на любом из описанных выше этапов, вызывается исключение [[yii\web\NotFoundHttpException]], указывающее на ошибку в процессе роутинга.

Маршрут по умолчанию

В случае, если в результате разбора запроса получен пустой маршрут, вместо него будет использован, так называемый, маршрут по умолчанию. Изначально, маршрут по умолчанию имеет значение site/index, и указывает на действие index контроллера site. Указать свое значение можно при помощи свойства приложения [[yii\web\Application::defaultRoute|defaultRoute]], например так:

[
 // ...
 'defaultRoute' => 'main/index',
];

В добавок к маршруту по умолчанию приложения, существует маршрут по умолчанию модулей. Например, если у нас есть модуль
user и запрос разбирается в маршрут user, [[yii\base\Module::defaultRoute|defaultRoute]] модуля используется для
определения контроллера. По умолчанию имя контроллера —default. Если действие не задано в [[yii\base\Module::defaultRoute|defaultRoute]],
то для его определения используется свойство [[yii\base\Controller::defaultAction|defaultAction]] контроллера.
В данном примере полный маршрут будет user/default/index.

Маршрут catchAll

Иногда возникает необходимость временно перевести приложение в режим обслуживания и отображать одно информационное сообщение для всех запросов. Существует много вариантов реализации этой задачи. Но одним из самых простых, является использование свойства [[yii\web\Application::catchAll]], например так:

[
 // ...
 'catchAll' => ['site/offline'],
];

В данном случае, действие site/offline будет обрабатывать все входящие запросы.

Свойство catchAll должно принимать массив, первый элемент которого определяет маршрут, а остальные элементы (пары ключ-значение) определяют параметры, передаваемые действию.

Создание URL

Для создания разных видов URL из заданных маршрутов и параметров, Yii предоставляет метод-помощник [[yii\helpers\Url::to()]]. Примеры:

use yii\helpers\Url;

// создает URL для маршрута: /index.php?r=post/index
echo Url::to(['post/index']);

// создает URL для маршрута с параметрами: /index.php?r=post/view&id=100
echo Url::to(['post/view', 'id' => 100]);

// создает якорный URL: /index.php?r=post/view&id=100#content
echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// создает абсолютный URL: http://www.example.com/index.php?r=post/index
echo Url::to(['post/index'], true);

// создает абсолютный URL с использованием схемы https: https://www.example.com/index.php?r=post/index
echo Url::to(['post/index'], 'https');

Обратите внимание, что в последнем примере подразумевается использование обычного формата URL. При использовании ЧПУ, будут созданы другие URL, соответствующие [[yii\web\UrlManager::rules|правилам создания URL]].

Маршрут, переданный методу [[yii\helpers\Url::to()]], является контекстно зависимым. Он может быть относительным или абсолютным, в зависимости от следующих правил:

	Если маршрут является пустой строкой, будет использован текущий [[yii\web\Controller::route|маршрут]];

	Если маршрут не содержит слешей вообще, он рассматривается как идентификатор действия текущего контроллера и будет дополнен значением [[\yii\web\Controller::uniqueId|uniqueId]] текущего контроллера в качестве префикса;

	Если маршрут не содержит слеша в начале, он будет рассматриваться как маршрут относительно текущего модуля и будет дополнен значением [[\yii\base\Module::uniqueId|uniqueId]] текущего модуля, в качестве префикса.

Начиная с версии 2.0.2, при составлении маршрутов, стало возможным использовать псевдонимы. В таком случае, псевдоним будет преобразован в маршрут, который будет использован для создания URL по правилам, указанным выше.

Для примера, будем считать, что текущим модулем является admin, а текущим контроллером - post,

use yii\helpers\Url;

// запрошенный маршрут: /index.php?r=admin/post/index
echo Url::to(['']);

// относительный маршрут с указанием только идентификатора действия: /index.php?r=admin/post/index
echo Url::to(['index']);

// относительный маршрут: /index.php?r=admin/post/index
echo Url::to(['post/index']);

// абсолютный маршрут: /index.php?r=post/index
echo Url::to(['/post/index']);

// /index.php?r=post/index псевдоним "@posts" определен как "/post/index"
echo Url::to(['@posts']);

В основе реализации метода [[yii\helpers\Url::to()]] лежит использование двух методов компонента [[yii\web\UrlManager|URL manager]]: [[yii\web\UrlManager::createUrl()|createUrl()]] и [[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]]. Ниже будут рассмотрены способы конфигурации [[yii\web\UrlManager|URL manager]] для создания URL в различных форматах.

Метод [[yii\helpers\Url::to()]], так же, поддерживает создание URL не связанных с маршрутами приложения.
В данном случае, нужно передать в качестве первого параметра строку, а не массив. Например,

use yii\helpers\Url;

// запрошенный URL: /index.php?r=admin/post/index
echo Url::to();

// URL из псевдонима: http://example.com
Yii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// абсолютный URL: http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);

Кроме метода to(), класс [[yii\helpers\Url]] предоставляет и другие удобные методы для создания URL. Например,

use yii\helpers\Url;

// домашний URL: /index.php?r=site/index
echo Url::home();

// базовый URL, удобно использовать в случае, когда приложение расположено в подкаталоге
// относительно корневого каталога Веб сервера
echo Url::base();

// канонический URL запрошенного URL
// подробнее https://support.google.com/webmasters/answer/139066?hl=ru
echo Url::canonical();

// запомнить запрошенный URL и восстановить его при следующих запросах
Url::remember();
echo Url::previous();

Использование человекопонятных URL

Для активации ЧПУ, необходимо настроить компонент urlManager в конфигурации приложения следующим образом:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => false,
 'rules' => [
 // ...
],
],
],
]

Свойство [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] является ключевым, активирует формат ЧПУ.
Остальные свойства не обязательные. Однако, в примере выше, показан самый популярный вариант конфигурации ЧПУ.

	[[yii\web\UrlManager::showScriptName|showScriptName]]: это свойство определяет необходимость включения имени входного скрипта в создаваемый URL. Например, при его значении false, вместо /index.php/post/100, будет сгенерирован URL /post/100.

	[[yii\web\UrlManager::enableStrictParsing|enableStrictParsing]]: это свойство позволяет включить строгий разбор URL. Если строгий разбор URL включен, запрошенный URL должен соответствовать хотя бы одному из [[yii\web\UrlManager::rules|правил]], иначе будет вызвано исключение [[yii\web\NotFoundHttpException]]. Если строгий разбор URL отключен и ни одно из [[yii\web\UrlManager::rules|правил]] не подходит для разбора запрошенного URL, часть этого URL, представляющая путь, будет использована как маршрут.

	[[yii\web\UrlManager::rules|rules]]: это свойство содержит набор правил для разбора и создания URL. Это основное свойство, с которым нужно работать, что бы URL создавались в формате, соответствующем требованиям приложения.

Note: Для того, чтобы скрыть имя входного скрипта в создаваемых URL, кроме установки значения свойства [[yii\web\UrlManager::showScriptName|showScriptName]] в false, необходимо настроить Веб сервер, чтобы он мог правильно определять PHP скрипт, который должен быть запущен, если в запрошенном URL он не указан явно. Рекомендованные настройки для Apache и Nginx описаны в разделе Установка Yii.

Правила URL

Правила URL - это экземпляр класса [[yii\web\UrlRule]] или класса, унаследованного от него. Каждое правило состоит из шаблона, используемого для поиска пути в запрошенном URL, маршрута и нескольких параметров запроса. Правило может быть использовано для разбора запроса в том случае, если шаблон правила совпадает с запрошенным URL. Правило может быть использовано для создания URL в том случае, если его маршрут и параметры запроса совпадают с заданными.

При включенном режиме ЧПУ, компонент [[yii\web\UrlManager|URL manager]] использует правила URL, содержащиеся в его свойстве [[yii\web\UrlManager::rules|rules]], для разбора входящих запросов и создания URL. Обычно, при разборе входящего запроса, [[yii\web\UrlManager|URL manager]] проверяет все правила в порядке их следования, до первого правила, соответствующего запрошенному URL. Найденное правило используется для разбора URL на маршрут и параметры запроса. Аналогично для создания URL компонент [[yii\web\UrlManager|URL manager]] ищет первое правило, соответствующее заданному маршруту и параметрам и использует его для создания URL.

[[yii\web\UrlManager::rules|Правила]] задаются ассоциативным массивом, где ключи определяют шаблоны, а значения соответствующие маршруты. Каждая пара шаблон-маршрут составляет правило разбора URL. Например, следующие [[yii\web\UrlManager::rules|правила]] определяют два правила разбора URL. Первое правило задает соответствие URL posts маршруту post/index. Второе правило задает соответствие URL, соответствующего регулярному выражению post/(\d+) маршруту post/view и параметру id.

[
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Note: Шаблон правила используется для поиска соответствия с частью URL, определяющей путь. Например, в URL /index.php/post/100?source=ad путь определяет часть post/100 (начальный и конечный слеши игнорируются), соответствующая регулярному выражению post/(\d+).

Правила URL можно определять не только в виде пар шаблон-маршрут, но и в виде массива. Каждый массив используется для определения одного правила. Такой вид определения правил используется в случаях, когда необходимо указать другие параметры правила URL. Например,

[
 // ...другие правила URL...

 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

По умолчанию, если в конфигурации правила URL не указан явно параметр class, будет создано правило класса [[yii\web\UrlRule]].

Именованные параметры

Правило URL может содержать несколько именованных параметров запроса, которые указываются в шаблоне в следующем формате: <ParamName:RegExp>, где ParamName определяет имя параметра, а RegExp - необязательное регулярное выражение, используемое для определения значения параметра. В случае, если RegExp не указан, значением параметра будет любая последовательность символов кроме слешей.

Note: Возможно указание только регулярного выражения для параметров. В таком случае, остальная часть шаблона будет считаться простым текстом.

После разбора URL, параметры запроса, соответствующие шаблону правила, будут доступны в массиве $_GET через компонент приложения request.
При создании URL, значения указанных параметров будут вставлены в URL в соответствии с шаблоном правила.

Рассмотрим несколько примеров работы с именованными параметрами. Допустим, мы определили следующие три правила URL:

[
 'posts/<year:\d{4}>/<category>' => 'post/index',
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

При разборе следующих URL:

	/index.php/posts будет разобран в маршрут post/index при помощи второго правила;

	/index.php/posts/2014/php будет разобран на маршрут post/index и параметры year со значением 2014, category со значением php при помощи первого правила;

	/index.php/post/100 будет разобран на маршрут post/view и параметр id со значением 100 при помощи третьего правила;

	/index.php/posts/php вызовет исключение [[yii\web\NotFoundHttpException]], если [[yii\web\UrlManager::enableStrictParsing]] имеет значение true, так как правило для разбора данного URL отсутствует. Если [[yii\web\UrlManager::enableStrictParsing]] имеет значение false (по умолчанию), значение posts/php будет возвращено в качестве маршрута.

При создании URL:

	Url::to(['post/index']) создаст /index.php/posts при помощи второго правила;

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) создаст /index.php/posts/2014/php при помощи первого правила;

	Url::to(['post/view', 'id' => 100]) создаст /index.php/post/100 при помощи третьего правила;

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) создаст /index.php/post/100?source=ad при помощи третьего правила.
Параметр source не указан в правиле, поэтому он добавлен в созданный URL в качестве параметра запроса.

	Url::to(['post/index', 'category' => 'php']) создаст /index.php/post/index?category=php без использования правил. При отсутствии подходящего правила, URL будет создан простым соединением маршрута, как части пути, и параметров, как части запроса.

Параметры в маршрутах

В маршруте правила URL возможно указание имен параметров. Это позволяет использовать правило URL для обработки нескольких маршрутов. Например, следующие правила содержат параметры controller и action в маршрутах.

[
 '<controller:(post|comment)>/<id:\d+>/<action:(create|update|delete)>' => '<controller>/<action>',
 '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
 '<controller:(post|comment)>s' => '<controller>/index',
]

Для разбора URL /index.php/comment/100/create будет использовано первое правило, которое установит значения параметров controller равным comment и action равным create. Таким образом, маршрут <controller>/<action> будет разрешен в comment/create.

Аналогично, для маршрута comment/index, при помощи третьего правила, будет создан URL comment/index.

Note: Использование параметров в маршрутах позволяет значительно уменьшить количество правил URL и улучшить производительность компонента [[yii\web\UrlManager|URL manager]].

По умолчанию, все параметры, указанные в правиле, являются обязательными. Если запрошенный URL не содержит обязательный параметр, или если URL создается без обязательного параметра, данное правило не будет применено. Свойство [[yii\web\UrlRule::defaults]] позволяет сделать нужные параметры не обязательными. Параметры, перечисленные в данном свойстве, будут иметь заданные значения, в случае если они пропущены.

В следующем правиле описаны необязательные параметры page и tag, которые примут значения 1 и пустая строка в случае, если они будут пропущены.

[
 // ...другие правила...
 [
 'pattern' => 'posts/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1, 'tag' => ''],
],
]

Выше приведенное правило может быть использовано для разбора или создания следующих URL:

	/index.php/posts: page равно 1, tag равно ‘’.

	/index.php/posts/2: page равно 2, tag равно ‘’.

	/index.php/posts/2/news: page равно 2, tag равно 'news'.

	/index.php/posts/news: page равно 1, tag равно 'news'.

Без использования необязательных параметров понадобилось бы создать 4 правила для достижения того же результата.

Правила с именами серверов

Существует возможность включать имена серверов в шаблон правил URL. Главным образом, это удобно, когда требуется разное поведение приложения, в зависимости от разных имен Веб серверов. Например, следующее правило позволит разобрать URL http://admin.example.com/login в маршрут admin/user/login и http://www.example.com/login в site/login.

[
 'http://admin.example.com/login' => 'admin/user/login',
 'http://www.example.com/login' => 'site/login',
]

Также возможно комбинирование параметров и имени сервера для динамического извлечения данных из него. Например, следующее правило позволит разобрать URL http://en.example.com/posts на маршрут и параметр language=en.

[
 'http://<language:\w+>.example.com/posts' => 'post/index',
]

Note: Правила, содержащие имя сервера, НЕ должны содержать в шаблоне подкаталог пути ко входному скрипту. Например, если приложение расположено в http://www.example.com/sandbox/blog, шаблон должен быть http://www.example.com/posts, вместо http://www.example.com/sandbox/blog/posts. Это позволит изменять расположение приложения без необходимости внесения изменений в его код.

Суффиксы в URL

Компонент предоставляет возможность добавления к URL суффиксов. Например, можно добавить к URL .html, что бы они выглядели как статические HTML страницы; можно добавить к URL суффикс .json, для указания на ожидаемый тип данных ответа. Настроить суффиксы в URL можно при помощи соответствующего свойства [[yii\web\UrlManager::suffix]] в конфигурации приложения:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'rules' => [
 // ...
],
],
],
]

Данная конфигурация позволяет компоненту [[yii\web\UrlManager|URL manager]] разбирать и создавать URL с суффиксом .html.

Tip: При установке суффикса /, все URL будут заканчиваться слешем.

Note: При настроенном суффиксе, все URL не содержащие этот суффикс будут расценены как неизвестные URL. Такое поведение рекомендовано для SEO (поисковая оптимизация).

Иногда возникает необходимость использовать разные суффиксы для разных URL. Добиться этого можно настройкой свойства [[yii\web\UrlRule::suffix|suffix]] у каждого правила. Когда это свойство установлено, оно имеет приоритет перед общей конфигурацией компонента [[yii\web\UrlManager|URL manager]]. Например, cледующая конфигурация содержит правило URL, которое использует .json в качестве суффикса вместо глобального .html.

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
],
],
],
]

Нормализация URL

Начиная с версии 2.0.10 [[yii\web\UrlManager|UrlManager]] может быть настроен на использование [[yii\web\UrlNormalizer|UrlNormalizer]],
что позволяет справиться с вариациями одного и того же URL с присутствующим или отсутствующим слешем в конце.
Технически http://example.com/path и http://example.com/path/ являются разными URL, отдача одинакового содержимого
в обоих вариантах может негативно повлиять на SEO. По умолчанию нормализатор заменяет повторяющиеся слеши на один и либо
убирает, либо добавляет завершающие слеши в зависимости от суффикса и производит редирект 301 [https://en.wikipedia.org/wiki/HTTP_301]
на нормализованный URL. Нормализатор может быть настроен как глобально для менеджера URL, так и индивидуально для
каждого правила. По умолчанию все правила используют нормализатор, заданный в менеджере URL. Вы можете выставить
[[yii\web\UrlRule::$normalizer|UrlRule::$normalizer]] в false для отключения нормализации для конкретного правила.

Ниже преведён пример конфигурации UrlNormalizer:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'normalizer' => [
 'class' => 'yii\web\UrlNormalizer',
 'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY, // используем временный редирект вместо постоянного
],
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '/',
 'normalizer' => false, // отключаем нормализатор для этого правила
],
 [
 'pattern' => 'tags',
 'route' => 'tag/index',
 'normalizer' => [
 'collapseSlashes' => false, // не убираем дублирующиеся слеши для этого правила
],
],
],
],
],
]

Note: по умолчанию [[yii\web\UrlManager::$normalizer|UrlManager::$normalizer]] отключен. Чтобы использовать
нормализацию его необходимо сконфигурировать.

HTTP методы

При реализации RESTful API, зачастую бывает необходимость в том, чтобы один и тот же URL был разобран в разные маршруты, в зависимости от HTTP метода запроса. Это легко достигается указанием HTTP методов, поддерживаемых правилом в начале шаблона. Если правило поддерживает несколько HTTP методов, их имена разделяются запятыми. Например, следующие правила имеют шаблон post/<id:\d+> с разными поддерживаемыми HTTP методами. Запрос PUT post/100 будет разобран в маршрут post/create, в то время, как запрос GET post/100 будер разобран в post/view.

[
 'PUT,POST post/<id:\d+>' => 'post/create',
 'DELETE post/<id:\d+>' => 'post/delete',
 'post/<id:\d+>' => 'post/view',
]

Note: Если правило URL содержит HTTP метод в шаблоне, это правило будет использовано только при разборе URL. Такое правило не будет учитываться компонентом [[yii\web\UrlManager|URL manager]] при создании URL.

Tip: Для упрощения маршрутизации RESTful API, Yii предоставляет специальный класс [[yii\rest\UrlRule]], который достаточно эффективен и предоставляет такие удобные возможности, как автоматическое приведение идентификаторов контроллеров к множественной форме. Более подробную информацию можно найти в разделе Веб-сервисы REST Роутинг.

Гибкая настройка правил

В предыдущих примерах, преимущественно, приводились правила URL, заданные парами шаблон-маршрут. Это самый распространенный, краткий формат. В некоторых случаях возникает необходимость более гибкой настройки правил, например указание суффикса при помощи свойства [[yii\web\UrlRule::suffix]]. Пример конфигурации правила URL при помощи массива был рассмотрен в главе Суффиксы в URL:

[
 // ...другие правила URL...

 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

Info: По умолчанию, если в конфигурации правила явно незадан параметр class, будет создано правило класса [[yii\web\UrlRule]].

Добавление правил URL динамически

Правила URL могут быть динамически добавлены в компонент [[yii\web\UrlManager|URL manager]]. Часто это необходимо подключаемым модулям для настройки своих правил URL. Для того, что бы динамически добавленные правила могли влиять на процесс роутинга, они должны быть добавлены в процессе предзагрузки. В частности, модули должны реализовываться интерфейс [[yii\base\BootstrapInterface]] и добавлять правила в методе [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]], например:

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // правила URL описываются здесь
], false);
}

Так же, необходимо включить данный модуль в [[yii\web\Application::bootstrap]], чтобы он смог участвовать в процессе предзагрузки.

Создание классов правил

Несмотря на то, что встроенный класс [[yii\web\UrlRule]] достаточно функционален для большинства проектов, иногда возникает необходимость в создании своего класса правил URL. Например, на сайте продавца автомобилей существует необходимость поддержки URL в таком формате: /Manufacturer/Model, где и Manufacturer и Model должны соответствовать данным, хранящимся в базе данных. Стандартный класс [[yii\web\UrlRule]] не подойдет, так как он рассчитан на работу со статичными шаблонами.

Для решения данной проблемы можно создать такой класс правила URL.

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class CarUrlRule extends Object implements UrlRuleInterface
{

 public function createUrl($manager, $route, $params)
 {
 if ($route === 'car/index') {
 if (isset($params['manufacturer'], $params['model'])) {
 return $params['manufacturer'] . '/' . $params['model'];
 } elseif (isset($params['manufacturer'])) {
 return $params['manufacturer'];
 }
 }
 return false; // данное правило не применимо
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
 // Ищем совпадения $matches[1] и $matches[3]
 // с данными manufacturer и model в базе данных
 // Если нашли, устанавливаем $params['manufacturer'] и/или $params['model']
 // и возвращаем ['car/index', $params]
 }
 return false; // данное правило не применимо
 }
}

И использовать новый класс [[yii\web\UrlManager::rules]] при определении правил URL:

[
 // ...другие правила...

 [
 'class' => 'app\components\CarUrlRule',
 // ...настройка других параметров правила...
],
]

Производительность

При разработке сложных Веб приложений, важно оптимизировать правила URL так, чтобы разбор запросов и создание URL занимали минимальное время.

Использование параметров в маршрутах позволяет уменьшить количество правил, что значительно увеличивает производительность.

При разборе или создании URL, компонент [[yii\web\UrlManager|URL manager]] проверяет правила в порядке их определения. Поэтому следует более узконаправленные и/или часто используемые правила размещать раньше прочих.

В случае, если несколько правил имеют один и тот же префикс в шаблоне или маршруте, можно рассмотреть использование [[yii\web\GroupUrlRule]], что позволит компоненту [[yii\web\UrlManager|URL manager]] более эффективно обрабатывать правила группами. Часто это бывает полезно в случае, если приложение состоит из модулей, каждый из которых имеет свой набор правил с идентификатором модуля в качестве общего префикса.

 Кэширование

Кэширование

Кэширование — это простой и эффективный способ повысить производительность веб-приложения. Сохраняя относительно
статичные данные в кэше и извлекая их из кэша, когда потребуется, мы экономим время, затрачиваемое на генерацию
данных с нуля каждый раз.

Кэширование может использоваться на различных уровнях и в различных местах веб-приложения. На стороне сервера, на более
низком уровне мы используем кэширование для хранения основных данных, таких как список последних полученных из базы
данных статьей. На более высоком уровне кэш может использоваться для хранения фрагментов или целых веб-страниц. Таких,
например, как результат рендеринга последних статьей. На стороне клиента для сохранения содержимого недавно посещенных
страниц в кэше браузера может использоваться HTTP-кэширование.

Yii поддерживает все эти механизмы кэширования:

	Кэширование данных

	Кэширование фрагментов

	Кэширование страниц

	HTTP-кэширование

 Сессии и куки

Сессии и куки

Сессии и куки позволяют сохранять пользовательские данные между запросами. При использовании чистого PHP можно получить доступ к этим данным через глобальные переменные $_SESSION и $_COOKIE, соответственно. Yii инкапсулирует сессии и куки в объекты, что дает возможность обращаться к ним в объектно-ориентированном стиле и дает дополнительное удобство в работе.

Сессии

По аналогии с запросами и ответами, к сессии можно получить доступ через session компонент приложения, который по умолчанию является экземпляром [[yii\web\Session]].

Открытие и закрытие сессии

Открыть и закрыть сессию можно следующим образом:

$session = Yii::$app->session;

// проверяем что сессия уже открыта
if ($session->isActive) ...

// открываем сессию
$session->open();

// закрываем сессию
$session->close();

// уничтожаем сессию и все связанные с ней данные.
$session->destroy();

Можно вызывать [[yii\web\Session::open()|open()]] и [[yii\web\Session::close()|close()]] многократно без возникновения ошибок; внутри компонента все методы проверяют сессию на факт того, открыта она или нет.

Доступ к данным сессии

Получить доступ к сохраненным в сессию данным можно следующим образом:

$session = Yii::$app->session;

// получение переменной из сессии. Следующие способы использования эквивалентны:
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// запись переменной в сессию. Следующие способы использования эквивалентны:
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// Удаление переменной из сессии. Следующие способы использования эквивалентны:
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// проверка на существование переменной в сессии. Следующие способы использования эквивалентны:
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// Обход всех переменных в сессии. Следующие способы использования эквивалентны:
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...

Info: При получении данных из сессии через компонент session, сессия будет автоматически открыта, если она не была открыта до этого. В этом заключается отличие от получения данных из глобальной переменной $_SESSION, которое требует обязательного вызова session_start().

При работе с сессионными данными, являющимися массивами, компонент session имеет ограничение, запрещающее прямую модификацию отдельных элементов массива. Например,

$session = Yii::$app->session;

// следующий код НЕ БУДЕТ работать
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// а этот будет:
$session['captcha'] = [
 'number' => 5,
 'lifetime' => 3600,
];

// этот код также будет работать:
echo $session['captcha']['lifetime'];

Для решения этой проблемы можно использовать следующие обходные приемы:

$session = Yii::$app->session;

// прямое использование $_SESSION (убедитесь, что Yii::$app->session->open() был вызван)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// получите весь массив, модифицируйте и сохраните обратно в сессию
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// используйте ArrayObject вместо массива
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// записывайте данные с ключами, имеющими одинаковый префикс
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;

Для улучшения производительности и читаемости кода рекомендуется использовать последний прием. Другими словами, вместо того, чтобы хранить массив как одну переменную сессии, мы сохраняем каждый элемент массива как обычную сессионную переменную с общим префиксом.

Пользовательское хранилище для сессии

По умолчанию класс [[yii\web\Session]] сохраняет данные сессии в виде файлов на сервере. Однако Yii предоставляет ряд классов, которые реализуют различные способы хранения данных сессии:

	[[yii\web\DbSession]]: сохраняет данные сессии в базе данных.

	[[yii\web\CacheSession]]: хранение данных сессии в предварительно сконфигурированном компоненте кэша кэш.

	[[yii\redis\Session]]: хранение данных сессии в redis [http://redis.io/].

	[[yii\mongodb\Session]]: хранение сессии в MongoDB [http://www.mongodb.org/].

Все эти классы поддерживают одинаковый набор методов API. В результате вы можете переключаться между различными хранилищами сессий без модификации кода приложения.

Note: Если вы хотите получить данные из переменной $_SESSION при использовании пользовательского хранилища, вы должны быть уверены, что сессия уже стартовала [[yii\web\Session::open()]], в связи с тем, что обработчики хранения пользовательских сессий регистрируются в этом методе.

Чтобы узнать, как настроить и использовать эти компоненты, обратитесь к документации по API. Ниже приведен пример конфигурации [[yii\web\DbSession]] для использования базы данных для хранения сессии:

return [
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',
 // 'db' => 'mydb', // ID компонента для взаимодействия с БД. По умолчанию 'db'.
 // 'sessionTable' => 'my_session', // название таблицы для хранения данных сессии. По умолчанию 'session'.
],
],
];

Также необходимо создать таблицу для хранения данных сессии:

CREATE TABLE session
(
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

где ‘BLOB’ соответствует типу данных предпочитаемой вами DBMS. Ниже приведены примеры соответствия типов BLOB в наиболее популярных DBMS:

	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB

Note: В зависимости от настроек параметра session.hash_function в вашем php.ini, может понадобиться изменить длину поля id. Например, если session.hash_function=sha256, нужно установить длину поля в 64 вместо 40.

Flash-сообщения

Flash-сообщения - это особый тип данных в сессии, которые устанавливаются один раз во время запроса и доступны только на протяжении следующего запроса, затем они автоматически удаляются. Такой способ хранения информации в сессии наиболее часто используется для реализации сообщений, которые будут отображены конечному пользователю один раз, например подтверждение об успешной отправке формы.

Установить и получить flash-сообщения можно через компонент приложения session. Например:

$session = Yii::$app->session;

// Запрос #1
// установка flash-сообщения с названием "postDeleted"
$session->setFlash('postDeleted', 'Вы успешно удалили пост.');

// Запрос #2
// отображение flash-сообщения "postDeleted"
echo $session->getFlash('postDeleted');

// Запрос #3
// переменная $result будет иметь значение false, так как flash-сообщение было автоматически удалено
$result = $session->hasFlash('postDeleted');

Так как flash-сообщения хранятся в сессии как обычные данные, в них можно записывать произвольную информацию, и она будет доступна лишь в следующем запросе.

При вызове [[yii\web\Session::setFlash()]], происходит перезаписывание flash-сообщений c таким же названием.
Для того, чтобы добавить новые данные к уже существующему flash-сообщению, необходимо вызвать [[yii\web\Session::addFlash()]].
Например:

$session = Yii::$app->session;

// Запрос #1
// добавить новое flash-сообщение с названием "alerts"
$session->addFlash('alerts', 'Вы успешно удалили пост.');
$session->addFlash('alerts', 'Вы успешно добавили нового друга.');
$session->addFlash('alerts', 'Благодарим.');

// Запрос #2
// Переменная $alerts теперь содержит массив flash-сообщений с названием "alerts"
$alerts = $session->getFlash('alerts');

Note: Старайтесь не использовать [[yii\web\Session::setFlash()]] совместно с [[yii\web\Session::addFlash()]] для flash-сообщений с одинаковым названием. Это связано с тем, что последний метод автоматически преобразует хранимые данные в массив, чтобы иметь возможность хранить и добавлять новые данные в flash-сообщения с тем же названием. В результате, при вызове [[yii\web\Session::getFlash()]] можно обнаружить, что возвращается массив, в то время как ожидалась строка.

Куки

Yii представляет каждую куку как объект [[yii\web\Cookie]]. Оба компонента приложения [[yii\web\Request]] и [[yii\web\Response]]
поддерживают коллекции кук через свойство cookies. В первом случае коллекция кук является их представлением из HTTP-запроса, во втором - представляет куки, которые будут отправлены пользователю.

Чтение кук

Получить куки из текущего запроса можно следующим образом:

// получение коллекции кук (yii\web\CookieCollection) из компонента "request"
$cookies = Yii::$app->request->cookies;

// получение куки с названием "language. Если кука не существует, "en" будет возвращено как значение по-умолчанию.
$language = $cookies->getValue('language', 'en');

// альтернативный способ получения куки "language"
if (($cookie = $cookies->get('language')) !== null) {
 $language = $cookie->value;
}

// теперь переменную $cookies можно использовать как массив
if (isset($cookies['language'])) {
 $language = $cookies['language']->value;
}

// проверка на существование куки "language"
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

Отправка кук

Отправить куку конечному пользователю можно следующим образом:

// получение коллекции (yii\web\CookieCollection) из компонента "response"
$cookies = Yii::$app->response->cookies;

// добавление новой куки в HTTP-ответ
$cookies->add(new \yii\web\Cookie([
 'name' => 'language',
 'value' => 'zh-CN',
]));

// удаление куки...
$cookies->remove('language');
// ...что эквивалентно следующему:
unset($cookies['language']);

Кроме свойств [[yii\web\Cookie::name|name]] и [[yii\web\Cookie::value|value]], класс [[yii\web\Cookie]] также предоставляет ряд свойств для получения информации о куках: [[yii\web\Cookie::domain|domain]], [[yii\web\Cookie::expire|expire]]. Эти свойства можно сконфигурировать и затем добавить куку в коллекцию для HTTP-ответа.

Note: Для большей безопасности значение свойства [[yii\web\Cookie::httpOnly]] по умолчанию установлено в true. Это уменьшает риски доступа к защищенной куке на клиентской стороне (если браузер поддерживает такую возможность). Вы можете обратиться к httpOnly wiki [https://www.owasp.org/index.php/HttpOnly] для дополнительной информации.

Валидация кук

Во время записи и чтения кук через компоненты request и response, как будет показано в двух последующих подразделах, фреймворк предоставляет автоматическую валидацию, которая обеспечивает защиту кук от модификации на стороне клиента. Это достигается за счет подписи каждой куки секретным ключом, позволяющим приложению распознать куку, которая была модифицирована на клиентской стороне. В таком случае кука НЕ БУДЕТ доступна через свойство [[yii\web\Request::cookies|cookie collection]] компонента request.

Note: Валидация кук защищает только от их модификации. Если валидация не была пройдена, получить доступ к кукам все еще можно через глобальную переменную $_COOKIE. Это связано с тем, что дополнительные пакеты и библиотеки могут манипулировать куками без вызова валидации, которую обеспечивает Yii.

По-умолчанию валидация кук включена. Её можно отключить, установив свойство [[yii\web\Request::enableCookieValidation]]
в false, однако мы настоятельно не рекомендуем это делать.

Note: Куки, которые напрямую читаются/пишутся через $_COOKIE и setcookie() НЕ БУДУТ валидироваться.

При использовании валидации кук необходимо указать значение свойства [[yii\web\Request::cookieValidationKey]], которое будет использовано для генерации вышеупомянутого секретного ключа. Это можно сделать, настроив компонент request в конфигурации приложения:

return [
 'components' => [
 'request' => [
 'cookieValidationKey' => 'fill in a secret key here',
],
],
];

Note: Свойство [[yii\web\Request::cookieValidationKey|cookieValidationKey]] является секретным значением и должно быть известно только людям, которым вы доверяете. Не помещайте эту информацию под систему контроля версий.

 Что такое Yii?

Что такое Yii?

Yii – это высокопроизводительный компонентный PHP фреймворк, предназначенный для быстрой разработки современных веб
приложений. Слово Yii (произносится как Йи [ji:]) в китайском языке означает «простой и эволюционирующий». Также Yii
может расшифровываться как акроним Yes It Is!

Для каких задач больше всего подходит Yii?

Yii – это универсальный фреймворк и может быть задействован во всех типах веб приложений. Благодаря его компонентной
структуре и отличной поддержке кэширования, фреймворк особенно подходит для разработки таких крупных проектов как
порталы, форумы, CMS, магазины или RESTful-приложения.

Сравнение Yii с другими фреймворками

Если вы уже знакомы с другими фреймворками, вам наверняка будет интересно сравнить их с Yii.

	Как и многие другие PHP фреймворки, для организации кода Yii использует архитектурный паттерн MVC (Model-View-Controller).

	Yii придерживается философии простого и элегантного кода не пытаясь усложнять дизайн только ради следования каким-либо
шаблонам проектирования.

	Yii является full-stack фреймворком и включает в себя проверенные и хорошо зарекомендовавшие себя возможности, такие как
ActiveRecord для реляционных и NoSQL баз данных, поддержку REST API, многоуровневое кэширование и другие.

	Yii отлично расширяем. Вы можете настроить или заменить практически любую часть основного кода. Используя архитектуру расширений легко делиться кодом или использовать код сообщества.

	Одна из главных целей Yii – производительность.

Yii — не проект одного человека. Он поддерживается и развивается сильной командой [http://www.yiiframework.com/team/] и большим сообществом разработчиков,
которые ей помогают. Авторы фреймворка следят за тенденциями веб разработки и развитием других проектов. Наиболее
подходящие возможности и лучшие практики регулярно внедряются в фреймворк в виде простых и элегантных интерфейсов.

Версии Yii

На данный момент существует две основные ветки Yii: 1.1 и 2.0. Ветка 1.1 является предыдущим поколением и находится
в состоянии поддержки. Версия 2.0 – это полностью переписанный Yii, использующий последние технологии и протоколы, такие
как Composer, PSR, пространства имен, трейты и многое другое. 2.0 — текущее поколение фреймворка. На этой версии
будут сосредоточены основные усилия несколько следующих лет. Данное руководство именно о версии 2.0.

Требования к ПО и знаниям

Yii 2.0 требует PHP 5.4.0 и выше. Чтобы узнать требования для отдельных возможностей вы можете запустить скрипт проверки
требований, который поставляется с каждым релизом фреймворка.

Для разработки на Yii потребуется общее понимание ООП так как фреймворк полностью следует этой парадигме. Также стоит
изучить такие современные возможности PHP как пространства имён [http://www.php.net/manual/ru/language.namespaces.php]
и трейты [http://www.php.net/manual/ru/language.oop5.traits.php].

 Говорим «Привет»

Говорим «Привет»

В этом разделе рассмотрим как создать новую страницу с надписью «Привет». В процессе решения задачи вы создадите
действие контроллера и представление:

	Приложение обработает запрос и передаст управление соответствующему действию;

	Действие, в свою очередь, отобразит представление с надписью “Привет” конечному пользователю.

С помощью данного руководства вы изучите

	Как создавать действие, чтобы отвечать на запросы;

	Как создавать представление, чтобы формировать содержимое ответа;

	Как приложение отсылает запросы к действию.

Создание Действия

Для нашей задачи потребуется действие say, которое читает параметр message из
запроса и отображает его значение пользователю. Если в запросе не содержится параметра message, то действие будет
выводить «Привет».

Info: Действия могут быть запущены непосредственно пользователем и сгруппированы в
контроллеры. Результатом выполнения действия является ответ, который получает пользователь.

Действия объявляются в контроллерах. Для простоты, вы можете объявить действие
say в уже существующем контроллере SiteController, который определен в файле класса controllers/SiteController.php:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...существующий код...

 public function actionSay($message = 'Привет')
 {
 return $this->render('say', ['message' => $message]);
 }
}

В приведенном коде действие say объявлено как метод actionSay в классе SiteController.
Yii использует префикс action чтобы различать методы-действия и обычные методы. Название после префикса action
считается идентификатором соответствующего действия.

Info: Идентификаторы действий задаются в нижнем регистре. Если идентификатор состоит из нескольких слов, они
соединяются дефисами, то есть create-comment. Имена методов действий получаются путём удаления дефисов
из идентификатора, преобразования первой буквы каждого слова в верхний регистр и добавления префикса action.
Например, идентификатор действия create-comment соответствует методу actionCreateComment.

Метод действия принимает параметр $message, который по умолчанию равен "Привет". Когда приложение получает запрос
и определяет, что действие say ответственно за его обработку, параметр заполняется одноимённым значением из запроса.

Внутри метода действия, для вывода отображения представления с именем say, используется метод
[[yii\web\Controller::render()|render()]]. Для того, чтобы вывести сообщение, в отображение передаётся параметр message.
Результат отображения при помощи return передаётся приложению, которое отдаёт его пользователю.

Создание представления

Представления являются скриптами, которые используются для формирования тела ответа. Для нашего
приложения вы создадите представление say, которое будет выводить параметр message, полученный из метода действия:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

Представление say должно быть сохранено в файле views/site/say.php. Когда метод [[yii\web\Controller::render()|render()]]
вызывается в действии, он будет искать PHP файл с именем вида views/ControllerID/ViewName.php.

Стоит отметить, что в коде выше параметр message [[yii\helpers\Html::encode()|экранируется для HTML]] перед выводом.
Это обязательно так как параметр приходит от пользователя, который может попытаться провести
XSS атаку [http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B6%D1%81%D0%B0%D0%B9%D1%82%D0%BE%D0%B2%D1%8B%D0%B9_%D1%81%D0%BA%D1%80%D0%B8%D0%BF%D1%82%D0%B8%D0%BD%D0%B3]
путём вставки зловредного JavaScript кода.

Вы можете дополнить представление say HTML тегами, текстом или кодом PHP. Фактически, представление say является
простым PHP скриптом, который выполняется методом [[yii\web\Controller::render()|render()]]. Содержимое, выводимое
скриптом представления, будет передано пользователю приложением.

Попробуем

После создания действия и представления вы можете перейти на новую страницу по следующему URL:

http://hostname/index.php?r=site%2Fsay&message=Привет+мир

[image: Привет, мир]

Будет отображена страница с надписью «Привет мир». Она использует ту же шапку и футер, что и остальные страницы приложения.
Если вы не укажете параметр message, то увидите на странице «Привет». Это происходит потому, как message передаётся
в метод actionSay() и значение по умолчанию — «Привет».

Info: Новая страница использует ту же шапку и футер, что и другие страницы, потому что метод
[[yii\web\Controller::render()|render()]] автоматически вставляет результат представления say в, так называемый,
макет views/layouts/main.php.

Параметр r требует дополнительных пояснений. Он связан с маршрутом (route), который представляет
собой уникальный идентификатор, указывающий на действие. Его формат ControllerID/ActionID. Когда приложение получает
запрос, оно проверяет параметр r и, используя ControllerID, определяет какой контроллер следует использовать для
обработки запроса. Затем, контроллер использует часть ActionID, чтобы определить какое действие выполняет реальную работу.
В нашем случае маршрут site/say будет соответствовать контроллеру SiteController и его действию say.
В результате, для обработки запроса будет вызван метод SiteController::actionSay().

Info: Как и действия, контроллеры также имеют идентификаторы, которые однозначно определяют их в приложении.
Идентификаторы контроллеров используют те же правила именования, что и идентификаторы действий. Имена классов
контроллеров получаются путём удаления дефисов из идентификатора, преобразования первой буквы каждого слова в
верхний регистр и добавления в конец Controller. Например, идентификатор контроллера post-comment соответствует
имени класса контроллера PostCommentController.

Заключение

В этом разделе вы затронули тему контроллеров и представлений в паттерне MVC. Вы создали действие как часть контроллера,
обрабатывающего запросы, и представление, участвующее в формировании ответа. В этом процессе никак не была задействована
модель, так как в качестве данных выступает лишь простой параметр message.

Также вы познакомились с концепцией маршрутизации, которая является связующим звеном между запросом пользователя и
действием контроллера.

В следующем разделе вы узнаете как создавать модели и добавлять новые страницы с HTML формами.

 Загрузка файлов

Загрузка файлов

Загрузка файлов в Yii, обычно, выполняется при помощи класса [[yii\web\UploadedFile]], который представляет каждый
загруженный файл в виде объекта UploadedFile. Используя [[yii\widgets\ActiveForm]] и модели
можно легко создать безопасный механизм загрузки файлов.

Создание моделей

Как и в случае с обработкой текстового ввода, для загрузки файла можно создать класс модели и использовать его атрибут
для хранения экземпляра объекта UploadedFile, содержащего параметры загруженного файла. Так же, возможно
использование правил валидации модели для проверки загруженного файла. Например,

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile
 */
 public $imageFile;

 public function rules()
 {
 return [
 [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
 return true;
 } else {
 return false;
 }
 }
}

В примере выше атрибут imageFile используется для хранения экземпляра загруженного файла. Правило валидации file,
которое, при помощи валидатора [[yii\validators\FileValidator]], проверяет расширение загруженного файла на
соответствие с png или jpg. Метод upload() выполняет валидацию и сохраняет загруженный файл на сервере.

Валидатор file позволяет проверять расширение, размер, тип MIME и другие параметры загруженного файла.
Подробности в разделе Встроенные валидаторы.

Tip: При загрузке изображений лучше использовать соответствующий валидатор image. Данный валидатор
реализован классом [[yii\validators\ImageValidator]] и позволяет проверить корректность загруженного
изображения при помощи расширения Imagine [https://github.com/yiisoft/yii2-imagine].

Представление

Теперь можно создать представление, отображающее поле загрузки файла:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFile')->fileInput() ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

Важно помнить, что для корректной загрузки файла, необходим параметр формы enctype. Метод fileInput()
выведет тег <input type="file">, позволяющий пользователю выбрать файл для загрузки.

Tip: начиная с версии 2.0.8, [[yii\widgets\ActiveField::fileInput|fileInput]] автоматически добавляет
к форме свойство enctype, если в ней есть поле для загрузки файла.

Загрузка

Теперь напишем код действия контроллера, который объединит модель и представление.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

При получении данных, отправленных из формы, для создания из загруженного файла экземпляра объекта UploadedFile,
вызывается метод [[yii\web\UploadedFile::getInstance()]]. Далее всю работу по валидации и сохранению загруженного
файла на сервере берет на себя модель.

Загрузка нескольких файлов

Для загрузки нескольких файлов достаточно внести в предыдущий код несколько небольших изменений.

Сначала нужно добавить в правило валидации file параметр maxFiles для ограничения максимального количества
загружаемых одновременно файлов. Установка maxFiles равным 0 означает снятие ограничений на количество файлов,
которые могут быть загружены одновременно. Максимально разрешенное количество одновременно закачиваемых файлов
также ограничивается директивой PHP max_file_uploads [http://php.net/manual/ru/ini.core.php#ini.max-file-uploads],
и по умолчанию равно 20. Метод upload() нужно изменить для сохранения загруженных файлов по одному.

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile[]
 */
 public $imageFiles;

 public function rules()
 {
 return [
 [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 foreach ($this->imageFiles as $file) {
 $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
 }
 return true;
 } else {
 return false;
 }
 }
}

В представлении, в вызов метода fileInput(), нужно добавить параметр multiple для того, чтобы поле input позволяло выбирать несколько файлов одновременно:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

В действии контроллера нужно заменить вызов UploadedFile::getInstance() на UploadedFile::getInstances() для присвоения атрибуту модели imageFiles массива объектов UploadedFile.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

 Модульные тесты

Модульные тесты

Note: Данный раздел находится в разработке.

Модульный тест проверяет что отдельный модуль кода работает верно. В ООП самым базовым модулем является класс. То есть
модульный тест проверяет все методы интерфейса класса. На вход подаются различные параметры и тест проверяет, что методы
возвращают ожидаемые значения. Модульные тесты обычно пишутся тем же, кто реализует тестируемый класс.

Модульное тестирование в Yii использует PHPUnit и, опционально, Codeception. Рекомендуется проверить его документацию:

	Документация PHPUnit начиная с главы 2 [http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html].

	Codeception Unit Tests [http://codeception.com/docs/05-UnitTests].

Запуск тестов шаблонов проектов basic и advanced

Следуйте инструкциям в apps/advanced/tests/README.md и apps/basic/tests/README.md.

Модульные тесты фреймворка

Если вам необходимо запустить набор модульных тестов для самого Yii, прочитайте
“Подготовка к разработке Yii 2 [https://github.com/yiisoft/yii2/blob/master/docs/internals-ru/getting-started.md]”.

 Лучшие практики безопасности

Лучшие практики безопасности

Ниже мы рассмотрим основные принципы безопасности и опишем, как избежать угроз при разработке на Yii.

Основные принципы

Есть два основных принципа безопасности, независимо от того, какое приложение разрабатывается:

	Фильтрация ввода.

	Экранирование вывода.

Фильтрация ввода

Фильтрация ввода означает, что входные данные никогда не должны считаться безопасными и вы всегда должны проверять,
являются ли полученные данные допустимыми. Например, если мы знаем, что сортировка может быть осуществлена только
по трём полям title, created_at и status, и поле может передаваться через ввод пользователем, лучше проверить
значение там, где мы его получили:

$sortBy = $_GET['sort'];
if (!in_array($sortBy, ['title', 'created_at', 'status'])) {
 throw new Exception('Invalid sort value.');
}

В Yii, вы, скорее всего, будете использовать валидацию форм, чтоб делать такие проверки.

Экранирование вывода

Экранирование вывода означает, что данные в зависимости от контекста должны экранироваться, например в контексте
HTML вы должны экранировать <, > и похожие специальные символы. В контексте JavaScript или SQL будет другой набор
символов. Так как ручное экранирование чревато ошибками, Yii предоставляет различные утилиты для экранирования в
различных контекстах.

Как избежать SQL-иньекций

SQL-иньекции происходят, когда текст запроса формируется склеиванием не экранированных строк, как показано ниже:

$username = $_GET['username'];
$sql = "SELECT * FROM user WHERE username = '$username'";

Вместо того, чтобы подставлять корректное имя пользователя, злоумышленник может передать вам в приложение что-то вроде
'; DROP TABLE user; --.
В результате SQL будет следующий:

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'

Это валидный запрос, который сначала будет искать пользователей с пустым именем, а затем удалит таблицу user.
Скорее всего будет сломано приложение и будут потеряны данные (вы ведь делаете регулярное резервное копирование?).

Большинство запросов к базе данных в Yii происходит через Active Record, который правильно
использует подготовленные запросы PDO внутри. При использовании подготовленных запросов невозможно манипулировать
запросом как это показано выше.

Тем не менее, иногда нужны сырые запросы или построитель запросов. В этом случае
вы должны использовать безопасные способы передачи данных. Если данные используются для сравнения со значением
столбцов предпочтительнее использовать подготовленные запросы:

// query builder
$userIDs = (new Query())
 ->select('id')
 ->from('user')
 ->where('status=:status', [':status' => $status])
 ->all();

// DAO
$userIDs = $connection
 ->createCommand('SELECT id FROM user where status=:status')
 ->bindValues([':status' => $status])
 ->queryColumn();

Если данные используются в качестве имён столбцов или таблиц, то лучший путь - это разрешить только предопределённый
набор значений:

function actionList($orderBy = null)
{
 if (!in_array($orderBy, ['name', 'status'])) {
 throw new BadRequestHttpException('Only name and status are allowed to order by.')
 }

 // ...
}

Если это невозможно, то имена столбцов и таблиц должны экранироваться. Yii использует специальный синтаксис
для экранирования для всех поддерживаемых баз данных:

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";
$rowCount = $connection->createCommand($sql)->queryScalar();

Вы можете получить подробную информацию о синтаксисе в Экранирование имён таблиц и столбцов.

Как избежать XSS

XSS или кросс-сайтинговый скриптинг становится возможен, когда не экранированный выходной HTML попадает в браузер.
Например, если пользователь должен ввести своё имя, но вместо Alexander он вводит <script>alert('Hello!');</script>, то
все страницы, которые его выводят без экранирования, будут выполнять JavaScript alert('Hello!');, и в результате
будет выводиться окно сообщения в браузере. В зависимости от сайта, вместо невинных скриптов с выводом всплывающего
hello, злоумышленниками могут быть отправлены скрипты, похищающие личные данные пользователей сайта,
либо выполняющие операции от их имени.

В Yii избежать XSS легко. На месте вывода текста необходимо выбрать один из двух вариантов:

	Вы хотите вывести данные в виде обычного текста.

	Вы хотите вывести данные в виде HTML.

Если вам нужно вывести простой текст, то экранировать лучше следующим образом:

<?= \yii\helpers\Html::encode($username) ?>

Если нужно вывести HTML, вам лучше воспользоваться HtmlPurifier:

<?= \yii\helpers\HtmlPurifier::process($description) ?>

Обратите внимание, что обработка с помощью HtmlPurifier довольно тяжела, так что неплохо бы задуматься о кешировании.

Как избежать CSRF

CSRF - это аббревиатура для межсайтинговой подмены запросов. Идея заключается в том, что многие приложения предполагают,
что запросы, приходящие от браузера, отправляются самим пользователем. Это может быть неправдой.

Например, сайт an.example.com имеет URL /logout, который, используя простой GET, разлогинивает пользователя. Пока
это запрос выполняется самим пользователем - всё в порядке, но в один прекрасный день злоумышленники размещают код
 на форуме с большой посещаемостью. Браузер не делает никаких отличий
между запросом изображения и запросом страницы, так что когда пользователь откроет страницу с таким тегом img, браузер отправит GET запрос на указанный адрес, и пользователь будет разлогинен.

Вот основная идея. Можно сказать, что в разлогировании пользователя нет ничего серьёзного, но с помощью этой уязвимости, можно выполнять опасные операции. Представьте, что существует страница http://an.example.com/purse/transfer?to=anotherUser&amount=2000, обращение к которой с помощью GET запроса, приводит к перечислению 2000 единиц валюты со счета авторизированного пользователя на счет пользователя с логином anotherUser. Учитывая, что браузер для загрузки контента отправляет GET запросы, можно подумать, что разрешение на выполнение такой операции только POST запросом на 100% обезопасит от проблем. К сожалению, это не совсем правда. Учитывайте, что вместо тега , злоумышленник может внедрить JavaScript код, который будет отправлять нужные POST запросы на этот URL.

 Обработка ошибок

Обработка ошибок

В состав Yii входит встроенный [[yii\web\ErrorHandler|обработчик ошибок]], делающий работу с ошибками гораздо более
приятным занятием. А именно:

	Все не фатальные ошибки PHP (то есть warning, notice) конвертируются в исключения, которые можно перехватывать.

	Исключения и фатальные ошибки PHP отображаются в режиме отладки с детальным стеком вызовов и исходным кодом.

	Можно использовать для отображения ошибок действие контроллера.

	Поддерживаются различные форматы ответа.

По умолчанию [[yii\web\ErrorHandler|обработчик ошибок]] включен. Вы можете выключить его объявив константу
YII_ENABLE_ERROR_HANDLER со значением false во входном скрипте вашего приложения.

Использование обработчика ошибок

[[yii\web\ErrorHandler|Обработчик ошибок]] регистрируется в качестве компонента приложения
с именем errorHandler. Вы можете настраивать его следующим образом:

return [
 'components' => [
 'errorHandler' => [
 'maxSourceLines' => 20,
],
],
];

С приведённой выше конфигурацией на странице ошибки будет отображаться до 20 строк исходного кода.

Как уже было упомянуто, обработчик ошибок конвертирует все не фатальные ошибки PHP в перехватываемые исключения.
Это означает что можно поступать с ошибками следующим образом:

use Yii;
use yii\base\ErrorException;

try {
 10/0;
} catch (ErrorException $e) {
 Yii::warning("Деление на ноль.");
}

// можно продолжать выполнение

Если вам необходимо показать пользователю страницу с ошибкой, говорящей ему о том, что его запрос не верен или не
должен был быть сделан, вы можете выкинуть [[yii\web\HttpException|исключение HTTP]], такое как
[[yii\web\NotFoundHttpException]]. Обработчик ошибок корректно выставит статус код HTTP для ответа и использует
подходящий вид страницы ошибки.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

Настройка отображения ошибок

[[yii\web\ErrorHandler|Обработчик ошибок]] меняет отображение ошибок в зависимости от значения константы YII_DEBUG.
При YII_DEBUG равной true (режим отладки), обработчик ошибок будет отображать для облегчения отладки детальный стек
вызовов и исходный код. При YII_DEBUG равной false отображается только сообщение об ошибке, тем самым не позволяя
получить информацию о внутренностях приложения.

Info: Если исключение является наследником [[yii\base\UserException]], стек вызовов не отображается вне
зависимости от значения YII_DEBUG так как такие исключения считаются ошибками пользователя и исправлять что-либо
разработчику не требуется.

По умолчанию [[yii\web\ErrorHandler|обработчик ошибок]] показывает ошибки используя два представления:

	@yii/views/errorHandler/error.php: используется для отображения ошибок БЕЗ стека вызовов.
При YII_DEBUG равной false используется только это преставление.

	@yii/views/errorHandler/exception.php: используется для отображения ошибок СО стеком вызовов.

Вы можете настроить свойства [[yii\web\ErrorHandler::errorView|errorView]] и [[yii\web\ErrorHandler::exceptionView|exceptionView]]
для того, чтобы использовать свои представления.

Использование действий для отображения ошибок

Лучшим способом изменения отображения ошибок является использование действий путём
конфигурирования свойства [[yii\web\ErrorHandler::errorAction|errorAction]] компонента errorHandler:

// ...
'components' => [
 // ...
 'errorHandler' => [
 'errorAction' => 'site/error',
],
]

Свойство [[yii\web\ErrorHandler::errorAction|errorAction]] принимает маршрут
действия. Конфигурация выше означает, что для отображения ошибки без стека вызовов будет использовано действие site/error.

Само действие можно реализовать следующим образом:

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
];
 }
}

Приведённый выше код задаёт действие error используя класс [[yii\web\ErrorAction]], который рендерит ошибку используя
отображение error.

Вместо использования [[yii\web\ErrorAction]] вы можете создать действие error как обычный метод:

public function actionError()
{
 $exception = Yii::$app->errorHandler->exception;
 if ($exception !== null) {
 return $this->render('error', ['exception' => $exception]);
 }
}

Вы должны создать файл представления views/site/error.php. В этом файле, если используется [[yii\web\ErrorAction]],
вам доступны следующие переменные:

	name: имя ошибки;

	message: текст ошибки;

	exception: объект исключения, из которого можно получить дополнительную информацию, такую как статус HTTP,
код ошибки, стек вызовов и т.д.

Info: Если вы используете шаблоны приложения basic или advanced,
действие error и файл представления уже созданы за вас.

Изменение формата ответа

Обработчик ошибок отображает ошибки в соответствии с выбранным форматом ответа.
Если [[yii\web\Response::format|формат ответа]] задан как html, будут использованы представления для ошибок и
исключений, как описывалось ранее. Для остальных форматов ответа обработчик ошибок присваивает массив данных,
представляющий ошибку свойству [[yii\web\Response::data]]. Оно далее конвертируется в необходимый формат. Например,
если используется формат ответа json, вы получите подобный ответ:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

Изменить формат можно в обработчике события beforeSend компонента response в конфигурации приложения:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

Приведённый код изменит формат ответа на подобный:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

 Работа с формами

Работа с формами

В данном разделе мы обсудим получение данных от пользователя. На странице будет располагаться форма с полями для ввода
имени и email. Полученные данные будут показаны на странице для их подтверждения.

Чтобы достичь этой цели, помимо создания действия и двух представлений
вы создадите модель.

В данном руководстве вы изучите:

	Как создать модель для данных, введённых пользователем;

	Как объявить правила проверки введённых данных;

	Как создать HTML форму в представлении.

Создание модели

В файле models/EntryForm.php создайте класс модели EntryForm как показано ниже. Он будет использоваться для
хранения данных, введённых пользователем. Подробно о именовании файлов классов читайте в разделе
«Автозагрузка классов».

<?php

namespace app\models;

use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

Данный класс расширяет класс [[yii\base\Model]], который является частью фреймворка и обычно используется для работы
с данными форм.

Класс содержит 2 публичных свойства name и email, которые используются для хранения данных, введённых пользователем.
Он также содержит метод rules(), который возвращает набор правил проверки данных. Правила, объявленные в коде выше
означают следующее:

	Поля name и email обязательны для заполнения;

	В поле email должен быть правильный адрес email.

Если объект EntryForm заполнен пользовательскими данными, то для их проверки вы можете вызвать метод
[[yii\base\Model::validate()|validate()]]. В случае неудачной проверки свойство [[yii\base\Model::hasErrors|hasErrors]]
станет равным true. С помощью [[yii\base\Model::getErrors|errors]] можно узнать, какие именно ошибки возникли.

Создание действия

Далее создайте действие entry в контроллере site, точно так же, как вы делали это ранее.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...существующий код...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // данные в $model удачно проверены

 // делаем что-то полезное с $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // либо страница отображается первый раз, либо есть ошибка в данных
 return $this->render('entry', ['model' => $model]);
 }
 }
}

Действие создает объект EntryForm. Затем оно пытается заполнить модель данными из массива $_POST, доступ
к которому обеспечивает Yii при помощи [[yii\web\Request::post()]]. Если модель успешно заполнена, то есть пользователь
отправил данные из HTML формы, то для проверки данных будет вызван метод [[yii\base\Model::validate()|validate()]].

Если всё в порядке, действие отобразит представление entry-confirm, которое показывает пользователю введенные им данные.
В противном случае будет отображено представление entry, которое содержит HTML форму и ошибки проверки данных, если
они есть.

Info: Yii::$app представляет собой глобально доступный экземпляр-одиночку
приложения (singleton). Одновременно это Service Locator,
дающий доступ к компонентам вроде request, response, db и так далее. В коде выше для доступа к данным из $_POST
был использован компонент request.

Создание представления

В заключение, создаём два представления с именами entry-confirm и entry, которые отображаются действием entry из
предыдущего подраздела.

Представление entry-confirm просто отображает имя и email. Оно должно быть сохранено в файле views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>Вы ввели следующую информацию:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

Представление entry отображает HTML форму. Оно должно быть сохранено в файле views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Отправить', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

Для построения HTML формы представление использует мощный виджет [[yii\widgets\ActiveForm|ActiveForm]].
Методы begin() и end() выводят открывающий и закрывающий теги формы. Между этими вызовами создаются поля ввода при
помощи метода [[yii\widgets\ActiveForm::field()|field()]]. Первым идёт поле для “name”, вторым — для “email”.
Далее для генерации кнопки отправки данных вызывается метод [[yii\helpers\Html::submitButton()]].

Попробуем

Чтобы увидеть всё созданное в работе, откройте в браузере следующий URL:

http://hostname/index.php?r=site%2Fentry

Вы увидите страницу с формой и двумя полями для ввода. Перед каждым полем имеется подпись, которая указывает, какую
информацию следует вводить. Если вы нажмёте на кнопку отправки без ввода данных или если вы введете email в неверном
формате, вы увидите сообщение с ошибкой рядом с каждым проблемным полем.

[image: Форма с ошибками]

После ввода верных данных и их отправки, вы увидите страницу с данными, которые вы только что ввели.

[image: Подтверждение введённых данных]

Как работает вся эта «магия»

Вы, скорее всего, задаётесь вопросом о том, как же эта HTML форма работает на самом деле. Весь процесс может показаться
немного волшебным: то как показываются подписи к полям, ошибки проверки данных при некорректном вводе и то что всё это
происходит без перезагрузки страницы.

Да, проверка данных на самом деле происходит и на стороне клиента при помощи JavaScript и на стороне сервера.
[[yii\widgets\ActiveForm]] достаточно продуман, чтобы взять правила проверки, которые вы объявили в EntryForm,
преобразовать их в JavaScript код и использовать его для проведения проверок. На случай отключения JavaScript в браузере
валидация проводится и на стороне сервера как показано в методе actionEntry(). Это даёт уверенность в том, что данные
корректны при любых обстоятельствах.

Подписи для полей генерируются методом field(), на основе имён свойств модели. Например, подпись Name генерируется
для свойства name. Вы можете модифицировать подписи следующим образом:

<?= $form->field($model, 'name')->label('Ваше имя') ?>
<?= $form->field($model, 'email')->label('Ваш Email') ?>

Info: В Yii есть множество виджетов, позволяющих быстро строить сложные и динамичные представления.
Как вы узнаете позже, разрабатывать новые виджеты очень просто. Многое из представлений можно вынести в виджеты, чтобы
использовать это повторно в других местах и упростить тем самым разработку в будущем.

Заключение

В данном разделе вы попробовали каждую часть шаблона проектирования MVC. Вы изучили как создавать классы моделей
для обработки и проверки пользовательских данных.

Также, вы изучили как получать данные от пользователя и как показать данные пользователю. Это задача может занимать в
процессе разработки значительное время. Yii предоставляет мощные виджеты, которые делают задачу максимально простой.

В следующем разделе вы изучите как работать с базами данных, что требуется в большинстве приложений.

 Chargement automatique des classes

Chargement automatique des classes

Yii compte sur le mécanisme de chargement automatique des classes [http://www.php.net/manual/en/language.oop5.autoload.php] pour localiser et inclure tous les fichiers de classes requis. Il fournit un chargeur automatique de classes de haute performance qui est conforme à la norme PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md]. Le chargeur automatique est installé lorsque vous incluez le fichier Yii.php.

Note: pour simplifier la description, dans cette section, nous ne parlerons que du chargement automatique des classes. Néanmoins, gardez présent à l’esprit que le contenu que nous décrivons ici s’applique aussi au chargement automatique des interfaces et des traits.

Utilisation du chargeur automatique de Yii

Pour utiliser le chargeur automatique de classes de Yii, vous devez suivre deux règles simples lorsque vous créez et nommez vos classes

 Localisateur de services

Localisateur de services

Un localisateur de services est un objet que sait comment fournir toutes sortes de services (ou composants) dont une application peut avoir besoin. Dans le localisateur de services, chaque composant existe seulement sous forme d’un